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Abstract: The COVID-19 pandemic has had significant impacts on health, economies, and
societies. Mathematical models in networks play a crucial role in understanding and mitigating
the spread of infectious diseases. This study develops a customized SIR model to simulate the
spread of COVID-19, incorporating non-pharmaceutical interventions (NPIs) to limit transmission.
Self-protection and mobility restrictions are complementary, allowing hygiene measures to serve
as an alternative to strict mobility limitations. Gillespie algorithm is used to simulate infection
and recovery events. To combat the late response in the first wave of infection in Spain, the
study explores different lockdown strategies, including Intense and Multi-phase approaches. Intense
lockdowns effectively reduce cases, but may be challenging to sustain due to population fatigue with
prolonged restrictions. On the other hand, Multi-phase lockdowns have limited impact on final case
numbers but aid in the recovery of the health system between waves, minimizing the impact on the
economy, fatalities and people’s mental health.

I. INTRODUCTION

The outbreak of the COVID-19 pandemic has had
far-reaching consequences, impacting global health,
economies and societies on a massive scale. To effectively
respond to such pandemics, it is essential to comprehend
their dynamics and develop strategies to mitigate their
spread and minimize their impact. Mathematical mod-
els are invaluable tools for analyzing and predicting the
behavior of infectious diseases, providing crucial insights
for public health interventions. This study aims to de-
velop and implement a mathematical model specifically
tailored to simulate the spread of a pandemic, with a
focus on the COVID-19 outbreak. The chosen model
is the SIR (Susceptible-Infectious-Recovered) model, a
widely-used framework renowned for its ability to capture
the dynamics of infectious diseases. In this model, non-
pharmaceutical interventions (NPIs) are incorporated as
essential measures to limit the spread of the virus.
The spread of a pandemic in complex networks is mathe-
matically defined by nodes (N), representing individuals,
and edges or links (E), which symbolize the physical con-
nections between them. The degree (k) of a node corre-
sponds to the number of connections it possesses, reflect-
ing the level of social interactions an individual engages
in. This study focuses on undirected networks, where
interactions between individuals have no inherent direc-
tionality. Social networks exhibit heterogeneity, meaning
that there are nodes with a large degree while others have
only a few links. This heterogeneity in connectivity pat-
terns reflects the real-world scenario, where some individ-
uals have more extensive social networks and interactions
than others. It has been considered an email network
kind network [7] which consist of 33, 696 nodes, 180, 811
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edges and a degree probability distribution P (k) ∼ k−δ

where δ ≈ 1.77.

II. MODEL

A. Raw model

This project is based on the SIR model. In this model,
the population is divided into three compartments: sus-
ceptible (S), infected (I), and recovered (R). The dynam-
ics of the pandemic are governed by two key parameters:
the infection rate (β), which represents the probability
per unit of time of a susceptible individual getting in-
fected when coming into contact with an infected indi-
vidual, and the recovery rate (µ), which represents the
probability per unit of time of an infected individual re-
covering and becoming immune or death. Both immu-
nity and fatalities have the same effect in terms of tran-
sitioning individuals out of the infected state. Despite
the presence of two parameters, the transition dynamics
only depend on the ratio between them[1]. To simplify
the analysis, the recovery rate is standardized to 1, and
the transmissivity rate is defined as (λ ≡ β/µ).
The model is composed of three distinct regions shown in
Fig. (1). Region (I), referred to as the exponential growth
phase, is characterized by the unhindered spread of the
virus in the absence of recovered nodes as ”barriers”. Re-
gion (II) corresponds to the inertia phase, during which
the diminishing number of susceptible nodes reaches a
threshold that disrupts the sustained propagation, caus-
ing the daily case count to decline, reaching the peak of
the pandemic. Lastly, Region (III) denotes the recovery
phase, wherein the count of recovered nodes increases,
subsequently resulting in a reduction in the number of
infected individuals. Eventually, all the infected nodes
recover, marking the conclusion of the simulation.
The progression of the pandemic follows a stochastic
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FIG. 1: Simulation of the SIR model’s evolution on the net-
work considered in the study, where vertical dashed lines sep-
arates the three distinct regions. The prevalence and daily
cases are shown on the y-axis, while months are displayed on
the x-axis. (λ = 0.8, τ = 140)

process on a Gillespie algorithm, where each event is de-
termined by the probability of infection (Eq. (1)) and
recovery (Eq. (2)). The number 1 in each equation rep-
resents the normalization of the recovery rate (µ).

PI(t) =
EA(t) · λ

EA(t) · λ+NI(t) · 1
(1)

PR(t) =
NI(t) · 1

EA(t) · λ+NI(t) · 1
(2)

Probabilities are recalculated at each time step using two
variables: the number of active links, EA, which repre-
sents edges connecting infected nodes to susceptible ones,
and the number of infected nodes, NI . The event that
occurs next is determined by a uniform random number
between 0 and 1, selecting one of the two probabilities.
To provide an estimation of real-time progression, the
time intervals between events are modeled using a Pois-
son distribution, Eq. (3). To convert the simulation time

to days, it is necessary to multiply it by the definition of
a new parameter named day length (τ), Eq. (4).

ti = ti−1 + δt, δt ∈ {T ∼ Poisson(γ)} (3)

γ = EA · λ+NI · 1

tdays = τ · tsim (4)

B. Adding restrictions

Focusing on NPIs, measures such as mandatory
masks, hygiene practices, discipline, and mobility re-
strictions have a significant impact on reducing virus
transmission[2][3]. In the model, mobility restrictions
and personal precautions work together. Mobility restric-
tions are represented by the parameter (ϕm), reducing ac-
tive links, while self-protection measures are represented
by (ϕv), regulating transmissivity[6]. Both effects are
combined into a single parameter, restriction coefficient
(ϕ ≡ ϕm · ϕv), reflecting the overall level of restriction.
Due to this proportional relationship, proper hygiene and
discipline can achieve the same level of restriction with-
out affecting mobility significantly[3].

ϕ

{
< 1 restrictions
= 1 no restrictions
> 1 increased transmissivity

The equations to determine the following event are now
modified to introduce restrictions (Eqs. (5) and (6)).

PI(t) =
EA(t) · ϕ · λ

EA(t) · ϕ · λ+NI(t) · 1
(5)

PR(t) =
NI(t) · 1

EA(t) · ϕ · λ+NI(t) · 1
(6)

Probabilities in each step are calculated over the ac-
tual evolution of the simulation. However, in reality, it is
challenging to detect all infections. Therefore, measures
are taken by estimating the number of infected nodes,
Nest

I (t). This calculation is represented by Eq. (7). The
number of simulation daily cases, ns

cases(t), is reduced by
a correction factor referred to as testing capacity (ϵ), ac-
counting for the system’s capacity to detect new cases,
and resulting in reported daily cases, nr

cases(t). The num-
ber of infected nodes at a given time is underestimated
due to factors such as the capacity to detect positives
through PCR tests and the difficulty of tracking all in-
fected nodes over time [2]. To estimate the number of
infected nodes, it is necessary to sum the reported daily
cases from previous days. The probability of cases from
earlier days remaining active decreases going further back
in time, following a Poisson distribution.

Nest
I (t) =

t∑
i=1

nr
cases(ti) · e(t−i)· 1τ (7)
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nr
cases(t) = ϵ · ns

cases(t)

TABLE I: Description of all the parameters that characterize
the model. Both (ϕv) and (ϕ) can occasionally be greater
than 1, according to the model, but in practice it has not
been tested.

Name Symbol Range Unit

Transmissivity rate λ R+ -

Day length τ R+ > 1 T

Reported cases capacity ϵ [0,1] -

Mobility restriction ϕm [0,1] -

Self-protection effectivity ϕv [0,1] (R+) -

Restriction coefficient ϕ [0,1] -

III. SIMULATIONS

A. Reproducing the peak of the first wave

The first reported case in Spain occurred on January
31st [2]. The lockdown measures were implemented on
March 15th [2], although some communities and individ-
uals had already taken precautionary measures starting
from the beginning of March, such as staying at home
to prevent infection. When the lockdown started, there
was at least a 50% reduction in mobility [2], which cor-
responds to a value of the mobility restriction coefficient
of (ϕm = 0.5). By practicing self-protection measures,
such as wearing masks with an effectiveness of 50%, it
is possible to significantly reduce mortality and, there-
fore, transmission [6]. Although some individuals may
not have worn masks correctly during the early stages of
the pandemic, the effectiveness of masks is still consid-
ered to be the same value (ϕv = 0.5), due to hygiene and
individual responsibility. Therefore, the overall restric-
tion coefficient is (ϕ = 0.25). At that time, the medi-
cal system’s capacity to test infected cases was around
10% [2], thus the testing capacity is set to (ϵ = 0.1).
This value is an average estimation corresponding to the
fluctuation of testing capacity at the beginning of the
pandemic due to periodic shortages in PCR supplies [2].
Finally, the values for the transmissivity rate and day
length are determined to adjust the evolution of the real
data to the simulation. In the first wave of the pandemic
in Spain, the peak was measured aroundMarch 27th with
roughly, 8500 cases. Therefore, considering (λ = 1.35),
(τ = 135) and starting with 3 randomly chosen simula-
tion infected nodes with 256 active links, it reproduces
the peak of the first wave.

The total number of population at January 1st, Nreal,
is estimated to be 47, 450, 795 [4], while the number of
nodes in the considered network, Nsim. To transform
the number of reported daily cases, nr

cases, to escalated

reported daily cases, nr′

cases, it is necessary to keep the

FIG. 2: Daily cases over time. The infected curve represents
the simulation conducted on the considered parameters when
nodes are infected. The reported curve takes into account
the infected curve but is shifted forward by 14 days [2] to
reflect the time it takes for infected cases to be detected. Both
curves are escalated according to Eq. (8). The real data curve
represents the data reported by the Spanish government [5].
Dots represent the actual data points, while the continuous
line corresponds to an interpolation, and the dotted vertical
line indicates a peak around March 27th.

same proportion of population/network nodes.

nr′

cases(t) =
Nreal

Nsim
· ϵ · ns

cases(t) (8)

The model does not consider the duration of exposure re-
quired for an individual to become infectious. To address
this limitation, Fig. (2) illustrates the process in which
the model monitored the actual progression of the pan-
demic, with reported cases occurring approximately two
weeks later. Although this is a simplified approximation,
it aligns with the real scenario [2] and provides insights
into the progression of the pandemic.
When the lockdown started on March 15th, the trajec-
tory of daily cases was already showing a decrease (Re-
gion (II)). This suggests that even though measures were
implemented when the number of tests being conducted
was increasing, the actual rate of infections was already
declining. As a result, the effectiveness of the measures at
that point may have been limited. According to the real
data available, the total number of reported infections
diagnosed prior to July 1st was 257,696 [5], which repre-
sents 0.6% of the susceptible population considered. The
reported curve shown in Fig. (2) predicts 295,378(0.68%)
infections, hence the simulation provides a closer percent-
age match. The following two simulations are done in the
infected curve, advanced 14 days afterwords and escalat-
ing according to Eq. (8), becoming into the reported
curve.
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B. Intense Lockdown Strategy

Lockdown suggests a way to reduce mobility among
the population. If only one lockdown is applied and re-
strictions are maintained until the end of the pandemic,
it is named an Intense Lockdown strategy. In Fig. (3),
a simulation is shown where this type of strategy is ap-
plied. With this strategy, the number of infections drops
to 197, 974(0.46%) before July 1st. When measures are
implemented, it takes approximately two weeks for their
effects to manifest. This allows to potentially shift the
peak of the pandemic and reduce its height significantly.
Although reported daily cases do not drop to zero, they
are effectively controlled. It is evident that restrictions

FIG. 3: Simulation of Intense Lockdown vs No restrictions vs
Infected: Daily Cases and Prevalence. Dots represent simula-
tion data, while the continuous line correspond to an interpo-
lation. Gray area indicates measure implementation (March
1st - March 14th). Escalation consists of 3 gradual relaxation
steps (from ϕ = 1 to ϕ = 0.25). Dotted vertical line represents
full lockdown effects (March 23rd). The gray continuous line
represents the value of (ϕ) at each time.

have a significant impact on the number of infections, but
maintaining restrictions for an extended period would
have a profound impact on the economy and people’s
mental health.

C. Multi-phase Lockdown Strategy

In contrast to the Intense Lockdown strategy, the
Multi-phase Lockdown strategy splits the pandemic pro-
cess into multiple peaks, alternating between periods of
infection and periods of restrictions. Although the overall
duration of the pandemic is longer, this approach allows
the healthcare system to better prepare for each subse-
quent wave during the restriction periods. Fig. (4) pro-
vides an example of this process. Although the number of
infections without restrictions is only slightly higher than
273, 519 (0.63%) infections with that strategy prior to
July 1st, the healthcare system remains stable, enabling
better treatment for patients and ultimately reducing the
number of fatalities. At the end of the pandemic, there
would be more infections but fewer fatalities.

FIG. 4: Simulation of Multi-phase Lockdown vs No restric-
tions vs Infected: Daily Cases and Prevalence. Dots repre-
sent simulation data, while the continuous line correspond to
an interpolation. Gray areas indicate measure implementa-
tion (March 1st - March 14th) and de-escalation (April 15th
- May 14th). Escalation consists of 3 gradual relaxation steps
(from ϕ = 1 to ϕ = 0.25), while de-escalation follows 4 phases
(from ϕ = 0.25 to ϕ = 1) according to government guidelines.
Dotted vertical lines represent full lockdown effects (March
23rd) and first de-escalation effects (April 27th). The gray
continuous line represents the value of (ϕ) at each time.
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During the first wave of the pandemic, there was a
shortage of PCR tests [2], resulting in a loss of informa-
tion regarding the true evolution of the virus. However,
with the Multi-phase Lockdown strategy, there is enough
time for the government to procure and supply an ade-
quate number of PCR tests. This ensures that the testing
capacity aligns with the needs of the population, allow-
ing for a more accurate assessment of the pandemic’s
progression.

IV. CONCLUSIONS

• Self-protection measures, such as practicing good
hygiene, being responsible, and properly using
masks, reduce the transmissivity of the virus. Sim-
ilarly, mobility restrictions decrease the number of
active links. These effects complement each other,
meaning that maintaining good hygiene practices
and using masks effectively can compensate for the
need to restrict mobility.

• During the first wave of COVID-19 in Spain, re-
strictions were implemented after the peak of daily
cases had already occurred. As a result, the re-
strictions were introduced relatively late, making
it challenging to effectively control and reduce the
number of daily cases.

• Two strategies for pandemic restrictions are con-
sidered: a Intense lockdown and Multi-Phase lock-
downs. An Intense lockdown not only advances the

peak of the pandemic and lowers its height, but in-
fected cases at the end of the pandemic are signif-
icantly reduced. However, it can have significant
economic and mental health impacts. The other
strategy is Multi-phase lockdowns, splitting the
peak into multiple waves, it provides intervals for
healthcare system preparation and offering some re-
lief for individuals. Infections may be higher, but
the system has time to respond. The choice de-
pends on healthcare capacity, pandemic severity,
economic impact, and population well-being. It’s a
balance between minimizing healthcare burden and
mitigating economic and mental health effects.

• Finally, we wanted to incorporate the reproduction
number, Rt, into the study to determine the timing
of implementing measures based on this variable.
However, it was not possible as the expected results
differed significantly from the calculations, at least
by an order of magnitude. I would have also liked to
introduce an exposition compartment to the model
to make a better approximation on the delay.
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