Superconducting transition in polycrystalline YBa₂Cu₃O_{7-x}: diving into the meaning of T_c and the excess of electrical conductivity in the normal state

Author: Anna Planella Vidal

Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.*

Advisor: Antoni García-Santiago

Abstract: Superconductivity is the property of certain materials to conduct direct current electricity without energy loss when they are cooled below a critical temperature T_c . The transition at this temperature is driven by thermal fluctuations, so deciding the exact value of T_c is not a trivial matter. In this work we show different methods that have been used to estimate this temperature and deepen our understanding of the excess conductivity due to fluctuations. We can detect the mean-field, fluctuations, and full critical regions as they change with temperature.

I. INTRODUCTION

Superconductors are those materials which present a particular set of electric and magnetic properties at low temperatures, mainly the rapid decrease of their electrical resistance down to almost negligible values at a certain critical temperature. This behaviour has been intensely studied ever since it was first coined, and there are still advances that further our understanding of these metals to this day.[1]

Superconductivity by itself is a phase of matter and, therefore, it is mostly studied and observed with electric measurements that show the phase transition. Adding the variable of a magnetic field to these measurements can also give us important information, such as how the critical temperature shifts value.

Depending on their magnetic behaviour during the transition between the normal and superconducting state, superconductors can be categorized into two groups: type-I or type-II. Type-I superconductors can enter an intermediate state when subjected to a critical magnetic field, in which both the superconductor and normal states coexist in different regions of the material. It must be specified that the appearance of this state depends on the shape of the body and its demagnetizing factor. This is the category for most pure metal superconductors.

Here, however, we will focus on type-II superconductors, mostly alloys and impure metals, and specifically YBa₂Cu₃O_{7-x}. These materials enter the mixed state instead, splitting into a fine-scale mixture of the superconducting and normal regions with its boundaries parallel to the applied field.[2] Being energetically favourable, this state is an intrinsic feature of the type-II superconductors. This type also encompasses high-temperature superconductors, which transition at much higher temperatures than the other type.[3] Such is the material we will be analysing in this work.

The superconductor material will revert into the normal state if it is driven above its critical temperature, critical magnetic field, or critical current. This is a true phase transition that can be characterized by critical exponents, as will be seen later. The actual phenomenon of superconductivity is understood through the free electrons in the material, or "superelectrons". One of the main theories in superconductivity is that of Ginzburg-Landau (GL). The GL theory introduces a wave-function for the superconducting electrons and uses it as an order parameter in Landau's theory of second-order phase transitions.[4] This wavefunction achieves a Schrödinger-like equation once derived its differential equation, which makes it possible to treat in ways unconceived at the time (1950).

Another basis of this study are the thermodynamic fluctuations.[4] The presence of thermal energy in any material gives a finite probability that it will fluctuate into other states besides the lowest energy. This means that a finite resistance can appear even in the superconducting state and vice versa, that some superconductivity can remain above the critical temperature, giving rise to the so-called excess conductivity, which will be one of the main subjects of study in this work.

The main motivation behind this study is to gain a deeper understanding on the properties of $YBa_2Cu_3O_{7-x}$. This interest stems from my internship last summer in the University of Girona, where I joined the Research Group in Materials and Thermodynamics (GRMT) in their project about thermic growth of superconductor films REBa₂Cu₃O_{7-x} (RE: rare earth). I was able to participate and watch the creation of such films from the binary solutions and thought it convenient to take this as an opportunity to continue the investigation process, doing the required experimentation to determine some of the properties of this material.

In the Laboratory of Modern Physics at the University of Barcelona there is a set-up that was already in use to study the superconducting transition of YBa₂Cu₃O_{7-x}. Therefore, it seemed appropriate to make use of that equipment to make our own experimentation and analysis, which consist in studying the shape of the drop of resistance with temperature and determine the critical temperature of the material according to different criteria. Afterwards, we will discuss

^{*} Electronic address: annaplanella@yahoo.es

the validity of all values obtained and proceed with the study of the excess of conductivity during the transition.

This work will consist of the following parts: a brief explanation of the experimental set-up (section II) to set the foundation of our study, the results and discussion (section III) of both the critical temperature and the excess of conductivity and, lastly, the conclusions (section IV) and acknowledgments.

II. EXPERIMENTAL

What follows is a brief explanation of the experiment to contextualize the main body of this study.

The sample we are working with is a solid square pellet of YBa₂Cu₃O_{7-x} whose oxygen content is currently unknown. Whichever used to be in the past, the time it has been on use plus different maintenance of the hardware that caused it to be outside the equipment have affected it. This only implies that the critical temperature of this sample will have changed slightly over time.

The main piece of equipment is a cryostat, which allows us to cool down the sample with liquid nitrogen in a vacuum chamber. Opening and closing a valve, we can control the nitrogen flow and, therefore, the cooling rate. However, the precision of this valve is rather low, and measures must be taken quickly, if possible, since closing the valve can cause the risk of warming the sample again. The temperature of the sample is known feeding a platinum resistance with a current of 1 mA and measuring its voltage drop with a *Hewlett Packard 3435A* voltmeter (with a resolution of 0.01 mV, or 0.03 K). [5] This resistance has a linear relation with temperature and will be located inside the cryostat, close to the sample.

We measure the voltage drop in the sample, which at a fixed intensity of 10 mA is practically equivalent to measuring its resistance. This is done using the 4-point probe method, selected specifically to avoid the most electrical noise and parasite resistance during the measurement by the contacts and other elements of the set-up. Since we plan to reach very low levels of resistance, this is strictly necessary.

No configuration is perfect though, and some voltage drop will be added due to the thermoelectric effect. This voltage drop is independent of the way of the current, unlike the voltage we plan to record. Therefore, by switching the sign of the current between two subsequent data records and proceeding with the following subtraction,

$$V_{i'} = \frac{V_i - V_{i-1}}{2} \tag{1}$$

we get rid of the non-desired voltage drop. This voltage is measured with a *Keithley 2000* microvoltmeter (with a resolution of 0.0001 mV).

Using the software provided by [5], it is possible to quickly record the voltage drop and temperature of the sample at any given time during the procedure. Therefore, what was done was take data of these two magnitudes from ambient temperature to 84 K, in varying intervals (from 1.00 K at room temperature down to 0.01 K below 86 K), to suit the shape and precision necessary.

III. RESULTS AND DISCUSSION

The current in a conductor is carried by the conduction electrons, which are scattered by the thermal vibrations and impurities of the material. Such is the origin of electrical resistance. The fact that superconductors experience an elimination of resistance is lightly explained as some electrons becoming *superelectrons*, which cannot be scattered, and the fraction of which keeps increasing as temperature lowers.[2]

The Bardeen–Cooper–Schrieffer (BCS) theory is the most common microscopic explanation for the superelectrons. The idea is that an electron polarizes the medium by attracting the positive ions, which in turn attract a second electron. Since this interaction, seemingly between the electrons, is considered attractive, their energy is decreased.[4]

This theory, however, does not apply when considering inhomogeneous spaces, as is the mixed state of type II superconductors, for example. For these cases, we use the macroscopic Ginzburg-Landau (GL) theory, which is valid at temperatures near T_c and smooth spatial variations.

The GL theory introduces a pseudowavefunction $\psi(\vec{r})$ as a complex order parameter, where $|\psi(\vec{r})|^2 = n_s(\vec{r})$ represents the local density of superconducting electrons. We start by postulating the free-energy density, [4]

$$f = \left(f_{n0}(0) - \frac{1}{2}\gamma T^{2} + \frac{h^{2}}{8\pi}\right) + \alpha|\psi|^{2} + \frac{\beta}{2}|\psi|^{4} + \frac{1}{2m^{*}}\left|\left(\frac{\hbar}{i}\nabla - \frac{e^{*}}{c}\vec{A}\right)\psi\right|^{2}$$
(2)

where $\psi = 0$ gives us the free energy of the normal state. Minimizing this energy, the volume integral of Eq.(2), when fields, currents or gradients are imposed gives us the GL differential equations:

$$\alpha\psi + \beta|\psi|^2\psi + \frac{1}{2m^*} \left(\frac{\hbar}{i}\nabla - \frac{e^*}{c}\vec{A}\right)^2\psi = 0, \qquad (3)$$

$$\vec{J} = \frac{e^*}{m^*} |\psi|^2 \left(\hbar \nabla \varphi - \frac{e^*}{c} \vec{A} \right) = e^* |\psi|^2 \vec{v}_s, \tag{4}$$

where $e^* = 2e$ and $m^* = 2m$.

The characteristic length for variation of ψ , or coherence length, $\xi(T)$, is defined by considering a simplified case with no fields at Eq.(3). Along with the penetration depth $\lambda(T)$, which indicates how the currents and the flux density reach beyond the surface of the material, these lengths define the

Treball de Fi de Grau

dimensionless GL parameter $\kappa = \frac{\lambda(T)}{\xi(T)}$. This parameter separates the superconductors' type at $\kappa = 1/\sqrt{2}$, being $\kappa \ll 1$ for pure (type I) superconductors and vice versa for type II.

Despite knowing $\psi(\vec{r})$ will strive to reach minimum free energy, thermodynamic fluctuations allow the system to present an array of other functions, especially those that raise the energy by only $\sim kT$. As we have stated before, this can give a finite resistance below T_c as well as superconducting effects above T_c (because $\langle \psi^2 \rangle \neq 0$).

If we consider a bulk sample far above from T_c , so we can neglect the quartic term in Eq.(2), we can reach a solution of the linearized GL equation (Eq.(3)) such as

$$\left|\psi_{\vec{q}}\right|^{2} = \frac{kT}{\alpha + \hbar^{2}q^{2}/2m^{*}} = \frac{2m^{*}}{\hbar^{2}}\frac{kT}{q^{2} + 1/\xi^{2}}.$$
 (5)

We apply a cutoff at $q \approx 1/\xi(0)$ to give a finite value for $\langle \psi^2 \rangle = \sum_{\vec{q}} |\psi_{\vec{q}}|^2$, which complements the GL theory's range of validity. Superconducting properties will be given by phases of $\psi(\vec{r})$ with coherent spatial variation. Therefore, we look at the two-point correlation function:

$$g(\vec{r}, \vec{r}') = \langle \psi^*(\vec{r}) \, \psi(\vec{r}') \rangle = \frac{m^* k T}{2\pi \hbar^2} \frac{e^{-\frac{R}{\xi(T)}}}{R} \tag{6}$$

which depends only on the magnitude $\vec{R} = \vec{r}' - \vec{r}$. This function shows how, in the fluctuation regime, the local values of ψ are correlated over a distance ξ , as expected.

Conductivity can usually be defined by $\sigma_n = ne^2 \tau/m$ where τ is the mean scattering time of the electrons and n is the density of electrons. When fluctuations arise, they contribute an extra term to this expression.

Using the Kubo formalism [4] for a case with uniform fields and currents and taking q as a continuous variable in bulk samples, we can obtain an exact expression for the excess conductivity in a three-dimensional case:

$$\sigma_{3D}' = \frac{1}{32} \frac{e^2}{\hbar \xi(0)} \left(\frac{T_c}{T - T_c}\right)^{1/2}.$$
 (7)

Eq. (7) takes on similar shapes for two and onedimensional cases, where the temperature term's exponent changes to 1 for 2D and 3/2 for 1D. [6]

However, during the critical transition, the GL theory does not hold up anymore. For high-temperature superconductors such as these, the GL theory should break down within 0.1 K or more of the transition temperature.[7]

An important difference between critical and GL behaviour is the correlation length, $\xi(T) \sim (T - T_c)^{-\nu}$, with $\nu = 2/3$ for the first and $\nu = 1/2$ for the latter. If the electrical conductivity increases as $\sigma' \propto \xi(T)$ due to fluctuations [6], the excess conductivity should vary as

 $(T - T_c)^{-1/2}$ in the mean-field regime and $(T - T_c)^{-2/3}$ in the critical region. It should change again closer to T_c to $(T - T_c)^{-1/3}$ if a dynamical scaling approach is considered.[7] In the end, we are left with the following equation:

$$\sigma' \cong \frac{e^2}{\hbar \,\xi(0)} \left(\frac{T_c}{T - T_c}\right)^{a(T)}; \ a(T) \in \left[\frac{1}{2}, \frac{2}{3}, \frac{1}{3}\right]. \tag{8}$$

A. Criteria for the determination of T_c

The raw data used in these studies will be found in the appendix of this report, Table II.

We start by presenting the data in almost its raw form, only applying $R[\Omega] = V[mV]/10[mA]$, where V is already the semi-difference of voltage.

FIG. 1: Dependence of the electrical resistance of the sample with temperature. Two main areas have been adjusted to a trendline: the metallic region and the transition region.

We will use different criteria to estimate the temperature at which the superconducting transition takes place. [8][9]

The first step in determining the critical temperature with this information is to consider the intersection point of these two trendlines. It is clear to see, however, that this will correspond to an onset for when the transition begins as it is approached from the normal state.

The intersection happens at $T_c^{on} = 89.6 \pm 1.3$ K.

Another way of determining when the transition happens is to take the metallic trendline above and extend it to all temperatures. We then assume this is the behaviour the material would have if the transition never happened, R_m . This criterion tells us that the transition will take place when this "metallic resistance" is halved, $R(T_{cR}) = \frac{1}{2}R_m(T_{cR}).[8]$

As seen in Fig. 2, this criterion can be used to find more than just the 50% mark of the transition. We have determined the other two points (see Fig. 2) to also obtain an estimate of the width of this transition. In this case, however, since the deviation from the metallic behaviour starts slowly, we can take the width from the 10% mark only and make it $\Delta T_{cR} =$

Treball de Fi de Grau

 $2(T_{cR} - T_{c10})$, since the 90% one gives us little information, being so far away from T_{cR} .

According to this criterion, $T_{cR} = 87.91 \pm 0.02$ K with $\Delta T_{cR} = 2.01$ K. We can see from Fig. 2 that this interval is still valid despite our dismissal of the right mark.

FIG. 2: Visual representation of the halved resistance criterion, including also the 10% and 90% points and ΔT_{cR} .

There is yet another point of view. We can say that a superconductor material will only have transitioned when its resistance falls to a very small value and the fluctuations have diminished. We can arbitrarily decide this is the 5% mark, according to the previous criterion.

If we do this, the approximate critical temperature is $T_{c5} = 85.37 \pm 0.02$ K.

With the data presented so far, a last definition of T_c can be found. We might say the critical temperature of a superconductor is that at which the electrical resistance reaches zero. This is evidently not a perfect definition. The measured values at this range are so small that fluctuations of many types, as well as the equipment used and its precision, can make the zero point quite arbitrary (a zero will always be, in actuality, a very small non-zero number).

Despite all that, in our case, we find $T_{c0} = 84.2 \pm 0.2$ K.

Aside from the electrical resistance itself, we can also study its variation. In other words, we can use the derivative of the resistance with respect to temperature to set some other criteria for determining T_c .[8]

Firstly, to have a rough estimate of the onset, we follow the same procedure as we did in Fig. 1, finding in this case the intersection between the baseline and the trendline of Fig. 3.[10] Here is when the resistance starts diminishing.

The intersection happens at $T_c^{on,d} = 88.94 \pm 0.02$ K.

Lastly, we could define the transition as "the point after the biggest change" or, in other words, the highest point in the derivative. This inflection point is $T_{cl} = 88.25 \pm 0.02$ K.

We summarize our results in Table I. Looking at these results, firstly we can see that both onsets are in the range set by ΔT_{cR} , which further validates the way we determined it.

We also see how T_{c5} and T_{c0} , on the other hand, are not in this range. This also makes sense since these temperatures rather led to find the end of the transition.

FIG. 3: Derivative of the electrical resistance with respect to temperature, along with the resistance itself in the background. The descend of the derivative has been adjusted to a trendline. A ground baseline has also been added.

Criterion	Critical temperature
T_c^{on}	89.6 ± 1.3 K
$T_c^{on,d}$	88.94 ± 0.02 K
T _{cl}	88.25 ± 0.02 K
T_{cR}	87.91 ± 0.02 K
T_{c5}	85.37 ± 0.02 K
T_{c0}	84.2 ± 0.2 K

TABLE I: Different values of the critical or onset temperature according to different criteria.

B. Critical behaviour of excess conductivity

As we have just seen, T_c can be interpreted in many ways. This leads to the lingering question, is there a best criterion? Which is the most important point in the transition? These questions probably do not have a unique answer.

We have, however, encountered a theory in which T_c appears in a mathematically determined equation. Such is the excess conductivity. Therefore, attempting to find T_c through this equation would seem to lead us to a "truer" result.

We define the crossover critical temperature T_{cC} as the temperature for which, when using Eq. (8), the critical exponent result is the one predicted, a = 2/3. Therefore, we impose this exponent, find the region where it is valid, and find this temperature. To see this region with ease we use the variation of Eq. (8) that follows, Eq. (9), where we have noticed $\frac{e^2}{\hbar \xi(0)}$ has conductivity units and we can relate a constant conductivity to its value in the normal state, σ_0 .

$$\left(\frac{\sigma_0}{\sigma'}\right)^{-3/2} = \left(\frac{T}{T_{cC}} - 1\right) \tag{9}$$

Since we do not have measures of conductivity, we will use $R = \frac{1}{\sigma S} \frac{L}{s}$ to obtain it, assuming the dimensions of the sample remain unchanged during the transition.

Treball de Fi de Grau

FIG. 4: Dependence of temperature with respect to the excess conductivity $(\sigma_0/\sigma')^{-3/2}$. The points that show a linear dependence, marking where Eq. (9) is valid, have been adjusted to a trendline.

According to Fig. 4, $T_{cC} = 88.137 \pm 0.003$ K, which corresponds to the ordinate of the origin. This might as well be the result with the most underlying physics we have found so far, since it comes from taking the actual expression for the excess conductivity and imposing the range in which fluctuations and the phase transition begin.

We continue the study of excess conductivity by attempting to find the three different exponents theorized by Lobb.[7] We now modify Eq. (8) once again to easily detect the different exponents:

$$\ln \frac{\sigma'}{\sigma_0} = -a(T) \cdot \ln \left(\frac{T}{T_{cC}} - 1\right). \tag{10}$$

This is shown in Fig. 5. We already know the points (orange region, exponent -0.6632) that fit into the a = 2/3 from Fig. 4 and we can see that we are also able to detect a = 1/3 with much accuracy (green region, exponent -0.338). The mean-field exponent (blue region, exponent -0.43), however, does not reach the 1/2 expected, even though what we find matches perfectly with other published results. The explanation for this discrepancy could be the inhomogeneities and defects of the sample, tampering with the idealized sample the GL theory was based upon.[9]

- [1] O'Mahony S. M. *et al.* On the electron pairing mechanism of copper-oxide high temperature superconductivity. *PNAS*, Vol.**119**, 37 (2022).
- [2] Rose-Innes A. C. and Rhoderick E. H. Introduction to Superconductivity. 2nd edition. Oxford: Pergamon Press plc, 1978.
- [3] Cava R. J. *et al.* Bulk Superconductivity at 91 K in Single-Phase Oxygen-Deficient Perovskite Ba₂YCu₃O_{9δ}. *Physical Review Letters*, Vol.**58**, 16 (1987).
- [4] Tinkham, M. Introduction to Superconductivity. 2nd edition. New York: Dover Publications INC., 1996.
- [5] Morguí, O. Improvement of the superconducting transition lab experiment (LFM). *Final Year Assignment.* Barcelona: Dipòsit Digital de la Universitat de Barcelona, 2016. [http://hdl.handle.net/2445/102943].

FIG. 5: Dependence of the excess conductivity $\ln(\sigma'/\sigma_0)$ with respect to temperature $\ln\left(\frac{T}{T_{cc}}-1\right)$ with the tree regions detected: mean-field (blue), transitional (orange) and full critical (green).

IV. CONCLUSIONS

Observing all the different values we have gathered, we can distinguish three clear groups: the onsets, the offsets, and more importantly, T_{cR} and T_{cI} which fall in the middle of the transition and have very similar values both to each other and to T_{cC} . This leads to the conclusion that this middle section, where the critical exponent would change, marks the true transition point. We can rely on the corresponding theory since we have also been able to experimentally verify the different exponents.

This project could be further expanded by studying the behaviour of other magnitudes, such as the temperature and magnetic field dependence of the magnetization via magnetometry measurements.

V. AKNOWLEDGMENTS

I sincerely give my thanks to my advisor Antoni García-Santiago for all his constant support, kindness, and supervision. I have felt guided and reassured during every step of this project. I also thank my family and friends for their patience and my colleagues for their encouragement.

- [6] Aslamazov L. G. and Larkin A. I. Effect of fluctuations on the properties of a superconductor above the critical temperature. *Soviet Physics - Solid State*, Vol.10, 4 (1968).
- [7] Lobb C. J. Critical fluctuations in high-T_c superconductors. *Physical Review B*, Vol.**36**, 7 (1987).
- [8] Vidal, F. *et al.* superconducting order parameter fluctuations above T_c in polycristalline Ho₁Ba₂Cu₃O_{7-δ} compunds. *Physica C*, Vol.**157** 165-172 (1988).
- Carrera M. *et al.* Twins, electron-phonon coupling and fluctuations in Y_{0.5}Sm_{0.5}Ba₂Cu₃O_{7-y}. *Physica C*, Vol.**157** 285-292 (1989).
- [10] Petrenko E.V. *et al.* Temperature dependence of upper critical fields and coherence lengths for optimallydoped YBa₂Cu₃O_{7-δ} thin films. *Low Temperature Physics*, Vol.**48**, 755-762 (2022).

VI. APPENDIX

$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$
293.86	0.1573	265.17	-0.1472	232.02	-0.1401
293.86	0.1574	264.10	0.1483	231.50	0.1385
293.87	0.1577	263.12	-0.1466	231.03	-0.1398
293.87	0.1576	262.09	0.1480	230.53	0.1384
293.87	0.1578	260.99	-0.1460	230.01	-0.1397
293.87	0.1574	260.03	0.1473	229.51	0.1377
293.86	0.1576	259.20	-0.1459	229.03	-0.1396
293.87	0.1574	258.24	0.1468	228.51	0.1372
293.87	0.1574	257.27	-0.1452	228.02	-0.1392
293.87	0.1577	256.18	0.1461	227.54	0.1371
293.87	0.1576	255.27	-0.1450	227.05	-0.1395
293.87	-0.1511	254.17	0.1452	226.53	0.1368
290.76	0.1549	253.29	-0.1446	226.04	-0.1389
290.60	-0.1521	252.25	0.1453	225.53	0.1362
290.59	-0.1521	251.27	0.1451	225.04	-0.1391
290.57	-0.1523	250.96	-0.1439	224.52	0.1362
290.44	0.1552	250.28	0.1447	224.04	-0.1388
289.68	-0.1522	249.25	-0.1435	223.54	0.1358
289.52	0.1544	248.28	0.1439	223.03	-0.1386
288.90	-0.1522	247.18	-0.1430	222.53	0.1355
286.14	0.1535	246.26	0.1434	222.02	-0.1381
285.98	-0.1522	245.17	-0.1425	221.51	0.1354
285.02	0.1532	244.19	0.1428	221.02	-0.1380
283.76	-0.1516	243.06	-0.1424	220.46	0.1354
282.41	0.1524	242.21	0.1421	220.03	-0.1368
281.06	-0.1517	241.21	-0.1417	219.53	0.1348
280.19	0.1515	240.24	0.1417	219.03	-0.1374
278.88	-0.1514	239.48	-0.1414	218.52	0.1347
278.86	-0.1514	238.95	0.1412	218.01	-0.1368
278.28	0.1508	238.48	-0.1412	217.50	0.1345
277.22	-0.1499	237.97	0.1408	217.02	-0.1366
276.29	0.1511	237.53	-0.1408	216.51	0.1342
275.30	-0.1493	236.99	0.1406	216.03	-0.1365
274.27	0.1509	236.47	0.1403	215.52	0.1338
273.26	-0.1489	236.01	-0.1407	215.00	-0.1359
272.23	0.1504	235.52	0.1401	214.51	0.1336
271.31	-0.1482	234.99	-0.1405	214.04	-0.1356
270.12	0.1500	234.51	0.1395	213.52	0.1336
269.21	-0.1478	234.01	-0.1404	213.01	-0.1356
268.17	0.1494	233.51	0.1392	212.53	0.1334
267.21	-0.1477	232.99	-0.1402	212.02	-0.1353
266.28	0.1488	232.51	0.1389	211.51	0.1332

$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$
211.04	-0.1350	189.07	-0.1301	172.16	-0.1260
210.53	0.1328	188.54	0.1257	171.88	0.1204
210.03	-0.1347	188.04	-0.1297	171.58	-0.1256
209.53	0.1324	187.56	0.1255	171.28	0.1203
209.04	-0.1343	187.06	-0.1297	170.98	-0.1257
208.52	0.1321	186.55	0.1249	170.68	0.1197
208.03	-0.1344	186.06	-0.1297	170.38	-0.1256
207.51	0.1319	185.55	0.1246	170.08	0.1196
207.03	-0.1341	185.05	-0.1291	169.78	-0.1252
206.51	0.1318	184.55	0.1243	169.47	0.1194
206.03	-0.1338	184.06	-0.1288	169.18	-0.1253
205.48	0.1314	183.54	0.1244	168.89	0.1191
205.04	-0.1334	183.05	-0.1285	168.55	-0.1255
204.54	0.1311	182.55	0.1238	168.28	0.1190
204.04	-0.1332	182.06	-0.1284	167.98	-0.1250
203.51	0.1306	181.53	0.1236	167.68	0.1188
203.02	-0.1329	181.06	-0.1281	167.35	-0.1252
202.54	0.1303	180.56	0.1232	167.00	0.1181
202.03	-0.1326	180.04	-0.1279	166.75	-0.1248
201.46	0.1300	179.68	0.1228	166.44	0.1190
201.02	-0.1327	179.38	-0.1277	166.17	-0.1237
200.53	0.1295	179.06	0.1226	165.87	0.1189
200.04	-0.1327	178.76	-0.1276	165.57	-0.1236
199.52	0.1295	178.47	0.1225	165.27	-0.1235
199.03	-0.1325	178.16	-0.1275	164.89	0.1182
198.53	0.1289	177.86	0.1224	164.67	-0.1241
198.02	-0.1324	177.56	-0.1271	164.37	0.1172
197.62	0.1286	177.26	0.1222	164.06	-0.1241
197.04	-0.1320	176.96	-0.1271	163.74	0.1170
196.49	0.1282	176.67	0.1216	163.41	-0.1242
196.04	-0.1317	176.36	-0.1270	163.15	0.1169
195.56	0.1281	176.07	0.1216	162.86	-0.1239
195.03	-0.1315	175.76	-0.1268	162.56	0.1166
194.54	0.1276	175.46	0.1212	162.21	-0.1242
194.05	-0.1312	175.16	-0.1266	161.96	0.1164
193.54	0.1272	174.85	0.1213	161.66	-0.1242
193.03	-0.1312	174.56	-0.1266	161.36	0.1158
192.53	0.1268	174.27	0.1213	161.06	-0.1242
192.02	-0.1308	1/3.96	-0.1263	160.74	0.1154
191.54	0.1207	1/3.08	0.1209	100.45	-0.1244
191.04	-0.1505	1/3.3/	-0.1201	100.08	0.1139
190.55	0.1203	1/3.08	0.1200	159.00	-0.1241
190.05	0.1300	172.70	0.1239	159.54	_0.1246
107.55	0.1200	1/407/	0.1205	107.20	0.12-+0

$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$
159.05	0.1140	145.42	-0.1207	137.48	0.1040
158.66	-0.1245	145.09	0.1089	137.38	-0.1210
158.35	0.1139	144.73	-0.1208	137.27	0.1039
158.07	-0.1246	144.41	0.1086	137.16	-0.1208
157.76	0.1134	144.13	-0.1208	137.08	0.1037
157.47	-0.1241	143.77	0.1083	136.97	-0.1214
157.16	0.1134	143.51	-0.1205	136.86	0.1034
156.87	-0.1237	143.20	0.1081	136.77	-0.1212
156.65	0.1134	142.92	-0.1206	136.68	0.1034
156.26	-0.1239	142.61	0.1079	136.56	-0.1213
156.07	0.1131	142.34	-0.1203	136.48	0.1030
155.78	-0.1236	142.05	0.1076	136.37	-0.1215
155.46	0.1124	141.77	-0.1200	136.27	0.1026
155.18	-0.1241	141.44	0.1071	136.18	-0.1217
154.76	0.1114	141.12	-0.1203	136.07	0.1027
154.48	-0.1244	140.83	0.1065	135.96	-0.1215
154.16	0.1110	140.51	-0.1207	135.86	0.1023
153.88	-0.1241	140.22	0.1062	135.77	-0.1217
153.59	0.1109	139.95	-0.1207	135.67	0.1020
153.29	-0.1245	139.84	0.1062	135.57	-0.1216
153.00	0.1104	139.69	-0.1208	135.46	0.1019
152.69	-0.1242	139.56	0.1058	135.36	-0.1220
152.39	0.1112	139.46	-0.1204	135.27	0.1017
151.98	-0.1222	139.36	0.1054	135.17	-0.1218
151.71	0.1121	139.25	-0.1205	135.06	0.1014
151.39	-0.1220	139.15	0.1053	134.95	-0.1222
151.10	-0.1219	139.06	-0.1206	134.85	0.1013
150.77	0.1112	138.94	0.1052	134.77	-0.1221
150.49	-0.1220	138.86	-0.1206	134.66	0.1011
150.20	0.1111	138.75	0.1052	134.55	-0.1224
149.87	-0.1216	138.67	-0.1208	134.44	0.1006
149.58	0.1111	138.60	0.1053	134.37	-0.1224
149.29	-0.1217	138.54	0.1052	134.27	0.1001
148.94	0.1109	138.49	-0.1206	134.16	-0.1227
148.59	-0.1212	138.38	0.1047	134.07	0.0997
148.31	0.1108	138.31	-0.1210	133.97	-0.1230
148.00	-0.1213	138.21	0.1045	133.86	0.1000
147.69	0.1105	138.13	-0.1208	133.77	-0.1231
147.41	-0.1209	138.07	0.1045	133.67	0.0997
147.10	0.1101	137.97	-0.1207	133.56	-0.1231
146.74	-0.1209	137.88	0.1043	133.46	0.0996
146.43	0.1097	137.77	-0.1210	133.37	-0.1233
146.11	-0.1211	137.67	0.1044	133.27	0.0991
145.75	0.1093	137.58	-0.1208	133.16	-0.1236

$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$
133.06	0.0985	128.64	0.0950	124.14	0.0928
132.96	-0.1238	128.54	-0.1240	124.03	-0.1233
132.87	0.0982	128.43	0.0949	123.93	0.0926
132.77	-0.1236	128.35	-0.1243	123.83	-0.1232
132.67	0.0979	128.27	0.0946	123.72	0.0928
132.58	-0.1237	128.16	-0.1240	123.61	-0.1230
132.46	0.0978	128.07	0.0945	123.54	0.0925
132.37	-0.1239	127.96	-0.1237	123.44	-0.1231
132.27	0.0979	127.86	0.0945	123.34	0.0922
132.16	-0.1242	127.77	-0.1243	123.24	-0.1228
132.07	0.0976	127.63	0.0944	123.13	0.0922
131.96	-0.1241	127.55	-0.1243	123.04	-0.1228
131.87	0.0972	127.43	0.0940	122.93	0.0923
131.76	-0.1242	127.35	-0.1241	122.83	-0.1231
131.66	0.0967	127.23	0.0939	122.73	0.0921
131.56	-0.1244	127.15	-0.1243	122.64	-0.1227
131.45	0.0967	127.05	0.0938	122.50	0.0918
131.35	-0.1244	126.94	-0.1241	122.40	-0.1225
131.26	0.0966	126.83	0.0937	122.30	0.0918
131.15	-0.1243	126.74	-0.1241	122.24	-0.1227
131.06	0.0963	126.62	0.0938	122.14	0.0916
130.95	-0.1243	126.48	-0.1240	122.06	-0.1224
130.85	0.0962	126.33	0.0936	121.93	0.0916
130.74	-0.1245	126.23	-0.1239	121.84	-0.1224
130.65	0.0962	126.15	0.0933	121.74	0.0915
130.55	-0.1241	126.03	-0.1239	121.64	-0.1222
130.46	0.0962	125.93	0.0934	121.54	0.0915
130.34	-0.1241	125.81	-0.1239	121.44	-0.1222
130.24	0.0959	125.71	0.0932	121.34	0.0915
130.15	-0.1243	125.62	-0.1239	121.28	-0.1221
130.08	0.0959	125.53	0.0932	121.18	0.0915
129.93	-0.1246	125.43	-0.1237	121.05	-0.1220
129.83	0.0958	125.34	0.0929	120.91	0.0910
129.75	-0.1245	125.24	-0.1238	120.82	-0.1223
129.65	0.0955	125.12	0.0928	120.72	0.0909
129.56	-0.1245	125.02	-0.1236	120.63	-0.1222
129.45	0.0957	124.92	0.0927	120.52	0.0912
129.38	-0.1244	124.83	-0.1235	120.43	-0.1215
129.25	0.0954	124.76	0.0929	120.36	0.0910
129.14	-0.1245	124.66	-0.1234	120.27	-0.1218
129.04	0.0952	124.57	0.0930	120.14	0.0910
128.94	-0.1242	124.47	-0.1235	120.04	-0.1219
128.85	0.0952	124.37	0.0929	119.94	0.0912
128.75	-0.1242	124.24	-0.1233	119.87	-0.1216

$T \pm 0.03$ (K)	<i>V</i> ± 0.0001 (mV)	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	<i>V</i> ± 0.0001 (mV)
119.69	-0.1217	115.23	-0.1196	110.84	-0.1175
119.59	0.0907	115.14	0.0893	110.75	0.0881
119.49	-0.1216	115.05	-0.1197	110.65	-0.1172
119.37	0.0910	114.93	0.0893	110.54	0.0879
119.24	-0.1212	114.84	-0.1197	110.43	-0.1169
119.14	0.0908	114.75	0.0894	110.34	0.0881
119.01	-0.1213	114.66	-0.1197	110.27	-0.1170
118.89	0.0907	114.57	0.0888	110.16	0.0878
118.83	-0.1214	114.48	-0.1195	110.05	-0.1170
118.73	0.0906	114.39	0.0890	109.94	0.0878
118.64	-0.1210	114.30	-0.1193	109.84	-0.1165
118.57	0.0905	114.13	0.0889	109.75	0.0878
118.48	-0.1212	114.04	-0.1191	109.65	-0.1166
118.35	0.0903	113.92	0.0889	109.54	0.0882
118.26	-0.1211	113.83	-0.1191	109.46	-0.1165
118.16	0.0901	113.69	0.0887	109.35	0.0879
118.04	-0.1210	113.60	-0.1190	109.28	-0.1165
117.94	0.0904	113.54	0.0889	109.19	0.0877
117.85	-0.1207	113.43	-0.1189	109.09	-0.1159
117.75	0.0903	113.34	0.0888	108.95	0.0879
117.66	-0.1207	113.26	-0.1187	108.85	-0.1157
117.57	0.0902	113.17	0.0886	108.77	0.0875
117.45	-0.1204	113.06	-0.1186	108.65	-0.1158
117.32	0.0900	112.94	0.0887	108.54	0.0877
117.23	-0.1205	112.83	-0.1185	108.44	-0.1157
117.14	0.0903	112.74	0.0888	108.33	0.0882
117.05	-0.1207	112.63	-0.1183	108.23	-0.1153
116.95	0.0898	112.54	0.0887	108.15	0.0878
116.83	-0.1204	112.43	-0.1184	108.05	-0.1152
116.74	0.0899	112.34	0.0884	107.92	0.0882
116.65	-0.1205	112.26	-0.1185	107.82	-0.1150
116.52	0.0896	112.15	0.0886	107.75	0.0879
116.43	-0.1203	112.03	-0.1182	107.64	-0.1152
116.34	0.0897	111.95	0.0884	107.57	0.0881
116.25	-0.1204	111.86	-0.1178	107.47	-0.1148
116.13	0.0895	111.75	0.0886	107.34	0.0873
116.04	-0.1201	111.64	-0.1179	107.24	-0.1149
115.95	0.0895	111.53	0.0883	107.17	0.0875
115.83	-0.1200	111.45	-0.1177	107.04	-0.1146
115.74	0.0893	111.33	0.0881	106.97	0.0875
115.62	-0.1199	111.25	-0.1177	106.85	-0.1146
115.53	0.0894	111.14	0.0884	106.75	0.0875
115.44	-0.1199	111.03	-0.1178	106.65	-0.1142
115.34	0.0894	110.92	0.0879	106.55	0.0873

$T \pm 0.03$ (K)	<i>V</i> ± 0.0001 (mV)	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$
106.46	-0.1141	101.98	0.0861	98.89	0.0852
106.36	0.0876	101.89	-0.1117	98.84	-0.1092
106.26	-0.1140	101.80	0.0856	98.79	0.0851
106.14	0.0874	101.68	-0.1113	98.74	-0.1090
106.04	-0.1140	101.59	0.0857	98.69	0.0848
105.94	0.0873	101.48	-0.1115	98.64	-0.1093
105.85	-0.1137	101.37	-0.1112	98.59	0.0851
105.78	0.0875	101.32	-0.1109	98.55	-0.1092
105.68	-0.1139	101.29	0.0858	98.49	0.0850
105.54	0.0872	101.19	-0.1112	98.44	-0.1091
105.45	-0.1135	101.09	0.0855	98.38	0.0849
105.35	0.0870	101.03	-0.1110	98.33	-0.1090
105.26	-0.1139	100.91	0.0855	98.29	0.0848
105.14	0.0872	100.80	-0.1108	98.23	-0.1085
105.02	-0.1131	100.70	0.0859	98.19	0.0851
104.93	0.0871	100.59	-0.1107	98.14	-0.1089
104.91	0.0870	100.59	-0.1107	98.08	0.0846
104.82	-0.1132	100.50	0.0855	98.04	-0.1089
104.68	0.0869	100.40	-0.1104	97.99	0.0847
104.63	-0.1131	100.29	0.0860	97.94	-0.1087
104.54	0.0867	100.19	-0.1103	97.89	0.0847
104.45	-0.1131	100.09	0.0856	97.83	-0.1086
104.34	0.0870	100.00	-0.1100	97.79	0.0847
104.24	-0.1127	99.94	0.0857	97.74	-0.1084
104.09	0.0868	99.89	-0.1099	97.69	0.0844
103.96	-0.1127	99.83	-0.1098	97.64	-0.1083
103.87	0.0865	99.79	0.0859	97.60	0.0845
103.78	-0.1124	99.75	-0.1096	97.54	-0.1083
103.67	0.0864	99.70	0.0861	97.49	0.0845
103.56	-0.1124	99.64	-0.1099	97.44	-0.1084
103.47	0.0868	99.59	0.0859	97.39	0.0845
103.36	-0.1123	99.54	-0.1094	97.33	-0.1081
103.28	0.0865	99.50	0.0855	97.30	0.0841
103.19	-0.1124	99.45	-0.1093	97.24	-0.1082
103.06	0.0866	99.39	0.0857	97.20	0.0843
102.97	-0.1120	99.34	-0.1093	97.15	-0.1079
102.87	0.0862	99.27	0.0857	97.10	0.0842
102.77	-0.1118	99.23	-0.1092	97.04	-0.1081
102.68	0.0864	99.19	0.0856	97.00	0.0843
102.56	-0.1117	99.13	-0.1094	96.94	-0.1078
102.43	0.0863	99.08	0.0855	96.89	0.0842
102.28	-0.1117	99.04	-0.1090	96.85	-0.10/7
102.17	0.0860	98.98	0.0853	96.79	0.0843
102.08	-0.1114	98.93	-0.2272	96.75	-0.1077

$T \pm 0.03$ (K)	<i>V</i> ± 0.0001 (mV)	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	<i>V</i> ± 0.0001 (mV)
96.69	0.0838	94.54	0.0829	92.34	0.0810
96.65	-0.1075	94.49	-0.0032	92.29	-0.1035
96.59	0.0837	94.44	0.0831	92.24	0.0811
96.55	-0.1077	94.39	-0.1058	92.19	-0.1035
96.49	0.0839	94.33	0.0827	92.13	0.0810
96.43	-0.1074	94.29	-0.0794	92.08	-0.1034
96.39	0.0839	94.24	0.0827	92.05	0.0811
96.35	-0.1073	94.19	-0.1055	91.99	-0.1034
96.29	0.0840	94.14	0.0825	91.94	0.0807
96.22	0.0838	94.10	-0.1053	91.88	-0.1033
96.18	-0.1072	94.04	0.0828	91.84	0.0807
96.14	0.0837	93.98	-0.1054	91.79	-0.1030
96.10	-0.1073	93.94	0.0824	91.74	0.0804
96.04	0.0840	93.89	-0.1052	91.69	-0.1029
96.01	-0.1069	93.84	0.0825	91.64	0.0802
95.95	0.0836	93.80	-0.1050	91.59	-0.0149
95.91	-0.1072	93.74	0.0822	91.54	0.0803
95.84	0.0834	93.68	-0.1055	91.50	-0.1027
95.80	-0.1068	93.63	0.0825	91.43	0.0802
95.74	-0.1069	93.59	-0.1046	91.38	-0.1024
95.70	-0.1067	93.54	0.0822	91.33	0.0798
95.64	0.0836	93.49	-0.1048	91.29	-0.1022
95.58	0.0833	93.44	0.0821	91.24	0.0799
95.54	0.0836	93.40	-0.1048	91.20	-0.1024
95.49	-0.1067	93.34	0.0821	91.13	0.0799
95.44	0.0835	93.29	-0.1045	91.10	-0.1023
95.43	0.0835	93.25	0.0821	91.05	0.0796
95.38	-0.1064	93.20	-0.1042	91.00	-0.1021
95.34	0.0834	93.14	0.0820	90.94	0.0798
95.29	-0.1062	93.08	-0.1042	90.90	-0.1017
95.25	0.0836	93.04	0.0817	90.84	0.0795
95.20	-0.1062	92.99	-0.1043	90.80	-0.1017
95.15	-0.0366	92.94	0.0816	90.76	0.0792
95.09	-0.1062	92.88	-0.1042	90.70	-0.1014
95.05	0.0833	92.84	0.0815	90.66	0.0793
94.99	-0.1061	92.81	-0.1040	90.60	-0.1013
94.95	0.0831	92.75	0.0814	90.55	0.0790
94.89	-0.1062	92.70	-0.1039	90.49	-0.1010
94.85	0.0830	92.65	0.0814	90.44	0.0791
94.79	-0.1059	92.60	-0.1040	90.40	-0.1015
94.75	0.0831	92.55	0.0815	90.35	0.0788
94.69	-0.1056	92.49	-0.1036	90.30	-0.1005
94.65	0.0831	92.44	0.0813	90.25	0.0787
94.59	-0.1057	92.39	-0.1036	90.19	-0.1007

$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$
90.14	0.0784	88.96	0.0744	88.08	0.0466
90.09	-0.1002	88.94	-0.0959	88.06	-0.0676
90.04	0.0783	88.92	0.0740	88.04	0.0451
90.00	-0.1001	88.90	-0.0958	88.02	-0.0662
89.95	0.0785	88.88	0.0736	88.00	0.0432
89.93	-0.1001	88.86	-0.0956	87.98	-0.0645
89.89	0.0780	88.84	0.0733	87.96	0.0421
89.85	-0.1002	88.82	-0.0947	87.94	-0.0634
89.81	0.0777	88.80	0.0727	87.92	0.0407
89.74	-0.0997	88.78	-0.0943	87.90	-0.0622
89.68	0.0778	88.76	0.0720	87.87	0.0396
89.65	-0.0994	88.75	-0.0936	87.86	-0.0608
89.63	0.0772	88.72	0.0714	87.83	0.0382
89.60	-0.0997	88.69	-0.0928	87.81	-0.0598
89.57	0.0772	88.68	0.0707	87.79	0.0374
89.55	-0.0992	88.66	-0.0918	87.77	-0.0584
89.52	0.0770	88.64	0.0698	87.75	0.0366
89.49	-0.0990	88.63	-0.0913	87.73	-0.0576
89.47	0.0769	88.60	0.0687	87.70	0.0352
89.45	-0.0989	88.58	-0.0898	87.69	-0.0563
89.43	0.0768	88.56	0.0678	87.66	0.0344
89.41	-0.0988	88.54	-0.0888	87.65	-0.0558
89.39	0.0765	88.52	0.0662	87.62	0.0333
89.37	-0.0986	88.50	-0.0877	87.60	-0.0546
89.35	0.0762	88.48	0.0647	87.58	0.0323
89.33	-0.0984	88.46	-0.0863	87.56	-0.0531
89.30	0.0764	88.45	0.0638	87.54	0.0312
89.29	-0.0982	88.42	-0.0842	87.52	-0.0522
89.27	0.0762	88.40	0.0615	87.49	0.0299
89.25	-0.0983	88.38	-0.0821	87.48	-0.0515
89.23	0.0762	88.36	0.0595	87.46	0.0291
89.21	-0.0980	88.34	-0.0804	87.44	-0.0504
89.19	0.0758	88.32	0.0575	87.41	0.0278
89.17	-0.0978	88.30	-0.0787	87.39	-0.0493
89.15	0.0758	88.28	0.0559	87.38	0.0270
89.13	-0.0976	88.26	-0.0765	87.36	-0.0485
89.11	0.0755	88.24	0.0534	87.34	0.0258
89.09	-0.0974	88.22	-0.0749	87.31	-0.0469
89.07	0.0752	88.20	0.0517	87.29	0.0247
89.05	-0.0971	88.18	-0.0730	87.27	-0.0460
89.04	0.0751	88.16	0.0500	87.25	0.0238
89.02	-0.0968	88.15	-0.0715	87.23	-0.0448
89.00	0.0747	88.12	0.0483	87.21	0.0227
88.98	-0.0964	88.10	-0.0698	87.19	-0.0444

$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$	$T \pm 0.03$ (K)	$V \pm 0.0001 (\text{mV})$
87.17	0.0219	86.31	0.0046	85.46	-0.0055
87.16	-0.0438	86.30	-0.0267	85.44	-0.0166
87.13	0.0208	86.27	0.0042	85.42	-0.0057
87.11	-0.0422	86.25	-0.0257	85.40	-0.0162
87.09	0.0203	86.24	0.0034	85.38	-0.0060
87.07	-0.0413	86.21	-0.0253	85.36	-0.0160
87.05	0.0193	86.19	0.0032	85.34	-0.0063
87.04	-0.0402	86.17	-0.0247	85.32	-0.0156
87.01	0.0179	86.15	0.0025	85.30	-0.0067
87.00	-0.0397	86.14	-0.0245	85.28	-0.0151
86.97	0.0169	86.11	0.0018	85.26	-0.0071
86.95	-0.0388	86.09	-0.0237	85.24	-0.0151
86.94	0.0164	86.07	0.0009	85.22	-0.0077
86.92	-0.0380	86.05	-0.0233	85.20	-0.0149
86.88	0.0152	86.04	0.0008	85.18	-0.0075
86.87	-0.0370	86.02	-0.0227	85.17	-0.0147
86.85	0.0146	86.00	0.0006	85.14	-0.0078
86.83	-0.0362	85.98	-0.0221	85.12	-0.0145
86.81	0.0136	85.96	-0.0002	85.10	-0.0079
86.80	-0.0355	85.94	-0.0216	85.08	-0.0142
86.77	0.0132	85.92	-0.0006	85.06	-0.0081
86.76	-0.0347	85.90	-0.0214	85.05	-0.0142
86.74	0.0127	85.88	-0.0016	85.04	-0.0083
86.72	-0.0340	85.86	-0.0209	85.03	-0.0138
86.69	0.0115	85.84	-0.0019	85.01	-0.0085
86.67	-0.0330	85.82	-0.0203	85.00	-0.0138
86.66	0.0110	85.81	-0.0022	84.98	-0.0086
86.63	-0.0326	85.79	-0.0201	84.97	-0.0135
86.62	0.0102	85.77	-0.0029	84.96	-0.0086
86.59	-0.0313	85.76	-0.0195	84.94	-0.0135
86.57	0.0095	85.74	-0.0028	84.92	-0.0088
86.55	-0.0307	85.72	-0.0195	84.90	-0.0136
86.54	0.0085	85.70	-0.0033	84.87	-0.0090
86.51	-0.0300	85.69	-0.0191	84.85	-0.0131
86.50	0.0079	85.66	-0.0036	84.85	-0.0131
86.48	-0.0292	85.63	-0.0182	84.85	-0.0130
86.47	0.0076	85.60	-0.0043	84.82	-0.0093
86.45	-0.0291	85.59	-0.0180	84.80	-0.0130
86.43	0.0067	85.56	-0.0048	84.78	-0.0092
86.41	-0.0283	85.55	-0.0173	84.76	-0.0127
86.40	0.0061	85.52	-0.0052	84.74	-0.0095
86.37	-0.0275	85.51	-0.0172	84.71	-0.0126
86.36	0.0055	85.50	-0.0054	84.69	-0.0097
86.34	-0.0273	85.48	-0.0168	84.67	-0.0124

$T \pm 0.03 (K)$	<i>V</i> ± 0.0001 (mV)	$T \pm 0.03$ (K)	<i>V</i> ± 0.0001 (mV)	$T \pm 0.03$ (K)	<i>V</i> ± 0.0001 (mV)
84.65	-0.0097	84.32	-0.0116	84.11	-0.0108
84.63	-0.0126	84.31	-0.0107	84.10	-0.0116
84.61	-0.0100	84.29	-0.0118	84.09	-0.0113
84.59	-0.0123	84.28	-0.0109	84.08	-0.0115
84.57	-0.0099	84.27	-0.0117	84.08	-0.0110
84.55	-0.0119	84.25	-0.0108	84.07	-0.0115
84.53	-0.0101	84.24	-0.0115	84.06	-0.0110
84.52	-0.0118	84.23	-0.0109	84.05	-0.0113
84.51	-0.0098	84.21	-0.0116	84.05	-0.0111
84.48	-0.0120	84.19	-0.0111	84.04	-0.0113
84.45	-0.0101	84.18	-0.0117	84.03	-0.0109
84.43	-0.0122	84.17	-0.0109	84.02	-0.0111
84.42	-0.0105	84.16	-0.0114	84.01	-0.0113
84.39	-0.0118	84.15	-0.0110	84.01	-0.0113
84.37	-0.0105	84.14	-0.0114	83.99	-0.0109
84.35	-0.0117	84.13	-0.0109		
84.34	-0.0106	84.13	-0.0112		

TABLE II: Lab raw data for the temperature of the sample and the voltage drop on it when fed a current of 1 mA.