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Abstract: This work has implemented the path integral formalism into quantum mechanics
with systems at finite temperature. Low, medium and high temperatures have been considered.
The study has been done with numerical computations based on Monte Carlo methods on the
harmonic and the anharmonic oscillators. In this latter case the results have been compared with
the Schrödinger equation solutions and it has lead to a high degree of compatibility. It has been
shown that the path integral is an alternative and valid method to solve thermal quantum systems.

I. INTRODUCTION

The description of the world that surrounds us is
one of the greatests aims of Physics, but often nature
is complicated and unpredictable. Theories such as
Classical Mechanics can explain scenarios which involve
large objects and low velocities, but fail when trying to
conceive the laws that govern our world at a smaller
scale. Therefore, there is a need to create new physics
in order to approach our perception of the world to the
exact reality, in these cases where intuition can trick us.
Quantum Mechanics introduces to physics the notion of
probability and quantization. Well known properties of
matter, such as energy and even the space position, are
reconsidered at a low scale. This theory upholds that
there are experiments from which one can not predict
the final outcome. Quantum mechanical systems can
have different states at the same time and these can
be also modified by the observer while measuring it.
This way of understanding the world, based just on
probabilities and expected values of the outcomes, is
what this theory stands for [1–3].

The system of this study is a particle in a one-
dimensional potential. Two potentials will be treated,
the harmonic and the anharmonic (in which a quartic
interaction will be considered). The quantum harmonic
oscillator has the following potential,

V (x) =
1

2
mω2x2 , (1)

and the anharmonic oscillator,

V (x) =
1

2
mω2x2 +

g2

2
x4 . (2)

The factor of quartic coupling g can take the following
value for each potential: g = 0 for the harmonic oscillator
(HO) and g = 1 for the anharmonic oscillator (AHO).
These are only particular choices, the perturbative case
would have 0 < g ≪ 1, and any other value would also
work. For each potential, three system temperatures
will be considered, T = 10, 1 and 0.1, in order to cover
high, medium and low temperatures. The role of the

temperature will be explained later on the developing
sections.

The objective of this study is to develop a program that
uses path integrals to study quantum mechanical systems
at a finite temperature. Throughout this work, natural
units will be used, and the parameters of the model will
be set to one, without loss of generality. By choosing
m = 1 the energy scale will be fixed, and the angular
frequency dependence is not particularly interesting, so
ω = 1.

II. PATH INTEGRAL FORMALISM

Before the main formalism is presented, a few basics on
classical physics serve as a starting point. Lets consider a
one dimensional system with one particle in a potential.
The principle of least action [4] allows to predict the most
optimum trajectory by minimizing its action (S). The
action of the system betwen a and b is defined as follows,

S =

∫ tb

ta

dt L(x, ẋ, t) , (3)

where the Lagrangian (L) is,

L =
m

2
ẋ2 − V (x, t) . (4)

By considering the condition of extremum given by the
least action principle, δS = 0, one can obtain the Euler-
Lagrange equations,

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 . (5)

The path integral formulation, created by Richard
Phillips Feynman [2], arises from the desire of connecting
both theories, classical and quantum mechanics, through
the least action principle. Unlike Classical Mechanics
that only considers one possible path for a particle going
from a to b, Quantum mechanics contemplates all the
infinite paths that the particle undertakes. This formu-
lation allows to study these systems from a more precise
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way by considering all these infinite paths [5]. Then, the
probability of a particle that goes from a position xa at
a time ta to a position xb at a time tb has to contemplate
all the paths, and it is defined as P (b; a) = K(b; a), where
K(b; a) is the transition amplitude from a to b, and it is
constructed from all the possible paths, and each contri-
bution has a phase proportional to the action S.

K(b; a) = K(xb, tb;xa, ta) =
∑

paths from a to b

A · eiS
ℏ . (6)

Note that there is a constant A that normalizes K and
whose value will be defined subsequently.

Now the paths need to be discretized [6], so the temporal
interval will be divided into N steps of width ϵ. Then
tb − ta = Nϵ, with t0 = ta and tN = tb. The discretized
path can be expressed as x(t) = (x0, x1, . . . , xN−1, xN ),
where each position of the path corresponds to its
time step xi = x(ti), and the boundary positions
x0 = xa = x(ta) and xN = xb = x(tb) are fixed .

FIG. 1: Example of paths for the AHO with g = 1 and
T = 0.5.

From here the sum over all paths can be expressed as
an integral, in analogy with the Riemann Integral, by
extending the sum to the limit N → ∞ and ϵ → 0.
Even though this limit does not exist in general, for our
particular case, Eq. (4), it does and a path integral can
be defined,

K(b; a) = K(xb, tb;xa, ta) =

∫ x(tb)

x(ta)

Dx(t) ei
S
ℏ , (7)

where,

Dx(t) = lim
ϵ→0

1

A

∫
dx1

A

∫
dx2

A
· · ·

∫
dxN−1

A
=

=
( m

2πiℏϵ

)N/2 N−1∏
i=1

∫
dxi , (8)

and the normalization constant takes the form,

A =

(
2πiℏϵ
m

)1/2

. (9)

The action of a discretized path can be calculated by the
approximation,

S[x(t)] =

N−1∑
i=0

S[xi+1, xi] . (10)

Space (x) and velocity (ẋ) variables will take the follow-
ing forms,

xi →
xi+1 + xi

2
,

ẋi →
xi+1 − xi

ϵ
. (11)

Each contribution to Eq. (10), taking into account our
Lagrangian (Eq. (4)), will end up resulting in

S[xi+1, xi] =

∫ ti+1

ti

dt L

(
xi+1 + xi

2
,
xi+1 − xi

ϵ

)
=

=
mϵ

2

(
xi+1 − xi

ϵ

)2

− ϵ · V
(
xi+1 + xi

2

)
.

(12)

Finite temperature

Here the temperature T is introduced to the formalism,
allowing the study of thermal quantum systems and the
final bases for the simulation to settle. We can express
K as follows,

K(b; a) = ⟨xb|ei
H(tb−ta)

ℏ |xa⟩ , (13)

where H is the Hamiltonian of the system.
We will be interested in the diagonal elements of the tran-
sition amplitude. Therefore, we set the boundary limits
to an equal value x0 = xa = xb, and take ta = 0 and
tb = t. Then, by introducing a complete set of states∑

n |n⟩⟨n|,

K(x0, t;x0, 0) =
∑
n

|Ψn(x)|2ei
Ent
ℏ . (14)

Comparing this expression with the definition of the par-
tition function in thermodynamics,

Z =
∑
n

e−Enβ , (15)

or more precisely with the thermal density matrix, one
can identify the relation between the time interval and
the temperature,

ℏβ = it , (16)
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being β = 1
kBT , and kB the Boltzmann constant that will

take a value equal to one as long as natural units are used.

Given the oscillatory behaviour of the exponential
in Eq. (14), not suited for numerical calculations, the
time (t) is changed to an imaginary time (τ) by doing a
Wick rotation, t → −iτ . Obtaining the expression that
will be used from here on,

K(x0, β;x0, 0) =

∫ x0=x(β)

x0=x(0)

Dx(τ) e−
SE
ℏ , (17)

where the Euclidean action (SE) has been defined,

SE [x(τ)] =

N−1∑
i=0

m∆τ

2

(
xi+1 − xi

∆τ

)2

+∆τ ·V
(
xi+1 + xi

2

)
,

(18)
with ∆τ = β/N .

III. METROPOLIS ALGORITHM

To simulate the path integral we will use the Metropolis
algorithm. This algorithm is based on the Monte Carlo
method and uses Markov chains [7]. There are a few
steps to follow:

1. First an initial path is generated. It can be initial-
ized with an arbitrary configuration, in this case:
x0 = (0, . . . , 0)

2. Then a second path, based on the first one, is gen-
erated by adding a random number γ on a random
position of the path: x1 = (0, . . . , γ, . . . , 0). This
random number γ will be Gaussianly distributed,
with a probability N(µ, σ) where µ = 0 and σ to
be decided.

3. From now on we calculate the actions of both paths
using Eq. (18). The change of action is computed
as ∆S = S1 − S0.

4. Next, the new path has to be accepted or rejected
according to the following criteria:

• If the action of the new path is less than the
original one, ∆S < 0, the new path is ac-
cepted.

• If the action of the new path is greater or equal
than the original one, there is still a chance
for the path of being accepted. In this case
a random uniformly distributed number η ∈
U [0, 1] is generated, and the new path will be
acepted if η < e−∆S . Otherwise the path is
rejected, and an iteration ends.

5. Then the process is repeated from step (2) with
the accepted path if it was accepted, or with the
original path if the new one was rejected. The pro-
cedure continues until there is a significant number
of accepted paths for the statistical computation.

Only the paths that are accepted will take part in the
statistical computations. To avoid correlations, only one
path out of Nc, with Nc a large enough number of paths,
is used in the analysis.

This algorithm requires a thermalization period.
To avoid fluctuations coming from the initialization
of the iteration sequence, some paths need to be dis-
carded, until a stabilization is reached and the paths
are thermalized, as it is shown in the section Action
Thermalization of the Appendix. Then, one of these
paths initiates the algorithm and the collection of data
for the study starts.

Adaptation of the method

Here a modification of the general Metropolis method
is implemented. Notice that, the way this algorithm
works, two consecutive paths are highly correlated, as
long as they only differ on one point. A possible way to
avoid this problem is, instead of generating the new path
by taking the previous one and adding a random number
on just one position, the new path can be generated by
adding a random number on each position of the path.
It is important to mention that boundary conditions
will be also imposed, so the path begins and ends at the
same place.

By implementing this substantial modification, the
paths accepted are not correlated and allows us to make
the statistical study with less iterations. However, the
probability of accepting a new path is much smaller than
the one obtained by changing a single point, therefore
one needs to fix an appropriate value for σ, in this case
by reducing it. The criterion to decide the value of σ
is to fix it such that the path’s acceptation rate of the
Metropolis algorithm is ≃ 50%.

Computation of physical properties

To compute any physical property, more tangible and
measurable concepts than the action of the path need
to be computed, such as the values of the position. To
calculate the average value of any n power of the position,
we can use the following equation,

xn = ⟨xn
i ⟩ =

∑Npaths

j xn
j

Npaths
, (19)

where the index i makes reference to the position in each
path and the j index runs over all accepted paths.
As long as each position of the path is equaly random,
the averages values can be calculated with any of the
path position xi, so its index will be suppressed for a
simpler notation.
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This value has an statistical uncertainty because
the number of paths will never be infinite, so the error
associated goes as 1√

Npaths

according to [8],

δ⟨xn⟩ =

√
⟨x2n⟩ − ⟨xn⟩2

Npaths
. (20)

IV. RESULTS

Here the final results are presented. First the im-
plementation of the temperature is discussed. A few
comparisons will be given for the probability distribu-
tions resulting from the path integral simulations P (x).

We will start with the HO. This potential has a
well-known solution for any temperature. The probabil-
ity distribution for this potential is [3],

PHO(x) =

√√√√ tanh
(

β
2

)
π

e−x2 tanh( β
2 ) , (21)

for the parameters we have chosen (ω = m = 1).
In Fig. 2 the harmonic oscillator distributions P (x) ob-
tained from the path integral simulations (MC), are com-
pared with their respective theorical probability func-
tions (TH), for the three temperatures. As T increases,
the distribution gets broader due to the thermal fluctua-
tions.

FIG. 2: Probability distributions of x for the harmonic
oscillator P (x), for the three temperatures. The

corresponding theoretical probabilities given in Eq. (21)
are also represented.

Next, in order to study the correctness of the Monte
Carlo method in a case without analytic solution, as it
is the anharmonic oscillator, the distribution computed
with the path integral simulations (MC) will be com-
pared with the probability distribution obtained directly

from the simulation of the Schrödinger equation (PS(x))
[9]. Fig. (3) shows that the probabilities computed with
the path integral are compatible with the Schrödinger
probability distributions.

To optimize the data collection, the program has
run with different parameters for each temperature. The
values can be found at the section Program parameters
of the Appendix.

FIG. 3: Distribution of x for the anharmonic oscillator
(AHO) for g = 1, considering the three temperatures.
The corresponding Schrödinger probabilities PS(x) are

also represented.

After the analysis of the temperature dependence of the
probability distribution, a comparison of the energies of
the system will be discussed. To compute the energies of
the ground states we use the virial theorem,

2⟨T ⟩ =
〈
x
dV (x)

dx

〉
. (22)

As H = T + V , and considering Eq. (2) (with m = ω =
1), this leads to,

⟨E⟩ =
〈
x2

〉
+

3

2
g2

〈
x4

〉
, (23)

with the associated uncertainty,

δE = δ⟨x2⟩ +
3

2
g2δ⟨x4⟩ . (24)

The results used to compute the energies ⟨E⟩ can be
found at the section Expected values of the Appendix.
For the harmonic oscillator, the energies are compared
with the theoretical ones, that can be obtained with the
expected values of ⟨x2⟩ and ⟨x4⟩, which, as long as the
analytical expression of the probability distribution is
known, can be calculated as,

⟨xn⟩ =
∫ ∞

−∞
P (x)xndx , (25)
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where,

P (x) =
K(x, β;x, 0)∫∞

−∞ K(x, β;x, 0)dx
. (26)

For the anharmonic oscillator the energies are compared
with the ones obtained by solving the Schrödinger equa-
tion and computing the value of the probability using the
corresponding eigenvalues and eigenfunctions in Eq. (14)
after doing a Wick rotation (t → −iτ).
In Table I we can see that the energies calculated from
the path integral simulations are quite similar with their
respective comparations.

TABLE I: Average energy ⟨E⟩ of the systems (HO,
AHO) for three different temperatures.

Temperature
⟨E⟩

Numerical Exact, from Eq.(21)

T = 0.1 0.5084± 0.0003 0.500

T = 1 1.0927± 0.0002 1.082

T = 10 10.0232± 0.0006 10.008

(a) Harmonic Oscillator

Temperature
⟨E⟩

Numerical Schrödinger

T = 0.1 0.7358± 0.0009 0.696

T = 1 1.0522± 0.0004 1.050

T = 10 7.9380± 0.0007 7.905

(b) Anharmonic Oscillator

V. CONCLUSIONS

This work has proved the Path Integral formulation
to be a robust method for the study of thermal quantum
systems. It has resulted to be an elegant way of connect-
ing the world of Quantum Mechanics with the classical
concepts via computational Monte Carlo simulations.

The results obtained follow the expected behaviour
with a reasonable accuracy, and can be summarized as:

• The simulation is based on Monte Carlo meth-
ods, so statistical uncertainties can be drasticaly
reduced by increasing the number of paths used in
the simulation. The only inconvenient is the longer
computation times.

• For the harmonic oscillator the histograms obtained
for the x distribution agree with the theoretical
probability distribution. In addition, as the tem-
perature increases the distribution widens, since
the energy of the particle increases as the tempera-
ture increases, and this allows the particle to reach
higher levels of energy where it can travel longer
distances away from the equilibrium point.

• For the anharmonic oscillator, the distribution does
not have any analytical expression to compare with,
but they agree really well with the Schrödinger cal-
culation, in particular for low temperatures where
the quantic effects are more relevant. We shall men-
tion that there is small discrepancy due to some
systematic error.

The project has allowed integrating Quantum Mechanics
and Computational Physics in order to develop a pow-
erful and dynamic program which is very versatile and
easily extrapolable to other systems with different po-
tentials and space dimentions. It has also contributed
to consolidate the skills of multidisciplinary work as well
as taking some of the basics learnt during the degree to
another level.
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Appendix

Action Thermalization

In order to study the thermalization of the algorithm,
the action of each accepted path as a function of the num-
ber of accepted paths will be represented. By increasing
the number of paths the action reaches its expected value
and then stabilizes. For different temperatures, the ther-
malization period is achieved with a different number of
accepted paths.

(a) T = 0.1

(b) T = 1

(c) T = 10

FIG. 4: Thermalization of the action for the harmonic
oscillator for three different temperatures.

Fig. 4 shows that as temperature increases the action of
the system stabilizes with a smaller number of paths, due
to the thermal fluctuations.
In this work the number of paths for the thermalization
period, required in the algorithm, has been set to 106

paths, in order to cover any possible temperature depen-
dence, especially at lower temperatures where a larger
number of paths is required to thermalize.

Program parameters

The parameters used in the simulation, such as the
number of steps for the paths discretization (N) or the
number of iterations for the algorithm, are the ones
shown in Table II.

TABLE II: Values used in the simulations for each
temperature. Runtimes are also indicated.

Temperature N Iterations Runtime

0.1 50 107 30 s

1 20 108 2.5 min

10 5 109 12 min

Expected values

Here the expected values of x are tabulated, for each
potential and temperature. These results have been ac-
quired using Eq. (19). The harmonic oscillator is com-
pared with the values directly calculated using the ana-
lytical solution, Eq. (21), as input of Eq. (25).
The anharmonic oscillator is compared with the values
calculated from the solution of the eigenvalues and eigen-
functions of the Schrödinger equation into Eq. (14) after
a Wick rotation is performed and then, into Eq. (25).
Remember that P (x;β = 1

T ) = K(x, β;x, 0). These re-
sults are the ones that have been used in the calculation
of the energies ⟨E⟩.

TABLE III: Average value of different powers of the
position, ⟨xn⟩ n ∈ {1, 2, 3, 4}, for a system temperature

T = 10.

Harmonic Oscillator

⟨xn⟩ Numerical Theoretical

⟨x⟩ (3.14± 0.01) · 10−2 0

⟨x2⟩ 10.0232± 0.0006 10

⟨x3⟩ 0.640± 0.005 0

⟨x4⟩ 300.09± 0.04 300

Anharmonic Oscillator

⟨xn⟩ Numerical Schrödinger

⟨x⟩ (4.29± 0.05) · 10−3 0

⟨x2⟩ 1.39032± 0.00007 1.386

⟨x3⟩ (1.22± 0.02) · 10−2 0

⟨x4⟩ 4.3651± 0.0004 4.345

Treball de Fi de Grau 6 Barcelona, June 2023



Path integrals in quantum mechanical systems Gerard Pons Polo

TABLE IV: Average value of different powers of the
position, ⟨xn⟩ n ∈ {1, 2, 3, 4}, for a system temperature

T = 1.

Harmonic Oscillator

⟨xn⟩ Numerical Theoretical

⟨x⟩ (−1.40± 0.01) · 10−2 0

⟨x2⟩ 1.0927± 0.0002 1.082

⟨x3⟩ (−6.34± 0.06) · 10−2 0

⟨x4⟩ 3.6019± 0.002 3.512

Anharmonic Oscillator

⟨xn⟩ Numerical Schrödinger

⟨x⟩ (1.415± 0.009) · 10−2 0

⟨x2⟩ 0.42019± 0.00008 0.406

⟨x3⟩ (1.25± 0.01) · 10−2 0

⟨x4⟩ 0.4563± 0.0002 0.429

TABLE V: Average value of different powers of the
position, ⟨xn⟩ n ∈ {1, 2, 3, 4}, for a system temperature

T = 0.1.

Harmonic Oscillator

⟨xn⟩ Numerical Theoretical

⟨x⟩ (−5.0± 0.3) · 10−3 0

⟨x2⟩ 0.5084± 0.0003 0.5

⟨x3⟩ (−2.53± 0.06) · 10−2 0

⟨x4⟩ 0.789± 0.001 0.75

Anharmonic Oscillator

⟨xn⟩ Numerical Schrödinger

⟨x⟩ (6± 3)10−4 0

⟨x2⟩ 0.3179± 0.0002 0.306

⟨x3⟩ (−6± 3)10−4 0

⟨x4⟩ 0.2786± 0.0004 0.260
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