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Abstract: This work presents an exploration of the dynamics of a Bose-Einstein Condensate
(BEC) with a focus the bright soliton solution for the 1D Gross-Pitaevskii equation. The Crank-
Nicolson algorithm is used to study the soliton trapped in a harmonic oscillator potential well, a
case which can be used to test the solver. Two vibration modalities are revealed: Oscillations,
with frequency ωosc = ω, and squeezing, with ωsq = 1 + 0.055× ξ−2.49. Then the soliton is placed
in an inverted harmonic oscillator potential, on which different dynamical regimes are discussed,
which depend on the healing length and the oscillator length scale, presenting a transition at ξ ≈
0.30± 0.05a0.

I. INTRODUCTION: THE BOSE EINSTEIN
CONDENSATE

When a sample of atoms or subatomic particles in the
form of gas is cooled down to near absolute zero, it may
coalesce into a single quantum entity. That is, all their
particles can be described as a single wave function, even
at a near macroscopic scale [1]. This form of matter is
what we call a Bose-Einstein Condensate (BEC), and was
predicted to exist by Albert Einstein in 1924 [2].

However, this behaviour was not proven until many years
after (in the 2000s), when united states physicists Eric A.
Cornell and Carl E. Wieman, as well as german physicist
Wolfgang Ketterle received a Nobel Price for synthesizing
the first case of this new state of matter [3].

This work will cover the dynamics of a BEC under a
specific set of conditions, and ultimately simulate how a
soliton configuration of such gas falls and/or breaks apart
when subjected to an inverted harmonic potential. To do
so, this work is organized as follows: Section II exhibits
the Gross-Pitaevskii equation, the one most used to study
BECs, as well as introduces the analytical solutions that
will be worked on for the rest of the work. After that,
in section III a harmonic potential is included into the
equation and a new set of units is defined. Section IV
explains the numerical solvers used for simulating the
BEC, as well as briefly discusses the software developed
during the making of this work. Then, sections V and VI
explore the simulation results of a soliton both oscillating
in a harmonic oscillator, and falling off of an inverted one.
Finally, section VII provides a conclusion for the work.
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II. THE GROSS-PITAEVSKII EQUATION

When solving for a BEC’s wave function, assuming
a mean-field description for the bosonic gas, its dy-
namical can be described with the time dependent
Gross Pitaevskii equation, a nonlinear extension of the
Schrödinger equation, which reads [4] [5] [6]

iℏ
∂ψ(r)

∂t
=

(
−ℏ2∇2

2m
+ V (r) + gN |ψ(r)|2

)
ψ(r), (1)

where m is the mass of the bosons being described, V
is an external potential, g represents the strength of the
inter-particle interaction, and N is the number of par-
ticles. Keep in mind that this equation is only valid for
condensates in fairly strict conditions, such as them being
at ultracold temperatures.

Let us introduce a new set of constants: ξ will be the
healing length of a soliton, which will characterize the
distance at which the soliton, when disturbed, will return
to its original shape (A soliton refers to a solution of
the GP equation, the density profile of which does not
change during its evolution when free from an external
potential). c will be the speed of sound in the BEC, n

will be considered to be the density of the solution (|ψ|2),
whereas ni will refer to this same density on a specific
place of our solution (n∞ is the background density of
the BEC, whereas n0 is the central density) [6]. ξ and c
can be computed like

ξ =
ℏ√

2mni |U0|
and c =

√
|U0|ni
2m

, (2)

where U0 = gN . From now on all equations and compu-
tations will be limited to a 1D realm.
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A. Time-independent solution for the bright
soliton

Two soliton solutions can be found for equation 1, how-
ever this work will center on the bright soliton, which is
the solution one can found for the case of an attractive
interaction potential (g < 0). One shall begin by solving
the time-independent equation, by substituting iℏ∂tψ for
µψ, where µ is the condensate’s chemical potential:

µψ(x) = − ℏ2

2m

∂2ψ(x)

∂2x
+ gN |ψ(x)|2 ψ(x). (3)

Here, V has been taken to be zero. The bright soliton is
known to have the form [7]

ψ = ψ0
1

cosh
(

x√
2ξ

) . (4)

By substituting it onto equation 3, an equation involving
ψ0 and ξ is found, which reads:

µψ = − ℏ2

4mξ2

[
1− 2 sech2

(
x√
2ξ

)]
ψ + gN |ψ|2 ψ. (5)

For this relation to hold, two conditions must be met for
the constants on the solution,

ξ2 = − ℏ2

2gNm |ψ0|2
and µ =

1

2
gN |ψ0|2 . (6)

Note that ξ presents the same form as the expected,
which was presented in equation 2.

III. GROSS-PITAEVSKII IN A HARMONIC
OSCILLATOR

As seen in [7], one can subject a Bose Einstein Conden-
sate to a harmonic potential with of the form

V (x) =
1

2
mω2x2, (7)

which introduces a new set of variables into the equation:

a0 =

√
ℏ
mω

and τ =
1

ω
, (8)

where a0 represents the oscillator’s distance units, and τ
its time units. This is useful for obtaining a dimensionless
GP equation by substituting x̃ = x/a0 and t̃ = t/τ into
equation 1:

iℏ
1

τ

∂ψ̃

∂t̃
= − ℏ2

2m

1

a20

∂2ψ̃

∂x̃2
+

1

2
mω2x̃2a20ψ̃+ gN

∣∣∣ψ̃∣∣∣2 ψ̃, (9)
which can be simplified to

i
∂ψ̃

∂t̃
= −1

2

∂2ψ̃

∂2x̃
+

1

2
x̃2ψ̃ + g̃N

∣∣∣ψ̃∣∣∣2 ψ̃. (10)

Here, the interaction constant is modified to g̃ = g/ℏω,
which makes clear that this equation has ℏω defined as
its energy units. In these new units, the relation between
the interaction strength and the healing length reads

Ũ0 = − 1

2ñiξ̃2
. (11)

IV. NUMERICAL SOLVERS

Even though some specific cases of the Gross-Pitaevskii
equation are already solved analytically, there are others,
more complex, that must be solved numerically. Specif-
ically, the experiments that will be carried out are only
solvable that way. There are multiple ways one can
numerically solve a parabolic differential equation such
as the Schrodinger equation. For this work, the Crank
Nicolson method was used [8]:

By discretizing both time and space dimensions, one can
approximate their respective derivatives, and compute
the time evolution via solving a simple matrix equation
of the form Aj+1i

β ψj+1
i = Bji

β ψ
j
i , where A is a tridiagonal

matrix.

The behavior of the Crank Nicolson method, however is
strongly affected by the value of the r parameter, com-
puted as

r = K · dt

dx2
, (12)

where K is a multiplicative factor that depends on the
equation being solved. This parameter needs to be
smaller than around 0.5 for the solver to give reliable
results, and for the entirety of this work, dx and dt were
always set to ensure that r stayed at 0.3.

For the sake of this essay, a flexible and fast simulation
software for Bose Einstein Condensates was needed, so
BEC-Simulations was developed [9]. This tool allows the
user to specify any starting wave function and potential
for the condensate in a simple manner, and then simu-
lates the dynamics of the system over time, giving the full
evolution as an output. Other utilities were developed to
analyze the results of the simulation, which can also be
found in [9]. Furthermore, multiple tests were conducted
to ensure the simulator works correctly, by checking the
norm, energy and shape and form of the solutions with-
out any external potential.

On top of that, to accelerate the simulation process, this
program uses JAX instead of relying solely on numpy to
perform calculations on the GPU, meaning that large sys-
tem computations can be parallelized and run around 1.2
times faster on average (on an Nvidia RTX 3060 graphics
card).
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Figure 1. Density of the condensate as a function of time for
four different values of the healing length: (a) ξ = 0.35a0, (b)
ξ = 0.45a0, (c) ξ = 0.8a0 and (d) ξ = a0.

V. SIMULATION: SOLITON DYNAMICS IN A
HARMONIC OSCILLATOR

When subjecting a soliton to a harmonic oscillator, one
should expect the following two effects to happen: Any
solution’s expected position should follow a classical-like
path, oscillating around the center at the frequency of the
potential. In addition, if the solution is not a pure eigen-
state of the potential (in fact, solitons are not), its form
should change over time in a periodic manner. The latter
effect is usually called ”squeezing” or ”breathing”, and
its frequency (ωsq) should be a function of the relation
between the healing length and the potential’s width.

A. Squeezing soliton

A potential was set with the form V = x2/2, and mul-
tiple solitons (with various healing lengths) were simu-
lated, starting at the center of it. Figure 1 shows how
every condensation studied presenter a breathing effect,
but their frequencies varied, decreasing as the soliton got
wider.

When plotting the squeezing frequency over the healing
length, a very obvious relation arose: ω tended to 1 (the
potential’s frequency) as ξ got bigger, and approached in-
finity as ξ approached zero. This becomes obvious when
fitting a line through a log-log diagram, as in figure 2.

In this figure, ωsq is shown too follow a relation that reads

ωsq = 1 + 0.055× ξ−2.49. (13)

Figure 2. Dependency of the logarithm of the squeezing fre-
quency of a soliton (ωsq) with respect to the logarithm of its
healing length (ξ), when placed in the center of a harmonic
trap.

Figure 3. (a) Density of an oscillating soliton in a quantum
harmonic oscillator as a function of time, with four different
healing lengths: (a1) ξ = 0.2a0, (a2) ξ = 0.3a0, (a3) ξ = 0.5a0

and (a4) ξ = 0.8a0. (b) Oscillating frequency of a soliton
placed in a quantum harmonic oscillator as a function of its
healing length: the black dots correspond to the simulations,
and the red dashed line to the potential’s frequency.

B. Oscillating soliton

As a test of the numerical solver, multiple simulations
of the Kohn mode of oscillation were computed. When
studying the dynamics of a soliton displaced from the
origin (at x0 = 1a0) in a harmonic oscillator, it should
always follow the frequency of the oscillator. Different
values of the soliton’s healing length were used to cross-
check this, as seen in figure 3, which all yielded the ex-
pected result.

VI. PHYSICS OF THE INVERTED HARMONIC
POTENTIAL

If instead of a harmonic oscillator, one inverts the po-
tential, one of two things should be expected to happen:
If the potential has a length a0 small enough compared
to the soliton’s width, it should break apart, or at least
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Figure 4. Density as a function of time of a soliton with
healing length ξ = 0.2a0 falling on the side an inverted har-
monic potential. The red line on the left corresponds to the
expectancy of the position of the soliton. The green line cor-
responds to the classical falling particle trajectory. The right
plot shows the difference between the two as a function of
time.

widen significantly; however, if the soliton has a strong
enough interaction strength compared to the potential
(its width is smaller than a0), it should maintain its form
and behave like a particle, falling, as such, entirely to one
side of the potential.

An example of this can be seen on figure 4, which shows a
relatively small soliton falling almost completely to one
side of the potential. One can compare the expected
value of its position to the classical particle falling off an
inverted harmonic potential. Solving for x(t),

V (x) = −1

2
x2,

ẍ = F = −∇V (x) = x,

x(t) = Ae−t +Bet

(14)

and, finally, imposing that x(0) = x0 and ẋ(0) = 0, a
particular solution can be optained, which reads

x(t) =
x0
2
(e−t + et) = x0 cosh (t). (15)

The aforementioned figure shows a close resemblance be-
tween the classical and simulated evolution for the ex-
pected position of the soliton. However, when looking
at the width of the solution (taken as the standard de-
viation of its position at each time), this should show a
behavior that depends on the original healing length of
the soliton.

To prove that, figure 5 shows the simulations of solitons
with different healing lengths positioned on top of the
potential. This figure seems to show a clear difference
on the evolution of σ for small and large solitons. This
dependency is further proven on image 6, where a clear
transition is proven to arise around ξ ≈ 0.30 ± 0.05a0.
Below that, the condensation proved to stay put and un-
altered over time. In contrast, above the transition point,

Figure 5. Density as a function of time of a soliton placed
on top of an inverted harmonic oscillator, with four different
healing lengths: (a) ξ = 0.1a0, (b) ξ = 0.3a0, (c) ξ = 0.4a0

and (d) ξ = 0.6a0.

Figure 6. Dependency of the widening factor (standard de-
viation of the position at a fixed time t = 3τ over the initial
standard deviation σ0) of a soliton subjected to an inverted
harmonic potential, depending on the starting healing length
of the solution.

the condensation quickly broke apart upon starting the
simulation.

An even more interesting result was found when com-
bining the two above effects: One can repeat the latter
experiment (Letting σ evolve with different starting ξ)
but displacing the soliton 0.1a0 to the right. In this
study case, results showed, a clear change in behavior:
for small enough solitons, the full condensation fell to
one side of the potential. However, when making the
soliton big enough, it broke apart before starting to fall.
This can be seen in figure 7

When plotting σ/σ0 at a fixed time, with respect to the
initial ξ (figure 8), a very similar result to the previous
study was found, in fact, the same transition appeared
(ξ ≈ 0.30± 0.05a0).
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Figure 7. Density over time of a soliton placed slightly to the
right (x0 = 0.1a0) of an inverted harmonic oscillator, with
four different healing lengths: (a) ξ = 0.1a0, (b) ξ = 0.3a0,
(c) ξ = 0.4a0 and (d) ξ = 1.0a0.

Figure 8. Dependency of the standard deviation of the posi-
tion at a fixed time (t = 3τ)of a soliton slightly displaced to
the right of an inverted harmonic potential, depending on the
starting healing length of the solution.

VII. CONCLUSIONS

In conclusion, this work has explored the dynamics of a
Bose-Einstein Condensate, focusing on a soliton config-

uration within the condensate, by describing it via the
Gross-Pitaevskii equation. The time-independent solu-
tion for the bright soliton was derived, and then, a har-
monic oscillator term was incorporated into the equation,
which resulted in a new set of units. These units allowed
for a dimensionless form of the equation to be found, en-
abling numerical simulations using the Crank-Nicolson
method.

Via a proprietary simulation software, the dynamics in a
harmonic oscillator were explored, and two main vibra-
tion modalities arose: the Kohn oscillation mode, which
showed the same frequency as the potential’s, and the
squeezing or breathing mode, the frequency of which
manifested a dependency on the soliton’s healing length
of the form ωsq = 1 + 0.055× ξ−2.49.

Finally, the dynamics in an inverted harmonic oscillator
were also explored, proving that two scenarios occur for
a soliton placed on top of it, which depended on its heal-
ing length. Wider solitons broke apart, whereas narrow
solitons were more likely to keep their form and fall to a
single side of the potential. A possible transition between
these behaviors was observed around a healing length of
ξ ≈ 0.30± 0.05a0. On top of that, the expected position
of the soliton was shown to closely resemble the classical
trajectory.

Overall, this study on the dynamics of solitons in differ-
ent potentials, provided valuable insights into their be-
havior and interaction with the potential. These findings
enhanced our understanding of soliton physics and have
potential applications in finding new ways to confine and
control Bose-Einstein Condensations.
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