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Abstract: This thesis focuses on the study of the nuclear shell-model through the implementation
of quantum circuits. Each single-particle state in a shell is associated with a qubit in state |1⟩
if occupied and |0⟩ if empty. By employing the system’s Hamiltonian and utilizing the Jordan-
Wigner mapping, creation and annihilation fermion operators are transformed into Pauli matrix
terms, enabling their implementation in a quantum circuit through quantum gates. To simulate
this system, an Adaptive Variational Quantum Eigensolver (ADAPT-VQE) is employed, which
iteratively constructs a wavefunction that minimizes the energy at each step. Through repeated
iterations, an upper bound for the ground state energy is obtained.

I. INTRODUCTION

In the field of nuclear physics, the nuclear shell-model
has stood as a cornerstone for the understanding of the
nuclear structure. This model has provided deep insights
into the behavior of atomic nuclei, yet it faces significant
limitations due to the exponential scaling on the basis
size as the number of particles increases. One of the
most promising approaches to overcoming this challenge
is the use of quantum computing [1]. This work aims to
explore the potential of quantum circuits for simulating
the nuclear shell-model.

The advent of quantum computing has given rise to
a new paradigm in computation, which is particularly
suited to tackling problems in the field of quantum many
body that are intractable for classical computers. Uti-
lizing the principles of quantum superposition and en-
tanglement, quantum computing offers the potential to
handle many-body systems that scale exponentially with
traditional computing resources. The research presented
in this work leverages these quantum capabilities to sim-
ulate the nuclear shell-model.

In this study, we will replicate the quantum circuit de-
sign strategy from [2] with the intention of reproducing
the same results and supplementing them with a study of
the measurement. This strategy utilizes an adaptive vari-
ational quantum eigensolver (ADAPT-VQE) algorithm,
a powerful tool in the current noisy intermediate-scale
quantum (NISQ) era [3]. The strength of this approach
lies in its hybrid quantum-classical nature, optimizing pa-
rameters classically while computing expectation values
through quantum measurements [4].

This work is structured as follows: Section II lays the
foundation by introducing the fundamentals of the Nu-
clear shell-model and establishing the motivation for em-
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ploying quantum computing. Section III elucidates the
algorithm employed to solve the Nuclear shell-model and
the circuit design strategy implemented for its simula-
tion. The following section, Section IV, will present and
dissect our results. Finally, we conclude and summarize
in Section V.

II. NUCLEAR SHELL-MODEL

The nuclear shell-model is a fundamental tool in nu-
clear physics that provides a detailed understanding of
the arrangement of nucleons within the nucleus of an
atom. This model proposes that the nucleons, which
include protons and neutrons, are situated at discrete
energy levels inside the atomic nucleus. Notably, ex-
perimental observations revealed the existence of certain
“magic numbers” of nucleons that demonstrated pecu-
liar characteristics. These “magic numbers” (N or Z =
2, 8, 20, 28, 50, 82, 126, 184) were associated with an
unexpectedly high binding energy, a smaller nuclear ra-
dius, a reduction in the neutron capture cross-section,
and an increased energy of alpha particles when the re-
maining nucleus was characterized as “magic”.
According to the principles of the nuclear shell-model,

the atomic nucleus can be conceptualized as being consti-
tuted of two distinct parts. The first part is an inert core,
which consists of nucleons that have reached a “magic
number”. These nucleons are dynamically paired and
they don’t actively participate in the system’s dynamics.
The second part, consists of the remaining neutrons and
protons that do not complete a magic number. These
particles are located in what is known as the “valence
space”. It is within relatively limited valence space that
these neutrons and protons interact and significantly con-
tribute to the properties of the nucleus [5].
With this description, we can formulate an effective
Hamiltonian for this valence space, which can be ex-
pressed as: [2]

Heff =
∑
i

ϵia
†
iai +

1

4

∑
ijkl

v̄ijkla
†
ia

†
jalak. (1)
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Here, ϵi is the single-particle energy of state i, while
v̄ijkl = vijkl − vijlk refers to the the two-body antisym-
metric phenomenological couplings. Additionally, ai and

a†i are the annihilation and creation operators, respec-
tively.

Since the nuclear force is rotationally invariant and
nucleons are fermions, a single-particle basis with quan-
tum numbers nlj will be used, with n as the principal
quantum number, l the orbital angular momentum, and
j the total angular momentum. This basis also includes
the third component m of the projections of j. To distin-
guish between protons and neutrons, the isospin quantum
number t = 1/2 with its third component tz = ±1/2, +
for protons and − for neutrons, is included in the ba-
sis. With these considerations, a suitable basis is the
M-scheme, where the Slater determinant is chosen such
that it has a well-defined M . The nuclear states can be
expanded in this basis as follows:

|JM TTz⟩ =
∑
α

cα|α,MTz⟩, (2)

where α = nαlαjαtα [6]. A challenge with this system is
that the number of Slater determinants grows according
to:

dimmb =

(
dimsp

NCI

)
×
(
dimsp

ZCI

)
. (3)

Here, NCI and ZCI are the numbers of active neutrons
and protons in the configuration space, respectively, and
dimsp is the dimension of the single-particle basis of a
nuclear shell consisting of different nlj orbitals, thus de-
fined as dimsp =

∑
j(2j+1). This sum provides the total

number of states in the shell, which is the dimension of
the single-particle basis within that shell [2].

In summary, the nuclear shell-model offers a compre-
hensive approach to understanding the structure and be-
havior of atomic nuclei. However, the model faces chal-
lenges, especially when dealing with heavier nuclei with
a large number of nucleons. The dimension of the many-
body Hilbert space, scales exponentially with the number
of particles making classical simulations of the model in-
creasingly difficult. This is where quantum computing
comes into the picture.

In light of this, the following discussion will delve into
the exciting potential of the ADAPT-VQE algorithm to
address the complexities of the nuclear shell-model.

III. VARIATIONAL ALGORITHM AND
QUANTUM CIRCUIT DESIGN STRATEGY.

Firstly, the variational algorithm used to simulate the
nuclear shell-model will be presented, followed by a dis-
cussion on the strategy implemented to construct the cor-
responding quantum circuit.

A. ADAPT-VQE

The variational algorithm employed in our study of the
nuclear shell-model is an ADAPT-VQE. This algorithm

iteratively constructs a wavefunction of the form:

|Ψ(θ)⟩ =
n∏

k=1

eiθkAk |ref⟩, (4)

here, θ = {θk, k = 1, . . . , n} denotes a set of variational
parameters, where an additional parameter is introduced
in each iteration, Ak are combinations of creation and
annihilation fermion operators, and |ref⟩ is the reference
state upon which we iterate. What this algorithm does is
to select the set of variational parameters θ that minimize
the energy according to:

EADAPT-VQE = min
θ

⟨ψ(θ)|Heff|ψ(θ)⟩
⟨ψ(θ)|ψ(θ)⟩

. (5)

Subsequently, the ansatz is evolved according to a uni-
tarian transformation |Ψ(θ)⟩ −→ eiθkAk |Ψ(θ)⟩ where the
new operator Ak is obtained based on the operator that
yields the largest gradient:

∂E(n)

∂θk

∣∣∣∣
θk=0

= i ⟨ψ(θ)|[Heff, Ak]|ψ(θ)⟩ |θk=0. (6)

All available operators Ak are predefined before be-
ginning the simulation. Given that we are working with
the nuclear shell-model, these operators must conserve
the number of particles, total angular momentum J , its
z-projection M , parity Π, and the third component of
isospin Tz. This motivates us to use the following two-
body fermionic operators:

T pq
rs = i(a†pa

†
qaras − a†ra

†
sapaq), (7)

where p, q, r, and s are single-particle states with their
quantum numbers n, l, j, m, and tz.
On the other hand, another preparatory operation be-
fore starting the simulation is to determine the state |ref⟩
from which the iteration begins. This state is chosen as
the member of the Fock basis that exhibits a lower en-
ergy configuration within the Hamiltonian. This strate-
gic choice aims to reduce the number of iterations re-
quired by the algorithm.
Therefore, the ADAPT-VQE algorithm implements the
following steps:

1. Calculate all non-zero operators T pq
rs in the basis of

the valence space to be worked on.

2. Determine the Fock state of minimum energy of
the Hamiltonian from which the VQE iteration will
begin.

3. Given this state, find the operator T pq
rs that gives

us the maximum gradient.

4. Find the values of θ that gives the smallest en-
ergy value using a classical optimizer, in this case,
we have employed the (gradient based) BFGS op-
timizer.

5. Evolve our state from |Ψ(θ)⟩ to eiθkAk |Ψ(θ)⟩.

6. Return to the third step and iterate until the sys-
tem converges to the Ground State.
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B. QUANTUM CIRCUIT DESIGN STRATEGY

In this subsection, we outline the steps to build the
circuit for the variational algorithm. We begin with the
Mapping (III B 1), transforming the fermionic operators
T pq
rs and the effective Hamiltonian of the valence space

into Pauli matrices via the Jordan-Wigner transforma-
tion. Subsequently, we prepare the initial state in the
quantum circuit (III B 2) as previously detailed. Fol-
lowing this, we carry out the variational optimization
(III B 3), elaborating the circuit that evolves the state
|ψ(θ)⟩ −→ eiθkAk |ψ(θ)⟩. And ultimately, we measure the
expected value of the Hamiltonian to compute the energy
(III B 4).

1. Mapping

The transformation of fermionic annihilation and cre-
ation operators into Pauli strings is a key step [7]. This
transformation is achieved through the Jordan-Wigner
transformation, where the operators are transformed as
follows:

a†i =

(
i−1∏
k=0

Zk

)
σ−
i , ai =

(
i−1∏
k=0

Zk

)
σ+
i . (8)

Here, σ±
j = 1

2 (Xj ± iYj) where j represents the specific
qubit upon which the operator acts.

Subsequently, the fermionic operators T pq
rs are con-

verted to Pauli strings. In this case, the operator trans-
formation is represented by the equations (13) and (14)
elaborated in the Appendix.

Moreover, the Hamiltonian (1) contains one-body op-
erators np = a†pap and two-body operators hpqrs =

a†pa
†
qaras + a†ra

†
sapaq. The respective Jordan-Wigner

transformations of these operators are also detailed in
the Appendix (Equations (15) and (16), respectively).

2. Initial state preparation

The initial state to begin the iteration, |ref⟩, is the
Fock’s state of lowest energy of the Hamiltonian. This
state can be efficiently obtained through a classical search
that requires at most dimmb operations. Once the state
has been determined, the circuit is modified with X
gates, bearing in mind that it always starts with all
qubits in the |0⟩ state. For example, when considering
the Beryllium-10 isotope, which has 4 neutrons and 2
protons in the valence shell, we find that this state cor-
responds to:

|ψ0⟩ = a†1a
†
2a

†
6a

†
7a

†
8a

†
9|vac⟩. (9)

Where |vac⟩ corresponds to the valence shell with no
fermions (vacuum). This state can also be written as:

|ψ0⟩ = |0110001111000⟩ = X1X2X6X7X8X9|0⟩⊗12. (10)

Hence, to obtain this state in the quantum circuit, it will
suffice to apply an X gate on qubits 1, 2, 6, 7, 8, and 9.

3. Variational optimization

In the initial iteration of the algorithm, we will find
the operator T pq

rs with largest gradient from a previously
computed pool of operators according to equation (6).
Having obtained the first T pq

rs , we need to evolve the ini-
tial state |ψ0⟩ −→ eiT

pq
rs θ0 |ψ0⟩ and compute the θ0 that

minimizes the energy value. Afterwards, the algorithm
consists of iterating this process by adding a new θ pa-
rameter each time and optimizing all of them simultane-
ously in each energy calculation, until the ground state
energy is reached.
Each T pq

rs consists solely of Pauli strings that commute
with each other due to the exclusive presence of X and
Y and an even number of variations between them. Con-
sequently, each T pq

rs can be exponentiated individually,
eliminating the need for the Trotter-Suzuki approxima-
tion.
To construct the quantum circuit that performs the

evolution eiT
pq
rs θk , we employ the Staircase Algorithm [8].

This algorithm is structured such that if the Pauli Strings
contain only Z gates, the circuit will have two cascades

of CNOTs and one Rz(θ) = e−i θ
2Z rotation. Given that

the Jordan-Wigner transformation yields both X and Y
gates, we will implement a basis change of the form X =
HZH and Y = R†

xZRx. Thus, in the circuit, we will first
have H and R†

x rotations, followed by the first cascade of
CNOTs, the Rz(θ) rotation on the last qubit, the next
cascade of CNOTs, and finally the H and Rx gates to
reverse the basis change [9].
Let’s examine an example for a case involving 4 qubits.

Suppose we have a core layer with 4 qubits, with an initial
state |ψ0⟩ = X0X2|ref⟩, and we aim to implement the

circuit e−i θ
2X0Y1Z2Z3 . The resulting circuit would be:

q0|0⟩ X H H

q1|0⟩ R†
x Rx

q2|0⟩ X

q3|0⟩ Rz

FIG. 1: This circuit implements the state |ψ⟩ =

e−i θ
2
X0Y1Z2Z3X0X2|0⟩⊗4 through the staircase algorithm.

4. Measurement

Up to this point, we have the circuit that evolves
|ψ(θ)⟩. Our goal now is to compute the expectation
value ⟨ψ(θ)|Heff|ψ(θ)⟩. Therefore, the strategy we have
adopted involves decomposing the Hamiltonian (1) into
four distinct terms. On the one hand, we have single-
body operators ni which, upon carrying out the Jordan-
Wigner transformation, become diagonal and can thus be

measured directly: ⟨ψn|ni|ψn⟩ = 1
2 ⟨ψn|1 − Zi|ψn⟩ = p

(i)
1

where p
(i)
1 is the probability of measuring 1 in the i-th

qubit.
On the other hand, we have the two-body terms of
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the Hamiltonian. These can be categorized into three
types based on their indices. The first, hijij (and its
indices permutations), simply represents the product of
two single-body operators. This relationship can be ex-

pressed as ⟨ψn|hijij |ψn⟩ = −2⟨ψn|ninj |ψn⟩ = −2p
(ij)
11 ,

where p
(ij)
11 denotes the probability of measuring 1 in

qubits i and j. The second type, hijik, can be di-
agonalized through a basis change employing Mjk =
CXkjHkCXkj , where CXij represents the CNOT gate
acting on qubits i and j. Once diagonalized, assum-
ing contiguous indices, the expectation value is given

by ⟨ψn|hijik|ψn⟩ = p
(ijk)
101 − p

(ijk)
110 . Lastly, hijkl, similar

to the second type, can be diagonalized using the ba-
sis change Mijkl = CXijCXkiCXlkHlCXlkCXkiCXij .
The expectation value for this type can be represented

as ⟨ψn|hijkl|ψn⟩ = p
(ijkl)
1100 − p

(ijkl)
0011 , where pq1...qkr1...rk

are the
probabilities of measuring r1 . . . rk in the qubits q1 . . . qk
on the vector over which the basis change has been made
[2].

IV. SIMULATION

In this section, we present the ADAPT-VQE simula-
tion results for Lithium-6, Beryllium-10, and Oxygen-18.
As the results are probabilistic, their precision increases
with the number of measurements. Specifically, we ana-
lyze the standard deviation of expected value calculations
of one-body and two-body operators for Oxygen-18, a
study that could be extended to the other Hamiltonian
terms and nuclei.
We compare the energy values computed classically
(through Hamiltonian diagonalization) to those deter-
mined by our variational algorithm, highlighting that our
computed energy, as in all variational methods, provides
an upper bound to the ground state energy. Further, we

graph the relative error, ϵE =
|EADAPT-VQE−E|

E , over itera-
tions, demonstrating the precision of our approximation.
The code for these simulations can be found in the repos-
itory [10].

A. Lithium-6

Lithium-6 is constituted of 3 neutrons (N=3) and 3
protons (Z=3), consequently, we have 1 neutron and
1 proton in the valence shell, situating us within the
p-shell and requiring 12 qubits for a quantum simula-
tion. The algorithm finds itself stagnated in a local
minimum when initiating in the Fock’s basis minimum

energy state, |ψ0⟩ = a†2a
†
7|vac⟩. To address this issue,

we initiate the system in an alternate state of the basis:

|ψ0⟩ = a†1a
†
11|vac⟩. The results obtained for this nucleus

can be observed on the left panels of Figure 3.
The derived wave function is:

|ψ6Li⟩ = eiθ8T
1,11
5,7 eiθ7T

5,7
0,9 eiθ6T

5,7
3,6 eiθ5T

1,11
2,10 eiθ4T

4,8
5,7

eiθ3T
3,6
5,10eiθ2T

3,6
4,11eiθ1T

1,8
5,7 eiθ0T

0,9
2,7X1X11|0⟩⊗12.

Where: θ0 = −0.95175, θ1 = −0.5120, θ2 = −0.58015,
θ3 = 0.78540, θ4 = −0.76281, θ5 = −0.16489, θ6 =
−0.16718, θ7 = 0.29835 and θ8 = 0.32175.

B. Beryllium-10

Beryllium-10 is composed of 6 neutrons (N = 6) and
4 protons (Z = 4). As a result, there are 4 neutrons
and 2 protons in the valence shell, requiring a total of 12
qubits for simulation within the p-shell. The Fock state
of the basis, characterized by the minimum energy, is
represented in equation (9). From this starting state, we
obtain the results depicted in the central plot of Figure
3. A total of 48 iterations were necessary to achieve the
ground state energy with a relative error of ϵE ≈ 10−5.

C. Oxygen-18

Oxygen-18, with 10 neutrons (N = 10) and 8 pro-
tons (Z = 8), has 2 neutrons in the valence sd-shell, re-
quiring 12 qubits for simulation. Starting from the state

|ψ0⟩ = a†0a
†
5|vac⟩, the simulation results are displayed on

the right panel of Figure 3. The wave function derived is
given by:

|ψ18O⟩ = eiθ4T
0,5
2,3 eiθ3T

0,5
9,10eiθ2T

0,5
1,4 eiθ1T

0,5
6,7 eiθ0T

0,5
8,11X0X5|0⟩⊗12.

With parameters: θ0 = −0.15726, θ1 = −0.43724, θ2 =
0.60466, θ3 = 0.21443, θ4 = −0.78547.
By calculating the expected value of the operators ni

and hijij , we find that the standard deviation decreases
with σ = c√

N
, where N represents the number of circuit

measurements, with cni
= 5.97×10−1 and chijij

= 7, 62×
10−2.

FIG. 2: Double-logarithmic plot depicting the standard devi-
ation dependency on the number of repetitions for the calcu-
lation of the expected values of ⟨ni⟩ and ⟨hijij⟩.

V. CONCLUSION

In this study, we have explored an alternative to the
traditional method of simulating the ground state of var-
ious nuclei using classical diagonalization of the Hamil-
tonian. The theoretical model employed for describing
the physics of nuclei is the nuclear shell-model. However,
this model presents a challenge when attempting to sim-
ulate it with a classical computer due to its rapid scaling
with the number of particles.
One of the main advantages that quantum computing

offers in this context is that it requires only as many
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FIG. 3: In the upper part of the multiplot, shown in red, we have plotted how the energy converges towards the value of its
ground state energy as a function of the number of iterations. In the lower part, shown in blue, we have plotted the relative
error as more iterations are performed. The graphics on the left correspond to Lithium-6, the central graphics to Beryllium-10,
and those on the right to Oxygen-18.

qubits as there are possible states in the valence shell to
simulate the presented algorithm. Importantly, this ex-
tends to both memory and computational time resources,
demonstrating a significant departure from classical com-
puting practices and provides a path to overcome com-
putational barriers in nuclear physics simulations. Nev-
ertheless, a critical area for future investigation is the
examination of how circuit depth scales for heavier nu-
clei.

The algorithm was successfully executed, enabling us
to determine the ground state energy of three distinct
nuclei: Oxygen-18, Beryllium-10, and Lithium-6. This

accomplishment affirms the potential viability of quan-
tum approaches to nuclear shell-model simulations. The
accuracy demonstrated is comparable to classical meth-
ods, yet promises enhanced scalability for larger systems.
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VI. Appendix

A. Deduction of the equation that gives the
maximum gradient operator

We will demonstrate the following equation:

∂E(n)

∂θk

∣∣∣∣
θk=0

= i ⟨ψ(θ)|[Heff, Ak]|ψ(θ)⟩ |θk=0.

We begin with the expression for the minimization of
energy:

EADAPT-VQE = min
θ

⟨ψ(θ)|Heff|ψ(θ)⟩
⟨ψ(θ)|ψ(θ)⟩

.

Since the wave function is already normalized, we can
write the energy as E = ⟨ψ(θ)|Heff|ψ(θ)⟩. At each step
k of the iterative procedure, the ansatz is expanded by:
|ψ(θ⟩ −→ eiθkAk |ψ(θ⟩. Therefore, at each step, we need to
compute:

E = ⟨eiθkAkψ(θ)|Heff|eiθkAkψ(θ)⟩.

Differentiating this expression with respect to θk yields:

∂E

∂θk
=

∂

∂θk

〈
eiθkAkψ(θ)|Heff|eiθkAkψ(θ)

〉
=

〈
ψ(θ)

∣∣∣∣ ∂∂θk [e−iθkAk Heff e
iθkAk ]

∣∣∣∣ψ(θ)〉

= ⟨ψ(θ)
∣∣e−iθkAk (−iAk) Heff e

iθkAk

+e−iθkAk Heff (iAk)e
iθkAk

∣∣ψ(θ)⟩
= i
〈
ψ(θ)

∣∣e−iθkAk [−Ak Heff + Heff Ak] e
iθkAk

∣∣ψ(θ)〉
= i
〈
eiθkAkψ(θ)|[Heff, Ak]|eiθkAkψ(θ)

〉
.

To derive the final result, we evaluate this expression at
θk = 0 to obtain:

∂E

∂θk

∣∣∣∣
θk=0

= i ⟨ψ(θ)|[Heff, Ak]|ψ(θ)⟩ |θk=0. (11)

In conclusion, we have shown that the derivative of the
energy with respect to the parameter θk is equal to the
commutator of the Hamiltonian and the operator Ak,
evaluated at θk = 0.
We note that we have not studied the measurement pro-
tocol for these terms and in our simulations we have com-
puted this expression analytically.

In the case we are dealing with, where the matrices
Heff and Ak are very large, it is useful to simplify the
commutator and reduce it to a single matrix product.
To achieve this, we assume that both Heff and Ak are

Hermitian and attempt to simplify the problem:

i ⟨ψ(θ)|[Heff, Ak]|ψ(θ)⟩
=i [⟨ψ(θ)|HeffAk|ψ(θ)⟩ − ⟨ψ(θ)|AkHeff|ψ(θ)⟩]

=i
[〈

|H†
effψ(θ)|Akψ(θ)

〉
−
〈
A†

kψ(θ)|Heffψ(θ)
〉]

=i [⟨|Heffψ(θ)|Akψ(θ)⟩ − ⟨Akψ(θ)|Heffψ(θ)⟩]
=i
[
⟨|Heffψ(θ)|Akψ(θ)⟩ − (⟨Heffψ(θ)|Akψ(θ)⟩)∗

]
.

If we define z = ⟨|Heffψ(θ)|Akψ(θ)⟩ :

i [z − z∗] = i [(a+ ib)− (a− ib)] = i[2ib] = −2b = −2·Im(z).

Thus, we have shown that we can write:

i ⟨ψ(θ)|[Heff, Ak]|ψ(θ)⟩ = −2 · Im [⟨ψ(θ)|HeffAk|ψ(θ)⟩] (12)

B. Detailed Jordan-Wigner Transformations

Here we present the explicit transformations of the
fermionic operators T pq

rs , one-body operators np, and two-
body operators hpqrs to Pauli strings using the Jordan-
Wigner transformation.

The fermionic operators T pq
rs are transformed as:

T pq
rs = i(a†pa

†
qaras − a†ra

†
sapaq) =

1

8
P pq
rs (−XpXqYrYs − YpYqYrYs + YpYqXrXs

+YpYqYrXs + YpXqXrXs +XpYqXrXs

−XpXqYrXs −XpXqXrYs) , (13)

where:

P pq
rs =

 q−1∏
m=p+1,m/∈[r,s]

Zm

 q−1∏
n=r+1,n/∈[p,q]

Zn

 . (14)

The one-body operator np takes the form:

np = apa
†
p =

1

2
(1− ZP ). (15)

Lastly, the transformation of the two-body operator
hpqrs is:

hpqrs = a†pa
†
qaras + a†ra

†
sapaq =

1

8
P pq
rs (−XpXqXrXs +XpXqYrYs −XpYqXrYs

−XpYqYrXs − YpYqYrYs + YpYqXrXs

−YpXqYrXs − YpXqXrYs) . (16)
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