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Birkhoff’s theorem establishes that any spherically symmetric vacuum solution of Einstein’s equa-
tions is necessarily static and uniquely given by the Schwarzschild metric. In this TFG we prove
this theorem for Einstein gravity and several of its extensions, which include the presence of electric
charge as well as higher-curvature terms in the action. More precisely, we explicitly prove Birkhoff-
like theorems for: Einstein, Einstein-Maxwell, Einstein-Gauss-Bonnet and Einstein-Maxwell-Gauss-
Bonnet theories in general dimensions. In all cases, starting from a general spherically symmetric
ansatz, we are able to show that the equations of motion impose the staticity condition, and fully
constrain the metric to take the form of the unique static and spherically symmetric spacetime of
each theory. We also comment on the validity of the theorem for general Lovelock theories and its
current status for more general higher-curvature theories of gravity.

I. INTRODUCTION

General Relativity describes gravity as the curvature
of spacetime. The dynamics of the gravitational field are
governed by Einstein’s field equations. These equations
can be derived from the Einstein-Hilbert action:

S =
1

16πG

∫
dDx

√
|g|R , (1)

where dDx
√
|g| represents the volume element, R is the

Ricci scalar and we have omitted the cosmological con-
stant.

While the Einstein-Hilbert action provides a descrip-
tion of gravity compatible with all observations so far,
there are good reasons to believe that it is not the end
of the story, and that it should be modified by higher
curvature terms. These motivations include —see e.g.,
[1]:

1. Effective field theory perspective: The Einstein-
Hilbert action ought to be the first in an infi-
nite sum of higher-curvature operators. Higher-
curvature operators are expected to become rele-
vant at sufficiently high energy scales.

2. String Theory predictions: String Theory —the
leading candidate for a consistent theory of quan-
tum gravity— predicts the appearance of higher-
curvature corrections in the form of an expansion
in α′-weighted terms (α′ being the inverse string
tension).

3. AdS/CFT duality: Higher-curvature theories give
rise to dual Conformal Field Theories (CFTs) that
differ from those dual to Einstein gravity, opening
up new avenues for exploration and understanding
of quantum systems.

4. Probing universal aspects of gravity: Higher-
curvature models provide an opportunity to inves-
tigate the generality of Einsteinian features by ex-
amining if and how they persist beyond the realm
of Einstein gravity. This includes, for instance, the
properties of black holes, gravitational waves, cos-
mological evolution, etc.

A notable property of Einstein gravity is Birkhoff’s the-
orem, which states that any spherically symmetric vac-
uum solution of the Einstein field equations is necessar-
ily static and asymptotically flat, and is described by
Schwarzschild’s metric [2]. In this TFG, we aim to inves-
tigate whether Birkhoff’s theorem remains valid beyond
Einstein gravity. In section IIC, we consider the effect
of including electric charge, whereas section IIIA exam-
ines the addition of higher-curvature terms and section
III B contemplates both of these effects. Finally, sections
III C and IV reflect upon the theorem’s validity in more
general theories.

II. BIRKHOFF’S THEOREM FOR EINSTEIN
GRAVITY

Before proving Birkhoff’s theorem for Einstein gravity,
let us start with an electromagnetic analogy.

A. Gauss’ law analogy

Maxwell’s first law of electromagnetism (or Gauss’ law)
states that the electric flux through any closed surface is
proportional to the electric charge enclosed within the
surface. Mathematically, it can be expressed in natural
units as: ∮

S
E⃗ · dS⃗ = 4πQ ,
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with E⃗ being the electric field, dS⃗ the surface element
vector orthogonal to the area and Q the electric charge.
This means that the electric field outside the charge dis-
tribution does not depend on its shape or size, but merely
on the net amount of charge inside the volume delimited
by the surface S.

This is similar to Birkhoff’s theorem, which states that
the gravitational field outside a spherically symmetric
mass distribution is described by the Schwarzschild met-
ric, regardless of the distribution’s internal structure or
dynamics. As we will see in a moment, all spherically
symmetric spacetimes fulfilling Einstein’s equations are
static. Analogously, the Coulomb field is the only spher-
ically symmetric solution of Maxwell’s equations in the
vacuum.

B. Proof of Birkhoff’s theorem for Einstein gravity

Let us now move to gravity. The Einstein-Hilbert ac-
tion in D dimensions is given by expression (1). If we
vary the action with respect to the metric, δS/δgµν = 0,
we find the equations of motion for Einstein gravity:

Rµν − 1

2
gµνR = 8πGTµν ,

where we included a possible matter stress-tensor. In the
vacuum, Tµν = 0 and the equations reduce to Rµν = 0.

Let us consider a metric of the form:

ds2 = −e2A(r,t)dt2 + e2B(r,t)dr2 + r2dΩ2
D−2 , (2)

which is a completely general spherically symmetric
ansatz. The µν = rt, rr, tt, θiθi components of the Ricci
tensor are, respectively:

D − 2

r
Ḃ = 0 ,

e2(B−A)(Ḃ + Ḃ2 − ȦḂ)−A′2 +
D − 2

r
B′ +A′B′ −A′′ = 0 ,

−B̈ − Ḃ2 + ȦḂ +
1

r
e2(A−B)[rA′2 +A′(D − 2− rB′) + rA′′ = 0 ,

e−2B
i−1∏
j=1

sin2(θj)[(D − 3)(e2B − 1)− rA′ + rB′] = 0 ,

where we use the notation T ′ ≡ dT
dr and Ṫ ≡ dT

dt . From
the first equation, we immediately obtain:

Ḃ = 0 ⇒ B(r, t) = B(r)

This tells us that the metric function B(r, t) has no de-
pendence whatsoever on the time variable. Now, from
the last equation we find:

A′(r, t) =
D − 3

r
(e2B(r) − 1) +B′(r) .

So A(r, t) = Ā(r) + f(t), and we can set f(t) = 0
through a redefinition of the t coordinate: e2A(r,t)dt2 =

e2Ā(r)e2f(t)dt2 = e2Ā(r)dt̄2. So, without loss of general-
ity, we can write:

A(r, t) = A(r)

This proves the first part of the theorem, namely, the fact
that spherical symmetry implies staticity for the vacuum
Einstein equations.
Combining the second and third equations, we obtain:

Rtt + e2(A−B)Rrr = e2(A−B)D − 2

r
(A′ +B′) .

Since Rrr = 0 = Rtt ⇒ A′(r) + B′(r) = 0 ⇒ A(r) =
−B(r), where we have also set the integration constant
to zero, redefining time. Therefore, we have:

A(r) = −B(r) .

Applying this, we can rewrite the equations for the an-
gular components as:

(D − 3)(e2B − 1) + 2rB′ = 0 ⇒ −(D − 3)
dr

r
=

2

e2B − 1
dB .

Multiplying and dividing the left-hand side by e−2B , we
are left with:

−(D − 3)
dr

r
=

2e−2B

1− e−2B
dB ,

−(D − 3) log(r) + log(C) = log(1− e−2B) ,

1− e−2B = Cr−(D−3) .

Therefore, the metric components take the form:

e−2B(r) = e2A(r) = 1− 16πGM

(D − 2)ΩD−2rD−3
(3)

where ΩD−2 ≡ 2π
D−1

2 /Γ
[
D−1
2

]
is the (D − 2)-

dimensional hypersphere volume and the integration
constant C has been identified with the mass of the
solution using the Arnowitt-Deser-Misner (ADM) for-
malism [3]. The resulting metric corresponds to the
Schwarzschild-Tangherlini spacetime, a generalization of
the Schwarzschild metric to higher dimensions. In the
D = 4 case, this reduces to the somewhat more familiar
expression:

e−2B(r) = e2A(r) = 1− 2GM

r
.

C. Einstein-Maxwell

In this section, our aim is to prove that the
Einstein-Maxwell system satisfies an analogous version
of Birkhoff’s theorem. This implies that the exterior ge-
ometry of a spherically symmetric spacetime must be de-
scribed by the Reissner-Nordström metric, which gener-
alizes Schwarzschild’s solution in the presence of electric
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charge. We will determine the specific form of this metric
for arbitrary D ≥ 4.

The Einstein-Maxwell action reads:

S = SG + SEM =

∫
dDx

√
|g|

(
R

16πG
− 1

4
FµνFµν

)
,

where Fµν = ∂µAν − ∂νAµ is the Faraday tensor, and
Aµ is the gauge potential. To obtain the field equations,
we vary the action with respect to the metric and the
potential, which leaves us with:

Rµν − 1

2
Rgµν = 2G

(
FµλF

λ
ν − 1

4
gµνFλσF

λσ

)
,

∇αF
αβ = 0 .

We take the same ansatz for the metric as in (2). As-
suming that the gauge potential only has the time com-
ponent different from zero and that this is spherically
symmetric: At = g(r, t), Ai = 0. With this, the
only non-vanishing components of the Faraday tensor are
Frt = −Ftr = g′(r, t).
From Maxwell’s equation, we find the following differ-

ential equation for g(r, t):(
D − 2

r
+A′ +B′

)
g′(r, t) + g′′(r, t) = 0 .

The general solution to this equation reads:

g(r, t) = − C1(t)

(D − 3)rD−3
+ C2(t) .

We can set the second integration constant to zero, as it
only depends on time and we can redefine time without
loss of generality. We can also relate the first constant to
the electric charge of the black hole. Hence, we find:

g(r, t) =
Q

rD−3

Replacing now in Einstein’s equations, we get for the
µν = rt, tt, rr equations, respectively:

D − 2

r
Ḃ = 0 ,

D − 2

2r2
e2A

[
(D − 3)(e2B − 1) + 2rB′(r)

]
= 2G

(D − 3)2

2

Q2

r2(D−2)
,

D − 2

2r2

[
(D − 3)(1− e2B) + 2rA′

]
= −2G

(D − 3)2

2
e−2A Q2

r2(D−2)
.

As in the previous case, the first equation gives us the
staticity condition for B(r, t), while the other two give us
the solution to this differential equation system. All in
all, we find A(r, t) = −B(r) = A(r) with:

e2A(r) = 1− 16πGM

(D − 2)ΩD−2rD−3
+

2G(D − 3)Q2

(D − 2)r2(D−3)

(4)

Hence, we find that any spherically symmetric solution of
the Einstein-Maxwell system is in fact static and, more-
over, given by the D-dimensional Reissner-Nordström
metric. Just like for Schwarzschild, we can check that
the four-dimensional version of this metric reduces to the
more familiar form:

ds2 = −
(
1− 2M

r
+

Q2

r2

)
dt2+

dr2(
1− 2M

r + Q2

r2

)+r2dΩ2 .

III. BIRKHOFF’S THEOREM FOR LOVELOCK
GRAVITY

The Lovelock Lagrangian describes the most general
theory of gravity that contains second-order field equa-
tions in D dimensions [6]. Consider a theory built from
general contractions of the Riemann tensor and the met-
ric, L = L(Rabcd, g

ab). Its equations of motion read [12]:

P cde
a Rbcde −

1

2
gabL − 2∇c∇dPacdb = 0 ,

where P abcd ≡ ∂L/∂Rabcd. These equations typically in-
volve fourth-order derivatives with respect to the metric.
However, observe that whenever ∇aPacdb = 0, the equa-
tions become second order. This is precisely the defining
condition of Lovelock theories.
The general Lovelock Lagrangian consists of an arbi-

trary linear combination of the form:

L =

D/2∑
n=0

αnX2n , (5)

where X2n are dimensionally-continued Euler densities of
the form:

X2n =
1

2n
δµ1ν1...µnνn

α1β1...αnβn

n∏
r=1

Rαrβr
µrνr

.

Here, δµ1ν1...µnνn

α1β1...αnβn
is the totally antisymmetric Kronecker

delta. The density X2n vanishes for n > D/2. For
n = D/2, it becomes topological and, as such, does not
contribute to the equations of motion. For n < D/2,
the density becomes dynamical and does contribute to
the equations of motion. The fist two densities corre-
spond, respectively, to the cosmological constant and the
Einstein-Hilbert term; X0 = Λ, X2 = R.

A. Einstein-Gauss-Bonnet

Gauss-Bonnet gravity is a modified theory of grav-
ity that includes, in addition to the Ricci scalar, the
quadratic Lovelock piece, given by:

X4 = RµνρσR
µνρσ − 4RµνR

µν +R2 .

Treball de Fi de Grau 3 Barcelona, June 2023



Birkhoff’s theorem for Einstein gravity and beyond Emilio Rodŕıguez Amado

Therefore, the Gauss-Bonnet action reads:

SGB =
1

16πG

∫
dDx

√
|g|

[
R+ αX4

]
,

where we set the cosmological constant to zero. Also, α is
called the Gauss-Bonnet parameter. Varying the action
with respect to the metric δS/δgµν = 0, we obtain the
following vacuum field equations:

Rµν − 1

2
gµνR = α

[1
2
gµν(RγδλσR

γδλσ − 4RγδR
γδ +R2)

− 2RRµν + 4RµγR
γ
ν + 4RγδR

γδ
µν − 2RµγδλR

γδλ
ν

]
.

Taking the same ansatz for the metric as in (2), the
equations for the µν = rt, rr, tt components read, re-
spectively:

Ḃ

r
= α

2(D − 3)(D − 4)

r3
(e−2B − 1)Ḃ ,

1

2r2
[
(D − 3)(1− e2B) + 2rA′] = α

(D − 4)(D − 3)

2r4

× (1− e−2B)
[
(D − 5)(e2B − 1)− 4rA′] ,

1

2r2
[
(D − 3)(e2B − 1) + 2rB′] = −α(D − 4)(D − 3)

2r4

× (1− e−2B)
[
(D − 5)(e2B − 1) + 4rB′] .

From the first equation, we get B = B(r). Rewriting and
adding the second and third equations, we get A′+B′ =
0 ⇒ A′ = −B′ and therefore A(r, t) = −B(r) + f(t),
where we can set f(t) = 0 redefining time. Thus, we
have found that the spherically symmetric solution of the
Lovelock theory with a Gauss-Bonnet term is static.

Now, we can substitute the result A(r) = −B(r) into
either the rr or tt equations (they are equivalent), and
solve the differential equation for A(r) or B(r). We get:

e2A(r) = e−2B(r) = 1 +
r2

2α(D − 3)(D − 4)

·

[
1±

√
1 +

64πGMα(D − 3)(D − 4)

(D − 2)ΩD−2rD−1

]
where we identified the integration constant with the
ADM mass.

The above metric corresponds to the Gauss-Bonnet
gravity generalization of the Schwarzschild-Tangherlini
metric in general dimensions [7]. We can observe there
are actually two possible solutions to the system, corre-
sponding to the ± branches. We can prove only the −
branch makes physical sense by studying its behaviour
for small α and checking its correspondence with the
Schwarzschild solution. So, expanding our solution in
a series for α → 0, we find:

e2A(r) =+ 1− 16πGM

(D − 2)ΩD−2rD−3

+
256π2α(D − 3)(D − 4)G2M2

Ω2
D−2r

2(D−2)
+O(α2) ,

(6)

where the first terms match the ones obtained in (3).

B. Einstein-Maxwell-Gauss-Bonnet

We now aim to unify the electromagnetic action with
the gravitational action, incorporating the Gauss-Bonnet
quadratic term. Unlike what happened in section IIC, we
require a spacetime dimension of D ≥ 5, since the Gauss-
Bonnet term assumes a topological nature in D = 4 and,
consequently, does not contribute to the field equations.
Thereupon, the combined action is:

S =

∫
dDx

√
|g|

[ R

16πG
+ α

(
RµνρσR

µνρσ

− 4RµνR
µν +R2

)
− 1

4
FµνFµν

]
.

Varying with respect to the metric, we arrive to the fol-
lowing field equations:

Rµν − 1

2
gµνR = 2 · 4πG

(
TEM
µν + αTGB

µν

)
,

TEM
µν = FµλF

λ
ν − 1

4
gµνFλσF

λσ ,

TGB
µν = gµν(RγδλσR

γδλσ − 4RγδR
γδ +R2)

− 4RRµν + 8RµγR
γ
ν + 8RγδR

γδ
µν − 4RµγδλR

γδλ
ν .

Again, we take the starting metric as (2). We have sepa-
rately calculated both sides of the field equations in the
previous sections, so the combined case will simply con-
tain the sum of the Gauss-Bonnet and Maxwell contri-
butions, with the first weighed by the α parameter.
Following the same steps as in previous sections, we

find that the metric is once more static and characterized
by:

eA(r) = e−2B(r) = 1 +
r2

2α(D − 4)(D − 3)

·
[
1±

√
1−

8GQ2α(D − 3)2(D − 4)

(D − 2)r2(D−2)
+

64πGMα(D − 3)(D − 4)

(D − 2)ΩD−2rD−1

]

We see there are two branches to this solution, corre-
sponding to the ± sign. As we did in section IIIA, we
can prove only the − branch makes physical sense by
studying its behaviour for small α and checking its cor-
respondence with the Reissner-Nordström solution. So,
expanding our solution in a series for α → 0 up to zeroth
order, we obtain the same result as in (4) and, just like
in (6), we can determine the first terms in α.

C. General Lovelock gravity

Birkhoff-like theorems for completely general Lovelock
theories of the form given by (5) can be similarly proven.
In that case, the generalized version of the Schwarzschild
solution is again a metric of the form (2) with e−2B(r) =
e2A(r) ≡ f(r) where the time-independent metric func-
tion f(r) satisfies [9]:

D/2∑
n=1

αn
(D − 2n)

2
rD−2n−1(1− f)n =

16πGM

(D − 2)ΩD−2
.
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It is easy to verify that this reduces to the Einstein —
setting α1 ≡ 2/(D−2)— and Gauss-Bonnet results stud-
ied in detail above in the corresponding cases.

IV. BEYOND LOVELOCK GRAVITY?

Birkhoff’s theorem does not hold for general higher-
curvature gravities. However, there may be additional
theories that do satisfy it. A simple example is the so-
called cubic Quasi-topological gravity theory [11].

While a full systematic analysis seems to be lacking in
the literature, some additional progress has been made
in [10]. In that paper, more families of theories satisfy-
ing the Birkhoff theorem were found. These are charac-
terized by Lagrangian densities which, while possessing
fourth-order equations on general backgrounds, the trace
of such equations is second order. Additionally, the full
set of field equations becomes second order for spherically
symmetric spacetimes. The number of such theories can
be written in terms of the amount of independent con-
formal invariants of order n existing in D dimensions,

N
(n)
D . In any dimension D, they found that there exists

a p-parameter family of (non-trivial) Lagrangian densi-
ties which generically admit Birkhoff’s theorem, where

p = 1 +

 ∑
1<n<D/2

N
(n)
2n

+

 ∑
n≥D/2

(N
(n)
D − 1)

 , (7)

for even D and

p = 1 +

 ∑
1<n<D+1

2

N
(n)
2n − 1

+

 ∑
n>D+1

2

(N
(n)
D − 1)

 , (8)

odd D. As the authors acknowledge, their analysis is
partial, and additional theories may be missing.

V. CONCLUSIONS

In this TFG, we have explored the validity of the
Birkhoff theorem for and beyond Einstein gravity in gen-
eral spacetime dimensions. In particular, we have ex-
plicitly proved it for the Einstein and Einstein-Maxwell
systems, as well as for Einstein-Gauss-Bonnet with and
without electric charge. We have also discussed the gen-
eral Lovelock case, and commented on the state of the art
for general theories. In all the cases explored, we have
determined the geometry of the spherically symmetric
spacetimes, which is given by the corresponding static
black hole metrics.

The study of higher-curvature gravitational theories
and their properties is an ongoing research field. As
we saw, exploring the validity of Birkhoff’s theorem for
higher-curvature theories is a task which has not been
addressed in full generality yet. Natural candidates for
additional theories which may satisfy it include the so-
called Generalized Quasi-topological gravities [9]. On a
different front, it would be interesting to include higher-
order terms in the Maxwell field as well. No results have
been obtained in this direction whatsoever, so it is nat-
ural to expect that at least some subset of such theories
will satisfy Birkhoff theorems. It would be interesting to
pursue this research direction.

Acknowledgments

I would like to thank Dr. Pablo Bueno Gómez who,
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