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Abstract: Within the framework of Quantum Field Theory in Curved Spacetime we obtain a
Running VacuumModel (RVM) by considering a scalar field nonminnimally coupled to gravity. With
the aid of this result, we derive the equation of state of the quantum vacuum in the early universe,
where it is close to wvac = −1, and in the FLRW regime, where remarkably it evolves adopting
radiation, dust and quintessence behaviours. Finally, we discuss the RVM inflation mechanism.

I. INTRODUCTION

The cosmological constant term introduced by Einstein
in [1] to allow a static universe has been a key ingredient
of cosmology ever since. The concordance ΛCDM cos-
mology considers it to be a constant that accounts for the
energy of vacuum. Nonetheless, in the recent Running
Vacuum Model, RVM (see for instance [10]) it is taken
as a dynamic quantity. This generalization allows to al-
leviate some cosmological tensions [12]. However, it was
not until very recent [7] that it was justified on theoreti-
cal Quantum Field Theory in Curved Spacetime grounds.
In that theory one quantizes the matter fields but treats
the gravitational field as a classical field, yielding a semi-
classical theory of gravity that was proved successful to
explain phenomena like particle creation in cosmological
and black hole spacetimes (see for instance [2]).

In this work we aim to explain the origin of the RVM in
the context of QFT in curved spacetime as well as some
implications of the RVM to the equation of state (EoS)
of the vacuum. In section II we introduce the QFT in
curved spacetime framework for a scalar field nonmini-
mally coupled to gravity, defining the Ultraviolet (UV)
divergent Vacuum Energy Density (VED). In section III
we mention how to renormalize this quantity following
the approach in [8]. Finally, in section IV, using the pre-
vious results and following [11] we derive the EoS of the
vacuum in the FLRW regime and in an early inflationary
epoch, discussing also the RVM inflation.

II. QFT CALCULATION OF THE VED

A. Classical equations for a scalar field
nonminimally coupled to gravity

We consider a single matter field ϕ nonminimally cou-
pled to gravity. Hence, the action is:

S = SEH + Sm =

∫
d4x

√
−g
[

1

16πG
(R− 2Λ) + L̂m

]
(II.1)

Where SEH is the Einstein-Hilbert action with a Λ term
and Sm =

∫
d4x

√
−gL̂m is the action of the matter field.

R is the Ricci Scalar, g is the determinant of the metric

tensor gµν and L̂m is the scalar lagrangian density of ϕ:

L̂m = −1

2

(
gµν∇µϕ∇νϕ+ (m2 + ξR)ϕ2

)
(II.2)

Which is nothing but the lagrangian of the neutral scalar
field in Minokowski spacetime (with metric ηµν) general-
ized by the usual prescriptions (ηµν → gµν and ∂µ → ∇µ)
with an additional coupling term (ξRϕ2).
Imposing that variations respect to the inverse met-

ric gµν of the action in (II.1) vanish, one gets Einstein’s
equations (see [6]):

Gµν ≡ Rµν − 1

2
gµνR = 8πG(−ρΛgµν + Tϕ

µν) (II.3)

Where Rµν is the Ricci tensor and Tϕ
µν ≡ − 2√

−g
δSm

δgµν is

the energy-momentum tensor (EMT) of ϕ, given by:

Tϕ
µν = (1− 2ξ)∂µϕ∂νϕ+

(
2ξ − 1

2

)
gµν∂

αϕ∂αϕ

− 2ξ∇µ∇νϕ+ 2ξgµνϕ□ϕ+ ξGµνϕ
2 − 1

2
m2gµνϕ

2

(II.4)

Here □ ≡ gµν∇µ∇ν . In (II.3) we have also identified the

”typical” VED ρΛ ≡ Λ
8πG . It is important to highlight

(see sections II C and III B) that in the current work ρΛ
is a bare parameter and not the physical VED.
Using Euler-Lagrange equations one gets the classical

equation of motion for ϕ (see [4]):

(□−m2 − ξR)ϕ = 0 (II.5)

The metric under consideration is the spatially flat
FLRW, i.e: ds2 = −dt2 + a2(t)δijdx

idxj , where a(t) is
the scale factor. Using conformal coordinates (see [8]) the
metric can be written as ds2 = a2(τ)ηµνdx

µdxν , where
ηµν = diag (−1, 1, 1, 1) is the Minkowski metric. In these
coordinates (II.5) reads as:

ϕ′′ + 2Hϕ′ −∇2ϕ+ a2(m2 + ξR)ϕ = 0 (II.6)

Where the prime means derivative respect to the con-

formal time τ and H ≡ a′

a . Seeking for mode solutions

of the form ϕk⃗(τ, x⃗) = eik⃗·x⃗ϕk(τ) and introducing a new
variable ψk ≡ ϕka one arrives to:

ψ′′
k +

[
w2

k(m) + a2
(
ξ − 1

6

)
R

]
ψk = 0 (II.7)
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By definition w2
k(m) ≡ k2 +m2a2. Note that the mode

solutions are no longer plane waves (as in a Minkowskian
Klein-Gordon). The general solution of (II.5) is a linear
combination of modes (which we now write as hk):

ψ(τ, x⃗) =

∫
d3k

(2π)3/2

[
Ak⃗e

ik⃗·x⃗hk(τ) +A∗
k⃗
e−ik⃗·x⃗h∗k(τ)

]
(II.8)

Where Ak⃗ are (at this stage) linear coefficients.

B. WKB expansion of mode functions

In general, the modes solution to (II.7) must be found
approximately through a recursive process. The method
we introduce can be found in [4]. Here we follow the
notation in [8], starting by the ansatz:

hk(τ) =
1√

2Wk(τ)
exp

(
−i
∫ τ

Wk(τ̃)dτ̃

)
(II.9)

Introducing (II.9) in (II.7) and defining Ω2
k(τ) ≡ ω2

k(m)+
a2(ξ−1/6)R, we obtain a non-linear differential equation
for Wk:

W 2
k (τ) = Ω2

k(τ)−
1

2

W ′′
k

Wk
+

3

4

(
W ′

k

Wk

)2

(II.10)

It can be solved using a WKB expansion, writing Wk =∑
j ω

(j)
k , where ω

(j)
k indicates a contribution of adiabatic

order j. Throughout this manuscript an adiabatic contri-
bution of order n will be denoted by O(n). As explained

in [7], k2 and a are O(0); a′ and H ≡ a′

a O(1); a′′, a′2

and R of O(2) and so on. In general a time derivative
increases the adiabatic order by one.

To illustrate the iteration we calculate explicitly the

terms up to ω
(2)
k . As in [8] we employ an off-shell pre-

scription for wk, that is wk ≡ wk(M) =
√
k2 + a2M2.

As in [9] ∆2 ≡ m2 −M2 is O(2). To O(0) using (II.10)

(ω
(0)
k )2 = k2 + a2m2 = k2 + a2M2 + O(2) = w2

k. ω
(1)
k

vanishes because the RHS of (II.10) has no O(1) terms
(R, W ′′

k and (W ′
k)

2 are O(2)).

To O(2) expanding the LHS we get to w2
k +2wkw

(2)
k and

the RHS k2+a2m2+a2
(
ξ − 1

6

)
R− 1

2
w′′

k

wk
+ 3

4

(w′
k)

2

w2
k

. Solv-

ing for w
(2)
k we obtain w

(2)
k = a2∆2

2wk
− 1

4
w′′

k

w2
k
+ 3

8
(w′

k)
2

w3
k

+

a2

2wk

(
ξ − 1

6

)
R.

The full expressions for ω
(j)
k up to O(6) can be found in

[8]. We shall remark that only even adiabatic terms are
non-zero due to the general covariance of the action that
only allows terms with an even number of derivatives.

C. Quantization and definition of the VED

The theory is quantized by upgrading Ak⃗ and A∗
k⃗
to an-

nihilation and creation operators respectively, that obey

the canonical commutation relations
[
Ak⃗, Ak⃗′

]
= 0 and[

Ak⃗, A
†
k⃗′

]
= δ(k⃗ − k⃗′).

The EMT of vacuum T vac
µν by definition has contribu-

tions from the Vacuum Expectation Value (VEV) of the
EMT of ϕ, given by

〈
Tϕ
µν

〉
≡
〈
0|Tϕ

µν |0
〉
and from the

cosmological term in (II.3):

T vac
µν ≡ −ρΛgµν +

〈
Tϕ
µν

〉
(II.11)

Where |0⟩ is the vacuum state, which in curved space-
time is not trivial to define. In this work we employ

the adiabatic vacuum defined by Ak⃗ |0⟩ = 0 ∀k⃗ (see [4]
and [5]). We consider the vacuum as a perfect fluid,
i.e: T vac

µν = Pvacgµν + (ρvac + Pvac)UµUν , where ρvac and
Pvac are the Vacuum Energy Density (VED) and Vacuum
Energy Pressure, respectively. If the vacuum is itself a
comoving observer, we have Uµ = (1/a, 0⃗), so we obtain:

ρvac =
T vac
00

a2
= ρΛ +

〈
Tϕ
00

〉
a2

(II.12)

Below we see that these quantities are ill-defined, so
renormalization is required.

D. Calculation of ZPE

To calculate the Zero Point Energy (ZPE) of the field,

given by
〈
Tϕ
00

〉
, we insert the mode expansion (II.8) in

(II.4) and compute the VEV. The result is (see [7]):〈
Tϕ
00

〉
=

1

4π2a2

∫
dkk2

[
|h′k|

2
+
(
w2

k + a2∆2
)
|hk|2

+
(
−6H2|hk|2 + 6H(h′kh

∗
k + h∗

′

k hk)
)]

(II.13)

Obviously we cannot perform the exact calculation and
the adiabatic expansion in (II.9) is required again. The
full integrand in (II.13) can be recast in terms of the

w
(j)
k , e.g: |hk|2 = 1

2Wk
= 1

2
(
wk+w

(2)
k +w

(4)
k

) + O(6) =

1
2wk

(
1− w

(2)
k

wk
− w

(4)
k

wk
+

(
w

(2)
k

)2

w2
k

)
+O(6). The remaining

terms in (II.13) can be modified in a similar fashion (see
(4.7) and (4.11) in [8]).

III. RENORMALIZATION SCHEME:
ADIABATIC SUBSTRACTION

A. Renormalized ZPE

In the UV limit (k ≫ aM), clearly wk ∼ k, so k2w−n
k ∼

k2−n. Therefore, terms containing powers of 1/wk up
to order 3 are UV-divergent. It turns out that all UV-
divergent terms are on the pieces of order O(2) and O(4)
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in the adiabatic expansion. This allows us to follow the
Adiabatic Regularization (AR) that was introduced in
[3]. Here we employ an off-shell version used in [8]. The
key of this procedure is to subtract all the O(2) and O(4)
contributions term by term inside the integral, computed
off-shell to an on-shell calculation. Namely:〈

Tϕ
µν

〉(6)
ren

(M) ≡
〈
Tϕ
µν

〉(6)
(m)−

〈
Tϕ
µν

〉(4)
(M) (III.1)

Where the superscript (j) refers to the adiabatic order
the computation is performed. By this prescription we
readily see the necessity of all the O(6) calculations in
[8], limiting to O(4) would have produced a vanishing
result when using the mass of the field as the renormal-
ization point. The off-shell result of (III.1) is presented
in equation (5.13) in [8].

B. Renormalized VED

The physical VED is obtained from (II.12) using the
ZPE and ρΛ renormalized at the scale M. Then ρvac(M)
is the sought physical VED. It should be understood that
ρvac(M) is a dynamic quantity as it depends not only on
M but also on H,H′ and so. However, (II.12) is not
sufficient to compute the VED, since we do not know
the value of ρΛ(M), one shall compute the difference of
the VED between two scales, i.e: ρvac(M) − ρvac(M0).
A more general equation is the following (see [8]) which
compares the VED at two scales and two cosmic times
to O(2):

ρvac(M,H)− ρvac(M0, H0) =
3
(
ξ − 1

6

)
16π2[

H2

(
M2 −m2 +m2 ln

m2

M2

)
−H2

0

(
M2

0 −m2 +m2 ln
m2

M2
0

)]
(III.2)

H ≡ ȧ
a is the Hubble Parameter (the point means deriva-

tive respect the cosmic time).

IV. EOS OF THE QUANTUM VACUUM

Considering again the vacuum as a perfect fluid, we
have Pvac = T vac

11 /a2. Using the 11-th component of

(II.11) we find Pvac(M) = −ρΛ +
〈
Tϕ
11

〉
/a2. To com-

pute
〈
Tϕ
11

〉
, we need the trace (Tϕ) of the EMT. Using

spatial isotropy we arrive to:〈
Tϕ
11

〉
ren

(M)

a2
=

1

3

〈Tϕ
〉
ren

(M) +

〈
Tϕ
00

〉
ren

(M)

a2


(IV.1)

Using (II.12) we get rid of ρΛ(M):

Pvac(M) = −ρvac(M) +
1

3

〈Tϕ
〉
ren

+ 4

〈
Tϕ
00

〉
ren

a2


(IV.2)

As usual we define wvac ≡ Pvac

ρvac
. Clearly, it is no longer

-1 as it has corrections to even adiabatic orders:

Pvac(M) = −ρvac(M) + f2(M, Ḣ) + f4(M,H, Ḣ, Ḧ,
...
H ) +O(6)

(IV.3)
The expressions for fj can be found in [8].

A. FLRW regime

The most physical choice for the renormalization point
is taking M = H at each cosmic time. Substituting
in (III.2), we get to (ignoring terms of order O(4) and
above):

ρvac(H) ≈ ρ0vac +
3νeff(H)

8π
(H2 −H2

0 )m
2
Pl +O(4) (IV.4)

This constitutes the canonical form for a low energy
RVM. We have identified ρ0vac ≡ ρvac(H0) (the current

measured value for the VED), mPl ≡ G
−1/2
N (Planck

mass) and the effective running parameter νeff(H):

νeff(H) ≡ ϵ

(
−1 + ln

m2

H2
− H2

0

H2 −H2
0

ln
H2

H2
0

)
(IV.5)

By definition ϵ ≡ (ξ− 1
6 )

2π
m2

m2
Pl
. In the FLRW regime we

should only consider terms of O(2) in (IV.3), hence:

wFLRW
vac (H) ≈− 1 +

f2(H, Ḣ)

ρvac(H)

≈− 1 +
1

ρvac(H)

(
ξ − 1

6

)
8π2

Ḣm2

(
1− ln

m2

H2

)
(IV.6)

Where we have neglected a termH2/m2 in the expression
for f2 as far as H ≪ m. In the following we derive a
compact expression for wFLRW

vac (z) (z is the cosmological
redshift).
So far we have learned that the VED runs with the

cosmic time. If one wants to preserve the Bianchi iden-
tity then the gravitational coupling itself runs with H,
G(H) = GN

1−ϵ lnH2/H2
0
(see [11]), where GN is its current

value. These runnings imply that in our model the Hub-
ble rate is no longer given by the ΛCDM :

H2
ΛCDM (z) = H2

0 [Ω
0
m(1+z)3+Ω0

r(1+z)
4+Ω0

vac] (IV.7)

First we derive the O(ϵ) corrections to H2 and Ḣ re-
spect to the ΛCDM value. Starting from the generalized
(where we introduce runnings in G and ρvac) 1st Fried-
mann equation:

H2(z) ≈8πG(H)

3
(ρr + ρm + ρvac(H))

≈8πGN

3

(
1 + ϵ ln

H2

H2
0

)(
ρr(z) + ρm(z) + ρ0vac +

3νeff(H)

8π
m2

Pl(H
2 −H2

0 )

)
≈H2

ΛCDM

(
1 + ϵ ln

H2

H2
0

)
+ ϵ

(
−1 + ln

m2

H2

)
(H2 −H2

0 )− ϵH2
0 ln

H2

H2
0

≈H2
ΛCDM + ϵ(H2

ΛCDM −H2
0 )

(
−1 + ln

m2

H2
0

)
(IV.8)
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Where we have ignored O(ϵ2) terms, used (IV.5) between
the second and third line, and that H2 = H2

ΛCDM +O(ϵ)
so whenever H2 is already multiplied by ϵ we can replace
it by H2

ΛCDM as far as the calculation remains at O(ϵ).
Proceeding analogously and using the following Fried-

mann equation Ḣ = −4πG(H)
∑

i(1 + wi)ρi (see [6])
where ρi is the energy density of matter, radiation or
vacuum, one easily arrives to:

Ḣ = ḢΛCDM +ϵḢΛCDM

(
−1 + ln

m2

H2
0

)
+O(ϵ2) (IV.9)

Taking the time derivative of (IV.7):

ḢΛCDM =
−HH2

0

HΛCDM

3

2

[
Ω0

m(1 + z)3 +
4

3
Ω0

r(1 + z)4
]

(IV.10)
We have used d

dt (1 + z) = d
dt

1
a = − ȧ

a2 = −H(1 + z).
Putting together expressions (IV.4)-(IV.10) we obtain:

wFLRW
vac (z) = −1 +

ϵ −H
HΛCDM

[Ω0
m(1+z)3+ 4

3Ω
0
r(1+z)4]

(
1−ln m2

H2

)(
1+ϵ

(
−1+ln m2

H2
0

))
Ω0

vac+νeff

(
−1+

H2
ΛCDM
H2

0

(
1+ϵ

(
−1+ln m2

H2
0

)))
(IV.11)

Which does not include any additional approximation.
To arrive to our final expression we consider:

• Our calculation goes to O(ϵ) so therefore we can ig-

nore the terms ϵ(−1+ln m2

H2
0
) in both the numerator

and denominator and also neglect the O(ϵ) term in
H/HΛCDM.

• We collect−ϵ
(
1− ln m2

H2

)
into νeff using an approx-

imate form of (IV.5).

Hence, the EoS for the quantum vacuum in the FLRW
regime is given by:

wFLRW
vac (z) = −1 +

νeff
(
Ω0

m(1 + z)3 + 4
3Ω

0
r(1 + z)4

)
Ω0

vac + νeff

(
−1 +

H2
ΛCDM

H2
0

)
(IV.12)

In Figure 1 we plot equation (IV.12) for the entire FLRW
regime. We see 3 asymptotic behaviours that can be de-
rived analytically from (IV.12) (zeq in the redshift at
the matter-radiation equality, which is obtained from
equating the mass and radiation energy densities, i.e:
Ω0

r(1 + zeq)
4 = Ω0

m(1 + zeq)
3 → zeq = Ω0

m/Ω
0
r − 1):

1. z ≫ zeq. In this case the radiation density is much
larger than the mass density, hence Ω0

r(1 + z) ≫
Ω0

m, so we only keep the radiation density term
in both the numerator and denominator, obtaining
wFLRW

vac (z ≫ zeq) =
1
3 . This corresponds to the EoS

of radiation.

2. zeq ≫ z ≫ 1. In this case we only keep the matter
density term, obtaining wFLRW

vac (zeq ≫ z ≫ 1) = 0.
This is the defining behaviour of dust.

FIG. 1: EoS of the quantum vacuum as a function of the cos-
mological redshift in the FLRW regime using three different
values of νeff obtained by fitting observational data (see [12]).

3. −1 < z < O(1). wFLRW
vac (|z| ∼ O(1)) = −1 +

νeff
Ω0

m

Ω0
v
(1 + z)3, thus behaving as quintessence.

So the QFT in curved spacetime treatment directly leads
to an evolving vacuum with no need of quintessence fields
or whatsoever.

B. RVM Inflation

As it has been shown before (see [10]), a running vac-
uum can trigger inflation in the early universe, by a short
period where H = const. In this scenario, we have
wvac ≈ −1 as a traditional vacuum, because all terms
in expressions for fn in (IV.3) are proportional to some
time derivative of H which in the RVM inflation are null.
In [10] a RVM inflation was analysed for a phenomeno-

logical RVM of the type:

ρvac =
3

8πG

(
A+ νH2 + α

Hn+2

Hn
I

)
(IV.13)

Where A, ν, α and HI are constants and n ≥ 2 is an
even (again for general covariance requirements) number.
As one expects a large value for H during inflation, it
suffices to keep only the Hn+2 contribution. Now we
can derive such a behaviour from first principles. By our
prescription, it turns out that the renormalized VED at
the scale of the mass of the field which has now leading
O(6) terms appears as:

ρinfvac ≈

〈
Tϕ
00

〉(6)
ren

(m)

a2
≈ ξ̃

80π2m2
H6 (IV.14)

Where we have ignored, as stated, time derivatives and

ξ̃ ≡
(
ξ − 1

6

)
− 2

63 − 360
(
ξ − 1

6

)3
. Introducing (IV.14)

in Friedmann equations one gets to the following expres-
sions for the VED and the radiation energy density as
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FIG. 2: Radiation and vacuum energy densities in an early
inflation as function of the normalized scale factor.

a function of â ≡ a
a∗ (a∗ is at the transition time from

vacuum to radiation domination):

ρvac(â) = ρI(1 + â8)−
3
2 (IV.15)

ρr(â) = ρI â
8(1 + â8)−

3
2 (IV.16)

In Figure 2 we plot these results. At the beginning there
is no radiation and the VED is maximal. Initially the
VED remains barely constant, until the transition time
where the radiation takes over. Hereafter, the VED de-
cays very fast, whereas from (IV.16) we trivially retrieve
the concordance result ρrad ∼ a−4 for â≫ 1.

V. CONCLUSIONS

• We have learned how to perform a calculation of
the Zero Point Energy (ZPE) of a neutral scalar

field coupled to gravity in the framework of QFT
in curved spacetime, treating the gravitational field
as a classical field and solving difficulties as the non-
exactness of the mode solutions by using a WKB
expansion.

• The Vacuum Energy Density (VED), that has con-
tributions from the ZPE and the cosmological con-
stant, is an UV divergent quantity, that can be
renormalized using the Adiabatic Regularization.

• After renormalization, the VED gets a dynamic be-
haviour. In particular, in the low energy regime one
retrieves the canonical RVM energy density.

• From the canonical low energy RVM, the EoS of the
vacuum in the FLRW regime has been obtained.
Remarkably enough, we see it is not -1 as usually
stated and it evolves with the cosmic time, behav-
ing as radiation, dust and quintessence. All of this
comes naturally from the QFT procedure, with no
additional ad hoc fields.

• On the other hand, during the inflationary time,
the EoS of vacuum is indeed close to -1. Inflation
is another consequence of the RVM, with no need
of an inflaton field. RVM inflation is characterized
by an initial dominant vacuum energy that decays
on radiation. Not only that, but the RVM also pro-
vides the graceful exit of inflation to the radiation
dominated epoch.
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