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This essay presents a validation of two months (October-November 2020) of soil moisture retrieved
by the FSSCat mission by comparing it with the ESA Climate Change Initiative mission (ESA
CII) dataset. A data processing pipeline, along with various statistical tests, was designed to
detect disparities between the two datasets. The results with RMSE, Bias, and ubRMSE revealed
notable discrepancies in some regions, such as Russia, with values of 0.1 m3/m3 for the ubRMSE. In
general, FSSCat’s data has underestimated measurements compared to ESA CII’s dataset. These
discrepancies can be attributed to instrumental errors, the presence of ice in certain regions, and
uncertainties in the re-gridding method.

I. INTRODUCTION

Soil moisture (SM) refers to the water content present
in the soil, typically expressed as [m3/m3] of the total soil
volume. It plays a critical role in Earth’s climate system,
influencing various physical and biological processes in-
cluding the water cycle, plant growth, and energy balance
[1].
The SM value is one of the essential climate variables
(ECVs), as it directly impacts the exchange of water
and energy between the land surface and the atmosphere.
High SM levels result in increased evaporation, leading to
higher humidity close to the ground and, in some cases,
cloud cover [2]. These changes influence the absorption
and reflection of solar radiation by the Earth’s surface,
ultimately affecting temperature and climate patterns.
SM also plays a key role in the carbon cycle, as it affects
the growth and productivity of plants, which absorb car-
bon dioxide from the atmosphere through photosynthe-
sis. In addition, changes in SM can also have effects on
weather patterns, such as droughts and floods [3].
On the other hand, in the field of climate studies, the
measurement of SM is of utmost importance, as it pro-
vides valuable insights into the state of Earth’s water
cycle and the potential consequences of climate change
[1]. Remote sensing techniques, as employed in missions
like ESA CII and FSSCat, which will be later explained,
have revolutionized the ability to measure soil moisture
over large areas, enabling researchers to monitor tempo-
ral and spatial variations in SM levels.
This study aims to validate soil moisture data obtained
from FSSCat by comparing it with ESA CII in Europe.
The data processing was conducted at the UPC Nanosat
Lab of the Universitat Politècnica de Catalunya (UPC),
which designed the mission, and processed the acquired
data.

II. FSSCAT MISSION OVERVIEW

The FSSCat mission was the winner of the 2017 Coper-
nicus Masters Competition. It is an innovative mission

consisting of two 6U nano-satellites carrying two scien-
tifc payloads. The payloads onboard are the Flexible Mi-
crowave Payload 2 (FMPL-2) for 3Cat-5/A and a GNSS
reflectometer (GNSS-R) and the HyperScout-2, hyper-
spectral camera, in 3Cat-5/B [4].
The mission was launched the 3rd of September 2020,
on Vega Flight VV16, and injected into a 535-km syn-
chronous orbit. The CubeSats were fully operational,
and the scientific requirements were met. Throughout
the autumn months, maps of soil moisture and sea salin-
ity were generated.
This essay aims to verify and compare specifically the
data retrieved for SM after the commissioning phase,
from the 1st of October to the 1st of December. Despite
the measurements have a global coverage, the study only
focuses on the region of Europe.

A. Instrumentation: FMPL-2 and HyperScrout

3Cat-5/A carried FMPL-2, designed and implemented
by the UPC, which combined an L-band microwave ra-
diometer and a GNSS-R in a single instrument. Since
L-band (1-2 GHz) has a strong sensitivity to the change
of surface SM and can more easily penetrate the atmo-
sphere and vegetation canopy, it has been widely used
as the main SM remote sensing frequency band in the
satellite-based radiometer and radar missions [5].
On the other hand, the GNSS-R component of FMPL-
2 relies on the conventional GNSS-R (cGNSS-R) tech-
nique. The latter involves capturing signals reflected by
the Earth’s surface, which generate signal wavefronts de-
termined by the reflecting surface. Each signal wave-
front exhibits a unique delay (τ) and Doppler (ν) based
on the geometry [6]. In flat surfaces, the majority of
reflected power originates from the region around the
specular point. The Specular Reflection Point refers to
the location with the shortest path between the satellite,
the surface, and the antenna. However, as the surface
roughness increases, the antenna receives signal wave-
fronts scattered around the specular point [7], which im-
plies it has undergone multiple reflections in the soil.
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SM data is retrieved by the combination of instruments in
FSSCat/A and FSSCat/B by means of pixel downscaling
[7]. Retrieving SM using GNSS-R is a complex task, as
the surface roughness makes SM recovery difficult. The
latter was accomplished by using Artificial Neural Net-
works (ANN) with a resolution of 1km [8], and the final
result was used for this study.

III. DATA VALIDATION WITH ESA CII

The validation of the SM of FSSCat was performed
with the ESA Climate Change Initiative mission (CCI).
The latter is a long-term project led by the European
Space Agency (ESA) aimed at providing ECVs related
to the Earth’s climate system.
The ESA CCI mission focuses on improving the under-
standing of the Earth’s climate system by providing accu-
rate, high-quality data on various aspects of the climate,
such as sea level, sea ice content, greenhouse gases, land
cover, and ocean color. The data is collected through a
range of satellite sensors, and processed using advanced
algorithms to ensure its accuracy and consistency over
time.
This project lasted from 1971 to 2020, resulting in a sub-
stantial amount of data for processing. For the compari-
son, data from the combined dataset [9] was selected, cov-
ering the time period of day 18536 (1st of October 2020)
to day 18597 (1st of December). The combined dataset
incorporates various passive missions such as SMOS or
SMAP. The project and specific missions are described
in [9]. This dataset has been extensively used in previ-
ous studies [10], and offers numerous attributes for anal-
ysis. These attributes include day/night information,
frequency bands, flags for identifying inconsistencies in
soil, and a spatial resolution of 25 km. As the FSSCat
dataset had fewer variables, the following section details
the data processing approach, including the selected at-
tributes and grid used for the comparison between the
datasets.

IV. DATA PROCESSING

In order to process the data efficiently, a processing
pipeline has been programmed using the Rust program-
ming language, together with SQL databases making use
of Geospatial Information Systems (GIS). The software
is structured into two distinct executables, each accom-
panied by a library and configuration files specific to the
FSSCat mission.
Each executable is responsible for specific tasks, as data
ingestion, processing of raw data into different levels, and
generating the necessary output. This modular approach
ensures that the software remains independent, allowing
uninterrupted processing even if one of the executables
unexpectedly stops. The following paragraphs provide
detailed explanations of the two executables, outlining

their respective roles and functionalities.
The first executable, in charge of data ingestion, plays a
crucial role in the data processing pipeline. Its primary
function is to receive and ingest the raw data obtained
from the satellites. The software takes the raw data and
stores it in a database in SQL. Additionally, the meta-
data associated with each file is also stored for later pro-
cessing. This metadata includes information such as the
instrument used, the timestamp of the data, geospatial
coordinates, and other mission-specific details. Conse-
quently, the data obtained from [8] for FSSCat and from
[9], with netcf4 format, was inserted into the database
as part of the first level of data processing. By orga-
nizing the ingestion process in this manner, the software
effectively handled the initial stages of data storage and
metadata integration, preparing the data for subsequent
processing.
The second executable is in control of the processing
chains for all levels. Table I shows the overall flow of
the data processing pipeline. Firstly, the data was for-
matted into latitude, longitude, and timestamp values,
and stored in new tables within the database. As men-
tioned earlier, only data from October and November was
used. Moreover, a specific region was selected, in order
to focus the analysis on a smaller, more detailed area.
For this study, the chosen region of interest was Europe.
Moving on to a higher level of processing, L1, the data
underwent a re-gridding of 1◦× 1◦ (100km × 100km).
The latter was necessary to reduce the large amount of
data obtained from both missions and to optimize the
processing time for subsequent levels.

ESA FSSCat Processing level

L0 L0 Data from [9] (ESA) and [8] (FSSCat)

L1 L1 Regrid of 1◦× 1◦

L2 RMSE, BIAS for each lat, lon, day

L2A,L2B RMSE, BIAS for each lat, lon, month

L3 Mean over time of soil moisture for each
lat, lon

L4 Density of data for each pixel

TABLE I: Overall flow of the data processing pipeline ex-
plained.

From the latter table, SM products from ESA and FSS-
Cat were spatially and temporally matched. The Bias
and Root Mean Square Error (RMSE) values were calcu-
lated for each product. RMSE measures the overall SM
uncertainty, and bias the overestimation or underestima-
tion of one of the datasets compared to the other. These
metrics have been widely used in validation studies and
are defined as follows:

RMSE =

√∑N
i=1 (yi − xi)

2

N
(1)
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Bias =

N∑
i=1

(yi − xi) (2)

where x is SM FSSCat, y is SM ESA, and N denotes the
number of data pairs. Another valuable test necessary
for the last analysis was Unbiased Root Mean Square
Error (ubRMSE), which is commonly used in statistical
analysis and model evaluation to measure the accuracy
of predictions or estimates, accounting for bias.

ubRMSE =
√

RMSE2 − Bias2 (3)

The latter step to process the output data was done in
Python to represent the figures and maps.

V. ANALYSIS AND RESULTS

FIG. 1: Averaged soil moisture of the data of ESA and FSS-
Cat with resolution of 1◦× 1◦. The average has been calcu-
lated for all the measurement period. To differ easily between
maps, the pixels which FSSCat did not provide sufficient data
were not represented in either of the maps.

Figure 1 shows the averaged soil moisture for the
months of October and November obtained from ESA
and FSSCat respectively. While the values varied among
ESA and FSSCat datasets, the consistent pattern per-
sisted across European regions.
In the northern countries, higher soil moisture values
were observed, which aligns with [12] who reported in-
creased precipitation in the region. The elevated rainfall

can be partially attributed to temperature differences be-
tween the colder continental air and the relatively warmer
oceanic air in Northern Europe, and also the North At-
lantic Oscillation (NAO) in its positive phase, which is
more common in winter [13]. Furthermore, the lower
temperatures during this season result in reduced evap-
otranspiration, which contributes to SM accumulation.
Conversely, lower soil moisture values were observed in
the southwestern regions. This finding is consistent with
the results reported in [12]. Although, these countries
are still affected by higher precipitations due to Mediter-
ranean cyclones in autumn, the temperatures are still
higher than in the north, contributing to water loss from
the soil through evaporation and plant transpiration.
On the other hand, it should be noted that this anal-
ysis of FSSCat only focuses on the cold season. Conse-
quently, different outcomes would be expected during the
warmest semester, when soil moisture content is gener-
ally at its lowest [1]. European summer months are often
characterized by higher temperatures, and lower precip-
itation levels in certain regions, droughts in the south,
among other factors. These conditions result in reduced
SM content in that period [2].
Furthermore, after analyzing datasets in Figure 1, it was
noted that the data from FSSCat is considerably under-
estimated compared to the SM in ESA CII. To visual-
ize easily the complementarity between the data, scatter
plots were represented for each month.

FIG. 2: Comparison of SM of FSSCat in the y-axis and x-
axis for ESA CII for the months October and November. The
linear regression was also represented.
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Figure 2 shows two graphs which exhibit significant
differences, indicating that the data for the month of
November may be less reliable. This factor must be taken
into consideration when conducting the RMSE and Bias
tests to identify any inconsistencies. Furthermore, for
higher SM values of ESA, the ones for FSSCat are more
underestimated.
To facilitate a more comprehensive data analysis RMSE
was calculated in Figure 3, where the values have a range
of 0.0023 to 0.243 m3/m3, with the Alps and Russia be-
ing the most affected and discrepant areas compared to
the reference values of ESA.

FIG. 3: RMSE, the reference was taken from ESA CII and
the compared value from FSSCat. A mask (grey) is also used
for the lack of data.

Several hypotheses were considered to find the causality
of these disparities. At first, it was concluded that the
areas with more ice would be less reliable. One reason
attributed to these phenomena would be the combina-
tion of MWR and GNSS-R. As GNSS-R relies on the
scattering of signals from different types of surfaces to
gather information, ice surfaces have a lower land rough-
ness. Land surfaces with varying roughness provide more
diverse scattering patterns, which can lead to a richer
set of measurements and more detailed information re-
trieval. This argument was discarded due to the lack of
discrepancy in the Scandinavian Peninsula. Although,
there is a considerable lack of data for higher latitudes,
it is not enough to conclude that surfaces with ice give
less trustworthy results. On the other hand, the region
below Anatolian Peninsula has also discrepant results in
humidity.
Further research was done in order to provide more in-
formation about the disparities. The Bias test was rep-
resented to find out the overestimated or underestimated
areas. Figure 4 confirms our expectations, showing un-
derestimation in most areas, except for regions below the
Caspian Sea. As observed in Figure 1, FSSCat generally
exhibits lower SM values. However, the region in Russia
stands out in Figure 4, displaying a notable bias of -0.2
m3/m3 compared to the reference. These results could
be attributed to potential instrumental errors or inaccu-
racies in the measurement devices, as well as the decrease

FIG. 4: Bias, between the reference value of ESA and the
value obtained from FSSCat

in the amount of data obtained for higher latitudes.
To conclude the analysis, an additional test was per-
formed using ubRMSE [8], a scale-independent metric
that enables direct comparison of errors between differ-
ent datasets. Although, ubRMSE does not consider the
variability and range of the measured variable as RMSE,
it is more interpretable and consistent for comparing ac-
curacy. Based on Figure 5, the values of ubRMSE range
from 0 to 0.1 m3/m3. This finding is significant as it
indicates a high level of compatibility between the two
datasets. It is particularly valuable because regions that
showed significant disparities in Figure 3, such as Rus-
sia, are not prominent in the ubRMSE analysis. This
suggests that the region may exhibit higher variability
in data in that region, which is effectively accounted in
ubRMSE metric. Lastly, the decrease in the amount of
data for the northern region is also directly affected, and
leads to more areas not being represented, which is the
reason to have more regions of Russia in grey.

FIG. 5: UbRMSE, the reference value of ESA and the value
obtained from FSSCat

VI. CONCLUSIONS

This study has aimed to investigate and validate the
soil moisture data obtained from the FSSCat mission by
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comparing it with the ESA CII mission. A data pro-
cessing pipeline was implemented, with steps such as re-
gridding the datasets to a common resolution of 1◦× 1◦.
The latter could lead to some uncertainties within each
pixel of the grid, that should be taken into account. The
analysis revealed notable underestimation of soil mois-
ture values in the FSSCat dataset, particularly in regions
such as the Alps, Anatolian Peninsula, and Russia. These
findings can be attributed to various factors, including
instrumental errors and the challenges of retrieving soil
moisture in certain geographical areas. To study dis-
crepancies within the datasets, the several metrics were
used, which emphasized some regions, as the Russia or
Anatolian Peninsula, with higher variability. Addition-
ally, a brief examination of soil moisture patterns during
the cold season was conducted, revealing higher values in
northeastern Europe compared to the southern regions.
These findings are consistent with expected SM dynam-
ics in different geographical areas.
Finally, it is important to note that studying SM presents

challenges due to its rapid variability within short time
intervals. To enhance data validation, this study pro-
poses, for future investigation, expanding the observa-
tion periods and focus on days instead of months. Addi-
tionally, since there is no dataset with the true real val-
ues of SM, comparing multiple datasets with the triple-
collocation technique [14] would offer a more unbiased
perspective for evaluating SM data.
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