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Abstract: Reproduction of two papers regarding network growth with link/node removal theo-
retically and with simulations. Temporal properties regarding size of components and percolation
transitions have been further studied.

I. INTRODUCTION

Hopelessly complicated systems surround us. Con-
sider for example the society that requires cooperation
between billions of individuals. This systems are collec-
tively called complex systems. Networks have taken on
a new practical role in recent years as a primary tool in
the study of complex systems. Some examples are:

• Cellular Network: encoding interactions between
genes, proteins and metabolites.

• Social Network: encoding the sum of all profes-
sional, friendship, and family ties.

• World Wide Web: encoding webpages and their re-
lations via hyperlinks.

Network Science has an interdisciplinary nature, with
an empirical scope, as it is driven by real world data.
Based on the mathematics of graph theory, describing
random systems with models borrowed from statistical
physics and with the help of computer science, for data
processing.

The impact that network science has had in society
is obvious. From the most successful companies, such
as Google, Facebook, Twitter, LinkedIn... to helping in
drug design and metabolic engineering, to aiding in the
study of epidemics and disease spreading.

The scientific impact is even bigger: Nature, Science,
Cell, PNAS, have devoted reviews and editorials address-
ing the impact of networks on various topics. The 1998
paper by Watts and Strogatz in Nature [1] and the 1999
paper by Barabási and Albert[2] are in the top ten most
cited papers in physical sciences during the decade after
their publication.

Once we start studying networks, we see that the struc-
ture and the evolution of the networks behind each sys-
tem is driven by a common set of fundamental laws and
principles.

Networks in the stationary phase of the asymptotic
limit of large times have been extensively studied, and
the processes of evolution that can describe them have
been modeled. The most famous are the random model,
for its mathematical ease, and capacity to reach closed
formulae that describe the system, and preferential at-
tachment due to the reproducibility of real world graphs,
and the scale-free propierties that arise within them. The

mathematical models of network evolution that can be
found in this paper are studied with a master equation,
which describes how the network evolves in a given state,
and timestep.
Vulnerability has also been extensively studied, and

how removing certain nodes, a process known as perco-
lation, affects the overall structure. This is interesting
in relation to cascading failures, that have been observed
in complex systems. The 2009-2011 financial meltdown
is an example, the US credit crisis paralyzing the econ-
omy of the globe, leaving behind scores of failed banks,
corporations, and even bankrupt states. Artificially in-
duced failures are also of interest, for example, cancer
researchers aim to induce cascading failures to kill can-
cer cells.
There has not been extensive study in the combina-

tion of both, studying network evolution together with
vulnerability. The aim of this TFG is to do so, by study-
ing network growth with node removal. It is divided in
two clear parts.
The first part, based on Oriol Artime’s paper [3], which

consists on the replication of the stochastic resetting in
a random network. To do so, theoretical derivations are
compared with computer simulations of the model, and
compared with networks of different size, and different
parameters. More work has been done in deriving addi-
tional formulae for sizes of the smaller component, and
have been checked computationally.
The second part consists on the replication of the addi-

tion and deletion of nodes in evolving networks[4]. This
article studies the asymptotic form in the limit of large
times, so computer simulations, and numerical resolution
are used to see the network evolution, and give insight of
the transient phase.
All the code used for the simulations and numerical

solutions, is hosted at github. [5]

II. STOCHASTIC RESETTING IN A RANDOM
NETWORK

Oriol’s paper is based on random networks, which serve
as a reference to explore the properties of real networks.
Random networks are useful, as it is possible to derive
some of their properties analitically, and then compare
them to the properties seen in real networks, and see if
they could be originated from randomness, or are specific
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to the processes that have lead their grow.

A. Model definition

In this article, a set of N interconnected nodes, carac-
terized by their degree k, forming an undirected graph is
considered, with two processes competing in their forma-
tion:

• A link between two non connected random nodes
is added, at rate αN

2 .

• A random node with all its links is removed, leaving
a node with degree 0, at rate rN

This model is an extension of the Erdos-Rényi model
with parameter p = αt

N , together with a resetting process.

B. Time dependent degree distribution

The temporal behaviour of the model can be stud-
ied from the degree distribution, pk(t). It can be done
with the master equation, which describes the fraction of
nodes with degree k, at time t:

dpk
dt

= αpk−1−αpk−rpk+r(k+1)pk+1−rkpk+δk,0r (1)

The first two terms refer to the random addition of a
link, achieving degree k from a node that had degree k-1,
or losing degree k by reaching k+1. The remaining four
are due to the removal of a node. They consider direct
removal, and loss of a link due to removal of a direct
neighbor. The last term indicates that a the node that
has all his links removed achieves degree 0.

It is initially considered a network with no links. pk =
δk, 0

To solve the master equation, the time-dependent
degree generating function is introduced. g(z, t) =
k∑

j=1

zkpk(t)

After some algebra, the desired solution can be ob-
tained.

g(z, t) =
1

1− z

[
e

αz
r G((1− z)e−rt +

r

α
)
]

(2)

where G((1− z)e−rt) = (x− r
α )e

α
r (x−1).

The generating function can now be rewritten as a
power series of the auxiliary variable z, by expanding
each of its terms, and the degree distribution is obtained.

pk(t) =
r

α
[1−Q(k + 1, c(t))] + e−c(t)−rt c(t)

k

k!
(3)

Where Q(a, b) ≡ γ(a,b)
Γ(a) , and c(t) = α

r (1 − e−rt) have

been introduced to ease the notation.

FIG. 1: Comparison of the degree distribution of the
simulated network with the theoretical derivation, for

degree up to 5.

C. Percolation transition

It is interesting for network robustness to study the size
of the giant component. In graphs drawn randomly from
a probability distribution over arbitrarily large graphs, a
giant component is a connected component whose frac-
tion of the overall number of vertices is bounded away
from zero.
A closed expression can be found with the following

reasoning. u(t) is the probability that, at time t, a node
is not in the giant component via one of its links.

u(t) =
1

⟨k⟩ (t)

∞∑
k=0

kpk(t)(1− u(t)k) (4)

If that node has k connections, the probability to be-
long to the giant component is then 1−u(t)k. Averaging
over the degree distribution, the size of the giant compo-
nent is obtained.

S(t) =

∞∑
k=0

pk(t)u(t)
k−1 (5)

Setting u(t) = 1 always results to a solution, leading
to S = 0. The conditions for a second solution, and of
the percolation phase appearing can be found through
Eq. (4). Thus the condition for criticallity is obtained.

1 =
2α

3r

1− 2e−rt + ert

1 + ert
(6)
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FIG. 2: In the left, size of the giant component for different times and r, for alpha = 1. The critical line is
separating the percolating and non-percolating phases. In the right, temporal evolution of the size of the giant
component for different parameters. Markers come from simulations, and lines from the theoretical derivation.

D. Average size of small component

This section is new to this TFG, and can’t be found
in the original paper, yet the study of the small compo-
nents helps in the visualization and understanding of the
percolation as a second-order transition.

A theoretical derivation can be obtained, by consider-
ing the second order generating function.ns is defined as
the number of components of size s.

R =

∑
s sns

ns
=

2

2− ⟨k⟩ ∗ u2

1−S

(7)

The equation is similar to those which can be found
in statistical physics describing second order transitions.
Notice that the point of divergence is not the same as in
the percolating transition, which happens at S = 0, and
u = 1, and gives a value of 2

2−k which is usually perfectly
fine for this equation.

The derivation also assumes an infinite number of
nodes, which broadens the peak in simulations due to
the size of the graph being bounded.

III. MODELS OF EVOLVING NETWORKS
WITH ADDITION AND DELETION OF NODES

This second paper takes a more general approach on
considering network evolution. It allows a variable num-
ber of nodes, and an attachment kernel πk, which decides
which growing model is used. In this TFG, like the orig-
inal paper, uniform attachment and preferential attach-
ment are considered. Another difference is that nodes
are removed and not only their links.

FIG. 3: Average size of small components vs time.
Markers come from simulation and the line from the
analytical expression. Due to criticallity, it has been

hard to obtain a well defined plot around the transition.

A. Model definition

Time has been normalised to alpha, without loss of
generality,which leaves this model with 3 different pa-
rameters.

1. πk is the attachment kernel with the probabilities
of the new links attaching to the existing nodes for
each degree.

2. c new links are added to a new node from existing
different nodes

3. r nodes are removed

Treball de Fi de Grau 3 Barcelona, June 2022
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Uniform attachment

FIG. 4: All three plots consider the uniform attachment model. In the leftmost plot, average degree vs timesteps.
The horizontal line is the theoretical value derived in the paper. C and r values indicated. In the middle plot, the
degree distribution for degree up to 9 vs timesteps for c = 8 and r = 1. In the rightmost plot, the size evolution of
the giant component vs timesteps. C and r values indicated. In the first two plots, markers are from simulations,
and lines inside from the numerical solution. In the last one, markers are from simulations. Simulations have been

run with 10 000 starting nodes and no links.

1. Uniform attachment

When new links choose nodes independently of their
degree.

πk = 1 (8)

This model is similar to the previous one studied.

2. Preferential attachment

When links choose nodes according to their degree.

πk =
1

2

1 + r

c
k (9)

The constant is added, to normalize the expression:∑∞
k=0 πkpk = 1

Both models are studied and discussed simultaniously.

B. Time dependent degree distribution

In a similar manner, the temporal behaviour is driven
by the degree distribution, pk(t) which evolves following
the master equation.

(n− 1 + r)p′k = npk + δkc + cπk−1pk−1 − cπkpk+

r(k + 1)pk+1 − rkpk − rpk
(10)

The master equation is written as presented in the pa-
per considering discrete unit time steps. In the following
timestep, there are n+1− r nodes. The first term refers

to the previous number of nodes, the second one, de-
scribes a new node being added with degree c, the next
two terms, reaching or losing degree k due to gaining a
link, the next two terms, reaching or losing degree k due
to losing a link, and the last term refers to direct removal
of the node.
The master equation has been used rewritten as a par-

tial derivative of time, for a continuous variable t, when
it had to be solved numerically.
The model is solved for the asymptotic limit of large

times, yet this TFG is interested in studying how the net-
work evolves. No analytical expression has been found, so
the model has been studied by solving the master equa-
tion numerically, and by simulating it.
In the paper, there is a theoretical derivation for the

asymptotic value of the average degree, but no theoretical
formula has been found for the transient phase.
When uniform attachment is considered, the behaviour

is very similar to the previous paper studied, and doesn’t
give much insight.
For preferential attachment, as the start is with a

clique with very few nodes, the asymptotic theoretical
value is reached in very few steps. It is better seen in the
degree distribution, where an asympotic value is reached
almost instantly.

C. Giant component

In the previous paper, percolation was found through
the study of the giant component. No theoretical formula
for the giant component has been found for this model.
When uniform attachment is considered, again the be-

haviour is almost identical to that seen in the first paper,
with the difference that the graph eventually is a con-
nected component, being the giant component. This is
due to the model, that considers the removal of nodes,
and not only of links.
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Uniform attachment

FIG. 5: All three plots consider the preferential attachment model. In the leftmost plot, average degree vs
timesteps. The horizontal line is the theoretical value derived in the paper. C and r values indicated. In the middle
plot, the degree distribution for degree up to 9 vs timesteps for c = 4 and r = 0.5. In the rightmost plot, the size

evolution of the giant component vs timesteps. C and r values indicated. Horizontal lines correspond to the portion
of nodes with degree 0. In the first two plots, markers are from simulations, and lines inside from the numerical

solution. In the last one, markers are from simulations.

For preferential attachment, an asymptotic value is
reached again in a few steps. This makes the model less
interesting than expected, as there’s no percolation to be
studied. What’s interesting, is seeing that the giant com-
ponent isn’t the whole graph, and that there is a fraction
of nodes that don’t belong to the giant component. This
fraction is comprised mostly by nodes that end up hav-
ing degree 0, and are waiting to be removed, as they have
no chance to being connected to, but it is not limited to
them.

IV. CONCLUSIONS

• Solutions for the degree distribution, and size of
giant component have been found for both models.
Sizes of small components are also studied in the
first model.

To do so, probabilistic models have been theoret-
ically analyzed through the master equation, and
solved for the first paper by introducing the gener-
ating function, and in the asymptotic time limit
for the second paper. Numerical solutions have
been computed and compared with the theoretical

derivations, and simulations have been created and
then tested with both the theoretical and numerical
solutions.

• A transition due to percolation has been found
for the networks with addition and removal of
links/nodes that consider uniform attachment.
This effects are similar to those found in statistical
physics, with second order transitions. Not greater
insight has been gained in this area from the study
of the preferential attachment model.

• As a follow up, it would be interesting to see for
the preferential model, networks that shrink. Start-
ing from a known degree distribution, running the
model with r¿1. And then compare those results,
to see if simmetry is found from the process studied
in this TFG.
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