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Abstract: The AdS/CFT correspondence, also called holography, is a physical duality between
quantum gravity theories in anti-de Sitter (AdS) spacetimes and certain quantum field theories
(QFTs) with conformal symmetry defined in the boundary of such space. The so-called holographic
dictionary describes how quantities from each of these theories can be translated into quantities
of the other. An important magnitude of the holographic dictionary is the entanglement entropy
(EE) of boundary regions. This measures the degree of quantum entanglement between such regions
and their complements. In this work, we study various aspects of EE in the holographic context.
After a quick review of AdS/CFT and of general aspects of EE in QFT, we introduce the Ryu-
Takayanagi formula, which computes the holographic EE of boundary regions in the semiclassical
limit of the gravity side of the duality. We perform explicit calculations and general checks of the
formula, review its generalizations to account for stringy and quantum corrections, and comment
on its relation with black hole thermodynamics and the emergence of gravitational dynamics.

I. INTRODUCTION

The search for a unification of quantum theories and
gravity is a long-standing challenge in theoretical physics.
The AdS/CFT correspondence —appeared in the late
1990s in the context of string theory [1]— provides such
unification in the particular case of spacetimes with a
timelike boundary. AdS/CFT is also a realization of
the holographic principle, which establishes that quan-
tum gravity theories must admit an equivalent descrip-
tion in terms of theories which live at the boundary of
the corresponding spacetimes. In addition to its funda-
mental implications in the search for an ultimate the-
ory of all the interactions, AdS/CFT provides a useful
framework for proving aspects of quantum field theories
(QFTs) in regimes in which the usual tools cannot be
applied —e.g., when the fields are strongly coupled— us-
ing the tools of classical general relativity. Additionally,
AdS/CFT allows us to study the quantum behavior of
gravity by relating it to well-defined and well-understood
QFTs. In this work we study an example of the first class
of applications, namely, how the quantum entanglement
of region algebras in holographic QFTs is encoded in a
completely classical quantity from the gravity side.

In section II we introduce the holographic principle and
the AdS/CFT correspondence. The notion of entangle-
ment entropy (EE) and some of its properties —including
a generalization of the first-law of thermodynamics— in
the context of conformal field theories (CFTs) is pre-
sented in section III. In section IV we introduce the Ryu-
Takayanagi formula, which allows to compute the holo-
graphic EE of boundary regions from the area of extremal
surfaces in anti-de Sitter (AdS) space. We evaluate the
EE in the case of a circular region in CFT3 explicitly
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and verify that the prescription fulfills the fundamental
property of strong subadditivity. In addition, we provide
an overview of how the Ryu-Takayangi formula gets cor-
rected by stringy and quantum effects.

II. HOLOGRAPHY AND ADS/CFT

A. The holographic principle

Given a finite space region, imagine a process in which
matter is continuously added into it. This will make the
entropy increase. However, there is a limit to the amount
of matter that can be introduced in the region, corre-
sponding to the moment in which a black hole is formed.
The entropy of a black hole only depends on its surface
area, and is given, in Planck units, by [2, 3]

SBH = AH

4G
, (1)

where AH is the area of the event horizon of the black hole
and G is Newton’s gravitational constant. As a conse-
quence, the maximum entropy that a region can contain
is given by its area divided by 4G.

This implies that the degrees of freedom inside some re-
gion grow with the area of the boundary and not with the
volume of the region, as one might have expected. This
leads to the holographic principle, which states that in
a quantum gravity theory all physics phenomena within
some volume must be describable in terms of a theory
defined on the boundary of the region [4].

B. AdS/CFT correspondence

The AdS/CFT correspondence, sometimes simply
called holography or gauge/gravity correspondence [1], is
an explicit realization of the holographic principle. It
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establishes the complete physical equivalence between
quantum gravity theories living in AdS spacetimes and
certain types of CFTs living in the boundary of such
spacetimes. If the gravitational theory is defined in (d+1)
spacetime dimensions, the dual CFT is defined in d space-
time dimensions and, in a precise sense, the gravity the-
ory will be a “hologram” of the CFT. AdS/CFT allows
us to study aspects of each of these theories through the
other. The so-called holographic dictionary maps quanti-
ties (observables) between the gravity theories and their
dual CFTs [5]. For example, an empty AdS spacetime
with no matter is dual to the vacuum state of the CFT,
and an AdS spacetime with a black hole inside corre-
sponds to a thermal state in the CFT.

An anti-de Sitter spacetime is a maximally symmet-
ric spacetime with negative curvature, which solves Ein-
stein’s field equations with a negative cosmological con-
stant. The metric of an AdS spacetime of (d + 1) dimen-
sions in Poincaré coordinates is

ds2
AdS(d+1)

= L2

z2

(
−dt2 + dz2 +

d−1∑
i=1

dx2
i

)
, (2)

with the time and spatial dimensions t, xi ∈ (−∞, +∞),
an extra dimension z ∈ (0, +∞) sometimes called holo-
graphic coordinate, and where L is the AdS radius. Fix-
ing the coordinate z, the metric reduces to the one of
d-dimensional Minkowski spacetime “weighted” by the
constant factor 1/z2. Hence, AdS can be foliated by
Minkowski spacetimes living at different values of z.

FIG. 1: AdS3 spacetime. In the
conformal boundary lives the
CFT2.

AdSd+1 can be rep-
resented as a cylin-
der where each slice
corresponds to a con-
stant time and where
z grows radially to-
wards the center [6].
Each slice has a d-
dimensional boundary
∂AdS(d+1) where the
CFTd lives (Fig. 1).

Conformal field theo-
ries, on the other hand,
are QFTs that are invariant under conformal transforma-
tions. These are angle-preserving transformations which
leave the metric invariant up to an overall factor [7]. The
Poincaré group is a subgroup of the conformal group, but
there are additional transformations corresponding to di-
latations and special conformal transformations. The
number of generators of a d-dimensional CFT coincides
with the number of isometries of a (d + 1)-dimensional
AdS spacetime. This is a hint of the holographic duality.

The first instance of the AdS/CFT correspondence
ever described was the duality between d = 4, N = 4
Super Yang-Mills theory and type-IIB string theory on
AdS5×S5 [1], but many other examples are known by
now. Many general rules of the duality can be exploited
without specifying the full field content of the theories
and here we will make use of this fact.

AdS/CFT is valid independently of the intensity of the
gravitational coupling. Interestingly, a strongly coupled
CFT with a large number of colors is dual to a classi-
cal gravitational theory. In this situation, it is possible
to explain classical gravitational phenomena by highly
quantum features, and vice versa, using the holographic
dictionary.

III. ENTANGLEMENT ENTROPY IN CFT

Given some quantum system composed of two subsys-
tems A and B in a pure state |Ψ⟩, there are two possibil-
ities. If one can write |Ψ⟩ as a single tensor product of
pure states, |Ψ⟩ = |Φ⟩A ⊗|Φ̃⟩B , one says that the state is
separable. If this is not possible, |Ψ⟩ ≠ |Φ⟩A ⊗ |Φ̃⟩B , the
state is entangled. In the latter case, one cannot describe
neither of them independently without losing information
(in other words, if one trace over one of the subsystems,
the reduced state of the other will not be pure). The two
form an inseparable entity.

The entanglement entropy is a measure of the degree
of quantum entanglement between two subsystems [8]. It
is defined by the von Neumann entropy of the reduced
density matrix ρA of one of the subsystems as

S(A) ≡ − trA(ρA log ρA) , (3)

being ρA = trB |Ψ⟩ ⟨Ψ|. If λi are the eigenvalues of ρA,
then the entanglement entropy would take the simplified
form S = −

∑
i λi log λi. The von Neumann entropy is

always positive, and is zero for a pure state, so that the
EE of separable states vanishes, as it should.

The natural subsystems in QFT are spacetime regions.
For any QFT, given a global state and some region A,
there is a regulated sense in which it induces a density
matrix ρA from which one can compute its EE with re-
spect to its causal complement. This EE is intrinsically
divergent, since the region is separated from its vicinity
by a zero-dimensional boundary. Nonetheless, one can
regulate it and obtain physically meaningful results.

The general expression of the EE for an arbitrary re-
gion in a d-dimensional CFT is —see e.g., [8],

SCFTd

A = cd−2

(
H

δ

)d−2
+ cd−1

(
H

δ

)d−4
+ . . . (4)

+


c1

H

δ
+ (−1)

d−1
2 suniv for odd d ,

c2
H

δ
+ (−1)

d−2
2 suniv log

(
H

δ

)
+ c0 for even d ,

where H is the characteristic length of region A, δ is
an ultraviolet cut-off, ci are coefficients that are non-
universal (not well-defined in the continuum, i.e., depen-
dent on the definition of δ), and suniv are universal coeffi-
cients that contain well-defined (“universal”) information
about the corresponding QFT.
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A. The first law of entanglement entropy

The EE satisfies an interesting relation known as the
first law of entanglement entropy. Here we derive it and
show that it incorporates the usual first-law of thermo-
dynamics as a particular case.

Consider a family of states |Ψ(λ)⟩ defined by the pa-
rameter λ of a general quantum system with a subsystem
A. The first order variation of the EE is [9]

d
dλ

SA = − tr
(

log ρA
d

dλ
ρA

)
− tr

(
d

dλ
ρA

)
, (5)

where the last term vanishes since the trace of the density
matrix is one for any state.

Now, given any state ρ, its modular Hamiltonian is
defined as H = − log ρ. Using this, the last equation can
be rewritten as

d
dλ

SA = d
dλ

⟨HA⟩ , (6)

where ⟨HA⟩ ≡ tr(HAρA) is the expectation value of the
modular Hamiltonian of ρA in the same state. This is the
first law of EE. It represents a quantum generalization
of the first law of thermodynamics, which can be seen
by considering the case where the unperturbed density
matrix is in a thermal state. In that case, the modu-
lar Hamiltonian is related to the usual Hamiltonian of
the system H by ρA = e−H/T , where T is the tempera-
ture, and the EE becomes a thermal entropy. Applying
Eq. (6) and the definition of the modular Hamiltonian,
it is immediate to obtain that, in this case,

d ⟨H⟩
dλ

= T
dSA

dλ
. (7)

In other words, dE = T dS. Therefore, we see that the
usual first law of thermodynamics is a consequence of the
more fundamental first law of EE.

IV. HOLOGRAPHIC ENTANGLEMENT
ENTROPY

A. Ryu-Takayanagi formula

For general CFTs, it is very difficult to compute the
EE of a region. On the other hand, it turns out to be
rather easy to do it for holographic CFTs. Remarkably,
in the holographic context, an essentially quantum quan-
tity such as EE can be obtained from areas of extremal
surfaces on AdS spacetime.

Given a gravity theory defined on (d + 1)-dimensional
AdS spacetime, the dual CFT will live at its confor-
mal boundary. This is a d-dimensional Minkowski space,
which lies, in Poincaré coordinates, at z = δ ≪ 1. The
EE for a region A in the holographic CFT can be com-
puted using the so-called Ryu-Takayanagi formula [10]:

SA = Area(γmin
A )

4G
, (8)

where γmin
A is the surface of minimal area defined on AdS

spacetime connected to the (d−1)-dimensional boundary
∂A of the region A, and G is the (d + 1)-dimensional
Newton constant (Fig. 2).

The area of γmin
A is obtained by

Area(γmin
A ) = min

∫
γA

√
h ddy , (9)

where y are the d coordinates that represent possible min-
imal surfaces γA and h is the determinant of the metric
hij = (∂xµ/∂yi)(∂xν/∂yj) gµν induced on the surfaces
by the surrounding spacetime.

FIG. 2: Region A (dark blue)
and its boundary ∂A inside a
z = δ AdS slice (grey) and a
candidate AdS minimial surface
γA (light blue).

The Ryu-Takayanagi
formula is valid for
generic systems, and
provides a hint on how
the geometry of space-
time can emerge from
mere quantum infor-
mation.

As one can verify,
the Ryu-Takayanagi
formula for a (d + 1)-
dimensional AdS re-
produces the expected
general behaviour of
the EE (Eq. (4)) for a d-dimensional conformal field
theory [11, 12]. Let us see this explicitly.

B. Entanglement Entropy for a disk in CFT3

In this section, we compute the EE for a circular region
in a holographic CFT3 dual to Einstein gravity. We will
use this calculation to verify the general expression of the
EE for a QFT, identify the universal coefficient for this
kind of theory, and illustrate how AdS provides us with
a geometric ultraviolet regulator.

Let A be a disk-shaped region of radius R defined in
the conformal boundary of pure AdS4. This region is de-
fined in polar coordinates as A = {(r, θ, z, t) | t = 0, z =
δ, r ≤ R}. We parameterize the minimal area bulk sur-
face as: γmin

A = {(r, θ, z, t) | t = 0, z = f(r, θ)}, where
f(r, θ) is certain function we need to identify. There is
no property on the AdS spacetime theory that could pre-
vent the symmetry of ∂A on the coordinate θ from being
transferred to γmin

A . Hence, z = f(r). The AdS4 metric
reads

ds2
AdS4

= gµνdxµdxν = L2

z2 [−dt2 + dz2 + dr2 + r2dθ2] .

The induced metric of the surface γmin
A is in turn given

by

ds2
γmin

A
= hijdxidxj = L2

f(r)2

[(
1 + ḟ(r)2) dr2 + r2dθ2] ,
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where ḟ(r) ≡ ∂f/∂r. The determinant of the induced
metric will be h = L4r2(1 + ḟ(r)2)/f(r)4. The minimal
value of the integral over the polar coordinates of the
square root of the induced metric will correspond to the
area of γmin

A . So, by the Ryu-Takayanagi formula, the
EE related to the region A will be

SA = min
∫

γA

√
h dxρ

4G
= πL2

2G
min

∫
r

dr
r
√

1 + ḟ(r)2

f(r)2 ,

where in the second equality we performed the angular
integration. The resulting integral in r must be evaluated
on the minimal surface. In order to find it, we extremize
the functional using the Euler-Lagrange equations for the
effective Lagrangian L[r, f(r), ḟ(r)]. They read

∂ L
∂f

− d
dr

[
∂ L
∂ḟ

]
= 0

−→
(
1 + ḟ2) (−2r − fḟ − rf f̈

)
+ rf ḟ2f̈ = 0 .

One can prove that f(r) =
√

R2 − r2 is a solution of the
previous relation and corresponds to the function that
minimizes the functional of the EE and connects to the
boundary region A. Hence, the surface of minimal area
is found to be a half sphere.

To compute the integral of the EE expression, we
should first determine its limits carefully. The inferior
one corresponds to the lower part of the half sphere in-
side the bulk, where rmin = 0. The superior one con-
nects the surface with the conformal boundary, that is,
z = δ =

√
R2 − r2

max. Had we not included δ and had
integrated all the way to z = 0, the result would have
diverged. This is precisely what we expect for the EE,
which becomes divergent in the continuum. In this case,
the geometric cutoff introduced in the holographic coor-
dinate, z = δ, plays the role of the ultraviolet regulator
of the EE. The final result for the EE of the disk is

SA = πL2

2G

∫ √
R2−δ2

0
dr

r

f(r)2

√
1 + ḟ(r)2 =

= πL2

2G

R

δ
− πL2

2G
+ O(δ) .

This coincides with the general expression expected for
the EE of a CFT (Eq. (4)) with d = 3. Repeating the cal-
culation for various regions and in different dimensions,
the corresponding structure found is always consistent
[10, 11].

From the above expression we can identify the uni-
versal contribution to the EE for a 3-dimensional holo-
graphic theory dual to Einstein gravity. The result reads

suniv = π

2
L2

G
. (10)

In the case of a disk region, like the one we just con-
sidered, suniv is related to another important quantity,
namely, the Euclidean free energy on a three-dimensional

sphere. One has suniv = − log ZS3 for general CFTs [13].
Hence, we find that for holographic theories dual to four-
dimensional Einstein gravity, the sphere free energy is
given in terms of the AdS radius and the Newton con-
stant by Eq. (10).

C. Strong subadditivity

Strong subadditivity is a fundamental general property
of EE. It relates the EEs of two regions A and B with the
ones of their union A∪B and intersection A∩B (Fig. 3):

S(A) + S(B) ≥ S(A ∪ B) + S(A ∩ B) . (11)

FIG. 3: Representation of the
surfaces γmin

A and γmin
B , their

union γA∪B and intersection
γA∩B , and the bulk region rA.

This inequality is ful-
filled in any quantum
mechanical theory, but
it is remarkably diffi-
cult to prove in general.
An important test of
the validity of the Ryu-
Takayanagi formula is
whether it fulfills it. It
turns out to be particu-
larly easy to prove that
it does [14].

We define rA and rB

to be the bulk regions inside γmin
A and γmin

B , respectively.
Their union and intersection will be rA∪B ≡ rA ∪ rB and
rA∩B ≡ rA ∩ rB . The boundaries of these regions can be
decomposed as

∂rA∪B = (A ∪ B) ∪ γA∪B , ∂rA∩B = (A ∩ B) ∪ γA∩B ,

where γA∪B and γA∩B are the segments inside the bulk of
the boundary surfaces of rA∪B and rA∩B . These surfaces
are connected to ∂(A ∪ B) and ∂(A ∩ B), respectively,
but nothing says that they should be their correspond-
ing minimal area surfaces γmin

A∪B and γmin
A∩B . The areas

of γA∪B and γA∩B correspond to upper bounds for the
minimal possible area. Also, observe that the sum of the
areas of γA∪B and γA∩B trivially equals the sum of the
areas of γmin

A and γmin
B . Hence,

Area(γmin
A ) + Area(γmin

B ) ≥ Area(γmin
A∪B) + Area(γmin

A∩B) .

Therefore, the Ryu-Takayanagi formula (Eq. (8)) imple-
ments the strong subadditivity property in a simple geo-
metric way which makes use of the minimization principle
of AdS holographic surfaces.

D. Corrections to the Ryu-Takayanagi formula

The Ryu-Takayanagi formula provides the EE for
holographic theories dual to Einstein gravity in general
dimensions. Nevertheless, the Einsteinian description
breaks down if one moves away from the strongly cou-
pled and large-number of colors regime. From the gravity
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side, this is manifest in the appearance of both stringy
and quantum corrections.

Stringy corrections appear as higher-curvature terms
in the gravity action. These produce corrections to the
Ryu-Takayanagi area formula in a way similar to how the
Bekenstein-Hawking formula for the entropy of a black
hole (Eq. (1)) is replaced by the Wald formula [15] in
the presence of higher-curvature corrections. However,
replacing the functional of the EE by the Wald one does
not work generally. Schematically, the full formula is [16]

SA = SWald + SAnomaly , (12)

where SWald reduces to the Ryu-Takayanagi one in the
Einstein gravity case, but otherwise contains terms in-
volving various components of the Riemann tensor, and
SAnomaly simply vanishes for Einstein gravity, but in-
cludes terms involving extrinsic curvatures of the gen-
eralized minimal surface for more general theories.

One can also consider quantum corrections to the Ryu-
Takayanagi formula related to quantum mechanical ef-
fects in the bulk. This quantum corrections are essen-
tially given by the EE of quantum fields living inside the
bulk region bounded by the minimal area surface, rA —
see Fig. 3. The corrected formula reads [17]

SA = Area(γmin
A )

4G
+ SrA

+ O(G) , (13)

where the correction SrA
is order O(G0) and we have also

included a putative subleading correction.

V. CONCLUSIONS

We have explored various aspects of the Ryu-
Takayanagi formula —a summary of the results presented
can be found in the introduction. This is a remarkable
entry in the holographic dictionary which allows to com-
pute a genuinely quantum quantity like the EE of bound-
ary regions, in terms of a fully classical quantity related
to the geometry of spacetime, namely, the area of ex-
tremal surfaces in AdS.

The connection between spacetime geometry and en-
tanglement can be made more explicit. Remarkably, one
can show that the first law of EE implies, for holographic
CFTs, that perturbations of the bulk metric satisfy the
linearized Einstein equations [18]. In a sense, the entan-
glement structure of the boundary theory controls the
dynamics of the gravitational field, which therefore be-
comes an emergent phenomenon.
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