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Abstract: The main objective of this study is to analyze the behavior of a neuronal population
described by the Kuramoto’s model, in which a group of neurons is viewed as an oscillator that
interacts with other groups, totaling 100 groups. Two different spatial distributions of the oscillators
were studied: homogeneous distribution on a two-dimensional space and random distribution along
parallel tracks. We observed that the parameters that influence the most the system’s dynamics
are the coupling strength between oscillators and their typical distance for connectivity. Both
parameters may shape oscillators that either activate in small groups or fully synchronize.

I. INTRODUCTION

Network science and the study of complex systems has
gained attention in the recent years in different scientific
disciplines, as it offers awareness of the emergent prop-
erties and behaviors of interconnected elements. One
particularly interesting area of research is the intersec-
tion of Kuramoto models and neuroscience, where the
application of mathematics and computational simula-
tions provides a unique opportunity to understand the
dynamics of neuronal networks. The Kuramoto model
[1], originally devised to comprehend the synchronization
phenomena in coupled oscillators, offers a powerful and
flexible tool for investigating the collective behavior of
neurons in the brain. By representing a neuron popula-
tion as an oscillatory unit influenced by its neighbors, the
model captures the synchronization and desynchroniza-
tion processes, reflecting the complex interconnections
within the brain [2].

In this project, our primary focus lies in examining the
relationship between the strength of neuronal couplings
and the interaction radius between oscillators. By sys-
tematically varying the coupling strength and the range
of interaction, we aim to explore how these factors im-
pact the overall network dynamics and synchronization.
Additionally, we delve into the consequences of imposing
spatial constraints on the network connectivity, where
certain tracks or pathways within the two–dimensional
space are deliberately empty of neurons [3]. This ap-
proach allows us to investigate the influence of restricted
information flow within the neuronal network and ob-
serve how it affects synchronization and information pro-
cessing.

The implications of this research extend beyond the-
oretical models and mathematical simulations. Under-
standing the relationship between coupling strength and
interaction radius, as well as the consequences of con-
strained connectivity, holds huge potential for advancing
our knowledge of brain function and disorders. By un-
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derstanding the mechanisms governing neural dynamics,
we can gain knowledge in cognitive processes and neuro-
logical disorders.
By investigating the complex interplay between the

Kuramoto model, neural couplings, interaction radius
and restricted connectivity, this final degree project seeks
to contribute to the understanding of brain dynamics and
its applications in various scientific fields. Through rigor-
ous analysis, simulation and interpretation of the results,
we aim to understand fundamental principles that govern
the complexity and adaptability of the brain.

II. METHODS

A. Kuramoto Model

The Kuramoto model describes a neuronal population
as an oscillator. The equation that describes the behavior
of an oscillator and its coupling with others is written as
[1]:

θ̇i = ωi + λ

N∑
j=1

Aij sin (θj − θi) , (1)

where θ̇i is the phase of the ith oscillator and ωi is the
natural frequency of the ith oscillator. The adjacency
matrix Aij for the interaction (or connectivity) between
oscillators is given by

Aij =

{
1 if (i, j) are connected,
0 otherwise.

In this case, Aij = 1 when the oscillator i is physically
able to connect with the jth and viceversa. As we will
see later, this corresponds to the case in which both oscil-
lators are close enough in a two–dimensional space, i.e.,
they are within a given radius of interaction Rint.
Conceptually, this Rint is the Euclidean distance be-

tween any two oscillators i and j below which they are
connected, i.e. Aij = 1 if dij < Rint, and 0 otherwise,

with d = ((xi − xj)
2 + (yi − yj)

2)1/2 the Euclidean dis-
tance and (xk, yk) the spatial coordinates of the oscilla-
tor k = i, j. We note that, in general, we could have the



Exploring neuronal synchrony through Kuramoto model Montserrat Romagosa Torrallardona

oscillators placed on a square surface with arbitrary side
length (characteristic spatial size) L. Thus, for the analy-
sis to be size–independent, we need to scale the radius by
the spatial size, i.e., consider Rint/L. For Rint/L << 1
oscillators connect with their immediate neighborhood.
For Rint/L ≃ 1 all oscillators are connected to one an-
other.

λ = K
N is the coupling strength, with K the individual

coupling strength (set equal to all oscillators) and N the
number of oscillators. This factor λ is the maximum
modification an oscillator can produce in the phase of
another one in a time step, given that Aij is equal to 0
or 1 and sinus takes values from −1 to 1. The smaller K
or λ are, the harder it is to get the oscillators coupled.

The phase of the oscillator is modified by all the other
ones inside of its radius of interaction with an strengthK.
Since K takes the same value for the entire system, the
N oscillators interact with the ones they are accessible
with the same strength.

To study how coupled the oscillators are, we introduce
the following order parameter, taking the module of the
equation:

r(t) =

∣∣∣∣∣∣ 1N
N∑
j=1

eiθj(t)

∣∣∣∣∣∣ . (2)

For r ≃ 1 the system is synchronous, while for r ≃ 0 it
is asynchronous. Fig. 1 illustrates the behavior of r in a
typical simulation with 100 oscillators.

FIG. 1: Oscillator’s phase in the complex plane. Left, weakly
coupled oscillators and asynchronous behavior. Right,
Strongly coupled oscillators and synchronous behavior.

B. Network analysis

Before starting the simulations, it is necessary to set
up the network of oscillators and analyse its properties
which, subsequently, will help to understand the simula-
tion’s results. The generation of the network was made in
Python. Matlab resources, particularly the Brain Con-
nectivity Toolbox, were also used to study the network’s
characteristics as well as the creation of a .gexf docu-
ment for the posterior visualization of the network with
the program Gephi [4].

Firstly, each node or oscillator has to be assigned to
a position. This process is done randomly, creating a
(x, y) coordinate and writing it in a 100×2 matrix. Two
distributions of the nodes were studied: in the first one,
there are no restrictions to the nodes positions, while
in the second one the location of the nodes is confined
within five tracks. Thus, it was necessary, in both the
homogeneous and ‘tracks’ distributions, to prove that the
randomly set locations were physically allowed and that
they were not already occupied.
Once each oscillator was assigned to a position, the

connections between them were established. As ex-
plained in the previous section, this information was
saved in the adjacency matrix A. This matrix has a size
of N×N , where N is the number of oscillators and equal
to 100 in our case. The process is carried out as follows:

for i in range(N):
for j in range(N):

if(((pos[i,0]-pos[j,0])**2/rx**2+
(pos[i,1]-pos[j,1])**2/ry**2)<=1):

A[i,j]=1
if i==j:

A[i,j]=0

Here, pos is a N ×2 matrix and rx and ry are horizontal
and vertical vectors of the radius of interaction. rx and
ry are equal or different depending on the system treated.
In each row of the pos matrix the position (x,y) of each
oscillator is saved.
When represented in Gephi, each entry ‘1’ in the adja-

cency matrix represents a connection and, therefore, each
connected oscillator is drawn as a line between two dots,
being each dot an oscillator.
To provide insight on the properties of the network,

we considered the concept of modularity Q as the most
important one for our study. A module in this context
is a unit whose elements are highly connected within the
module and weakly connected to the elements in other
modules [5]. Therefore, modularity is the tendency of
a network to show their nodes organized in modules or
communities [6]. It takes values between Q = 0 and
Q = 1. The higher the modularity, the larger the num-
ber of modules or communities the network has, with
Q = 0 indicating that the whole network is the only
community and Q = 1 indicating that each oscillator is
a community. The concept of modularity will be impor-
tant to understand how easy it is for the oscillators to
get coupled. Modularity was calculated with the Mat-
lab function community louvain(). This function also
returns the adjacency matrix reordered by communities.

C. Numerical simulations

A script in Python was written to solve the differential
equation of Eq. (1) and obtain the evolution of the order
parameter over the time, as follows:
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for t in range(1, tmax):
for i in range(N):

sum = 0
for j in range(N):

s = np.sin(theta[j, t-1] -
- theta[i, t-1])*A[i,j]

suma = suma + s
theta[i, t] = theta[i, t-1] +

+ dt * (omega[i] + K / N * suma)

where t is time, tmax the maximum number of time steps,
N the number of oscillators, sum the accumulation of s,
which is the interior part of the sum in Eq. (1). This
brings to the solution of the differential equation. The
vector omega[i] indicates ωi in Eq. (1), and is generated
randomly for each oscillator and simulation.

Modifying different parameters of the system enabled
us to study the change in the behavior of the oscillators
with the variation of K or the interaction radius.
For each simulation study, we considered a coupling

strength K value and an interaction radius. Then, 10
numerical realizations were carried out in the same con-
ditions, changing w and the position of oscillators. In
each realization, once the system had an stable order pa-
rameter over the time, an average among all realizations
was calculated, providing a final value for the particular
set of K and interaction radius.

III. RESULTS AND DISCUSSION

A. Random geometric graph

By using Python functions that generate pseudoran-
dom numbers, each one of the 100 nodes or oscillators
were assigned a random position in a 50 × 50 grid, that
represents our Euclidean space. For a given distribution
in the space, it was interesting to study the coupling of
the system as a function of the normalized interaction
radius Rint/L and the coupling strength K.

In Fig. 2 one can observe how different the system of
oscillators is as Rint/L changes, a construction that is
known as random geometric graph. Indeed, by varying
Rint/L between 0.1 and 1 (a tenth part of the dimension
L = 50 of our space to the total dimension of the space)
we evolve from a highly fragmented, locally–coupled os-
cillators to a fully integrated system. Clearly, the nor-
malized radius restricts how far the oscillators are able
to connect, allowing to interact to one another inside the
circumference described by the radius. We note that the
latter case with Rint/L = 1 corresponds to a situation in
which the spatial location of the oscillators is irrelevant,
strictly shaping a random graph.

Fig. 3 explores the impact in the dynamics of the sys-
tem when both Rint/L and K are changed. Here, the
coupling strength varies from 5 to 20 and, thus, the λ
factor in Eq. (1) takes values from 0.05 to 0.2. From
the figure one can easily see that the higher interaction

FIG. 2: Visualization of the oscillators’ connectivity for the
same oscillators system with different normalized interaction
radius Rint/L. From (a) to (c) the adjacency matrix A is rep-
resented. Each white pixel represents a connection between
two nodes. From (d) to (f) each plot shows the correspond-
ing location and connectivity of the oscillators. Each color in
the graph represents a different community. The number of
square white areas along the diagonal of the adjacency matri-
ces coincides with the number of different colors in the graph
and equals the number of modules of the network.

FIG. 3: Colormap of the order parameter, which goes from
0 to 1 (as represented in the colorbar), as a function of the
normalized interaction radius and the coupling strength.

radius and coupling strength are, the more strongly the
system gets synchronized. This can give an idea of how
easy it is to get coupled with the other nodes due to the
increase of Rint/L or K.

B. Random geometric graph limited to tracks

Once the system in a random spatial embedding was
understood, it was interesting to add a restriction to the
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oscillators’ position. By applying this constraint, mod-
ularity is strengthened and isotropy of connectivity bro-
ken. Thus, and inspired by the experimental work of
Montalà et al. [3] in which biological neurons were con-
strained to parallel tracks, here we reduced the space
available to the oscillators so that they can be placed
only in five parallel tracks. In this way, it is more dif-
ficult for the oscillators to connect with their horizontal
neighbours from the consecutive tracks.

Furthermore, now, the interaction allowed is not in a
circle around the node, it is in an ellipse of major axis
equal to the magnitude given to the radius in the verti-
cal direction and the minor axis equal to the radius in
the horizontal direction, being the vertical radius grater
than the horizontal one. Therefore, for the system it is
easier to connect vertically than horizontally. The overall
results of this construction are shown in Fig. 4, which rep-
resents the oscillators’ network in two different situations:
one with a very short horizontal radius combined with a
vertical radius equal to the system’s dimension [Fig. 4(a)-
(c)], and one where the horizontal and vertical radius are
equal to the system’s size [Fig. 4(b)-(d)]. Clearly, for the
first case, the identified communities in the adjacency
matrix match the groups of oscillators within each track.

FIG. 4: Visualization of the oscillators’ connectivity with dif-
ferent interaction radius. In (a) and (b) the adjacency matrix
is represented. In (c) and (d) each the disposition and con-
nectivity of the network is represented. Each color in the
graph represents a different community. The number of cen-
tral squares in the adjacency matrices coincides with the num-
ber of different colors in the graph and equals the number of
modules of the network.

The corresponding dynamics is shown in Fig. 5. Here,

FIG. 5: Evolution of the order parameter over the time. This
parameter has been represented for each track of the system
(local 1, 2, 3, 4, 5) and globally.

we represent the global order parameter over the time
(the one that corresponds to the whole system), and the
local one that corresponds to each track.
Interestingly, for the local situation, the interaction ra-

dius in the vertical direction is equal to the matrix di-
mension, so the nodes can connect with all other nodes
in their track; while the horizontal interaction radius is
equal to the tenth part of the system’s dimension, a fact
that makes almost impossible to connect with nodes that
do not belong to the same track. Thus, as Fig. 5 shows,
the local order parameter is high, while the global is rel-
atively low.
In general, this exploration indicates that it is inter-

esting to study how a system is able to interact globally
or locally, and that both trends can be very different de-
pending on connectivity. The importance of connectivity,
and its impact on dynamics, can be summarized in the
color map of Fig. 6, which shows the ratio between av-
erage local and global order parameters, RatioLG, as a
function of the horizontal and vertical connectivity. This
ratio is calculated as

RatioLG =

(∑5
j=1 r

loc
j

)
/5

rglob
. (3)

Here, in the lightest colors, the global and local order
parameters take similar values, while in the darker ones,
the local order parameter is larger.
Clearly, for weak horizontal connectivity, the system is

unable to connect globally, and the map of Fig. 6 takes
blue colors, which means that only the tracks achieve a
coupled state. The nodes in each track are not able to
connect with other tracks, therefore, the global coupling
is not possible. On the contrary, for a fully connected
system, the global and local order parameter take the
same value because all tracks and the global network can
oscillate synchronously.
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FIG. 6: Colormap of the ratio between the mean local order
parameter of the five tracks and the global order parameter,
as a function of the normalized horizontal and vertical inter-
action radius.

Another observation interesting to mention is that,
with small vertical radius, when the normalized horizon-
tal radius takes values larger than 0.2, it is easy for the
system to couple, while for a vertical radius equal to the
dimension of the system, it is impossible to globally cou-
ple if the normalized horizontal radius does not exceed
0.2. This is because the nodes are forbidden to take some
concrete positions. The horizontal radius must exceed
the forbidden zone to allow the interaction between pop-
ulated tracks and, therefore, get a synchronized system.

As an interesting discussion, we could qualitatively
link our results with neurological disorders, such as
schizophrenia, epilepsy, Alzheimer’s disease and Parkin-
son’s disease. What these diseases have in common is
that the brain experiences alterations in neuronal syn-
chrony [7].

In the case of schizophrenia [8], neurons fail at syn-
chronizing at large distances and, thus, in Fig. 3, this dis-
ease would qualitatively correspond to the greener areas.
Alzheimer’s have a same behavior. The opposite happens
in epilepsy and Parkinson’s: there is an excessive and ex-

tended neuronal synchronization as in Fig. 4(d), as well
as in the yellowish region of Fig. 6, a clearly damaging
state for proper brain functions.

IV. CONCLUSIONS

The Kuramoto model for neuronal populations was
successfully simulated. Firstly, we studied the relation
between the interaction radius, the coupling strength and
the order parameter in a free disposition of the oscillators
in the space. The higher the interaction radius and cou-
pling strength are, the more linked oscillators are. The
interaction radius is also related to the number of mod-
ules the network has, therefore, as the number of commu-
nities or modules decrease, the easier it is for the system
to achieve the synchrony.
On the other hand, when the space is limited to tracks,

we showed that the forced modularity leads to the cou-
pling of the local systems while it is not possible to cou-
ple globally. In other words, the nodes in each track
can oscillate synchronously but the five tracks have dif-
ferent phases of oscillation. The non populated zones in
this second disposition of the nodes in the space makes it
more difficult to connect with other oscillators in the hor-
izontal axis (as compared to the vertical one). Therefore,
the horizontal radius has to be grater than the vertical
to achieve the global synchronization of the system.
Conceptually, in a real brain system, an interaction

radius either too high or too low leads to a rupture of
the correct degree of synchronization, a trait of different
neurological disorders.
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