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Abstract: The Large Magellanic Cloud (LMC) is one of the closest galaxies to the Milky Way,
at a distance of about 50 kpc. With the latest Gaia Data Release, Gaia DR3, and its unprece-
dented precision and number of stars, the study of the galaxy can reach new depths. However, the
uncertainty in the parallax for LMC stars is of the same order of magnitude of the values them-
selves, making the use of individual measurements to determine distance and structure unfeasible.
In this work we will study the possibility of exploiting DR3 through the use of a Markov-Chain
Monte Carlo (MCMC) algorithm. By studying the algorithm’s ability to return parameters used to
generate synthetic models of the LMC with varying uncertainties, we will assess the feasibility of
the use of Gaia parallaxes in the 3D modelling of the LMC structure.

I. INTRODUCTION

The Gaia Mission, launched by the European Space
Agency (ESA) in 2013, is an astrometric survey aiming to
generate a three-dimensional map of the Milky Way with
unprecedented precision [1]. Gaia is able to measure the
positions of over a billion stars, and the distance through
their parallax [2]. Gaia Data Release 2, published in
2018, provided an extensive and high-quality dataset of
parallax measurements, which greatly enhanced our un-
derstanding of our galaxy’s composition, formation and
evolution [3]. While parallax is a good distance estima-
tor for stars in close proximity, its uncertainty quickly in-
creases with distance. With Gaia Data Release 3, DR3,
parallax precisions were increased by 30%, and system-
atic errors in astrometry reduced by 30-40% [4], making
it more feasible to study stars in galaxies of the Local
Group.

Because of its proximity to us, the Large Magellanic
Cloud (LMC) provides an extraordinary sample of stellar
populations to study galactic dynamics and star forma-
tion [5]. Moreover, its proximity and its Cepheid star
population makes the LMC an excellent tool to calibrate
the cosmic distance ladder [6].

As much as the LMC has proved to be a useful labo-
ratory for astrophysics and cosmology, its 3D modelling
has not been a straightforward enterprise. Distance mea-
surements have been done through several standard can-
dle methods, based for instance on Cepheid variables or
eclipsing binaries, with the latter providing the most pre-
cise measurements of D = 49.59 ± 0.55 kpc [7]. How-
ever, where more information is lacking is in terms of
its geometric parametritzation. While it was initially as-
sumed that the LMC was a planar galaxy with all its
stars at roughly the same distance to Earth, in 1986, dis-
tance measurements from Cepheid variables found that
the galaxy had a certain inclination with respect to our
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line of sight [8]. This has been latter confirmed through
core helium burning red clump stars [9] and near IR ob-
servations of red giants [10], with all finding inclination
values of around i = 35◦.
The LMC is at the very limit of usefulness of Gaia par-

allaxes for determining distances. The average parallax
for the LMC is of 0.02 mas, corresponding to a distance
of about 50 kpc, with the instrumental uncertainty of
Gaia being typically an order of magnitude greater. Ad-
ditionally to this high relative random uncertainty, we
also have systematic errors due mainly to the parallax
zero-point offset, which for the LMC is of -0.0242 mas
[11]. Due to these uncertainties, Gaia’s parallax data
cannot be used through direct sampling to produce a
parametrization of the LMC. The following work will in-
stead attempt to parametrize the 3D LMC structure by
using a Markov Chain Monte Carlo (MCMC) algorithm,
a stochastic method for sampling from complex, high-
dimensional probability distributions [12]. In order to
study whether such an algorithm will be able to infer the
LMC 3D structure, we have generated synthetic samples
of Gaia with different uncertainty values.
The work is organised as follows. In Section II, we

describe the model generation, the initial parametriza-
tion and the algorithm. In Section III, we discuss the
obtained results and computational times for the fitting
of the generated synthetic models. Finally, in section IV,
we present the conclusions of the work.

II. METHODOLOGY

A. MCMC Algorithm

The astrometric observables thatGaia provides are the
positional parameters of individual stars, those being the
right ascension α, declination δ and parallax ω, as well as
the proper motions, which were not used in our investiga-
tion but can be a subject of further study. The objective
of our investigation is to explore whether these measure-
ments can be used to infer the 3D LMC structure, since
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the uncertainty of the parallax measurements means that
we cannot do so by individually studying each Gaia DR3
sample.

Gaia measures the parallax by measuring changes of
position of individual stars, which are smaller for larger
distances, producing a higher relative uncertainty for
a given error of measurement. This leads to the dis-
tance uncertainty for LMC measurements being signifi-
cantly larger than with standard candle methods, such as
Cepheid variables, eclipsing binaries or top of the giant
branch IR astrometry. However, those methods rely on
stars and phenomena that are rare in comparison to the
standard star population of the LMC, and are thus insuf-
ficient to determine the overall structure of the galaxy.
Therefore, although the Gaia parallax measurements in-
corporate a higher uncertainty, this paper will seek to
exploit the much larger sample of stars from DR3 in or-
der to get more information on the geometric parameters
of the LMC. As such, we will explore whether the overall
instrumental uncertainty and the systematic uncertain-
ties of Gaia DR3 mask the signature of the LMC 3D
structure to the point that its parameters cannot be in-
ferred, or if alternatively some information can still be
extracted.

In 2021, Luri et al. attempted to infer the structural
properties of the LMC through two processes based on
Bayesian inference: MCMC and Approximate Bayesian
Computation (ABC) [11], but both approaches were un-
successful. The latter failed because eDR3 did not pro-
vide enough information to both infer the zero-point par-
allax variations as well as the LMC 3D structure. The
former, however, was unsuccessful because of high com-
putational times when scaling the MCMC algorithm to
the full size of the Gaia DR3 sample population, thus
leaving the door open for further study. Through the
use of Markov chains [13], MCMC algorithms generate
sample distributions that iteratively narrow down on an
approximation of the parameters that lead to the dis-
tribution of observations [14]. This makes them partic-
ularly effective for high-dimensional analysis with large
data samples such as ours. This work studies the com-
putational scaling and uncertainty constraints of such an
approach, in order to determine the feasibility of inferring
the LMC 3D structure.

With the purpose of reducing computational times, the
MCMC algorithm computations have been run using a
distributed computing framework. This has been done
with the TensorFlow library [15], more specifically Ten-
sorFlow Probability [16], and the algorithm has been run
at the CTE-Power cluster of the Barcelona Supercom-
puter Centre (BSC).

Written by A. Berihuete, our particular MCMC al-
gorithm requires a probabilistic generative model of the
Gaia measurements, i.e. a model that informs the algo-
rithm how the observations will be distributed. While
the stellar distribution of the LMC has a dense off-center
stellar bar and spiral arms [17], we have simplified the
modelling of the galaxy using the usual assumptions of an

elliptic disc, with a stellar population given by a gamma
radial distribution and a vertical Laplacian distribution.
For this initial stellar population generation, the algo-
rithm requires three global parameters: the disc scale
height, h0, the disc scale length, R0, and the disc ellip-
ticity, ϵ. Afterwards, the algorithm transforms the galac-
tocentric Cartesian (x, y, z) coordinates of the generated
stars to heliocentric coordinates, and those are trans-
formed into the observables measured by Gaia, namely
the position and parallax. For a more detailed descrip-
tion of the coordinate transformations applied by the al-
gorithm, see the Appendix. These coordinate transfor-
mations use a set of six more global parameters: the disc
minor axis position angle, θma, the disc inclination, i, the
LMC line of nodes angle position, θLON , and the position
of the galactic centre, α0, θ0 and D. The combination
of these six global parameters with the three mentioned
previously lead to the algorithm using nine global param-
eters for its probabilistic generative model.

The algorithm will then propose random changes to
these parameters within an interval of values that are
plausible based on the scientific literature, and use the
generative model to infer what the resulting simulated
observations would be. It will then proceed to evalu-
ate whether those changes lead to simulated Gaia ob-
servables more similar to the Gaia measurements than
before the proposed change, accepting the change if it
increases the likelihood functions and rejecting it if it
does not. The sufficiently repeated iteration of this pro-
cess will make the generated distribution converge to the
distribution of stars leading to the Gaia measurements.

While the method is guaranteed to converge to the
desired distribution as long as the number of iterations
is large enough, MCMC algorithms can be particularly
sensitive to the choice of tuning parameters and initial
steps, with convergence being computationally very slow
[18]. In order to reduce the number of iterations nec-
essary, and thus lower the computational time required
to reach a solution, we have aided the algorithm reach
convergence earlier through two methods.

First, we can artificially set a starting point for the
algorithm that is already close to the desired distribu-
tion. Our MCMC algorithm will maximize the likelihood
function by comparing the observables for each individual
model generated star to a corresponding individual DR3
source. The number of iterations required for each gener-
ated star to correspond one-to-one to a data point is very
large, and thus the computation time would be consider-
able. In order to help the algorithm compare one-to-one,
we can ensure that the model generated stars are gener-
ated in the vicinity of a DR3 data point. We can do that
by applying an inverse transformation of the data coordi-
nates (that is to say, we use Gaia’s position and parallax
to obtain the corresponding disc-centered Cartesian coor-
dinates, and then generate the model’s star close to those
coordinates). This solution can present problems when
the uncertainty in the parallax is large, as it will thus
generate stars that will be within the predefined disk,
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but can be relatively far away from the true positions of
the stars whose positions we want to infer. An alterna-
tive solution can be to estimate the (x,y,z) position of
individual stars with Gaia’s α and δ measurements, and
then projecting in a straight line by using measurements
of the distance to the galactic center, inclination and line
of nodes angle position from other studies. This method
should reduce the dependency with the uncertainty of the
parallax measurements, but it would also incorporate a
further source of confirmation bias, given that the D, i
and θLON are parameters that we are trying to estimate.

Secondly, we can restrict the interval of values of the
parameters that the algorithm will explore. If we know
that the parameter’s value has to be at a specific interval,
we can establish prior limits so that the algorithm does
not spend computational time exploring values that do
not make physical sense for our problem. In a generic ex-
ample, we could establish a prior limit that the distance
to the galactic centre, D, has to be positive. However,
if we want to further reduce computational time we can
extend this process, by not only establishing prior lim-
its that correspond to physical possibility but also con-
straints that come from measurements done using other
methods. In the case of the distance to the galactic cen-
tre, to continue the example, eclipsing binary measure-
ments have lead to an uncertainty of less than 2%, and
thus we can decide to force the algorithm to only explore
that interval. This procedure presents some problems,
given that again we are introducing a certain confirma-
tion bias: if the prior interval gives a restriction bigger
than the algorithm is able to yield based on Gaia DR3,
our results will not be based on the algorithm but rather
on the prior constraints given. It can be argued however
that given the multidimensionality of the parametriza-
tion, restricting one parameter more than the measure-
ments allow might lead to narrower and thus more precise
distributions for the other parameters for which we lack
more precise prior knowledge. A more detailed discus-
sion of what prior restrictions have been used is found in
the following Section II B.

B. Prior parametrization for the MCMC fitting

As mentioned before, we have established a set of sim-
plifications and restrictions to facilitate the convergence
of the algorithm. First of all, in order to reduce the num-
ber of calculations that the algorithm has to produce at
each iteration, we have taken the scale height and scale
length as constants that the algorithm does not change,
with h0 = 0.35 and R0 = 1.6 taken from Weinberg &
Nikolaev [19]. Additionally, we have only generated syn-
thetic models with an ellipticity of ϵ = 1, thus simplyfy-
ing the algorithm’s calculations by not having to consider
either ϵ or the minor axis angle, θma. All these parame-
ters are still part of the generative model, however, and
can easily be introduced as modifiable parameters to the
algorithm in further studies, at the cost of higher compu-

tation times. Our algorithm thus will focus on generating
distributions for the 5 remaining parameters: D, α0,δ0, i
and θLON .
For the prior limits of the distance to the galactic cen-

ter, we have established the interval D = 50.0±1.0 kpc in
accordance with the measured by Pietrzyński et al. using
eclipsing binaries [7]. For the inclination and position an-
gle of nodes, i and θLON , there exists a certain dispute
depending on the method used to measure them, with
ranges between i = 25◦ and i = 38◦ for the inclination an-
gle and between θLON = 212.5◦ and θLON = 235◦ for the
line of nodes angle. A detailed discussion of the different
stellar populations in the LMC and the differences that
it generates between methods to measure these angles,
such as near-IR color magnitud diagrams[10], red clump
magnitudes [9] or cepheids[19] is found in Subramanian
& Subramanian, 2010 [20]. Given that the Gaia DR3 is
a general star catalogue, we elected to use the near-IR
measurements by van der Marel & Cioni as the central
values, but with large enough intervals to consider the
different possibilities when appropriate, leading to prior
limits of the inclination angle, i = 34.7◦ ± 5.0◦ and the
position angle of nodes, θLON = 212.5◦ ± 10.0◦. Lastly,
the celestial coordinates of the galactic center, α0 and δ0,
were taken from the Third Reference Catalogue of Bright
Galaxies, with α0 = 80.89◦ ± 2◦ and δ0 = −69.75◦ ± 2◦

[21].
Finally, it is worth to mention that if we had ended

up being able to use Gaia DR3 as the algorithm’s in-
put sample, we would have required to establish LMC
membership, as done in Jiménez-Arranz et al. [22]. For
further study, we could attempt to reduce the uncertain-
ties of our Gaia data sample by only considering a subset
of all the observed samples with the brightest stars, given
that those will have lower parallax uncertainties on aver-
age.

III. RESULTS

We have studied the accuracy and precision of the re-
sults of the algorithm when it has been given synthetic
models that simulate Gaia observables. The algorithm
returns the values at each iteration of the parameters
that have been accepted, generating thus a density dis-
tribution of accepted values, of which we have studied its
mean and standard deviation, σ. We considered the algo-
rithm’s results to be accurate if the mean of the algorithm
generated distributions was within 3σ of the parameters
corresponding to the simulated data. Precision has been
determined more quantitatively, by studying the order of
magnitude of the standard deviation, which is different
for each parameter studied. The algorithm was deemed
to be successful in convergence if it was both accurate
and precise.

First, in order to validate the formal written code,
a synthetic sample with D = 50.0 kpc, α0 = 80.89◦

δ0 = −69.75◦, i = 34.7◦ and θLON = 212.5◦ is gener-
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ated without any uncertainty. With that sample as the
algorithm’s input, we confirmed that the programming
worked and that it was able to recover the original pa-
rameters. Additionally, it allowed us to see the depen-
dency of the computational time with the computational
parameters of our algorithm, i.e. the number of iteration
steps done and the number of stars of the sample, which
is shown in Figure 1.

FIG. 1: Comparison of the computational time taken by
the MCMC algorithm as a function of the number of stars
of the synthetic sample, for different numbers of iteration
steps.

We observe that the behaviour of the computation time
is roughly lineal both with the number of steps and the
number of samples studied, the latter one being an ex-
ceptionally good sign for using this algorithm for further
study using the full Gaia LMC dataset of the order of 107

samples[11]. We additionally observed that beyond 250
steps and 2 · 104 samples, any further increase in these
parameters did not lead to more precise nor accurate re-
sults for the range of uncertainties studied. Thus, for the
rest of the work, we used 250 iteration steps and 2 · 104
stars as our data sample.

With the purpose of validating the concept of our in-
vestigation and the MCMC method, we introduced ran-
dom uncertainties into our synthetic sample. The uncer-
tainties were introduced by individually sampling from a
Gaussian distribution with mean equal to the true value
of the corresponding data sample and with the desired
simulated uncertainty as its standard deviation. Progres-
sively increasing the uncertainties, we found that starting
at uncertainties in parallax of the order of ∆ω ≈ 0.001
mas, the algorithm had to be aided in finding an appro-
priate first step, as mentioned in IIA. The algorithm
struggled to converge when given samples with parallax
uncertainties of around ∆ω >∼ 0.005 mas, and was unable
to reach the combined random and systematic uncertain-
ties of ∆ω ≈ 0.2 mas that Gaia DR3 presents. In Figure
2, we show the distributions generated by the MCMC
algorithm for the 5 global parameters studied, and for
the various synthetic catalogues with predefined uncer-
tainties. In Table I the mean values and the standard
deviation of the generated distributions are presented.

FIG. 2: Histograms generated by 250 steps of the MCMC
algorithm from a synthetic catalogue of 2 · 104 stars with
different parallax uncertainties. The probability density
is calculated through a Kernel Density Estimation, and
the vertical line indicates the value of the parameter used
to generate the sample.
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∆ω
0.001 0.002 0.003 0.004 0.005

(mas)

D 49.994 50.046 50.166 49.974 50.095

(kpc) ±0.007 ±0.029 ±0.048 ±0.071 ±0.054

α0 80.896 80.887 80.883 80.89 80.898

(◦) ±0.004 ±0.003 ±0.004 ±0.004 ±0.002

δ0 -69.755 -69.752 -69.759 -69.758 -69.754

(◦) ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

i 35.07 34.82 34.906 34.798 34.715

(◦) ±0.13 ±0.07 ±0.098 ±0.043 ±0.011

θLON 212.483 212.508 212.543 212.48 212.516

(◦) ±0.011 ±0.011 ±0.015 ±0.009 ±0.014

TABLE I: Table with the mean and standard deviation
values of the distributions shown in Fig. 2

As we can see from Fig. 2 and Table I, the probabil-
ity densities that present higher dispersion are those that
have a higher dependency on the parallax measurement
(D,i and θLON ), while those that are projections of stel-
lar coordinates (α0 and δ0) have much narrower distribu-
tions. That is to be expected, given that in accordance
to Gaia’s precision, we introduced relative uncertainties
into our synthetic model for parallax much greater than
the ones for the right ascension and declination measure-
ments for each star. From the histograms shown in Fig.
2 and the standard deviations, we see that the algorithm
struggled to return the original distance of D = 50.0 kpc,
but even then for all uncertainties its value was within
3σ. Particularly remarkable was the accuracy of the al-
gorithm to infer the true values of inclination, i, and
line of nodes angles, θLON , with the means of the gener-
ated distributions all having discrepancies smaller than
2σ. The standard deviations for all generated probabil-
ity densities were relatively low, indicating that, at least
for the ranges of uncertainty where the algorithm was
able to run, it was considerably precise. Additionally,
while it would be expected for the precision to decrease
when the parallax uncertainty was increased, it remained
constant. Both these observations indicate that the al-

gorithm should be able to infer parameters even when
the uncertainties are larger than the ones here presented.
However, for these higher uncertainties, the algorithm
does not propose any successful iterations apart from its
first step, thus effectively yielding Dirac δ distributions
centered at the randomly chosen initial values.

IV. CONCLUSIONS

In this work, we have studied the ability of our MCMC
algorithm to infer the LMC 3D structure when given syn-
thetic samples with predefined parallax uncertainties.
The successful parametrization of the simulated LMC

samples for parallax uncertainties of up to ∆ω = 0.005
mas, validates the formal and conceptual aspect of the
method. However, the algorithm’s failure to converge for
greater uncertainties, and consequently the lack of an im-
provement in precision for an increase in the sample size,
means that we were not able to validate that the method
can be applied toGaia DR3. The relatively high and con-
stant precision of the algorithm for the ranges of parallax
uncertainty studied seems to indicate that our algorithm
should conceptually be able to succeed at higher uncer-
tainties, specially with larger sample sizes. The failure
to do so likely lies in either not finding a suitable first
step, or on the configuration for the implementation of
the MCMC not being optimal. Further study can thus
be undertaken through additional tuning of the algorithm
both to the initial parameters and larger sample sizes.
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V. APPENDIX

A. Coordinate transformations

The first coordinate transformation from the galacto-
centric Cartesian coordinates is a rotation along the third
axis, by an angle equal to θma. If the generated disc has
no ellipticity, this rotation does not affect our coordinate
changes.

Rrot1 = R[3](θma) =

cos θma − sin θma 0

sin θma cos θma 0

0 0 1


Afterwards, we introduce the inclination and the line of
nodes angles. We achieve that by a rotation of an angle
−i along the first axis and then an angle θLON along the
third axis.

Rrot2 = R[3](θLON )R[1](−i) =

=

cos θLON − sin θLON 0

sin θLON cos θLON 0

0 0 1


1 0 0

0 cos i sin i

0 − sin i cos i

 =

=

cos θLON − sin θLON cos i − sin θLON sin i

sin θLON cos θLON cos i cos θLON sin i

0 − sin i cos i


Subsequently, we transform the coordinates into helio-
centric ones. We achieve that by applying a rotation re-
lated to the angular position from Earth (or rather, the
Sun), as well as applying a shift in regards to the position
of the center of the LMC in relation to the position of
the Sun.

xH

yH
zH

 =

 sinα0 − cosα0 sin δ0 − cosα0 cos δ0
− cosα0 − sinα0 sin δ0 − sinα0 cos δ0

0 cos δ0 − sin δ0

×

ξrot2
ηrot2
ζrot2

+

r0 cos δ0 cosα0

r0 cos δ0 sinα0

r0 sin δ0


Finally, we want to transform the heliocentric coor-

dinates to the observables that Gaia will measure, the
parallax ω, the right ascension α and the declination δ:

ω =
1√

x2
H + y2H + z2H

α = tan−1

(
yH
xH

)

δ = sin−1

(
zH
1/ω

)
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