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Abstract: IL(Interleukin)-4 is the main macrophage M2-type activator and induces an anti-inflammatory
phenotype called alternative activation. The IL-4 signaling pathway involves the activation of STAT
(Signal Transducer and Activator of Transcription)-6 and members of the MAPK (Mitogen-activated
protein kinase) family. In primary-bone-marrow-derived macrophages, we observed a strong ac-
tivation of JNK (Jun N-terminal kinase)-1 at early time points of IL-4 stimulation. Using selective
inhibitors and a knockout model, we explored the contribution of JNK-1 activation to macrophages’
response to IL-4. Our findings indicate that JNK-1 regulates the IL-4-mediated expression of genes
typically involved in alternative activation, such as Arginase 1 or Mannose receptor, but not others,
such as SOCS (suppressor of cytokine signaling) 1 or p21Waf−1 (cyclin dependent kinase inhibitor
1A). Interestingly, we have observed that after macrophages are stimulated with IL-4, JNK-1 has the
capacity to phosphorylate STAT-6 on serine but not on tyrosine. Chromatin immunoprecipitation
assays revealed that functional JNK-1 is required for the recruitment of co-activators such as CBP
(CREB-binding protein)/p300 on the promoter of Arginase 1 but not on p21Waf−1. Taken together, these
data demonstrate the critical role of STAT-6 serine phosphorylation by JNK-1 in distinct macrophage
responses to IL-4.

Keywords: monocytes/macrophages; chemokines; cytokines; kinases/phosphatases; inflammation

1. Introduction

Interleukin-4 (IL-4) is a cytokine with functional pleiotropy that plays an important
role in host defense in cells involved in innate (macrophages) and acquired immunity (T
and B lymphocytes) [1].

Macrophages play a critical role in the resolution of inflammation. During the initial
inflammatory reaction, macrophages, under the effects of Th (T helper) 1-type cytokines
such as IFN (Interferon)-γ, become pro-inflammatory and secrete a large number of harm-
ful molecules (e.g., NO (Nitric oxide), reactive oxygen species (ROS), enzymes, and im-
munomodulatory cytokines such as TNF (Tumor necrosis factor)-α). This process has
been named classical activation or the acquisition of an M1 phenotype [2]. During the
later stages of inflammation, macrophages become anti-inflammatory and constructive [3].
They are activated by Th2-type cytokines, such as IL-4, and through the degradation of
arginine they produce proline and polyamines, the latter of which serve to rebuild the
extracellular matrix. This process is known as alternative activation or the acquisition of an
M2 phenotype [4].

Upon ligand binding, IL-4 signals through a receptor comprising either the IL-4
receptor α (IL-4Rα) and CD132 (γc) chains (type I receptor) or IL-4Rα and IL-13Rα1 chains
(type II receptor) [1]. Both types of chains oligomerize and, subsequently, JAK (Janus
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kinase) -1 and -3 are activated, inducing the phosphorylation of the IL-4 receptor. This
process provides a docking site for STAT-6, which induces the phosphorylation of tyrosine
641 (Y641). This leads to its dimerization, translocation to the nucleus, and binding to
specific response elements on target genes [1]. In addition, previous data have revealed that
multiple serine residues are susceptible to phosphorylation on the STAT-6 transactivation
domain (TAD) [5,6].

Several publications have shown that MAPK family members were activated by IL-4.
Depending on the cell type, ERK (Extracellular signal-regulated kinase) in T cells [7,8],
p38 in B cells [9], and JNK in fibroblasts [10] have been involved in signal transduction
to this cytokine.

MAPKs are conserved serine/threonine kinases involved in the transduction of signal-
ing that regulate cell growth, differentiation, and apoptosis [11–13]. These kinases include
ERK-1 and -2, JNK-1 and -2, and p38. Through phosphorylation, MAPKs directly regulate
downstream targets, including protein kinases, cytoskeleton components, phospholipase
A2, and transcription factors or complexes, such as Ets (E-twenty-six)-1, Elk/TCF, and
AP-1 (activating protein-1). In turn, these transcription factors promote immediate early
gene expression.

In this study, we observed an early and strong activation of JNK-1 during macrophage
response to IL-4 as well as the weak and late activation of ERKs and p38. The inhibition
of JNK-1 activation resulted in the decreased expression of a number of genes typically
induced by IL-4, such as Arginase 1 or Mannose receptor, but not others, such as SOCS1 or
p21Waf−1. We have observed that STAT6 was phosphorylated at Y641 and serine. Tyrosine
phosphorylation is independent of JNK-1, while serine phosphorylation is dependent
on the aforementioned kinase. By using chromatin immunoprecipitation assays, STAT-6
and JNK-1 were detected in some promoters but not in others. This finding demon-
strates the critical role of the serine phosphorylation of STAT-6 by JNK-1 in macrophages’
response to IL-4.

2. Materials and Methods
2.1. Reagents

Recombinant IL-4 and M-CSF were purchased from R&D Systems. SP600125,
PD98059, and SB203580 were obtained from Calbiochem. Actinomycin D (Act D) and
5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DBR) were obtained from Sigma-Aldrich.
The following antibodies used were used: anti-ERK-1/2, anti-phospho-p38 (Thr180/Tyr182),
anti-JNK1, anti-STAT-6, phosphorylated anti-STAT-6 (Tyr 641), anti-phosphoserine, anti-
CBP/p300, and anti-β-actin (Supplementary Materials Table S1).

2.2. Cell Culture and Animal Models

Bone-marrow-derived macrophages (BMDMs) were obtained from 8-week-old C57BL/6
female mice (Charles River Laboratories, Wilmington, MA, USA), as described
previously [14]. Bone marrow cells were extracted from femora, tibia, and humerus.
The obtained cells were grown on plastic tissue culture dishes (150 mm) in DMEM (Cultek,
Madrid, Spain) containing 20% FCS (GIBCO, Thermo Fisher Scientific, Waltham, MA,
USA) and 20 ng/mL of recombinant M-CSF) (Thermo Fisher, Loughborough, England)
supplemented with 100 U/mL of penicillin and 100 µg/mL of streptomycin. In a humid-
ified atmosphere, cells were incubated at 37 ◦C with 5% CO2. After 7 days of culture,
a homogeneous population (99.34 ± 0.52% CD11b/CD18 and 98.41 ± 0.93% F4/80) of
adherent macrophages was obtained. BMDMs were left for 16 h in medium without M-CSF
to allow for synchronization of cell cycles prior to stimulation. Mice deficient in JNK-1
(JNK-1−/−) [15] were donated by Dr. R. A. Flavell (Yale University School of Medicine,
New Haven, CT, USA). The Animal Research Committee of the University of Barcelona
approved use of animals (number 2523).
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2.3. RNA Extraction, Reverse Transcription PCR, and qPCR

RNA extraction was achieved using a method previously described by our group [16].
To clone the reporter plasmids and perform PCR, total RNA from cells was purified
using the ReliaPrep RNA Miniprep System (Promega, Madison, WI, USA). To remove
contaminating DNA, RNA was treated with DNase (Roche, Basel, Switzerland). Us-
ing the Moloney murine leukemia virus (MMLV) reverse transcriptase, RNase H Minus
(Promega, Madison, WI, USA), RNA was retrotranscribed into cDNA according to the
manufacturer’s indications. Quantitative PCR (qPCR) was performed using the SYBR
Green Master Mix (Applied Biosystems, Waltham, MA, USA). To design the primers, we
used Primer3Plus (https://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
(accessed on 12 June 2022). For each gene, water was used as negative control. When a
signal was detected in these negative controls (at 40 Ct), the primer pairs were replaced
with alternative ones. By making a standard curve from serially diluted cDNA samples, we
calculated the amplification efficiency for each pair of primers. We only used primer pairs
with an amplification efficiency of 100 ± 10%. Supplementary Material Table S2 provides
a list of the primers used (Sigma Aldrich, St. Louis, MO, USA). The ∆∆Ct method [17]
was used to analyze the data. This was performed using the Biogazelle Qbase+ software.
Gene expression of the three housekeeping genes, namely, Hprt1, L14, and Sdha, was used
to normalize data to address the one-sample problem. The reference genes’ stability was
determined by establishing that their geNorm M value was inferior by 0.5 [18].

2.4. Protein Extraction and Western Blot Analysis

Protein extraction was accomplished as described in our previous work [19]. In
cold PBS, cells were washed twice and lysed on ice using lysis solution (1% Triton X-100,
10% glycerol, 50 mM HEPES at pH 7.5, 250 mM NaCl, 1 µg/mL aprotinin, 1 µg/mL of
leupeptin, 1 µg/mL of iodoacetamide, 1 mM PMSF, and 1 mM sodium orthovanadate).
Then, through centrifugation at 13,000× g for 8 min at 4 ◦C, we removed the insoluble
material. In Laemli SDS-loading buffer, cell lysates (50–100 µg) were boiled at 95 ◦C. Subse-
quently, cell lysates were separated by 10% SDS-PAGE. Then, proteins were transferred
electrophoretically to nitrocellulose membranes (Hybond-ECL, Amersham, England). Next,
for 1 h at room temperature, membranes were blocked in 5% dry milk in TBS-0.1% Tween
20 (TBS-T). When using the anti-phosphoserine antibody, we did not employ milk as a
blocking agent because milk casein is phosphorylated at several serine residues. Instead,
we used bovine serum albumin as recommended by the supplier (Abcam, Cambridge,
UK). Membranes were incubated with primary antibody overnight at 4 ◦C (Supplementary
Materials Table S1). Subsequently, membranes were washed three times in TBS-T. This
was followed by incubation with horseradish-peroxidase (HRP)-conjugated secondary
antibody for 1 h at room temperature. After three 5 min washes with TBS-T, chemilumines-
cence detection was performed (Amersham), and the membranes were exposed to X-ray
films (Amersham).

2.5. JNK Activity Assay

JNK activity was measured as previously described [20]. Nuclear extracts were ob-
tained from cells and then immune-precipitated with protein A-sepharose and anti-JNK-1
antibody. After five washes, the reaction was performed with 1 µg of cytosolic glutathione
S-transferases (GST)-c-jun (1-169) (MBL) as JNK substrate, 20 µM ATP and 1 µCi µ32P-ATP.
In Figure 6, protein A-sepharose and anti-STAT-6 antibodies immune-precipitate total pro-
tein extracts (150 µg) from macrophages. Subsequently, immune-precipitates were washed,
and used as substrate for JNK-1 instead of GST-c-jun. Then, SDS-PAGE electrophoresis was
performed, and the gel was exposed to Agfa X-ray films.

2.6. Chromatin Immunoprecipitation Assay

The ChIP assays were performed as described in our previous work [21,22]. BMDMs
were incubated with the recommended stimuli and time. Subsequently, 20 × 106 cells
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were cultured in a 150 mm plate and fixed in paraformaldehyde. After 10 min at room
temperature, to stop fixation, glycine (2 M) was added. After 5 min, the plates were washed,
and the cells were then scraped and recovered. The precipitate was washed in 1 mL of PBS,
Buffer I (10 mM HEPES at pH 6.5, 0.25% Triton X-100, 10 mM EDTA, and 0.5 mM EGTA),
and Buffer II (10 mM HEPES at pH 6.5, 20 mM NaCl, 1 mM EDTA, and 0.5 mM EGTA). A
protease inhibitor cocktail (1 mM PMSF, 1 mM iodoacetamide, 1 mM sodium orthovanadate,
10 µg/mL of aprotinin, and 1 µg/mL of leupeptin) was added before centrifugation to
Buffer I and Buffer II. A total of 300 µL of lysis buffer (1% SDS, 10 mM EDTA, 0.5 mM
Tris-HCl at pH 8.1, and the protease inhibitor cocktail) was added to the pellet of cells and
incubated at RT. Then, the samples were sonicated for 10 min in high mode (30” on/30” off)
using Bioruptor Twin (Diagenode; Liege, Belgium). The procedure was repeated 5 times.
Subsequently, to confirm a good degree of sonication of the samples (the DNA fragments
should have a size of 200 bp to 1200 bp), DNA agarose gel electrophoresis was performed.
The soluble chromatin was centrifuged at 16,000× g for 10 min and diluted to a final
volume of 1.1 mL in the following buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl,
and 20 mM Tris-HCl at pH 8.1, and a protease inhibitor cocktail). For control or INPUT,
100 µL was separated and stored at 4 ◦C. To reduce the number of non-specific bindings,
the remaining sample was incubated overnight at 4 ◦C with 2 µg of sonicated salmon
sperm DNA (Amersham), 2.6 µg of non-specific IgGs (Sigma Aldrich, St. Louis, MO, USA),
and 20 µg of Magna ChIP protein A magnetic beads (Millipore, Burlington, MA, USA).
To remove the beads, the sample was centrifuged at 16,000× g for 10 s. Then, the sample
was diluted to a volume of 2 mL (1 mL of the specific precipitate and 1 mL of the control).
The two precipitates were incubated for 6 h with the same amount of either antibody
(phosphorylated anti-STAT-6 (Tyr 641) or anti-CBP/p300) or a non-specific IgG. Then, the
samples were incubated at 4 ◦C overnight with 20 µL of magnetic beads. The following day,
the samples were centrifuged (16,000× g for 10 s), and the beads were washed and incubated
for 10 min in 1 mL of TSE I (150 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA, and
20 mM Tris HCl at pH 8.1); in 1 mL of TSE II (500 mM NaCl, 0.1% SDS, 1% Triton X-100,
2 mM EDTA, and 20 mM Tris HCl at pH 8.1); and finally in 1 mL of Buffer III (0.25 M LiCl,
1% NP-40, 1% w/v deoxycholate, 1 mM EDTA, and 10 mM Tris HCl at pH 8.1). After these
washes, the beads were cleaned with 1 mL of PBS (4 ◦C), and the immune precipitates were
eluted with 300 µL of the following solution (0.1 M NaHCO3 and 1% SDS). The elution was
performed in three steps. First, the beads were incubated for 20 min in 100 µL of the elution
solution. Subsequently, the samples were centrifuged at 16,000× g for 10 s. The resulting
supernatant was recovered in a 1.5 mL Eppendorf tube. This procedure was repeated
two more times and a final volume of 300 µL was obtained. Before DNA purification, a
“reverse crosslinking” step was required, wherein the samples (non-specific and immune
precipitates) and INPUTs were incubated overnight at 65 ◦C. The following day, the QIAquick
PCR Purification Kit (Qiagen, Hilden, Germany) was used to purify the DNA of the samples.
The final elution volume was 30 µL. These samples were analyzed by qPCR using the primers
of the Arginase 1 promoter: forward, 5′-GCATTGTTCAGACTTCCTTATGCTT-3′; reverse,
5′-TGTTGGCTAATACAGCCTG-TTCAT-3′ [23]. For the control, we used a non-promoter region
of an unrelated gene, the 36B4 gene encoding a ribosomal protein. The following primers were
used: 5′-AGATGCAGCAGATCCGCAT-3′ and 5′-GTTCTTGCCCATCAGCACC-3′. Primers
used for PCR amplification of the p21Waf−1 promoter were 5′-TTAACGCGCGCCGGTTCTA-3′

and 5′-AGCGCATTGCTACGGGGAA-3′ [24,25].
To obtain the final results, we performed two normalization steps. The first step

involved the specific INPUTs and the second one involved the results obtained from the
analysis of the 36B4 gene encoding a ribosomal protein, which was located outside the
promoter region of Arginase 1 or p21Waf−1.

2.7. Statistical Analysis

Data were analyzed using the Student’s t-test. Statistical analysis was performed with
the GraphPad Prism 9.1 software.
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3. Results
3.1. IL-4 Induces Early and Short Activation of JNK-1 but Not of ERK or p38

A number of publications have shown that depending on the cell type, ERK in
T cells [7], p38 in B cells [26], and JNK in fibroblasts [27] are involved in signal trans-
duction to IL-4. Based on these findings, we addressed whether MAPK activation is
involved in the IL-4-mediated alternative activation of bone-marrow-derived macrophages.
For this purpose, primary macrophages obtained from murine bone marrow were deprived
of their specific growth factor (M-CSF) for 18 h to minimize MAPK activity; then, they were
stimulated with IL-4 for the indicated periods of time (Figure 1). The activity of JNK-1,
reported as glutathione S-transferase (GST)-c-jun, was strongly induced after 5 min of IL-4
treatment and was maintained for only 15 min (Figure 1A), thereby suggesting that JNK-1
participates in the alternative activation of macrophages. The activity of JNK-2 was also
measured but was undetectable in in vitro kinase assays (data not shown). In contrast to
JNK-1, the Western blot analysis of both phospho-ERK-1/2 and phospho-p38 revealed no
activation at early stages but a significant induction of both kinases after 60 min of IL-4
stimulation (Figure 1B,C).
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Figure 1. Effects of IL-4 on MAPK activation. Bone-marrow-derived macrophages were cultured for
6 days in the presence of M-CSF. Then, to render the cells quiescent, they were deprived of M-CSF for
18 h. At this point, IL-4 (10 ng/mL) or M-CSF (10 ng/mL) was added for the indicated periods of
time. (A) JNK-1 activity was studied after immunoprecipitation and then an in vitro kinase assay was
performed on recombinant c-Jun. An immunoblot for JNK-1 was performed in parallel as a loading
control for the kinase assay. (B,C) Activation of MAPK ERK-1/2 and the phosphorylated form of p38
were analyzed via Western blot using the corresponding antibodies. In parallel, as a loading control,
an immunoblot for β-actin was performed. Images on the right depict quantification by densitometry
of 3 independent experiments. The results are shown as the mean ± SD. ** p < 0.01 and *** p < 0.001
in relation to the corresponding treatments with IL-4 after all the independent experiments had been
compared. Data were analyzed using Student’s t-test.
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To determine whether there is a negative feedback mechanism induced by IL-4 to
regulate MAPK activity, we analyzed the expression of MAPK phosphatases (MKP) 1,
2, and 5 as well as PAC1 and CPG 21. In contrast to M-CSF, which activates MAPKs
and induces the expression of several members of the MKP family, IL-4 was only able to
induce the expression of MKP-2 and, very transiently, MKP-5 (Figure 2). These results
show a correlation between the dephosphorylation state of JNK and the induction of some
specific MKPs [28,29].
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Figure 2. Effects of IL-4 on MKP expression. Macrophages were treated with M-CSF (control) or IL-4
for the indicated periods of time. MKP expression was analyzed by qPCR. The results are shown as
the mean ± SD of 3 independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001 in relation to
the corresponding treatments after all the independent experiments had been compared. Data were
analyzed using Student’s t-test.

3.2. IL-4-Induced JNK-1 Activation Contributes to the Regulation of Selective Genes

Next, we evaluated the involvement of JNK-1 in the alternative activation of macrophages
mediated by IL-4. For this objective, we analyzed the expression levels of several genes,
including Arginase 1, chemokines such as CCL22 (a macrophage-derived chemokine) and
CCL24 (eotaxin-2), the cytokine IL-10, the Mannose Receptor, the scavenger receptor CD163,
the suppressor of cytokine signaling (SOCS)-1, and the regulators of the cell cycle p21Waf−1

and c-myc. In previous studies [30], we determined the time course of the induction of
these genes by IL-4. Most were induced at high levels within 3 h after IL-4 treatment and
maximal induction was detected after 6 h. The expression of c-myc and SOCS1, in contrast
to the other genes, was detected early, namely, within the first 1 to 3 h after treatment.
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To determine the role of JNK-1 in IL-4-induced gene expression, we used the selective
inhibitor SP600125 and the JNK-1 knockout mouse model. Previous studies conducted
by our group demonstrated that the dose of SP600125 used in the macrophages in this
study blocks JNK activity without inducing cellular toxicity [31]. Surprisingly, the in-
hibition of JNK with SP600125 resulted in the efficient blockage of the expression of a
subset of genes, including Arginase 1, Mannose Receptor, CD163, and c-myc; the chemokines
CCL22 and CCL24; and the cytokine IL-10 (Figure 3A), whereas the expression of SOCS1
or p21Waf−1 was not significantly reduced (Figure 3B), thereby suggesting that the link
between JNK-1 and IL-4 responses may be promoter-dependent. We also performed similar
experiments using SB203580 to inhibit p38 and PD98059 to block MEK and, therefore,
ERK-1/2 activity; however, none of these inhibitors significantly reduced the expression of
the genes tested (Supplementary Materials Figure S1). To confirm the role of JNK-1, we
also used macrophages from JNK1−/− mice. In these cells, the expression of Arginase 1,
CCL22, CCL24, and c-myc was drastically downregulated (Figure 4A). However, the levels
of SOCS1 or p21Waf−1 were not affected (Figure 4B).
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Figure 3. (A,B) Different effects of JNK-1 on IL-4-induced gene expression. Macrophages were
pre-incubated for 1 h with the JNK inhibitor SP600125 (5 µM) or vehicle (DMSO) as a control. The
cells were then stimulated for 6 h with IL-4 except when gene expression of SOCS1 (3 h) and c-myc
and p21Waf1 (1 h) were analyzed by qPCR. The results are shown as the mean ± SD of 3 independent
experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001 in relation to the corresponding treatments after
all the independent experiments had been compared. Data were analyzed using Student’s t-test.
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Figure 4. (A,B) Different effects of JNK-1 on IL-4-induced gene expression. Macrophages derived
from WT or JNK-1-deficient mice (JNK-1−/−) were stimulated with IL-4 for 6h except when the gene
expression of SOCS1 (3 h), p21Waf−1 (1 h), and c-Myc (1 h) was analyzed by qPCR. Control cells
from each genotype were left untreated. The results are shown as the mean ± SD of 3 independent
experiments. *p < 0.05, ** p < 0.01, and *** p < 0.001 in relation to the corresponding treatments after
all the independent experiments had been compared. Data were analyzed using Student’s t-test.

3.3. JNK-1 Does Not Affect mRNA Stability

Previous studies reported that MAPKs perform posttranscriptional regulation by af-
fecting the stability of specific mRNAs [31,32]. Therefore, we tested whether the effects ob-
served on the expression levels of the genes studied herein were due to the JNK-dependent
modulation of their mRNA stability. We first induced the expression of IL-4-regulated
genes and then blocked further mRNA synthesis by using a cocktail of Actinomycin D and



Cells 2023, 12, 1127 9 of 17

5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DBR) [33], at a concentration sufficient to
block all further RNA synthesis, as determined by [3H]UTP incorporation [34]. We then
measured the remaining mRNA for each gene after different periods of time. To normalize
the results of each time point, for each treatment, we set the level of expression at 100%
in the absence of an inhibitor. We did not detect any significant variation in the mRNA
stability of the genes when the cells were pretreated for 1 h with the JNK inhibitor SP600125
before the addition of IL-4 (Figure 5). This observation suggests that JNK-1 affects the
expression of these genes at the transcriptional level rather than their mRNA stability.
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Figure 5. Effects of JNK-1 on the mRNA stability of IL-4-induced genes. Macrophages were pre-
incubated with SP600125 for 1 h; then, IL-4 was added, and incubation proceeded for 6 h. At this
point, a combination of the RNA synthesis inhibitors 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside
(DRB) (20 µg/mL) and actinomycin D (Act D) (5 µg/mL) was added for the indicated periods of time.
The levels of gene expression were evaluated using qPCR. To evaluate the rate of mRNA degradation,
the mRNA remaining after treatment with inhibitors of RNA synthesis was calculated as a percentage
of the expression of the gene in the cells stimulated with IL-4 (+/− SP600125) in the absence of RNA
synthesis inhibitors. These experiments were performed three times, and the results from the mean
are shown. Data were analyzed using Student’s t-test, and no significant differences were found.

3.4. JNK-1 Phosphorylates STAT-6 on Serine Residues without Affecting Its Binding to DNA

STAT-6 must be phosphorylated on Y641 to induce its dimerization, translocation to
the nucleus, and binding to target genes [1]. To determine the degree of phosphorylation
on Y641, we checked whether the activity of JNK-1 toward STAT-6 interfered with the
JAK-mediated tyrosine phosphorylation of STAT-6. For this purpose, we stimulated cells
with IL-4 for 15 min in the presence or absence of the JNK-1 inhibitor SP600125. Having
stimulated the cells, we immunoprecipitated STAT-6 and performed an immune-blotting
assay against STAT6 phosphorylated on Y641. No variations were observed in the phos-
phorylation of STAT-6 on tyrosines (Figure 6A). The DNA-binding capacity of STAT-6 was
tested through chromatin immunoprecipitation assays using the promoter of Arginase 1.
As described previously [35,36], STAT-6 bonded to the Arginase 1 promoter (Figure 6B). No
impaired binding of STAT-6 was observed when JNK-1 was inhibited in the IL-4-stimulated
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cells (Figure 6B). These data demonstrate that Y641 phosphorylation is not mediated by
JNK; therefore, this kinase could be involved in another phosphorylation process.
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Figure 6. JNK-1 phosphorylates STAT-6 on serine without affecting its capacity to bind DNA. For A
to C, macrophages were pretreated with the JNK inhibitor SP600125 (SP) for 1 h and then stimulated
with IL-4 for 15 min. (A) Phosphorylation of STAT-6 (Y641) was analyzed by immunoprecipitation of
STAT-6 and then via immunoblotting with an antibody, namely, either anti-phospho-Stat6 (Y641) or
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anti-STAT-6. (B) Chromatin immunoprecipitation assay (CHIP) was performed using the antibodies
indicated. The presence of STAT6 Y641P in the Arginase 1 promoter was evaluated using qPCR
and normalized with the level of expression of a 36B4 exon and the inputs of each sample as
a loading control. (C) Phosphorylation of STAT-6 on serine was analyzed by immunoprecipitat-
ing STAT-6 and then via immunoblotting with an antibody against phospho-serine or anti-STAT6.
(D) Quiescent macrophages were stimulated with IL-4 for 15 min to reach maximum JNK-1 activity
and then total protein extraction was performed. STAT-6 from quiescent macrophages (to avoid
any basal kinase activity on STAT) was immunoprecipitated (150 µg of total protein extracts) and
used as substrate in an in vitro kinase assay for JNK-1. As control for immunoprecipitation, IgG
was used. An immunoblot for JNK1 was performed in parallel as a load control for the kinase assay.
(E) An experiment similar to (D) but in which macrophages derived from WT or JNK-1 deficient
mice (JNK-1−/−) were used. As a control for charge, a sample of total protein extracts was used
for immunoblotting with an antibody (anti-STAT6). The results are shown as the mean ± SD of
3 independent experiments. * p < 0.05, ** p < 0.01, and **** p < 0.0001 in relation to the corresponding
treatments after all the independent experiments had been compared. Data were analyzed using
Student’s t-test.

Regarding STAT6′s activation, it has recently been described that in addition to Y641,
STAT6 requires the phosphorylation of S407, which is located in the DBD (DNA-binding
domain) [37]. Therefore, we examined whether STAT-6 is a substrate for JNK-1. Due to the
lack of commercial antibodies that can detect STAT-6 phosphorylated on specific serines, we
tested whether JNK-1 could phosphorylate STAT-6 on serine. For this purpose, we immuno-
precipitated STAT-6 from IL-4-stimulated cells in the presence or absence of SP600125 and
immunoblotted it with an anti-phophoserine antibody. The STAT-6 from cells induced with
IL-4 showed strong phosphorylation on serine (Figure 6C). Interestingly, in cells treated
with both IL-4 and SP600215, we did not detect any serine phosphorylation on STAT-6. This
observation suggests that JNK is responsible for this phosphorylation. Moreover, to confirm
these data, we immunoprecipitated STAT-6 from quiescent macrophages and used it as
substrate in a JNK-1 kinase assay (Figure 6D). Based on the time course of JNK activation
(Figure 1A), JNK-1 was immunoprecipitated from cells stimulated with IL-4 for 15 min.
In the cells treated with IL-4, phosphorylated STAT-6 co-immunoprecipitated with JNK.
Treatment with SP600125 reduced this effect (Figure 6D), which was more evident when
we used the JNK-1−/− cells (Figure 6E). So far, all these data suggest that although JNK-1
mediates the serine phosphorylation of STAT-6, it does not modify the phosphorylation of
STAT-6 on tyrosine or its capacity to bind DNA.

3.5. JNK-1 Is Required for Promoting the Recruitment of CBP/p300 to the Arginase 1 Promoter

The phosphorylation of serine 727 of STAT-1 is responsible for the recruitment of
cofactors at the promoter level [38]. IL-4 induces the phosphorylation of the IL-4α receptor,
which recruits JAK and STAT6 for phosphorylation. Phosphorylated STAT6 triggers the
formation of dimers and, subsequently, the translocation of dimerized STAT6 into the
nucleus for transcriptional regulation after the recruitment of coactivators to the transcrip-
tosome, such as CBP/p300 or the nuclear receptor coactivator 3 (NCOA3) [39,40]. Since the
interaction between JNK-1 and STAT-6 resulted in the serine phosphorylation of STAT-6,
we evaluated whether this interaction could also be a mechanism for cofactor recruitment.
For this purpose, we performed chromatin immunoprecipitation assays.

First, we tested whether CBP/p300 binds to the Arginase 1 promoter in our macrophage
model, as described before in other types of cells [41,42]. We stimulated quiescent macrophages
with IL-4 for 15 min. Using chromatin immunoprecipitation assays, we observed that the
treatment with IL-4 induced the binding of CBP/p300 to the Arginase 1 promoter, which
was reversed by SP600125 (Figure 7A). To confirm these results, we used the JNK-1−/−

model. We stimulated the cells with IL-4 for 15 min and performed chromatin immunopre-
cipitation assays. In JNK-1−/− cells, after stimulation with IL-4, no increase in the binding
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of CBP/p300 to the Arginase 1 promoter was observed (Figure 7B). Moreover, we also
examined the recruitment of CBP/p300 in the promoter of p21Waf−1, whose expression is
not inhibited in the absence of JNK-1 (Figure 3). In this case, we still detected the binding
of CBP/p300 in the JNK-1−/− cells treated with IL-4 (Figure 7B). These data suggest that
JNK-1 activity is required for the recruitment of cofactors in some IL-4-induced genes.
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Figure 7. JNK-1 activity is required for the binding of the cofactor CBP/p300 to the Arginase 1
promoter in response to IL-4 but not to the p21Waf−1 promoter. Quiescent macrophages were treated
with IL-4 for 15 min. In A, the cells were pretreated for 1 h with the JNK inhibitor SP600125 (SP)
or the vehicle (DMSO) before the addition of IL-4. (A,B) Chromatin immunoprecipitation assay
was performed with the antibodies indicated. The expression of the promoters was evaluated by
quantitative PCR and normalized with the level of expression of a 36B4 exon and the inputs of
each sample as a control for loading. The results are shown as the mean ± SD of 3 independent
experiments. ** p < 0.01, and *** p < 0.001 in relation to the corresponding treatments after all the
independent experiments had been compared. Data were analyzed using Student’s t-test.
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4. Discussion

The involvement of MAPKs in the cell-type-dependent-signaling of IL-4 by ERK in
T cells [7], p38 in B cells [26], and JNK in fibroblasts [27] has been previously documented.
In our study, we determined the activation of MAPKs in macrophages activated by IL-4
and how JNK regulates the macrophage response to this cytokine. We did not explore
the upstream regulators of JNK-1 in response to IL-4. However, we found that STAT-6, a
critical mediator of IL-4 signaling, is phosphorylated at tyrosine 641, which occurs through
the action of the kinase JNK-1 in serine. Due to a lack of commercially available reagents,
we were unable to determine the exact serine phosphorylation site on STAT-6. However,
although the activation of JNK-1 is required for the maximal expression of several genes, it
is not necessary for STAT-6 translocation to the nucleus and DNA binding. The cross-talk
between STAT-6 and JNK-1 provides a mechanistic link through which cytokine signaling
can be modulated.

In our studies, the involvement of JNK-1 appears to play a critical role in the regulation
of the expression of several genes induced by IL-4, as demonstrated by the relatively broad
effects of the JNK-1 inhibitor SP600125. The effect of some MAPKs, such as p38 in IFN-γ-
inducible genes, has been associated with the regulation of mRNA stability [31,43]. Using
synthetic blockers of RNA synthesis, we have demonstrated that this is not the case for the
effects of JNK-1 on the IL-4-dependent genes studied herein. Therefore, these observations
suggest that during the macrophage response to IL-4, JNK-1 serves to modulate transcrip-
tional events and enhance the expression of selective targets. Studies in STAT-6-deficient
mice [44,45] showed that STAT-6 is involved in a highly confined manner in the signaling
carried out by IL-4, playing a critical role in generating many of the responses induced by
IL-4. However, whereas IL-4-induced differentiation appears to be largely dependent on
STAT-6, IL-4-induced proliferation and survival have been shown to be at least partially
independent of STAT-6 [44,45]. This finding suggests that IL-4 uses additional pathways
other than STAT-6 to regulate gene expression. This does not seem to be the case here, as
the genes whose regulation is affected by JNK-1 depend only on STAT-6 activation [30].

Our results confirm and extend the previous observations of Haoa et al. [46], showing
the involvement of JNK signaling in IL-4. However, these authors used the two cell lines
RAW264.7 and THP-1 as a cellular model of macrophages, while we used primary cultures
of macrophages. In addition, we showed the critical role of the serine phosphorylation
of STAT6 in the transactivation of several genes. Finally, we confirmed our previous
observations showing that gene induction by IL-4 does not have a common signaling
mechanism. Thus, as we reported previously, the deacetylation of C/EBPβ inhibited the
IL-4-induced expression of Arginase-1, Fizz1, and Mannose receptor, while in other genes,
such as Ym1, Mgl1, and Mgl2, expression was not affected [47].

One question that remains to be resolved is the location of the phosphorylated serine
in STAT-6. In the literature, the IL-4-induced serine phosphorylation of STAT-6 is a highly
controversial topic whose conclusions greatly depend on the experimental conditions and,
in particular, the cell type used. Using Ramos cells (a B cell originating from Burkitt’s
lymphoma), Pesu et al. [48] showed that IL-4-induced transcription requires the serine
phosphorylation of STAT-6. In HeLa cells (a human cell derived from adenocarcinoma),
Shirakawa et al. [49] demonstrated that the cytokine IL-1 mediated by JNK induces STAT-6
phosphorylation at serine 707. This phosphorylation decreases the DNA-binding ability of
IL-4-stimulated STAT6, which has been reported to be a mechanism controlling the balance
between IL-1 and IL-4 signals.

Recently, using multiple human cell lines of fibroblasts, the activation of STAT6 has
been shown to be critical in antiviral innate immunity [37]. In this case, the phosphorylation
of serine 407 located in the DNA-binding region plays a determining role. However, studies
of the structural basis for DNA recognition by STAT6 show that the residue S407 is not
likely to be accessible for phosphorylation by any kinase in the conformations of the protein
observed in the crystal structures where STAT-6 is bound to DNA [50]. This controversy
intensified when the same authors used luciferase-reporter-based assays to show that the
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S407 mutation nullifies the IL-4 response [50]. In fact, a large number of proteins, including
CBP/P300, CD28, C/EBPβ, Detergent-sensitive factor, Ets-1, glucocorticoid receptor (GR),
IFNαRI, IL-4Rα, IRF4, LITAF, NF-kB, p100, PU.1, SRC-1, and STAT-2, have been reported
to interact with STAT-6 [51], and the binding of some of these proteins may undergo
conformational changes to STAT-6 that render S407 capable of being phosphorylated.

The mechanism of JNK-1-enhanced gene expression remains elusive. However, we
have demonstrated that the binding of CBP/p300 to the Arginase 1 promoter was in-
creased in the presence of JNK-1. It has been described that CBP/p300 must be serine-
phosphorylated to act as a co-activator [52,53], and in some studies, this phosphorylation
was carried out by members of the MAPK family [54]. It has been proposed that STAT-6 is
acetylated by CBP/p300 [55]. The acetylation of STAT-6 was shown to be required for the
STAT-6-mediated activation of expression [55,56].

The binding of STAT-6 to DNA alone is not normally sufficient to stimulate a specific
locus. The initiation of transcription requires the interplay of STAT-6 with the basic tran-
scription machinery, which is dependent on different groups of transcriptional co-regulatory
proteins. STAT-6 interacts with co-factors through its transactivation domain [57]. Although
a direct physical interaction between STAT-6 and CBP/p300 has been demonstrated in some
studies, the binding relies on the adaptor protein p100 [58]. p100 is another co-activator pro-
tein that recruits histone acetyltransferase activity to STAT6 and enhances STAT-6-mediated
transcriptional activation and gene expression [59]. CBP/p300 binds to the p300/CBP
co-integrating protein (p/CIP), also known as the nuclear receptor co-activator-3 (NCoA-3),
thereby recruiting it into the STAT-6 transcriptional activation complex [40]. p/CIP belongs
to the family of p160/SRC co-activator proteins and was found to be a positive regulator of
transcriptional activation by STAT-6. A member of the p160/SRC family, SRC-1 (NCoA-1),
was found to be crucial for activation by STAT-6. Unlike p/CIP, SRC-1 interacts directly
with STAT-6. Finally, a collaborator of STAT-6 (CoaSt6)-associated Poly(ADP-ribose) poly-
merase activity has been shown to modulate STAT-6-dependent gene transcription [60]. On
the basis of our results, we have demonstrated that JNK-1, a signal transduction molecule,
is required to initiate the activation of some genes by IL-4.

5. Conclusions

In macrophages, after the interaction of IL-4 with its receptor, the phosphorylation of
the STAT-6 molecule is induced in tyrosine 641, leading to its dimerization and translocation
to the nucleus. For the induction of certain genes, such as Arginase 1 or the Mannose receptor,
the activation of JNK-1 and the phosphorylation of STAT-6 in serines are also required.
Similarly, JNK-1 activation is necessary to recruit co-activators such as CREB-binding
protein (CBP)/p300 to the promoters of these genes. However, for other genes, such as
p21waf1 or SOCS1, STAT-6 does not require serine phosphorylation nor the recruitment of
co-activators. In conclusion, the transcription machinery induced by IL-4 is not the same
for all genes.
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