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Abstract: We consider a non-relativistic expansion of the Lorentz force equation. Both the
particle position and the electro-magnetic field are expanded. There are two interesting limits in
the case of a constant field, called electric and magnetic, where we show that the resulting equations
also follow from considering a non-linear realisation of a certain infinite-dimensional algebra.

I. INTRODUCTION

Non-Lorentzian theories refer to theories which have
as their underlying symmetry algebra a different Kine-
matical algebra than the Poincaré one, like the Galilean
algebra or the Carrol algebra. Usually, non-Lorentzian
systems can be obtained as the limit of a relativistic
system when some characteristic parameter goes to zero
(infinity). Consider for example a relativistic free point
particle and its velocity relative to the speed of light v/c.
Taking this parameter to zero (infinity) one obtains the
Galilean (Carrolian) free particle. The process of obtain-
ing a non-Lorentzian algebra from a relativistic one is
known as (Inénti-Wigner) Lie algebra contraction. The
process is as follows, first, one introduces a dimension-
less parameter A into the original algebra g and performs
an invertible change of the generators {t,} — {\™(®t,},
where the exponent n(a) depends on the generator, to
obtain an equivalent algebra g,. Taking the limit as
A — oo one obtains a contracted algebra gg, which has
the same generators as the original algebra, but different
commutation relations.

Given a relativistic system, instead of considering its
non-Lorentzian limits, one can perform a non-relativistic
expansion in terms of the characteristic parameter, that
allows to obtain, not only the non-Lorentzian limit, but
also a series of corrections. However, only the first term
in the expansion exhibits the symmetry of the contracted
(non-Lorentzian) algebra, whereas the full expansion ex-
hibits the relativistic symmetry. In [6] it was shown
how to study the symmetry algebra of the truncated ex-
pansions at any level. The idea is to construct, from
the contracted algebra, go := g(®) with generators {tg))}
an infinite sequence of expansions g(™) with generators
{tgn)}ogng ~, leading to an infinite dimensional Lie alge-
bra g(>). This infinite dimensional algebra is like a non-
relativistic expansion of the contracted algebra. Since g
acts on the space-time manifold M, we will construct an
infinite dimensional space M (°) using non-linear realisa-
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tions, on which this expanded algebra g(>) will act. In-
troducing collective coordinates on this generalized space,
one can recover the space M and the symmetry algebra
g. The aim of this work is to show how to use this general
construction to obtain the expansion of the Lagrangian
of a point-particle subject to an external constant elec-
tromagnetic field.

In [5] it was shown that the Poincaré algebra admits a
non-central extension, the Maxwell algebra. The most
general Lagrangian which realise this symmetry algebra
is:

1
LdT = —mcey/—i%, — 5 fap2?®

where Q2 := d§ + % (dm“wb + dacbx“) is the Maurer-
Cartan form and f.;(7) and #?° are new dynamical vari-
ables. This Lagrangian describes a particle subject to
an external, constant electromagnetic field. In [9] it was
shown that starting from the Galilean algebra &, one
could obtain a non-relativistic expansion of the relativis-
tic free particle Lagrangian LdT = +/—2, by consider-
ing an infinite dimensional algebra &.,. Analogously, we
will show that starting from two non-relativistic limits
of the Maxwell algebra, the electric € and magnetic 9t
Maxwell algebras, we will obtain a non-relativistic expan-
sion of the Maxwell Lagrangian, through the construction
of infinite dimensional algebras €., and 9M,. These in-
finite dimensional algebras admit quotients that describe
the symmetries of the expansion up to a finite order in
1/c. These algebras, can also be obtained as particular
quotients of the Galilean free algebras [7].

The organization of this work is as follows: In Sec-
tion IT we will obtain a non-relativistic expansion of the
Lorentz equation in powers of 1/c¢? when the constant
electric (magnetic) field is dominant.

In Section IIT we will study the same problem, that
of a non-relativistic expansion of the Lorentz equation,
through its algebra of symmetries, the Maxwell algebra.
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II. NON-RELATIVISTIC EXPANSION OF THE
LORENTZ EQUATION

The Lorentz force describes the evolution of a parti-
cle under an electromagnetic field. In covariant form, it
reads:

dp® pday
e N A i) 1
dr 4 dr (1)

Where p® denotes the relativistic 4-momentum, F? is
the electromagnetic tensor, z° is the 4-position of the par-
ticle, ¢ the charge of the particle and 7 the proper time.
Throughout this text we will be using the Minkowski
metric n*¥ = diag(—1,1,1,1).

This equation is relativistic, which means that it is
invariant under the Poincaré Lie group SO(1,3) x R%.
We wish to consider a non-relativistic expansion of this
equation in powers of the speed of light c.

To do this note that the Lorentz equation may be
rewritten as

Y - 2)
me— | —— | = Tp,

dr —xz q b
where " denotes derivative with respect to 7. Setting ¢ = 1
and separating time and space indices,

d 1 1 -,
df - ?thi'?ﬁ (3>
T\ /1= 2/(ci)? ¢
d il nd ,L" ’L’" .
m— | —— = F" + F"i;, (4)

i\/1—22/(ct)?

_ where we have introduced a rescaling of I %% such that
F' = ¢FY% 5o that F* now has units of electric field.
To obtain the non-relativistic expansion, we propose an
expansion of

1 % % 7

Together with an expansion of the fields

1 ti 1% ¥
2l F(O)+§F(1)+..., F9 = F) + - F(l)

(6)

Substituting in (3-4), Taylor expanding the y-factor and
collecting term by term in powers of ¢2, one ends up with
the following non-relativistic expansion of the Lorentz
force.
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They encode the non relativistic Lorentz force, to-
gether with energy conservation.

Due to Lévy-Leblond [2], we know that there is not an
unique well-defined non-relativistic limit of electromag-
netism. Instead, different non-relativistic regimes ap-
pear depending on the relative strength of the electric
and magnetic field. We will study the two main limits,
namely:

1. The magnetic limit, where |E| /|B| < c.
2. The electric limit, where |E| / [B| > c.

Translating these conditions into our field expansion,
the magnetic limit is obtained by having F(lg) # 0 and
keeping F'" fixed since we already have F% > 115'”
The electric limit is obtained by setting Fgg) SO that the
expansion now reads F¥ = L F (Zf) + ..., and it is clear
that F < 1F%,

The Lorentz equations in the magnetic limit are simply
(7)-(10). Introducing an expansion of the boost parame-
ter v* = U(O) + 1211(1) + ..., apd space-time translations
€=¢€q t 026(1) +..., = 6E0)+C%e(1)+... it can be
seen that the Lorentz equations in the magnetic limit are
invariant under:

n—1

8tn) = €ty T D 6130 Tl 1) (11)
m=0
oz n) - 6 + Z ’U(m t(n m) (12)
- S ol
ij ~tle g
(13)
for all n.

In the electric limit we have the following equations,
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which are instead invariant under

n—1
90y = €+ 3 8 oy (18)
5$,é’ﬂ) = EE”) + Z Uém)t(n,m) (19)
n—1 = "
LT SRR SR T
m=0 "m0 (20)
for all n.

III. LIE ALGEBRA REFORMULATION

The Maxwell algebra is a non-central extension of the
Poincaré algebra, with commutation relations:

[Maba Mcd] = anMad - nbdMac - nachd + nadec

(21)
[Maba Pc] = nbcpa - 77ach (22)
(Pas Po] = Zab (23)

Where P, denote space-time translation generators, M,
Lorentz generators and Z,;, are the new generators. As
seen in [7], it admits two non-relativistic limits, the Elec-
tric and Magnetic Maxwell algebras. Defining boost
generators G; := Mjy,, rotation generators J;; := M;;
and time translation generators H := Py, the Electric
Maxwell algebra satisfies (omitting rotations):

[Gi, ] =0, G, Z5] = 0, (24)
[H,Gi] = B, [P, Pj] = 0, (25)
[H, P = Z, (G, Zij] = 2002, (26)
G, G5] =0, (27)
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Whereas the Magnetic Maxwell algebra differs in these
three commutators:

(Gi, Zj) = =Zij, [P Bl = Zij, [Gr, Zi] = 0. (28)

In [9] it was shown that a particular expansion of
the Poincaré algebra, the &, algebra, led to a non-
relativistic series expansion of the free particle La-
grangian Ldr = v/ —12.

We will show that a similar process can be done for the
Maxwell Lagrangian, leading to an electric and magnetic
non-relativistic expansion, which coincide with (7)-(10)
and (14)-(17) respectively.

A. Electric limit

To obtain €., one starts with Maxwell and construct
the expanded algebra €., via the method of infinite Lie
algebra expansion, with generators

Pz(m) — P’L ® 072m

Ji(;n) = Mi; @ e
ZZ(]m) = Zij ® C_ZWH_2

H(m) =P® Cf2rn+17
Ggm) _ MO?', ®672m71
Zi(m) =75 ® ¢ 2mHl

Which satisfy the following commutation relations

[H(m),GZ(.")} _ plmn), {Ggm, Pj(")} = 5, Hm D

(29)
[m) ~A()] _ pmtnt1) (m) »(n)| _ (m+n)
6| =g , [Gk 28 ] = 20,25,
(30)
-Gl(,m)’ZJ(‘n)_ _ Zi(;n—i-n), {H(m),Pl(n)} _ Zi(m+n)7
_ _ (31)
[p(m) p()] _ 5 (m+nt1)
PP | =z . (32)

We have omitted transformations with respect to gen-
eralized rotations Ji(m), since everything transforms as
tensors. Note that quotienting by the ideal consisting
of all generators from levels m > 1 we recover the Elec-
tric Maxwell algebra. As shown in the introduction, we
shall now define the generalised space M (*°) on which this
infinite-dimensional algebra acts by quotienting by gen-
eralized “Lorentz” generators: Lo, := {Ggm),Ji(jm)}mzm
i.e. the formal coset exp €4 /exp Loo. We introduce in
this space local coordinates xzm), tim)>» Hém), qbzin), dual
to: Pi(m),H(m),Zi(m),Zf;n) respectively. The infinitesi-
mal action of an element of the form

Z e(n)H(") + ezn) + vén)ng) + efn)Zi(n) + az(ZL)ZZfL) (33)

n
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is, on the local coordinates:

Ot(m) = €(m) + Z vfm_n_l)xz(-”) (34)
0y = €l +Z Vi)t (35)
Ja >—€<m>+Z (m—m)(
1 ) 7
o §€(m—”)x(n) - 2vé€m—n—1)¢k(n) (36>

1 ; ; : j
. i 7 7 J
09(m) = Elmy + 2 D €lm=m)¥lmy = V=)0
i ]
=St (37)

Restricting to the level zero generators, we recover the
transformation laws of “electric” Galilean electromag-
netism [2]. Consider the following collective coordinates

) S
= Z C_le‘z(-m) T Z C_th
m=0

m=0
_ —2m+1pi ij —2m+2 4ij
=) c Oy ®I=) c ()
m=0 m=0

72m72fi(Jm)

NE

Foi = Z o2m—1 ézm) Fy =

m=0

C
0

3
I

And the Maxwell action of the collective coordinates:
. . 1 —ab
S= [ —mey/-XrX, — §FabQ

Where Q% := dO® + L (dXX?+dXPX) is the
Maurer-Cartan form, 0% := ©! and ©Y := ®¥. Ex-
panding each collective coordinate as its power series we
obtain a series S = Sg) + S(1) +S2) + ...,

S(0> = — mc2/d7' [f(())] (38)

o)
S(l) :/dT —m lé(l) — —
5 (9«)) +5 (t(o>x<o> - x<o>t<o>)) 55 (‘%))}

(39)
1 ) it x‘j Sis tia2 1-,4
Sy == [ dr{—m |t@) — ©-m ¥ + (1>. © _~O
@)~ ) i 22 8i3
¢ ©) © o))

(0)

—foi ( wt3 (f<1>$<o> T2zt ~ Zotw) — t(o>x(1>))

o (‘9(0) t35 (tm w{o) = $<o>t(0>)>

- *fz(yo) (¢<1)
(40)
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(1)
(m(O)“’(o) - m(0)91"(0>)> fu ¢(0)}

Which is invariant under the transformations laws of €.,
(34)-(37). Computing the equations of motion for the
action S(z), we recover the non-relativistic expansion of
the Lorentz equation (14)-(17). Therefore, by expanding
the non-relativistic algebra € we have recovered the rel-
ativistic correction we lost by performing a Lie algebra
contraction.

B. Magnetic limit

The process is completely analogous to the electric
case, so we will just sketch the differences. For the mag-
netic case M., we define the following generators

H™M) = py g ¢ 2mH! P™ = p g™
G = My @2t g = My @
Zl(m) = ZOi ® 6_27”4_1 Z(m) Z ® 0_2m

Which satisfy the same commutation relations as (29)-
(32) except for

[G(m (n } _ 25 Z(m+n+1)

(m) p(m] _ ylmtn)
i1 {Pi B }—Zij

(41)

Again, quotienting by the ideal consisting of all
generators from levels m > 1 we recover the Mag-
netic Maxwell algebra. Defining the generalised
space as the formal coset exp Moo /exp Loo, with lo-
cal coordinates xf ) L(m) m), qb( , associated to:

Pi(m),H(’”),Zi(m),Zi(;n) respectively. The infinitesimal
action of an element of the form (33) is now

St(m) = €m) + D Vimn) Ty (42)
0% {m) = €(my + Z Vim—m)tm) (43)
08{imy = Elmy + Z 5 m-nytm) = 5€m-n)T(n)

- 2”<mfn>¢k<n> (44)
6¢(m) = E(m) + ;Zn: eémfnfl)xj('n) — vf’m,n,l)egn)

- Z “Ein—n—r—nt(n)m{]r) (45)

Again, restricting to the level m = 0, we recover the
transformations laws for the Magnetic Galilean electro-
magnetism [2].

The collective coordinates will be the same as the elec-
tric case, except for Fyj = 300 ™2™ fi"
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The magnetic expansion of the Maxwell action is

S(0> = - mc2/d7 [1‘:(())] (46)

. )
Sy _/dT{—m ta) — :|

275(0)
©) (4 T i
—foi" | %o + 5 (toTo) — Zoto

1 0) (545 i 4]
= 5fi (¢(é) + x<0>x?0>) (47)
i g : .92 .4
1 . T(oyE7,0ij t(T T
S :2/d7'{m [_t@) 4 LOFmo% (1)_2 © _(30)]
C t(O) 2t(0) St(O)

~fsi ( ©t3 (t<0>$(o> - x<o>t(o>)>

— O 6 —0—11‘: xioy + i by — EiovEny — oy
0i @ T 5 \"W*) (1)(0) (0)4(1) (0)F(1)

— i (Wn + (Iu)“?m +x<%)“<1)))
W) (i o i)
—fij (¢<f>) + 33(0)37?(») } (48)

Which are invariant under the 91, algebra. Computing
the equations of motion for S() one recovers the non-
relativistic expansion of the Lorentz force in the magnetic
limit (7)-(10).

One may ask what the role of the 6% and ¢/ variables
is on the non-relativistic expansion of the Lorentz equa-
tion. The key idea connecting these two formalisms is
that if one wants to obtain a Lagrangian from which the
non-relativistic expansion of Lorentz equations arise, one
would need to add new variables #?° as Lagrange mul-
tipliers to assure that F? is constant on-shell. They
transform under the action of the symmetry algebra as
(36-37) and (44-45). These extra variables can be re-
garded as the dipole moment of the particle [4], since
in the Maxwell Lagrangian, 69t is proportional to the
angular momentum (magnetic moment) of the particle
on-shell.

IV. CONCLUSIONS

We showed how to obtain a non-relativistic expansion
in powers of 1/c? of the Lorentz equation for a constant
electro-magnetic field from a completely algebraic point
of view, applying the construction presented in [6], and
following the results obtained in [8], which we also satis-
factorily reproduced. From the non-relativistic limits of
the Maxwell algebra, 91 and &, we constructed the in-
finite dimensional algebras M., and &,, which allowed
us to obtain an order by order non-relativistic expansion
of the Lorentz force, which matched the non-relativistic
expansion one obtains from the Lorentz equation. Fur-
thermore, the truncation of these algebras at level £ gives
us the symmetry algebra of the non-relativistic expansion
up to level 2=,

These results will be explained in much further detail
in a paper currently in progress.

This formalism is completely general, and can be ap-
plied to a number of situations. For instance, the post-
Newtonian expansion of the two body problem for grav-
itational wave emission. Also mention that in [11] a one
to one correspondence between stationary motion of a
particle and orbits in a constant E.M. field was estab-
lished, implying that the equations of motion obtained
correspond to stationary motion.
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