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Author: José Luis Vérez-Fraguela Cerdeira.
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.∗

Advisors: Joaquim Gomis and Jorge Russo.

Abstract: We consider a non-relativistic expansion of the Lorentz force equation. Both the
particle position and the electro-magnetic field are expanded. There are two interesting limits in
the case of a constant field, called electric and magnetic, where we show that the resulting equations
also follow from considering a non-linear realisation of a certain infinite-dimensional algebra.

I. INTRODUCTION

Non-Lorentzian theories refer to theories which have
as their underlying symmetry algebra a different Kine-
matical algebra than the Poincaré one, like the Galilean
algebra or the Carrol algebra. Usually, non-Lorentzian
systems can be obtained as the limit of a relativistic
system when some characteristic parameter goes to zero
(infinity). Consider for example a relativistic free point
particle and its velocity relative to the speed of light v/c.
Taking this parameter to zero (infinity) one obtains the
Galilean (Carrolian) free particle. The process of obtain-
ing a non-Lorentzian algebra from a relativistic one is
known as (Inönü–Wigner) Lie algebra contraction. The
process is as follows, first, one introduces a dimension-
less parameter λ into the original algebra g and performs
an invertible change of the generators {tα} → {λn(α)tα},
where the exponent n(α) depends on the generator, to
obtain an equivalent algebra gλ. Taking the limit as
λ → ∞ one obtains a contracted algebra g0, which has
the same generators as the original algebra, but different
commutation relations.

Given a relativistic system, instead of considering its
non-Lorentzian limits, one can perform a non-relativistic
expansion in terms of the characteristic parameter, that
allows to obtain, not only the non-Lorentzian limit, but
also a series of corrections. However, only the first term
in the expansion exhibits the symmetry of the contracted
(non-Lorentzian) algebra, whereas the full expansion ex-
hibits the relativistic symmetry. In [6] it was shown
how to study the symmetry algebra of the truncated ex-
pansions at any level. The idea is to construct, from

the contracted algebra, g0 := g(0) with generators {t(0)α }
an infinite sequence of expansions g(N) with generators

{t(n)α }0≤n≤N , leading to an infinite dimensional Lie alge-

bra g(∞). This infinite dimensional algebra is like a non-
relativistic expansion of the contracted algebra. Since g
acts on the space-time manifold M , we will construct an
infinite dimensional space M (∞) using non-linear realisa-
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tions, on which this expanded algebra g(∞) will act. In-
troducing collective coordinates on this generalized space,
one can recover the space M and the symmetry algebra
g. The aim of this work is to show how to use this general
construction to obtain the expansion of the Lagrangian
of a point-particle subject to an external constant elec-
tromagnetic field.

In [5] it was shown that the Poincaré algebra admits a
non-central extension, the Maxwell algebra. The most
general Lagrangian which realise this symmetry algebra
is:

Ldτ = −mc
√
−ẋaẋa −

1

2
fabΩ

ab

where Ωab := dθab + 1
2

(
dxaxb + dxbxa

)
is the Maurer-

Cartan form and fab(τ) and θab are new dynamical vari-
ables. This Lagrangian describes a particle subject to
an external, constant electromagnetic field. In [9] it was
shown that starting from the Galilean algebra G, one
could obtain a non-relativistic expansion of the relativis-
tic free particle Lagrangian Ldτ =

√
−ẋ2, by consider-

ing an infinite dimensional algebra G∞. Analogously, we
will show that starting from two non-relativistic limits
of the Maxwell algebra, the electric E and magnetic M
Maxwell algebras, we will obtain a non-relativistic expan-
sion of the Maxwell Lagrangian, through the construction
of infinite dimensional algebras E∞ and M∞. These in-
finite dimensional algebras admit quotients that describe
the symmetries of the expansion up to a finite order in
1/c. These algebras, can also be obtained as particular
quotients of the Galilean free algebras [7].

The organization of this work is as follows: In Sec-
tion II we will obtain a non-relativistic expansion of the
Lorentz equation in powers of 1/c2 when the constant
electric (magnetic) field is dominant.

In Section III we will study the same problem, that
of a non-relativistic expansion of the Lorentz equation,
through its algebra of symmetries, the Maxwell algebra.
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II. NON-RELATIVISTIC EXPANSION OF THE
LORENTZ EQUATION

The Lorentz force describes the evolution of a parti-
cle under an electromagnetic field. In covariant form, it
reads:

dpa

dτ
= qF ab dxb

dτ
(1)

Where pa denotes the relativistic 4-momentum, F ab is
the electromagnetic tensor, xb is the 4-position of the par-
ticle, q the charge of the particle and τ the proper time.
Throughout this text we will be using the Minkowski
metric ηµν = diag(−1, 1, 1, 1).

This equation is relativistic, which means that it is
invariant under the Poincaré Lie group SO(1, 3) ⋉ R4.
We wish to consider a non-relativistic expansion of this
equation in powers of the speed of light c.

To do this note that the Lorentz equation may be
rewritten as

mc
d

dτ

(
ẋa

√
−x2

)
= qF abẋb, (2)

where˙denotes derivative with respect to τ . Setting q = 1
and separating time and space indices,

m
d

dτ

 1√
1− ˙⃗x2/(cṫ)2

 =
1

c2
F̃ tiẋi, (3)

m
d

dτ

 ẋi

ṫ

√
1− ˙⃗x2/(cṫ)2

 = F̃ tiṫ+ F ij ẋj , (4)

where we have introduced a rescaling of F 0i such that
F̃ ti = cF 0i, so that F̃ ti now has units of electric field.
To obtain the non-relativistic expansion, we propose an
expansion of

t = t(0) +
1

c2
t(1) + . . . , xi = xi

(0) +
1

c2
xi
(1) + . . . (5)

Together with an expansion of the fields

F̃ ti = F̃ ti
(0) +

1

c2
F ti
(1) + . . . , F ij = F ij

(0) +
1

c2
F ij
(1) + . . .

(6)

Substituting in (3-4), Taylor expanding the γ-factor and
collecting term by term in powers of c2, one ends up with
the following non-relativistic expansion of the Lorentz
force.

m
d

dτ

[
˙⃗x2
(0)

2ṫ2(0)

]
= F̃ ti

(0)ẋ(0)i (7)

m
d

dτ

[
ẋi
(0)

ṫ(0)

]
= F̃ ti

(0)ṫ(0) + F ij
(0)ẋ(0)j (8)

m
d

dτ

[
3

8

( ˙⃗x2
(0))

2

ṫ4(0)
+

˙⃗x(0) · ˙⃗x(1)

ṫ2(0)
−

˙⃗x2
(0)ṫ(1)

ṫ3(0)

]
= F̃ ti

(0)ẋ(1)i+F̃ ti
(1)ẋ(0)i (9)

m
d

dτ

[
1

2

˙⃗x2
(0)ẋ

i
(0)

ṫ3(0)
−

ṫ(1)ẋ
i
(0)

ṫ2(0)
+

ẋi
(1)

ṫ(0)

]
= F̃ ti

(0)ṫ(1) + F ij
(0)ẋ(1)j + F̃ ti

(1)ṫ(0)+F ij
(1)ẋ(0)j (10)

. . .

They encode the non relativistic Lorentz force, to-
gether with energy conservation.

Due to Lévy-Leblond [2], we know that there is not an
unique well-defined non-relativistic limit of electromag-
netism. Instead, different non-relativistic regimes ap-
pear depending on the relative strength of the electric
and magnetic field. We will study the two main limits,
namely:

1. The magnetic limit, where |E| / |B| ≪ c.

2. The electric limit, where |E| / |B| ≫ c.

Translating these conditions into our field expansion,
the magnetic limit is obtained by having F ij

(0) ̸= 0 and

keeping F̃ ti fixed since we already have F ij ≫ 1
c F̃

ti.

The electric limit is obtained by setting F ij
(0) so that the

expansion now reads F ij = 1
c2F

ij
(1) + . . . , and it is clear

that F ij ≪ 1
c F̃

ti.
The Lorentz equations in the magnetic limit are simply

(7)-(10). Introducing an expansion of the boost parame-
ter vi = vi(0) +

1
c2 v

i
(1) + . . . , and space-time translations

ϵ = ϵ(0) +
1
c2 ϵ(1) + . . . , ϵi = ϵi(0) +

1
c2 ϵ(1) + . . . it can be

seen that the Lorentz equations in the magnetic limit are
invariant under:

δt(n) = ϵ(n) +

n−1∑
m=0

δijv
i
(m)x

j
(n−m−1) (11)

δxi
(n) = ϵi(n) +

n∑
m=0

vi(m)t(n−m) (12)

δF̃ ti
(n) =

n∑
m=0

v(m)kF
ki
(n−m), δF ij

(n) =

n−1∑
m=0

−2F̃
t[i
(m)v

j]
(n−m−1)

(13)

for all n.
In the electric limit we have the following equations,

Treball de Fi de Grau 2 Barcelona, June 2023



Kinematical algebras in a non-relativistic expansion of the Lorentz force José Luis V. Cerdeira

m
d

dτ

[
˙⃗x2
(0)

2ṫ2(0)

]
= F̃ ti

(0)ẋ(0)i (14)

m
d

dτ

[
ẋi
(0)

ṫ(0)

]
= F̃ ti

(0)ṫ(0) (15)

m
d

dτ

[
3

8

( ˙⃗x2
(0))

2

ṫ4(0)
+

˙⃗x(0) · ˙⃗x(1)

ṫ2(0)
−

˙⃗x2
(0)ṫ(1)

ṫ3(0)

]
= F̃ ti

(0)ẋ(1)i+F̃ ti
(1)ẋ(0)i (16)

m
d

dτ

[
1

2

˙⃗x2
(0)ẋ

i
(0)

ṫ3(0)
−

ṫ(1)ẋ
i
(0)

ṫ2(0)
+

ẋi
(1)

ṫ(0)

]
= F̃ ti

(0)ṫ(1) + F̃ ti
(1)ṫ(0)+F ij

(1)ẋ(0)j (17)

. . .

which are instead invariant under

δt(n) = ϵ(n) +

n−1∑
m=0

δijv
i
(m)x

j
(n−m−1) (18)

δxi
(n) = ϵi(n) +

n∑
m=0

vi(m)t(n−m) (19)

δF̃ ti
(n) =

n−1∑
m=0

v(m)kF
ki
(n−m−1), δF ij

(n) =

n∑
m=0

−2F̃
t[i
(m)v

j]
(n−m)

(20)

for all n.

III. LIE ALGEBRA REFORMULATION

The Maxwell algebra is a non-central extension of the
Poincaré algebra, with commutation relations:

[Mab,Mcd] = ηbcMad − ηbdMac − ηacMbd + ηadMbc

(21)

[Mab, Pc] = ηbcPa − ηacPb (22)

[Pa, Pb] = Zab (23)

Where Pa denote space-time translation generators, Mab

Lorentz generators and Zab are the new generators. As
seen in [7], it admits two non-relativistic limits, the Elec-
tric and Magnetic Maxwell algebras. Defining boost
generators Gi := M0i, rotation generators Jij := Mij

and time translation generators H := P0, the Electric
Maxwell algebra satisfies (omitting rotations):

[Gi, Pj ] = 0, [Gi, Zj ] = 0, (24)

[H,Gi] = Pi, [Pi, Pj ] = 0, (25)

[H,Pi] = Zi, [Gk, Zij ] = 2δk[iZj], (26)

[Gi, Gj ] = 0, (27)

Whereas the Magnetic Maxwell algebra differs in these
three commutators:

[Gi, Zj ] = −Zij , [Pi, Pj ] = Zij , [Gk, Zij ] = 0. (28)

In [9] it was shown that a particular expansion of
the Poincaré algebra, the G∞ algebra, led to a non-
relativistic series expansion of the free particle La-
grangian Ldτ =

√
−ẋ2.

We will show that a similar process can be done for the
Maxwell Lagrangian, leading to an electric and magnetic
non-relativistic expansion, which coincide with (7)-(10)
and (14)-(17) respectively.

A. Electric limit

To obtain E∞, one starts with Maxwell and construct
the expanded algebra E∞ via the method of infinite Lie
algebra expansion, with generators

H(m) = P0 ⊗ c−2m+1, P
(m)
i = Pi ⊗ c−2m

G
(m)
i = M0i ⊗ c−2m−1 J

(m)
ij = Mij ⊗ c−2m

Z
(m)
i = Z0i ⊗ c−2m+1 Z

(m)
ij = Zij ⊗ c−2m+2

Which satisfy the following commutation relations

[
H(m), G

(n)
i

]
= P

(m+n)
i ,

[
G

(m)
i , P

(n)
j

]
= δijH

(m+n+1)

(29)[
G

(m)
i , G

(n)
j

]
= J

(m+n+1)
ij ,

[
G

(m)
k , Z

(n)
ij

]
= 2δk[iZ

(m+n)
j] ,

(30)[
G

(m)
i , Z

(n)
j

]
= Z

(m+n)
ij ,

[
H(m), P

(n)
i

]
= Z

(m+n)
i ,

(31)[
P

(m)
i , P

(n)
j

]
= Z

(m+n+1)
ij . (32)

We have omitted transformations with respect to gen-

eralized rotations J
(m)
ij , since everything transforms as

tensors. Note that quotienting by the ideal consisting
of all generators from levels m ≥ 1 we recover the Elec-
tric Maxwell algebra. As shown in the introduction, we
shall now define the generalised spaceM (∞) on which this
infinite-dimensional algebra acts by quotienting by gen-

eralized “Lorentz” generators: L∞ := {G(m)
i , J

(m)
ij }m≥0,

i.e. the formal coset expE∞/ expL∞. We introduce in

this space local coordinates xi
(m), t(m), θ

i
(m), ϕ

ij
(m), dual

to: P
(m)
i , H(m), Z

(m)
i , Z

(m)
ij respectively. The infinitesi-

mal action of an element of the form∑
n

ϵ(n)H
(n)+ ϵi(n)+ vi(n)G

(n)
i + εi(n)Z

(n)
i + εij(n)Z

ij
(n) (33)
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is, on the local coordinates:

δt(m) = ϵ(m) +
∑
n

vi(m−n−1)x
(n)
i (34)

δxi
(m) = ϵi(m) +

∑
n

vi(m−n)t(n) (35)

δθi(m) = εi(m) +
∑
n

1

2
ϵi(m−n)t(n)

− 1

2
ϵ(m−n)x

i
(n) − 2vk(m−n−1)ϕ

i
k(n) (36)

δϕij
(m) = εij(m) +

1

2

∑
n

ϵi(m−n)x
j
(n) − vi(m−n)θ

j
(n)

−
∑
r

v
[i
(m−n−r)t(n)x

j]
(r) (37)

Restricting to the level zero generators, we recover the
transformation laws of “electric” Galilean electromag-
netism [2]. Consider the following collective coordinates

Xi =

∞∑
m=0

c−2mxi
(m) T =

∞∑
m=0

c−2mt(m)

Θi =

∞∑
m=0

c−2m+1θi(m) Φij =

∞∑
m=0

c−2m+2ϕij
(m)

F0i =

∞∑
m=0

c−2m−1f
(m)
0i Fij =

∞∑
m=0

c−2m−2f
(m)
ij

And the Maxwell action of the collective coordinates:

S =

∫
−mc

√
−ẊµẊµ − 1

2
FabΩ

ab
.

Where Ω
ab

:= dΘab + 1
2

(
dXaXb + dXbXa

)
is the

Maurer-Cartan form, Θ0i := Θi and Θij := Φij . Ex-
panding each collective coordinate as its power series we
obtain a series S = S(0) + S(1) + S(2) + . . . ,

S(0) =−mc2
∫

dτ
[
ṫ(0)

]
(38)

S(1) =

∫
dτ

{
−m

[
ṫ(1) −

ẋ2
(0)

2ṫ(0)

]

−f
(0)
0i

(
θ̇i(0) +

1

2

(
ṫ(0)x

i
(0) − ẋi

(0)t(0)

))
− 1

2
f
(0)
ij

(
ϕ̇ij
(0)

)}
(39)

S(2) =
1

c2

∫
dτ

{
−m

[
ṫ(2) −

ẋi
(0)ẋ

j
(1)δij

ṫ(0)
+

ṫ(1)ẋ
2
(0)

2ṫ2(0)
−

ẋ4
(0)

8ṫ3(0)

]

− f
(0)
0i

(
θ̇i(1) +

1

2

(
ṫ(1)x

i
(0) + xi

(1)ṫ(0) − ẋi
(0)t(1) − t(0)ẋ

i
(1)

))
− f

(1)
0i

(
θ̇i(0) +

1

2

(
ṫ(0)x

i
(0) − ẋi

(0)t(0)

))
− 1

2
f
(0)
ij

(
ϕ̇ij
(1) +

1

2

(
ẋi
(0)x

j
(0) − ẋj

(0)x
i
(0)

))
− 1

2
f
(1)
ij ϕ̇ij

(0)

}
(40)

Which is invariant under the transformations laws of E∞
(34)-(37). Computing the equations of motion for the
action S(2), we recover the non-relativistic expansion of
the Lorentz equation (14)-(17). Therefore, by expanding
the non-relativistic algebra E we have recovered the rel-
ativistic correction we lost by performing a Lie algebra
contraction.

B. Magnetic limit

The process is completely analogous to the electric
case, so we will just sketch the differences. For the mag-
netic case M∞, we define the following generators

H(m) = P0 ⊗ c−2m+1 P
(m)
i = Pi ⊗ c−2m

G
(m)
i = M0i ⊗ c−2m−1 J

(m)
ij = Mij ⊗ c−2m

Z
(m)
i = Z0i ⊗ c−2m+1 Z

(m)
ij = Zij ⊗ c−2m

Which satisfy the same commutation relations as (29)-
(32) except for[
G

(m)
k , Z

(n)
ij

]
= 2δk[iZ

(m+n+1)
j] ,

[
P

(m)
i , P

(n)
j

]
= Z

(m+n)
ij

(41)

Again, quotienting by the ideal consisting of all
generators from levels m ≥ 1 we recover the Mag-
netic Maxwell algebra. Defining the generalised
space as the formal coset expM∞/ expL∞, with lo-

cal coordinates xi
(m), t(m), θ

i
(m), ϕ

ij
(m), associated to:

P
(m)
i , H(m), Z

(m)
i , Z

(m)
ij respectively. The infinitesimal

action of an element of the form (33) is now

δt(m) = ϵ(m) +
∑
n

vi(m−n−1)x
(n)
i (42)

δxi
(m) = ϵi(m) +

∑
n

vi(m−n)t(n) (43)

δθi(m) = εi(m) +
∑
n

1

2
ϵi(m−n)t(n) −

1

2
ϵ(m−n)x

i
(n)

− 2vk(m−n)ϕ
i
k(n) (44)

δϕij
(m) = εij(m) +

1

2

∑
n

ϵi(m−n−1)x
j
(n) − vi(m−n−1)θ

j
(n)

−
∑
r

v
[i
(m−n−r−1)t(n)x

j]
(r) (45)

Again, restricting to the level m = 0, we recover the
transformations laws for the Magnetic Galilean electro-
magnetism [2].

The collective coordinates will be the same as the elec-
tric case, except for Fij =

∑∞
m=0 c

−2mf
(m)
ij .
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The magnetic expansion of the Maxwell action is

S(0) =−mc2
∫

dτ
[
ṫ(0)

]
(46)

S(1) =

∫
dτ

{
−m

[
ṫ(1) −

ẋ2
(0)

2ṫ(0)

]

− f
(0)
0i

(
θ̇i(0) +

1

2

(
ṫ(0)x

i
(0) − ẋi

(0)t(0)

))
− 1

2
f
(0)
ij

(
ϕ̇ij
(0) + ẋ

[i

(0)x
j]

(0)

)}
(47)

S(2) =
1

c2

∫
dτ

{
m

[
−ṫ(2) +

ẋi
(0)ẋ

j
(1)δij

ṫ(0)
−

ṫ(1)ẋ
2
(0)

2ṫ2(0)
+

ẋ4
(0)

8ṫ3(0)

]

−f
(1)
0i

(
θ̇i(0) +

1

2

(
ṫ(0)x

i
(0) − ẋi

(0)t(0)

))
− f

(0)
0i

(
θ̇i(1) +

1

2

(
ṫ(1)x

i
(0) + xi

(1)ṫ(0) − ẋi
(0)t(1) − t(0)ẋ

i
(1)

))
− f

(0)
ij

(
ϕ̇ij
(1) +

(
ẋ
[i

(1)x
j]

(0) + ẋ
[j

(0)x
i]

(1)

))
− f

(1)
ij

(
ϕ̇ij
(0) + ẋ

[i

(0)x
j]

(0)

)}
(48)

Which are invariant under the M∞ algebra. Computing
the equations of motion for S(2) one recovers the non-
relativistic expansion of the Lorentz force in the magnetic
limit (7)-(10).

One may ask what the role of the θi and ϕij variables
is on the non-relativistic expansion of the Lorentz equa-
tion. The key idea connecting these two formalisms is
that if one wants to obtain a Lagrangian from which the
non-relativistic expansion of Lorentz equations arise, one
would need to add new variables θab as Lagrange mul-
tipliers to assure that F ab is constant on-shell. They
transform under the action of the symmetry algebra as
(36-37) and (44-45). These extra variables can be re-
garded as the dipole moment of the particle [4], since

in the Maxwell Lagrangian, θ̇ab is proportional to the
angular momentum (magnetic moment) of the particle
on-shell.

IV. CONCLUSIONS

We showed how to obtain a non-relativistic expansion
in powers of 1/c2 of the Lorentz equation for a constant
electro-magnetic field from a completely algebraic point
of view, applying the construction presented in [6], and
following the results obtained in [8], which we also satis-
factorily reproduced. From the non-relativistic limits of
the Maxwell algebra, M and E, we constructed the in-
finite dimensional algebras M∞ and E∞, which allowed
us to obtain an order by order non-relativistic expansion
of the Lorentz force, which matched the non-relativistic
expansion one obtains from the Lorentz equation. Fur-
thermore, the truncation of these algebras at level ℓ gives
us the symmetry algebra of the non-relativistic expansion
up to level c2−2ℓ.

These results will be explained in much further detail
in a paper currently in progress.
This formalism is completely general, and can be ap-

plied to a number of situations. For instance, the post-
Newtonian expansion of the two body problem for grav-
itational wave emission. Also mention that in [11] a one
to one correspondence between stationary motion of a
particle and orbits in a constant E.M. field was estab-
lished, implying that the equations of motion obtained
correspond to stationary motion.
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