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Abstract: This study focuses on determining the partition coefficients (logP) of a diverse set of 63 

molecules in three distinct micellar systems: hexadecyltrimethylammonium bromide (HTAB), 

sodium cholate (SC), and lithium perfluorooctanesulfonate (LPFOS). The experimental log p 

values were obtained through micellar electrokinetic chromatography (MEKC) experiments, 

conducted under controlled pH conditions. Then, Quantum Mechanics (QM) and machine 

learning approaches are proposed for the prediction of the partition coefficients in these three 

micellar systems. In the applied QM approach, the experimentally obtained partition coefficients 

were correlated with the calculated values for the case of the 15 solvent mixtures. Using Density 

Function Theory (DFT) with the B3LYP functional, we calculated the solvation free energies of 63 

molecules in these 16 solvents. The combined data from the experimental partition coefficients in 

the three micellar formulations showed that the 1-propanol/water combination demonstrated the 

best agreement with the experimental partition coefficients for the SC and HTAB micelles. 

Moreover, we employed the SVM approach and k-means clustering based on the generation of the 

chemical descriptor space. The analysis revealed distinct partitioning patterns associated with 

specific characteristic features within each identified class. These results indicate the utility of the 

combined techniques when we want an efficient and quicker model for predicting partition 

coefficients in diverse micelles. 

Keywords: partition coefficient; micelle; hexadecyltrimethylammonium bromide (HTAB); sodium 

cholate (SC); lithium perfluorooctanesulfonate (LPFOS); SVM; DFT; k-means clustering 

 

1. Introduction 

The partition coefficient (logP) is a significant physicochemical parameter used in 

various fields such as drug and pharmaceutical product design, substance toxicology, 

and environmental fate modeling of organic compounds [1]. It measures the solute’s 

solubility in two immiscible solvents, providing valuable insights into solute 

distribution. In drug delivery systems, the partition coefficient is crucial in determining 

the system’s ability to distribute molecules between the aqueous phase and micelles [2]. 

Regular micelles consist of a polar head and a nonpolar tail, enabling the dissolution of 
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both polar and nonpolar molecules. Hydrophilic solutes preferentially interact with the 

polar, hydrophilic surface of the micelle, while hydrophobic solutes tend to accumulate 

in the nonpolar, hydrophobic core of the micelle [3,4]. Understanding the partitioning 

behavior within micelles can contribute to enhancing the efficacy and safety of drug 

delivery systems. Moreover, this knowledge can be leveraged to optimize the design and 

performance of such systems, leading to improved therapeutic outcomes [5,6]. When 

hydrophobic compounds are introduced into micellar solutions, they have a higher 

tendency to associate with the micelles because the hydrophobic regions of the micelles 

(the inner hydrophobic tails) can provide a more favorable environment for the 

hydrophobic molecules. As a result, more hydrophobic molecules have higher values of 

partition coefficients in micellar systems. In this context, the use of pluronic micelles for 

delivering hydrophobic drugs presents an interesting and alternative approach [7,8]. 

Various experimental methods can be used to estimate the micelle–water partition 

coefficient, such as solubility analysis, micellar-enhanced ultrafiltration, micellar liquid 

chromatography [9,10], and cloud-point extraction [11]. In this study, the micelle–water 

partition coefficients were estimated from the retention times of micellar electrokinetic 

chromatography (MEKC) experiments [12,13].  

The MEKC technique is widely employed for the separation and identification of 

components within a mixture. This technique utilizes as a pseudo-stationary phase a 

surfactant above its critical micellar concentration (CMC) to facilitate the formation of 

micelles in an aqueous solution. By applying an electric field, the components within the 

mixture are partitioned between the aqueous and the micellar phases, leading to their 

separation. MEKC separations present high resolution and efficiency in the analysis of 

both neutral and charged compounds. Moreover, the separations can be easily 

optimized just by changing the nature of the surfactant [14,15]. This technique has been 

used for the determination of partition coefficients in micelles in many different fields 

[16–20]. 

From a computational point of view, molecular dynamics (MD) simulations could 

provide valuable insights into the transfer of solutes between different phases, such as 

from the aqueous phase to the micellar phase [4]. These simulations allow free energy 

profiles to be obtained, which quantitatively describe the energetic changes associated 

with solute transfer. In the context of drug delivery systems, these profiles help in 

understanding the distribution of drugs within micelles and optimize their design. 

However, it is important to note that molecular dynamics simulations can be 

computationally costly because of the need for long converged trajectories. 

MD simulations combined with the COSMOmic method have been shown to be a 

promising alternative [5,21,22] to experimental methods for predicting the partition 

coefficient in micellar systems. Previous studies have demonstrated good correlation 

between predicted and experimental data for a variety of micelles [23], including sodium 

dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide (HTAB, also known as 

Cetyltrimethylammonium Bromide, CTAB), sodium cholate (SC), lithium 

perfluorooctanesulfonate (LPFOS), C12E10, Brij35, Triton X-114, and Triton X-100. 

Recently, a study on mixed micelles formed by sodium laureth sulfate (SLES) and 

fatty acids, using molecular dynamics simulations, shows that the micelle–water 

partition coefficients of neutral and charged fatty acids could be calculated using the 

COSMOmic and the MD approach [24]. Based on the potential of mean force (PMF) 

calculations performed using umbrella sampling (US), the study shows that the partition 

coefficients for neutral solutes can be accurately calculated using both the COSMOmic 

and additive CGenFF US/PMF approaches, while the Drude polarizable force field is 

needed to accurately calculate the experimental partition coefficient of the charged 

solute. There are other examples of MD simulations with US and COSMOmic [25], 

demonstrating the utility of these methods for predicting partition equilibria in micellar 

systems. 
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Moreover, the fragmental constant method (FCA) has also been applied to 

determine partition coefficients. The FCA model defines a micelle–water partition 

coefficient as the sum of the partition coefficients of the component’s atomic/molecular 

fragments, determined by fragmental constant values [26]. Fragmental techniques are 

ineffective at estimating the parameters of other solvents and are only appropriate for a 

narrow range of solvents (typically octanol/water). 

Alternatively, other ways of categorizing logP predictors use parametric models, 

which employ methods such as least squares estimation or multiple linear regression to 

fit the parameters governing the relative contributions of different input features. 

Machine-learning-based methods, including Support Vector Machines (SVM) [27,28], 

Neural Networks (NNs) [29], and Graph Convolutional Networks (GCN) [30], have also 

been utilized for logP prediction. In a recent study by Dickson et al. [31], various 

methods for predicting logP values in a dataset of small molecules were examined. The 

study focused on transforming atomic properties, such as radius and partial charge, 

which are commonly employed as force field parameters in classical molecular 

dynamics simulations. These attributes were converted into index-invariant molecular 

features using a recently developed technique known as geometric scattering for graphs 

(GSG) [31]. The results obtained from this investigation demonstrate that the most 

accurate predictions were achieved using atomic attributes generated with the 

CHARMM generalized force field and 2D molecular structures. This highlights the 

significance of employing appropriate molecular representations and force field 

parameters for accurate logP prediction. 

Here, the focus is on the use of density functional theory (DFT) calculations and 

SVM calculations for predicting the partition coefficients of compounds in micellar 

systems. DFT calculations are a Quantum Mechanics (QM) computational method that 

can be used to predict the partition coefficients of compounds in micellar systems. They 

are faster and less computationally demanding than molecular dynamics simulations, 

making them an attractive alternative for predicting the properties of drugs in micellar 

systems. By calculating the energy changes associated with transferring a compound 

from the aqueous phase to a solvent phase that resembles the behavior of the micellar 

phase, DFT calculations can provide an estimate of the compound’s partition coefficient 

in a micellar system. This makes DFT calculations a valuable tool for drug delivery 

design and optimization. The first step is to use DFT calculations to identify the 

combination of solvents that can best predict the experimental partition coefficients of 

compounds in a specific micellar system. This study aims to apply the DFT calculation 

approach to predict the partition coefficients of 63 compounds in HTAB, SC, and LPFOS 

micellar solutions (Table 1). The study will compare the predicted partition coefficients 

with experimental data to assess the accuracy of the DFT approach. The prediction of 15 

solvent–water partition coefficients is achieved by applying DFT with the B3LYP method 

[32] with a 6-31++G** basis set. The solvation model based on the density (SMD) is 

applied to evaluate the free energy of solvation [33,34]. This model divides the solvation 

free energy into two main contributions—the bulk electrostatic contribution and the 

cavity dispersion contribution—and it can be applied to any charged or uncharged 

solute in any type of solvent as a universal solvation model. Using this approach, 

correlations with micellar partition coefficients in SC, HTAB, and LPFOS micellar 

systems are performed. 

Finally, SVM calculations are performed using the experimental values obtained 

from the three micellar systems. SVM calculations involve the application of a 

supervised machine learning algorithm widely utilized in pattern recognition and 

regression tasks. SVM-based models can capture complex relationships between 

molecular descriptors and partition coefficients, thereby enabling the prediction of 

partition coefficients for a diverse range of compounds. The utilization of SVM 

calculations in partition coefficient prediction offers several advantages. Firstly, it 

enables the rapid and cost-effective screening of large compound libraries, facilitating 
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the identification of promising candidates for drug development or the assessment of 

environmental impact. Additionally, SVM models can accommodate a wide range of 

chemical structures and properties, making them applicable to various classes of 

compounds. Moreover, SVM-based models can incorporate both structural and 

physicochemical descriptors, providing a comprehensive representation of the 

molecular characteristics that influence partitioning behavior. This facilitates the 

exploration of structure–activity relationships and the identification of key features 

contributing to partition coefficients, thereby assisting in the design and optimization of 

compounds with desired properties. Furthermore, the predictive accuracy of SVM 

models can be continuously improved by incorporating more diverse and high-quality 

data, as well as by optimizing the selection and combination of molecular descriptors. As 

a result of this iterative process, the models are refined and their reliability and 

robustness are enhanced. 

Table 1. Chemical structure of the molecules that form the micelles of this study. 

Micelle Name Symbol Structure 
Schematic Representation of 

Formed Micelles 

Hexadecyltrimethyl- 

ammonium bromide 
HTAB 

 

 

Lithium 

perfluorooctanesulfonate 
LPFOS 

 

 

Sodium cholate SC 

 
 

2. Results and Discussion 

The experimental values of logP obtained from the SC, LPFOS, and HTAB micelles 

were analyzed and used to parametrize the computational methodology applied for 

each type of micelle. Initially, the logP values were estimated based on simple DFT 

calculations of the molecules in different solvents. Subsequently, SVM predictions were 

made after conducting a study on the most relevant descriptors using k-means 

clustering and PCA. 

2.1. Experimental logP Values of SC, HTAB, and LPFOS Micelles 

The experimental partition coefficients (logP values) in three different types of 

micelles, namely SC, LPFOS, and HTAB, are presented in Table 2. These logP values 

were determined by measuring the retention factors of the compounds in 80 mM SC 

micelles in 20 mM phosphate buffer, 40 mM LPFOS micelles in 20 mM phosphate buffer, 

and 20 mM HTAB micelles in 20 mM phosphate buffer at pH 7 and 25 °C. The logP 

values of 63 compounds, representing a diverse set of compounds including benzene 

derivatives, nitrogen-containing heterocycles, pesticides, hormones, and pharmaceutical 

compounds, are displayed in Table 2. The selection of compounds was performed 

according to a previous study [13]. Basically, to obtain a representative set of compounds 

that cover a wide chemical space, the Abraham descriptor values (excess molar 
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refraction, dipolarity/polarizability, hydrogen bond acidity and basicity, and McGowan 

volume) of the compounds were considered [35]. To this end, a total of 2975 compounds 

of different natures were analyzed according to their descriptor values through a 

principal component analysis. Then, the 2975 compounds were plotted according to the 

two main principal component values (which represent the highest variance in the 

system). This plot provided a map of compounds distributed according to their 

physicochemical properties. The final selection of 63 compounds was performed, trying 

to cover all the regions of the plot. Additional requirements were that the selected 

compounds must have a chromophore group to be compatible with the detection 

system, and must be neutral at the pH of the determination. 

The substances displaying the highest logP values in this table are butylbenzene for 

both logPSC and logPHTAB, and 1-phenylheptan-1-one for logPLPFOS. On the other hand, 

pyrimidine shows the lowest logP value for logPSC, 4-aminobenzamide for logPHTAB, and 

hydroquinone for logPLPFOS. The logPSC and logPLPFOS exhibit more similar values 

compared to logPHTAB, indicating a possible correlation between logPSC and logPLPFOS. 

Furthermore, a general trend is noticed: compounds with higher hydrophobicity tend to 

have higher logP values, while those with lower values are more hydrophilic. Therefore, 

the logP values for the three types of micelles serve as measures of the lipophilicity or 

hydrophobicity of the respective compounds. 

Table 2. List of experimental partition coefficients of compounds in SC, LPFOS, and HTAB 

micelles (LogPSC, LogPLPFOS, LogPHTAB) determined from retention factors obtained from MECK 

experiments with 80 mM of SC, 40 mM of LPFOS, and 20 mM of HTAB, all in 20 mM phosphate 

buffer at pH 7 at 25 °C. 

Compound logPSC logPHTAB logPLPFOS 

Ethylbenzene 2.50 3.00 2.06 

Propylbenzene 2.94 3.42 2.39 

Butylbenzene 3.26 3.71 2.71 

1-Phenylethanone 1.33 2.03 2.19 

1-Phenylpropan-1-one 1.65 2.42 2.44 

1-Phenylbutan-1-one 2.01 2.80 2.72 

1-Phenylpentan-1-one 2.41 3.24 3.01 

1-Phenylheptan-1-one 3.15 - 3.68 

Furan 0.77 1.48 1.19 

2-Nitroaniline 1.59 2.67 1.80 

2,3-Benzofuran 2.12 2.82 1.82 

Diphenylmethanone 2.48 3.28 3.01 

Benzamide 1.06 1.72 1.50 

4-Chloroaniline 1.69 2.69 1.44 

2,3-Dimethylphenol 1.90 3.15 1.66 

Naphtalen-2-ol 2.31 - 1.73 

4-Aminobenzamide 0.98 1.11 1.76 

3-Methylphenol 1.53 2.78 1.43 

2,4-Dimethylphenol 1.93 3.17 1.02 

Naphthalene 2.67 3.47 2.09 

Pyrimidine 0.56 - 1.27 

Benzaldehyde 1.20 1.91 1.91 

3-Chloroaniline 1.63 2.72 1.41 

Pyrrole 0.68 1.65 0.72 

3-Nitroaniline 1.38 2.42 1.53 

4-Chlorophenol 2.00 3.24 1.30 

Phenol 1.21 2.35 1.08 

Methylbenzoate 1.71 2.39 2.36 

Bromobenzene 2.37 2.95 1.80 
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1,4-Xylene 2.51 3.04 2.10 

Benzene-1,3-diol 1.21 2.48 0.75 

2-Methylaniline 1.17 2.15 1.59 

Aniline 0.92 1.83 1.34 

Nitrobenzene 1.47 2.21 1.94 

Chlorobenzene 2.21 2.77 1.77 

N-4-chlorophenylacetamide 2.03 2.80 1.84 

N-Phenylacetamide 1.25 1.98 1.58 

4-Nitroaniline 1.52 2.50 1.45 

Anisole 1.66 2.31 1.83 

Benzonitrile 1.21 1.96 1.95 

1-Ethyl-4-nitrobenzene 2.19 3.02 2.68 

Benzyl benzoate 2.99 - 3.18 

Caffeine 1.11 1.32 1.85 

Corticosterone 1.94 3.69 3.64 

Cortisone 1.72 3.16 3.37 

β-Estradiol 2.77 - 2.84 

Estriol 2.32 3.52 2.01 

Cortisol 1.83 3.39 2.89 

Hydroquinone 1.09 1.94 0.19 

Quinoline 1.65 2.36 2.68 

Atrazine 1.86 1.90 2.71 

Diuron 2.46 2.19 2.34 

Isoproturon 2.19 1.95 2.61 

Linuron 2.59 2.24 2.50 

Metobromuron 2.16 2.03 2.22 

Monuron 1.81 1.73 2.03 

Metoxuron 1.69 1.46 2.34 

Phenylurea 1.20 1.20 1.38 

Propazine 2.02 2.08 3.03 

Fluometuron 2.01 1.92 2.57 

N,N-Diethyl-4-nitroaniline 2.44 3.56 3.36 

1-Methoxy-4-nitrobenzene 1.69 2.58 2.20 

1-Methoxy-2-nitrobenzene 1.55 2.37 2.26 

2.2. Correlation of logP Values in Micelles Using DFT Calculations 

Figure 1 shows the correlation coefficient values among the experimental and 

calculated logP in 15 different solvent–water combinations, where a darker color 

represents a higher correlation coefficient. Molecular representation of all solvents used 

in DFT calculations are shown in Table S1. It can be seen in Figure 1a that the 

experimental logPs in SC and HTAB show high correlation between them and with 

some calculated logPsolv/water values. However, the logP in HTAB is not correlated with 

any combination of computed logP values. With respect to the experimental logPs in SC 

and LPFOS, the highest correlation of computed logP is obtained with propan-1-ol or 

propan-2-ol solvents. It seems that a curious pattern can be observed for the calculated 

logPoctanol/water. While it is highly correlated with the experimental logPSC values, it also 

exhibits a high correlation with all other calculated logP values for different solvent 

combinations. 
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(a) (b) 

Figure 1. Heatmap of pairwise correlation of logP values for experimental and B3LYP calculated 

predictions. Three first logP values are the experimental values in SC, LPFOS and HTAB micelles, 

respectively. The heat map is colored by the significance of Pearson coefficient, where a darker red 

indicates a higher degree of correlation. In (a) all compounds are used, in (b) molecules with 

Nitrogen in an aromatic ring or with the urea (carbamide) group are excluded. 

In Figure 1b, a new heatmap is presented that shows the pairwise correlation 

between experimental and calculated logP values, but with the exclusion of compounds 

containing nitrogen in an aromatic ring or the urea group. It is observed that all 

experimental logP values, including logPHTAB, show a high correlation with propan-2-ol 

and propan-1-ol. Additionally, for logPSC and logPHTAB, a high correlation with methanol 

is also observed. This suggests that the excluded compounds may have a different 

mechanism for describing the partition coefficient of the HTAB micelle. 

An analysis is performed comparing calculated and experimental partition 

coefficients for the HTAB, SC, and LPFOS micelles. The results of the linear regression 

analysis for the partition coefficients of propan-1-ol/water, propan-2-ol/water, and 

methanol/water are presented in Table 3. The best correlation is observed for SC 

micelles. The partition coefficient calculated for propan-1-ol compared to the 

experimental partition coefficient of SC micelles provided the best correlation (R2 of 

0.67). It can be seen that the SC and LPFOS micelles behave similarly to aqueous 

mixtures with alcoholic solvents with dielectric constants ranging from 20 to 33. It needs 

to be mentioned that because these solvents are miscible with water, the 

partition coefficient of these solvents cannot be evaluated using the traditional 

shake flask technique. Alternatively, these coefficients can be determined through the 

application of appropriate thermodynamic cycles and using immiscible solvents. With 

respect to HTAB micelles, the prediction is improved for compounds that do not contain 

nitrogen in an aromatic ring or the urea group. 

Table 3 presents a predictive tool that facilitates the identification of the most 

suitable micellar system for carrying a specific drug. By employing the equations 

provided in this table, it becomes possible to make a comparison of the LogP values 

among the three types of micelles (HTAB, SC, and LPFOS). This comparison enables the 

determination of which micellar system would yield a higher LogP value for the 

particular drug being considered. Finally, this predictive approach helps in selecting the 

most appropriate micelle for drug delivery and optimizing drug formulation and 

efficacy. 
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Table 3. Best linear regressions obtained to predict the logP in SC, LPFOS, and HTAB micelles 

using DFT calculations. Results from B3LYP functional with 6-31++G** basis set using SC, LPFOS, 

and HTAB for propan-1-ol, propan-2-ol, and methanol are indicated. x refers to predicted logP 

alcohol/water, and y refers to the predicted logP in micelles. *N set: compounds containing 

nitrogen in an aromatic ring or the urea group are excluded. 

Micelle Solvent B3LYP 

LPFOS 

Propan-1-ol 

y = 0.46x + 0.77 

R2 = 0.52 

MAE = 0.87 

Propan-2-ol 

y = 0.49x + 0.61 

R2 = 0.53 

MAE = 0.92 

Methanol 

y = 0.41x + 0.90 

R2 = 0.43 

MAE = 0.86 

SC 

Propan-1-ol 

y = 0.47x + 0.55 

R2 = 0.67 

MAE = 0.92 

Propan-2-ol 

y = 0.46x + 0.51 

R2 = 0.64 

MAE = 1.08 

Methanol 

y = 0.41x + 0.68 

R2 = 0.58 

MAE = 0.89 

HTAB 

Propan-1-ol 

y = 0.23x + 1.80 

R2 = 0.13 

MAE = 0.74 

Propan-2-ol 

y = 0.22x + 1.83 

R2 = 0.1 

MAE = 0.72 

Methanol 

y = 0.24x + 1.78 

R2 = 0.13 

MAE = 0.72 

HTAB without 
N set * 

Propan-1-ol 

y = 0.56x + 1.24 

R2 = 0.66 

MAE = 0.45 

Propan-2-ol 

y = 0.54x + 1.24 

R2 = 0.62 

MAE = 0.43 

Methanol 

y = 0.56x + 1.26 

R2 = 0.63 

MAE = 0.46 

* Molecules with Nitrogen in an aromatic ring or with the urea (carbamide) group are excluded. 

2.3. Estimation of logP Values in Micelles Using SVM Calculations 

A k-means clustering was performed on the set of compounds using a collection of 

85 chemical descriptors to analyze the data (Table S3). In the present study, the 

determined number of partitioning patterns (clusters) was three. It can be concluded 

that the partitioning into three categories is related to specific features characteristic of 

each obtained class. 

Cluster 1 contains 45 out of all 63 compounds (approximately 70% of the cases). The 

members do not differ substantially with respect to their structural and molecular 

descriptors, whose values are on a medium level (see Figure 2) without an expressed 

minima or maxima of their absolute (standardized) values. It may be assumed that this 

pattern of objects is a specific “medium” with respect to the descriptor values, is 
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characterized by a good consistency of indication, and could be called, conditionally, a 

“mixed compound” pattern. 

Cluster 2 consists of 13 members out of a total of 63 cases, accounting for 

approximately 20% of all cases. It is important to emphasize that this cluster 

predominantly comprises representative pesticide compounds and can be conditionally 

referred to as the ”pesticide compounds” pattern. The pattern exhibits specific feature 

characteristics (Figure 2) that are responsible for its partitioning. These characteristics 

include maximal levels for the descriptors GD, RBN, H%, PVS_A_m2, P_VSA_e2, 

P_VSA_i2, P_VSA_charge3, P_VSA_charge8, and P_VSA_charge9, as well as minimal 

levels for the descriptors N%, MCD, and P_VSA_LogP_3. 

Cluster 3 consists of only 5 members out of a total of 63 cases, accounting for 

approximately 7%. All the members belong to hormone compounds, and the conditional 

name for this cluster should be the “hormonal compounds” pattern. It is characterized 

by significantly different values of the descriptors compared to those of clusters 1 and 2. 

Twenty-six of the descriptors indicate maximal values, while the other twenty-six 

indicate minimal values. This represents a typical case of an “outlying cluster”, further 

supporting the conclusion that this group of objects is markedly different from the rest. 

Figure 2 displays the averages for each descriptor of the three identified clusters, 

effectively demonstrating the differences between them and the descriptors responsible 

for this partitioning. 

 

Figure 2. Plot of means for each variable for each identified cluster. Due to lack of space, only 10 of 

the descriptor names are plotted but the order is the same as in the input matrix (of variables); the 

distance between the plotted variables is 8 spaces. 



Molecules 2023, 28, 5729 10 of 16 
 

 

Furthermore, a PCA was conducted to explore the partitioning among the 85 

descriptors. PCA is a widely used chemometric technique that involves projecting the 

original variables onto new, orthogonal directions known as latent factors. These factors 

are linear combinations of the original variables, and their associated factor loadings 

determine their impact on the analysis. The resulting factor scores represent the new 

coordinates of the objects in the reduced-dimensional space. The PCA analysis revealed 

that three latent factors accounted for more than 70% of the total variance, as shown in 

Table S3 (factor loadings table). Figure 3 shows that the most significant set of cases is 

explained by the highest loadings in factor 1 (all three experimental parameters are 

included in one factor). The second factor consists of the highest loadings for the second 

big set of objects, and the outlying set of objects is related to the highest loadings in 

factor 3. 

 

Figure 3. Plot of means (after standardization of the input matrix) of each of the cases for each of 

the identified patterns of variables; latent factor 1 is marked with blue color, latent factor 2—with 

red color, latent factor 3—with green color. The plot gives an idea of the relationships between 

cases and variables. 

This work uses supervised and unsupervised machine learning methods to predict 

the logP values for different micelle formations. SVM calculations were applied as a 

regression method. The obtained results are presented in Table 4. The regression model 

was developed based on the list of descriptors presented in Table 4. Grid searches were 

performed using 10-fold cross-validation. The main descriptors were obtained from the 

class of molecular descriptors known as P_VSA descriptors, which quantify the van der 

Waals surface area (VSA) with a specific property P within a certain range [36]. For 

model development, 85% of the data was used for training, while the remaining 15% 

Plot of Means for Each Cluster
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 Cluster  2
 Cluster  3

6 12 18 24 30 36 42 48 54 60
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was reserved for testing. It is evident that the selected SVM model and the list of desired 

features yield a significantly high prediction rate for logP. 

Our study demonstrates that SVM is a powerful machine learning model capable of 

predicting logP values from both high-dimensional and low-dimensional data spaces 

based on the selective nature of the descriptors. 

Table 4. SVM regression results for LogP prediction in SC, HTAB, and LPFOS micellar systems. 

 SC HTAB LPFOS 

Variables 

(descriptors) 

Mv, RBN, RBF, H%, 

N%, O%, NRS, nR09, 

nR10, X4Av, 

P_VSA_LogP_2, 

P_VSA_s_4, 

P_VSA_ppp_P, 

P_VSA_charge_1, 

P_VSA_charge_3, 

P_VSA_charge_4, 

P_VSA_charge_5, 

P_VSA_charge_13, 

P_VSA_charge_14 

nSK, nH, N%, Xu, S1K, 

DELS, BAC, X0, X0sol, 

P_VSA_LogP_1, 

P_VSA_LogP_4, 

P_VSA_LogP_6, 

P_VSA_LogP_8, 

P_VSA_MR_5, 

P_VSA_m_5, 

P_VSA_s_3, 

P_VSA_ppp_D, 

P_VSA_charge_2, 

P_VSA_charge_4, 

P_VSA_charge_5, 

P_VSA_charge_6, 

P_VSA_charge_9, 

P_VSA_charge_12, 

P_VSA_charge_14, 

qpmax, qnmax, Qpos, 

Qneg, Qtot, Qmean, Q2, 

RPCG, RNCG, 

TPSA(NO), TPSA(Tot) 

RBF, nTB, MaxTD, 

P_VSA_LogP_2, 

P_VSA_LogP_3, 

P_VSA_LogP_4, 

P_VSA_MR_2, 

P_VSA_s_3, 

P_VSA_charge_2, 

P_VSA_charge_6, 

P_VSA_charge_7, 

P_VSA_charge_9, 

P_VSA_charge_13, 

P_VSA_charge_14, 

Qmean 

R2 0.693 0.565 0.783 

RMSE 0.369 0.248 0.202 

MAE 0.318 0.241 0.304 

3. Materials and Methods 

3.1. Regents and Materials 

Phosphoric acid (85% in water), lithium hydroxide (98%), sodium dihydrogen 

phosphate monohydrate (G.R.), disodium hydrogen phosphate (G.R.), sodium 

hydroxide (G.R.), phenyl-undecyl ketone (98%), and methanol (for chromatography) 

were obtained from Merck. SC (>98%), HTAB (>99%), and LPFOS (25% in water) were 

obtained from Fluka. Water was Milli-Q plus (Millipore) with resistivity of 18.2 MΩ cm. 

The test solutes were reagent-grade or better and obtained from several makers. 

3.2. Determination of Partition Coefficients in Systems of SC, LPFOS, and HTAB Micelles 

MEKC analyses were conducted using a UV diode array detector in a Beckman 

P/ACE System 5500 capillary electrophoresis instrument, with a fused silica capillary of 

47 cm total length (40 cm effective length) and 50 μm internal diameter. The 

measurements were carried out at 25 °C and +15 kV for the anionic surfactants (SC and 

LPFOS) and −15 kV for the cationic one (HTAB). Detection was set at 214 nm. To inject 

the test compounds into the capillary, a pressure of 0.5 p.s.i. was applied for 1 s. 

The capillary was prepared through a conditioning process, which involved 

flushing with water for 5 min, treating with 1 M sodium hydroxide solution for 20 min, 

followed by a rinse with water for 10 min, treatment with 0.1 M sodium hydroxide 

solution for 10 min, and, finally, treatment with separation buffer for 20 min. Before each 

injection, the capillary was rinsed with a separation buffer for 5 min. 
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Three different micelle solutions were prepared at pH 7: 80 mM of SC, 40 mM of 

LPFOS, and 20 mM of HTAB, all three in 20 mM phosphate buffer. Test compounds were 

dissolved in a methanol solution (used as an electro-osmotic flow marker), which 

already contained 2 mg mL−1 of phenyl-undecyl ketone (used as a micellar marker). The 

concentration of the test compounds was 2 mg mL−1. All solutions were filtered through 

0.45 μm nylon syringe filters (Albet). All measurements were performed in triplicate. 

In MEKC, the separation of neutral molecules occurs based on their partitioning 

between the micellar phase and the aqueous phase. The retention factor (k) of a 

compound can be determined using the following formula: 

𝑘 =
𝑡𝑅 − 𝑡0

𝑡0(1 − 𝑡𝑅 𝑡𝑚⁄ )
 

(Error! No 

sequence 

specified.) 

The retention time (tR) for the specific compound being analyzed is measured, while 

the retention times of the electro-osmotic flow and micellar markers (methanol and 

phenyl-undecyl ketone, respectively) are denoted as t0 and tm. 

In this particular study, partition coefficients between water and SC, LPFOS, and 

HTAB micelles were determined by utilizing previously obtained retention times [13] 

and applying the following formula: 

𝑘 =
𝜐(𝐶𝑇 − 𝐶𝑀𝐶)

1 − 𝜐(𝐶𝑇 − 𝐶𝑀𝐶)
 

(Error! No 

sequence 

specified.) 

where P is the partition coefficient, and CT is the total surfactant concentration (80 mM 

for SC, 40 mM for LPFOS, and 20 mM for HTAB). The CMC values in 20 mM phosphate 

buffer (pH 7) were experimentally determined in previous works and are 12.4 mM for 

SC, 3.27 mM for LFPOS, and 0.34 mM for HTAB [37]. U is the partial molar volume of the 

surfactants and has a value of 0.317 L mol−1 for SC [38], 0.285 L mol−1 for LPFOS [39], and 

0.324 L mol−1 for HTAB [40]. 

3.3. QM Computational Determination of Partition Coefficients 

The computations in this study were conducted using the Gaussian 16 (Revision 

C.01) [41] quantum chemistry software package to calculate solvation free energies and 

various molecular properties. The Avogadro cross-platform molecule editor was utilized 

to generate all molecular structures, and only the more extended conformation was used 

for each compound. Specifically, the focus of this work was to determine the solvation 

free energy of 63 compounds in 16 different solvents. 

In this study, the B3LYP calculations were performed with the 6.311++G** basis set 

to optimize the geometries of all compounds. The solvation model based on SMD was 

employed to predict the partition coefficient of the molecules in different solvents. This 

model divides the solvation free energy into two main contributions, bulk electrostatic 

and cavity dispersion contributions, making it a widely applicable and universal 

solvation model that can be used for any solute (neutral and charged) in a variety of 

parametrized solvents. 

In order to determine the solvent–water partition coefficient, the compounds were 

optimized to obtain their minimum energy at a pressure of 1 atm and temperature of 

298.15 K, while ensuring that all vibrational frequencies were positive. The calculation of 

the Gibbs free energy associated with the transfer of solutes between the solvent and 

water phases is fundamental in determining the partition coefficient. The logarithm of 

the partition coefficient (logP) is directly proportional to the difference in solvation free 

energies (∆G°solv/wat): 
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𝛥𝐺º𝑠𝑜𝑙𝑣
𝑤𝑎𝑡

= 𝛥𝐺º𝑠𝑜𝑙𝑣 − 𝛥𝐺º𝑤𝑎𝑡 
(Error! No 

sequence 

specified.) 

logP =

−𝛥𝐺º𝑠𝑜𝑙𝑣
𝑤𝑎𝑡

𝑅𝑇𝑙𝑛(10)
 

(Error! No 

sequence 

specified.) 

where R is the molar gas constant and T is the temperature (298 K). We employed the 

same procedure for SC, LPFOS, and HTAB that we applied for SDS micelles [42]. 

3.4. Correlation Analysis 

Heatmaps of Pearson correlation coefficients were produced to identify correlation 

between variables. Each variable is represented by a colored square, with the color 

indicating the strength and direction of the correlation between that variable and every 

other variable in the dataset. The Pearson correlation coefficient ranges from −1 to +1, 

with −1 indicating a perfect negative correlation, 0 indicating no correlation, and +1 

indicating a perfect positive correlation. The heatmap allows us to quickly identify 

patterns and relationships between variables, as highly correlated variables will appear 

as blocks of similar color in the heatmap. 

3.5. Supervised and Unsupervised Methods 

Linear regression analysis was conducted using python tools to calculate 

coefficients, confidence intervals, standard errors, F statistics, significant data of 

partition coefficient and F, as well as Pearson’s correlation coefficient. Additionally, the 

accuracy of the regression model’s prediction of experimental octanol/water logP values 

was evaluated through the computation of statistical measures, including the mean 

absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). 

3.6. K-Means Clustering 

K-means clustering is a well-documented supervised machine learning pattern 

recognition procedure [43,44]. It requires an a priori determined number of clusters to 

which the objects of interest should be partitioned. The hypothesis for the 

predetermined number of clusters follows expert opinion or specific reasons of the 

researcher (preliminary information, preliminary testing, etc.). The major goal of this 

statistical method is to partition the objects of interest into patterns of similarity 

(clusters) whose number is in line with the preliminary hypothesis. The algorithm used 

relies on minimization of the within-group distances (usually squared Euclidean 

distances). Cluster centers (centroids) are used to find groups of comparable special 

distribution. 

The input matrix is of the dimension 63 cases × 85 variables. The raw data were 

subject to a standardization procedure (z-transform) to avoid differences in variable 

dimensions. The goal of the partitioning procedure was to reveal patterns of similarity 

within the 63 compounds of interest and, further, to determine the descriptors 

contributing mostly to the partitioning. The structure of the dataset was based on the 

generated descriptors retrieved using the AlvaDesc v.2 software (Milano, Italy) [45]. 

3.7. Principal Component Analysis (PCA) 

PCA is a typical projection method based on the reduction of the dimensionality of 

the system under consideration. This makes it possible to present on a plot the 

relationship between the variables (using the values of the factor loadings) or between 

the objects (using the calculated factor scores as the new coordinates of the objects). The 

reduction of the dimensionality of the initial large dataset enhances the interpretability 
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of the original system while preserving a high amount of explained variance from the 

original set. The algorithm achieves this through the decomposition of the starting large 

data matrix into a smaller number of principal components (latent variables), which are 

linear combinations of the original variables representing directions in space. 

4. Conclusions 

This study aimed to determine a methodology for predicting the experimental partition 

coefficients (Log P) for a diverse set of compounds for three different micelle formulations: 

SC, LPFOS, and HTAB. The obtained LogP values were used to parametrize computational 

methodologies for each type of micelle. Correlations between experimental and calculated 

logP values were examined using simple DFT calculations, and the SVM regression model 

was built based on relevant descriptor space. This predictive approach could have significant 

implications for drug delivery and formulation optimization. It can be used to identify the 

micellar system that offers a higher Log P value, thus enhancing the potential for successful 

therapeutic applications. 

When considering the entire set of compounds, the results revealed an increased 

correlation between experimental logP values and the DFT predictions for the SC and 

LPFOS micelle systems obtained for the propan-1-ol/water or propan-2-ol/water solvent 

mixtures. However, the logP values in HTAB were not correlated with any of the calculated 

logP values. It has been found that compounds containing nitrogen in an aromatic ring, or 

the urea group, exhibited a different mechanism in describing the partition coefficient of the 

HTAB micelle. Excluding these compounds from the set, the best correlation was observed 

for all micelles in the propan-1-ol/water or propan-2-ol/water solvent mixtures. 

Furthermore, SVM calculations and k-means clustering were conducted using a set of 

85 descriptors. The findings imply that the partitioning into three classes is coupled to 

specific features that are characteristic of each obtained class. These results provide valuable 

insights into the behavior of different types of micelles and can contribute to the 

development of more accurate computational methods for predicting partition coefficients in 

micelles. 
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of the calculated LogP in 15 different solvents with respect to the experimental partition coefficients in 

SC, LPFOS, and HTAB micelles; Table S3: Factor loadings (Varimax-normalized) of the chemical 

descriptors obtained from PCA. 
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