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CHAPTER 1
Introduction

The concept of unification has been widely studied from a logical perspective. In the
context of logic, a formula A is said to be unifiable in a logic ⊢ if there is a substitution
σ that turns A into a theorem of ⊢. In this case, we say that σ is a unifier (in ⊢) of A, or
that A is unifiable (in ⊢) by σ.

Given a logic ⊢ and a unifiable formula A (in ⊢), there is a natural way to compare
its unifiers in terms of generality using the fact that, up to logical equivalence, some
unifiers can be ‘obtained’ from others. More precisely, we say that the unifier σ1 of
A is less general than the unifier σ2 of A if there is a substitution τ such that σ1(x) is
logically equivalent to τ(σ2(x)) in ⊢ for all propositional variables x in the domain
of σ1 and σ2. This gives rise to a hierarchy among the set of unifiers of A, where the
unifiers in lower levels can be obtained from the unifiers in upper levels. A basis of
unifiers of a unifiable formula A is a set of incomparable elements that ‘generates’ any
other unifier of A. The study of the hierarchy among unifiers rises some interesting
questions: Given a unifiable formula A in ⊢, is there a basis of unifiers of A? If so, is it
finite or infinite? If it is finite, does it have one or more elements? These questions can
be stated not only for formulas, but for logics in general. It prompts a classification of
logics in different types:

• Logics of unification type 1 (or unitary): logics where every unifiable formula has a
basis of unifiers of size 1.

• Logics of unification type ω (or finitary): logics where every unifiable formula has a
finite basis of unifiers and there is at least one unifiable formula that does not
have a basis of unifiers of size 1.

• Logics of unification type ∞ (or infinitary): logics where every unifiable formula has
an infinite basis of unifiers and there is at least one unifiable formula that does
not have a finite basis of unifiers.

• Logics of unification type 0 (or nullary): logics where there is a unifiable formula
that does not have a basis of unifiers.

Solving the Unification Problem for a certain logic consists in finding the unification
type of such logic. Classical propositional logic (CPL) has unitary unification type.
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1. INTRODUCTION

This means that for any unifiable formula A there is a unifier of A from which we
can obtain all the other unifiers of A. Such unifiers are called most general unifiers.
In intuitionistic propositional logic (IPL), however, the solution to the Unification
Problem is not that nice. In example 3.34, we will show that in IPL there is no most
general unifier for the formula x ∨ ¬x. Nevertheless, even thought unification in IPL
is not unitary, Ghilardi proved that the unification type of IPL is finitary [6], that is
to say, for every unifiable formula in IPL there is always a finite set of incomparable
unifiers that can generate any other unifier of such formula. The main goal of this
work is to present a clear and detailed proof of this outstanding result. We will follow
the structure of Ghilardi’s proof but we will also introduce some slight modifications
to adapt it to the conventions and results developed in more recent works.

The first chapter of this document includes all the preliminaries needed for the
proof. We present the basic concepts and results about Kripke semantics and finish
with a version of the completeness theorem that will allow us to work exclusively with
finite rooted models.

The second chapter is the core part of this work. We start by presenting the basic
definitions concerning unification. Then, we introduce the operator (−)σ as the seman-
tical counterpart of substitutions. More precisely, while a substitution σ : F(X) → F(Y)
gives us a way to transform formulas in F(X) (formulas with variables in a set of vari-
ables X) into formulas in F(Y), the (−)σ operator allows us to transform models in
MY (models whose valuation takes values on P(Y)) into models of MX using the
substitution σ. The operator (−)σ transforms a model in MY into a model in MX
preserving its frame and defining a new valuation on it following the rule: for all
x ∈ X, x holds in a world m of the new model if and only if σ(x) held at m in the
original model. This operator will be the main tool to reason about substitutions from
a semantical perspective in order to prove some of their properties. The first noticeable
result obtained with this tool is a characterization of unifiable formulas as satisfiable
formulas stated in Proposition 3.17.

Before moving on to the proof of the Unification Theorem for IPL, we prove the
corresponding result for CPL (Section 3.4). Although the Unification Theorem for CPL
is simpler, it will serve as a motivation for the intuitionistic case and will display the
engine used later.

The proof of the Unification Theorem for IPL is the assembly of many concepts.
Two key notions are the notion of projective formulas and the notion of implicational
complexity. Projective formulas are the formulas with a unifier σ such that ⊢ x ↔ σ(x).
We say that a formula B is projective with σ, if σ is a unifier witnessing the projectivity
of B. The implicational complexity of a formula A, written as c(A), refers to the maximum
number of nested implications appearing on it. The main step in the proof of the
Unification Theorem for IPL, and the part that will require most of our efforts, is
Lemma 3.76, which states that any unifier σ of A is also unifier of some projective
formula B of less or equal complexity than A such that B |= A. But projective formulas
have the nice property that if B is projective with τ, then τ is a most general unifier
of B (Remark 3.25), that is, any unifier of B can be obtained from τ. Hence, Lemma
3.76 guarantees that any unifier σ of a unifiable formula A can be obtained from the
substitutions witnessing the projectivity of the projective formulas of less or equal
complexity than A that imply A. If a formula has a most general unifier, moreover, it
is unique up to logical equivalence. Thus, the unifiers of A can be obtained from a
set of substitutions of cardinality bounded by the number of projective formulas of
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complexity less or equal than A. Finally, Lemma 3.53 guarantees that, picking a finite
set of propositional variables including all the variables of A, this number is, up to
logical equivalence, finite.

The contributions of this work are the following:

• We present a detailed proof, using Ghilardi’s techniques, of the Unification
Theorem for CPL, which in Ghilardi’s article appears as a remark. This theorem
was first proved by Löwenheim in [11] using different methods.

• In the proof of the Unification Theorem for IPL we prefer a purely semantic
approach, reasoning in terms of the operator (−)σ and its properties instead
of using syntactical deduction. Even though there are no new results, this
semantical approach gives a more intuitive, and sometimes even graphical, idea
of the contents of some lemmas. In particular, the proofs of lemmas 3.35, 3.37
and 3.41 (and its respective Corollaries 3.36, 3.38 and 3.40) are different from the
proofs of the same facts displayed in Ghilardi’s article.

• We prove some lemmas that are omitted in Ghilardi’s article: lemmas 3.16, 3.53
and 3.62. To prove them, we also prove the auxiliary lemmas 3.52, 3.61 and
3.15. Lemmas 3.53 and 3.62 are crucial in the proof of the Unification Theorem.
Lemma 3.53 guarantees the finiteness of the basis of unifiers appearing in the
proof, and Lemma 3.62 is an important step in the proof of lemma 3.76, which is
the hardest result before the proof of the main theorem.

• The main contribution of this work, we think, is the use of a different definition
of the extension property, and the subsequent adaptation of all proofs of Ghi-
lardi’s proof to this change. Ghilardi’s definition of the extension property is the
following: a class of finite rooted Kripke models K has the extension property
if for every model M whose proper generated submodels are all in K, the class
contains a variant* of M. In this work, we use the definition proposed by Iemhoff
in [8] and [9], where she uses the extension property to prove that Visser’s rules
form a basis for the admissible rules in IPL and gives some semantical charac-
terizations of admissible rules for IPL and intermediate logics. According to
Iemhoff’s definition, a class of finite rooted Kripke models K has the extension
property if it contains a variant of the disjoint sum of any finite set of models of
K. While the two properties are not equivalent †, the proof that Visser’s rules
form a basis for the admissible rules in IPL uses various facts about the extension
property from Ghilardi’s article. With this document we fill this small gap prov-
ing Ghilardi’s results about the extension property using Iemhoff’s definition.
The results that were adapted are Theorem 3.49 and Lemmas 3.72 and 3.76.

*For rooted Kripke models, M ′ is a variant of M if and only if M ′ and M have the same frames and
their valuations differ only at the root.

†Iemhoff’s definition implies Ghilardi’s under the assumption that the class of models is stable, and
Ghilardi’s definition implies Iemhoff’s under the assumption that the class is closed under homomorphic
images.
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CHAPTER 2
Preliminaries

In this chapter we review some basic definitions and results of classical and intuition-
istic propositional logic and we fix the notation that we will use in next chapters. We
state many theorems without proof. The interested reader could find all the missing
proofs in [3].

We start with the basic syntax. We will work with a fixed countable set of propo-
sitional variables Var. The basic symbols of our language will be the propositional
variables in Var, the bottom symbol ⊥, the top symbol ⊤, the binary connectives
∧,∨,→ and parenthesis (,). We use lowercase letters x, y, z, . . . for propositional vari-
ables and capital letters X, Y, Z, . . . for sets of propositional variables.

Definition 2.1. Given a set of propositional variables X ⊆ Var, the set F(X) of formulas
in X is defined recursively as follows:

• ⊤ ∈ F(X);

• ⊥ ∈ F(X);

• x ∈ F(X), for all x ∈ X;

• if A, B ∈ F(X), then (A ∗ B) ∈ F(X), where ∗ ∈ {∧,∨,→};

• Nothing else belongs to F(X).

If there is no ambiguity, we will omit the use of some parenthesis. We use capital
letters A, B, C, A′, B′ . . . for formulas. ¬A is a shorthand for A → ⊥ and A ↔ B is a
shorthand for (A → B) ∧ (B → A).

Definition 2.2. Let X and Y be sets of variables. A substitution σ (from X to Y) is a
function from F(X) to F(Y) with the following properties:

• σ(⊤) = ⊤

• σ(⊥) = ⊥

• σ(A ∗ B) = σ(A) ∗ σ(B) for all A, B ∈ F(X) and each ∗ ∈ {∧,∨,→}.
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2. PRELIMINARIES

Remark 2.3. By the recursion theorem (see for instance [5]), every substitution σ : F(X) →
F(Y) is completely characterized by its values on X, that is to say, if σ1 : F(X) → F(Y)
and σ2 : F(X) → F(Y) are substitutions such that σ1(x) = σ2(x) for all x ∈ X, then
σ1 = σ2. We will use this fact extensively throughout the next chapters.

The composition of two substitutions σ : F(X) → F(Y) and τ : F(Y) → F(Z) is the
function τσ : F(X) → F(Z) such that τσ(x) = τ(σ(x)) for all x ∈ X. It is easy to check
that τσ is indeed a substitution.

2.1 Intuitionistic Logic

In this section we present the definition of a logic as a consequence relation and we
define intuitionistic propositional logic and classical propositional logic within this
context.

Definition 2.4. A consequence relation on a set A is a binary relation ⊢ ⊆ P(A)× A
such that for every X ∪ Y ∪ {z} ⊆ A,

(i) X ⊢ x for all x ∈ X and

(ii) if X ⊢ y for all y ∈ Y and Y ⊢ z, then X ⊢ z.

To simplify the notation, we will use the following conventions:

• ⊢ y when ∅ ⊢ y

• X, x ⊢ y when X ∪ {x} ⊢ y.

• x ⊣⊢ y when x ⊢ y and x ⊢ y.

Given X, Y ⊆ Var and a substitution σ : F(X) → F(Y), we define σ[Γ] = {σ(B) ∈
F(Y) : B ∈ Γ}.

Definition 2.5. A logic is a consequence relation ⊢ on the set of formulas F(Var) that,
moreover, is substitution invariant, that is to say, for every substitution σ : F(X) → F(Y)
and every set of formulas Γ ∪ {A} ⊆ F(X),

if Γ ⊢ A, then σ[Γ] ⊢ σ(A).

The expression Γ ⊢ A should be understood as “Γ proves A” or “A follows from
Γ”. The substitution invariance captures the idea that logical inferences are true only
in virtue of their form. Given a logic ⊢, formulas such that ⊢ A are called theorems of ⊢.

There are many ways to determine a logic. One of them is by using a Hilbert
calculus.

Definition 2.6. A rule is an expression of the form ∆� B, where ∆∪ {B} ⊆ F(Var).
In this case, ∆ is said to be the set of premises of the rule and B the conclusion. When
∆ = ∅, the rule ∆� B is called an axiom. A Hilbert calculus is a set of rules. A finitary
Hilbert calculus is a Hilbert calculus all of whose rules have a finite set of premises.
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2.1. Intuitionistic Logic

For any finitary Hilbert calculus H, we define the notion of (finitary) proof in H. A
(finitary) proof of A from Γ in H, with Γ ⊆ F(Var) and A ∈ F(Var), is a finite sequence of
formulas A1, A2, . . . , An in F(Var) such that An = A and for every Ai in the sequence,
either Ai ∈ Γ or there is a rule ∆ � B in H, subsets X, Y ⊆ Var and a substitution
σ : F(X) → F(Y) such that σ[∆] ⊆ {Aj : j < i} and Ai = σ(B).

The logic ⊢H induced by H is defined as follows: for every Γ ∪ {A} ⊆ F(Var)

Γ ⊢H A ⇐⇒ there exists a (finitary) proof of A from Γ in H.

It is easy to check that ⊢H is in deed a logic. Moreover, it is the least logic ⊢ such that
Γ ⊢ A, for every rule Γ � A in H.

Remark 2.7. In this work we will only deal with logics induced by finitary Hilbert
calculus and finitary proofs. They are usually called finitary logics. Classical proposi-
tional logic and intuitionistic propositional logic are examples of them. It is easy to see
that finitary logics are compact, that is, if Γ ⊢ A, then Γ0 ⊢ A for some finite Γ0 ⊆ Γ.
However, the notion of a logic induced by a Hilbert calculus can be extended to an
arbitrary Hilbert calculus. See [13] for a generalization.

Example 2.8. Intuitionistic propositional logic IPL is the logic induced by the Hilbert
calculus IPC with the following rules:

∅ �⊤
∅ � x → (y → x)
∅ � x → (y → (x ∧ y))
∅ � (x ∧ y) → x
∅ � (x ∧ y) → y
∅ � x → (x ∨ y)
∅ � y → (x ∨ y)
∅ � (x ∨ y) → ((x → z) → ((y → z) → z))
∅ � (x → y) → ((x → (y → z)) → (x → z))
∅ �⊥ → x

x, x → y � y.

Example 2.9. Classical propositional logic CPL is the logic induced by the Hilbert
calculus CPC = IPC∪ {∅ � x ∨ ¬x}.

A well-known result of both intuitionistic propositional logic and classical proposi-
tional logic is the Deduction Theorem. For a proof, see [3].

Theorem 2.10 (Deduction Theorem). Let X ⊆ Var. For all Γ ⊆ F(X) and every
A, B ∈ F(X),

Γ, A ⊢IPC B if and only if Γ ⊢IPC A → B

Γ, A ⊢CPC B if and only if Γ ⊢CPC A → B

7



2. PRELIMINARIES

2.2 Kripke Semantics

In this section we present the Kripke semantics for IPL. The key notion in the concept
of Kripke model.

Definition 2.11. A Kripke frame F is a pair (F, R) where F is a non-empty set and R is
an order relation on F (i.e., R is reflexive, antisymmetric and transitive).

Definition 2.12. Given X ⊆ Var, a Kripke model M in X is a triple (M, R, v) where
(M, R) is a Kripke frame and v : M → P(X) is a function with the following property:
for all m ∈ M and all x ∈ X, if x ∈ v(m), then x ∈ v(m′) for each m′ ⩾ m.

The set M in the previous definition is called the domain of M and the function v is
called its valuation. The condition about v stated above is known as the truth-preserving
condition. If m ∈ M, we will say that m is a world or a point of M. With MX we will
denote the class of all Kripke models in X.

Given a Kripke model M ∈ MX, we will use ⩽M and vM to denote, respectively,
its relation and its valuation. If the model is clear form the context, we will simply use
⩽ and v.

A Kripke model M is said to be rooted if there is an x ∈ M such that x ⩽M m for
all m ∈ M. The element x is called the root of M. Whenever we have a rooted model
M, we will use rM for its root. If the model is clear form the contexts, we will use r.
Moreover, a Kripke model M is said to be finite if its domain is finite.

The fundamental semantic notion is the notion of truth. Given M ∈ MX, and
m ∈ M, we define recursively when a formula A ∈ F(X) is true (or holds) at point m in
the model M, in symbols M, m |= A, as follows:.

Definition 2.13. Let X be a set of variables, M = (M, ,⩽, v) ∈ MX, m ∈ M, and
A, B ∈ F(X), we have:

• M, m |= ⊤;

• M, m |= ⊥ does not hold;

• M, m |= x iff x ∈ v(m);

• M, m |= A ∧ B iff M, m |= A and M, m |= B;

• M, m |= A ∨ B iff M, m |= A or M, m |= B;

• M, m |= A → B iff for all n ⩾ m, if M, n |= A, then M, n |= B.

We will write M, m ̸|= A when M, m |= A does not hold. A formula A ∈ F(X)
is said to be satisfiable if there is a model M ∈ MX and a world m ∈ M such that
M, m |= A. If M, m |= A for all m ∈ M, M is said to be a model of A (or A is said to
be true in the model M), in symbols M |= A. If Γ ⊆ F(X), M |= Γ stands for M |= A
for all A ∈ Γ. Finally, we will use ModX(Γ) to denote the class of models of Γ in MX,
that is, ModX(Γ) = {M ∈ MX : M |= Γ}. ModX(A) is a shorthand of ModX({A}).

The following result states that the truth-preserving condition can be extended to
all formulas. It can be easily proven by induction on the complexity of the formula.

Proposition 2.14. Let X ⊆ Var and M ∈ MX. For all A ∈ F(X) and for every m ∈ M, if
M, m |= A then M, m′ |= A for each m′ ⩾ m.
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2.3. Semantics for CPL

Remark 2.15. Due to the previous result, observe that for rooted models, being true in
the whole model is equivalent to being true in its root. That is to say, if M ∈ MX is a
rooted model with root r, M |= A if and only if M, r |= A. We will use this simple fact
often in the following chapters.

Definition 2.16. Let A, B ∈ F(X) and Γ ⊆ F(X). We say that Γ implies A (or A is a
consequence of Γ), and we write Γ |= A, if and only if for all M ∈ MX, if M |= Γ,
then M |= A. Moreover, A is said to be a valid formula, written as |= A, if and only
if M |= A for all M ∈ MX (equivalently, ∅ |= A). For simplicity, we write A |= B
instead of {A} |= B. Finally, A and B are said to be equivalent, in symbols A ≡ B, if
and only if A |= B and B |= A (equivalently, |= A ↔ B).

Remark 2.17. We have an easy characterization of logical implication in terms of classes
of models. It is clear that for all Γ ⊆ F(X) and each A ∈ F(X), Γ |= A if and only
if ModX(Γ) ⊆ ModX(A). In particular, for every A, B ∈ F(X), A |= B if and only if
ModX(A) ⊆ ModX(B), and A ≡ B if and only in ModX(A) = ModX(B).

2.3 Semantics for CPL

The usual semantics for CPL is given by classical valuations. Given X ⊆ Var, a
classical valuation in X is a function a : F(X) → {0, 1} satisfying the following rules for
constants and connectives:

• a(⊤) = 1;

• a(⊥) = 0;

• a(A ∧ B) = 1 iff a(A) = 1 and a(B) = 1 for all A, B ∈ F(X);

• a(A ∨ B) = 1 iff a(A) = 1 or a(B) = 1 for all A, B ∈ F(X);

• a(A → B) = 1 iff a(A) = 0 or a(B) = 1 for all A, B ∈ F(X).

By the recursion theorem, classical valuations in X are completely characterized by
its values on the elements of X and the rules above. Given X ⊆ Var and A ∈ F(X),
we say that A is satisfiable if and only if there is a classical valuation a : F(X) → {0, 1}
such that a(A) = 1. In this case, a is said to be a model of A. The notions of logical
consequence, valid formulas and equivalent formulas are analogous to the same
notions in Kripke semantics, using classical valuations instead of Kripke models.

2.4 Submodels and generated submodels

Definition 2.18. Let X ⊆ Var and M and N be in MX. The model N is a submodel of
M if N ⊆ M and ⩽N and vN are, respectively, the restrictions of ⩽M and vM to N.

Definition 2.19. Let X ⊆ Var and M = (M,⩽M, vM) be a Kripke model in MX
and p ∈ M. The submodel of M generated by p is the model Mp = (Mp,⩽Mp , (vM)p),
where Mp is the upset of p, that is, Mp = {x ∈ M : p ⩽ x}, and ⩽Mp and (vM)p are,
respectively, the restrictions of ⩽ and v to Mp.

9



2. PRELIMINARIES

Remark 2.20. If M ∈ MX, p ∈ M and q ∈ Mp, it is immediate from the definition that
(Mp)q = Mq.

It is a routinary task to check that Mp is in fact a Kripke model in X. An important
fact about generated submodels is that their worlds satisfy exactly the same formulas
that they satisfy in the original model, as the following proposition states. It can be
easily proved by induction on the complexity of the formula.

Proposition 2.21. Let X ⊆ Var, M ∈ MX and p ∈ M. For each q ∈ Mp and A ∈ F(X),
M, q |= A if and only if Mp, q |= A.

Remark 2.22. Obviously, given M ∈ MX and p ∈ M, the generated submodel Mp is a
rooted model with root p. Thus, in view of Proposition 2.21 and Remark 2.15, we have
Mp |= A if and only if Mp, p |= A if and only if M, p |= A. We will make extensive use
of this simple fact in many proofs.

Remark 2.23. Moreover, in view of the truth preserving condition for formulas and
Proposition 2.21, we have that a formula is satisfiable if and only if there is a model
M ∈ MX such that M |= A.

2.5 Isomorphic models

Definition 2.24. Let X ⊆ Var. Two models M = (M,⩽M, vM) and N = (N,⩽N , vN)
in MX are said to be isomorphic, denoted as M ∼= N, if there is a function f : M → N
such that:

• f is a bijection;

• For all p, q ∈ M, p ⩽M q iff f (p) ⩽N f (q);

• For all p ∈ M, vM(p) = vN( f (p)).

Isomorphic models are structurally the same. It is not a surprise that they satisfy
the same formulas. This fact can by proved by induction on the complexity of the
formula.

Proposition 2.25. Let X ⊆ Vat. If M, N ∈ MX and p ∈ M, then for all formula A ∈ F(X)

M, p |= A ⇐⇒ N, f (p) |= A

Remark 2.26. In view of the above result, we have that for all X ⊆ Var and every
A ∈ F(X), the class of models ModX(A) is closed under isomorphisms, in the sense
that for all M ∈ ModX(A), if N ∼= M, then N ∈ ModX(A).

2.6 Completeness

The most important results of Kripke semantics for IPL are the Completeness Theorem
and the Finite Model Property theorem. Proofs of these results can be found in [3].

Theorem 2.27 (IPC - Completeness 1). Let X ⊆ Var. For all Γ ⊆ F(X) and every
A ∈ F(X), we have

Γ ⊢IPC A ⇐⇒ Γ |= A

10



2.6. Completeness

Theorem 2.28 (Finite model property). Let X ⊆ Var. For all finite Γ ⊆ F(X) and every
A ∈ F(X), if Γ ̸⊢IPC A, there exists a finite model M ∈ MX such that M |= Γ and M ̸|= A.

The Completeness theorem states that for every Γ ⊆ F(X) and all A ∈ F(X), Γ
proves A in the logic IPL if and only if for every model M ∈ MX, M |= A whenever
M |= Γ. If we combine the Completeness theorem with the Finite model property, we
obtain a version of the Completeness theorem restricted to finite sets of formulas and
finite models.

Theorem 2.29 (IPC - Completeness 2). For all finite Γ ⊆ F(X) and every A ∈ F(X), we
have

Γ ⊢IPC A ⇐⇒ Γ |=fin A

where Γ |=fin A means that for every finite model M ∈ MX, if M |= Γ, then M |= A.

Using generated submodels and Proposition 2.21 we can refine even more the
previous result.

Theorem 2.30 (IPC - Completeness 3). For all finite Γ ⊆ F(X) and every A ∈ F(X), we
have

Γ ⊢IPC A ⇐⇒ Γ |=fin rooted A

where Γ |=fin rooted A means that for every finite rooted model M ∈ MX, if M |= Γ, then
M |= A.

Thus, Γ |= A, Γ |=fin A and Γ |=fin rooted A are equivalent when Γ is finite. In
view of this equivalence, when we deal with IPL in the following chapters we will
work with finite rooted models, and whenever we use |=, the reader must understand
|=fin rooted.

On the other hand, we state the Completeness theorem for classical propositional
logic. CPL turns out to be complete with respect to the semantics based on classical
valuations.

Theorem 2.31 (CPC - Completeness). Let X ⊆ Var. For all Γ ⊆ F(X) and every
A ∈ F(X), we have

Γ ⊢CPC A ⇐⇒ Γ |= A

11





CHAPTER 3
Unification in Intuitionistic logic

The goal of this chapter is to prove the Unification theorem for intuitionistic proposi-
tional logic. In the first section, we give the basic definitions to state the theorem. In
the second section, we define the operator (−)σ, which will be one of the fundamental
tool of this chapter. As we pointed out in the introduction, the operator (−)σ will
allow us to reason semantically about substitutions. In the third section, we prove the
unification theorem for classical propositional logic. And finally, in the fourth section,
we prove the unification theorem for intuitionistic propositional logic.

3.1 Unifiable formulas

Definition 3.1. Let ⊢ be a logic, X, Y ⊆ Var and A ∈ F(X),

• A substitution σ : F(X) → F(Y) is a unifier of A in ⊢ if and only if ⊢ σ(A).

• A is unifiable in ⊢ if and only if it has a unifier in ⊢.

Remark 3.2. Due to the Completeness theorem, in IPL the first condition is equivalent
to the requirement |= σ(A), i.e., every model M ∈ MY is a model of σ(A). In CPL,
the first condition is equivalent to say that a(σ(A)) = 1 for all classical valuations
a : F(X) → {0, 1}.

Definition 3.3. Let ⊢ be a logic, X, Y, Z ⊆ Var, σ1 : F(X) → F(Y) and σ2 : F(X) → F(Z)
be substitutions. σ1 is said to be less general (in ⊢) than σ2, in symbols σ1 ⪯⊢ σ2, if and
only if there is a substitution τ : F(Z) → F(Y) such that

τ(σ2(x)) ⊣⊢ σ1(x) for all x ∈ X.

For simplicity, whenever the logic is clear from the context, we will omit the explicit
reference to it. Thus, we will write unifier of A instead of unifier of A in ⊢, unifiable
instead of unifiable in ⊢ and less general instead of less general (in ⊢).

Remark 3.4. The relation ⪯⊢ defines a preorder (that is, ⪯⊢ is reflexive and transitive) on
the set of all substitutions with domain F(X). Transitivity follows from the substitution
invariance in the definition of ⊢.

13



3. UNIFICATION IN INTUITIONISTIC LOGIC

Remark 3.5. In IPL and CPL, where ⊢ and |= stands for the corresponding logic and
semantics, we have the equivalences

τ(σ2(x)) ⊣⊢ σ1(x) ⇐⇒ τ(σ2(x)) ≡ σ1(x)
⇐⇒|= τ(σ2(x)) ↔ σ1(x)

for all x ∈ X. Thus, in IPL and CPL, we can use any of the previous statements to
show that one substitution is less general than other.

Remark 3.6. In IPL and CPL, the condition ‘|= τ(σ2(x)) ↔ σ1(x) for all x ∈ X’ implies
(and therefore it is equivalent to) the condition ‘|= τ(σ2(A)) ↔ σ1(A) for all A ∈ F(X)’.
This can be proved by induction. The base cases are immediate. For the inductive
cases, assume |= τ(σ2(B)) ↔ σ1(B) and |= τ(σ2(C)) ↔ σ1(C). We will only prove the
result for B → C. We need |= τ(σ2(B → C)) ↔ σ1(B → C). But this is equivalent
to |= (τ(σ2(B)) → τ(σ2(C))) ↔ (σ1(B) → σ1(C)), which is clearly true from the
induction hypothesis.

Example 3.7. Let X ⊆ Var and z ∈ X. In CPL and IPL, consider the substitution
σ1 : F(X) → F(∅) such that

σ1(x) =

{
⊤ if x = z
⊥ otherwise

and the substitution σ2 : F(X) → F(X) such that

σ2(x) =

{
z → z if x = z
z ∧ x otherwise

Clearly, both substitutions are unifiers of the formula z. Moreover, σ1 is less general
than σ2. To show this, we need to find a substitution τ : F(X) → F(∅) such that
|= τ(σ2(x)) ↔ σ1(x) for all x ∈ X. For x = z, this is the same as |= (τ(z) → τ(z)) ↔ ⊤,
and for x ̸= z this is the same as |= τ(z) ∧ τ(x) ↔ ⊥. As the reader can check, any
substitution τ : F(X) → F(∅) satisfying τ(z) ≡ ⊥ or τ(x) ≡ ⊥ for all x ̸= z satisfies
what we need.

Definition 3.8. Let ⊢ be a logic and A ∈ F(X) be a unifiable formula.

• Given σ1 and σ2 unifiers of A, σ1 is said to be less general than σ2 if σ1 is less
general than σ2 as substitutions.

• A set S of unifiers of A is said to be a complete set of unifiers of A if every unifier
of A is less general than some member of S.

• A complete set of unifiers of A is said to be a basis of unifiers of A if and only if its
members are pairwise incomparable with respect to the preorder ⪯⊢.

• σ is said to be a most general unifier (mgu) for A if {σ} is a complete set of unifiers
of A.

Remark 3.9. Basis of unifiers of a formula A are minimal sets among the complete sets
of unifiers of A. It is easy to prove that two basis of unifiers of a formula A have the
same cardinality.

14
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Remark 3.10. In the definitions above, we use the set of formulas F(X) defined in the
preliminaries. However, these definitions can be stated for other logics using their
corresponding set of formulas. In particular, the definitions of this sections can be
stated for modals logics and Łukasiewicz logics.

Every unifiable formula in a logic ⊢ has a complete set of unifiers (the set of all
its unifiers). However, not every unifiable formula admits a basis of unifiers. In
[10], Jeřábek shows that the p → □p is unifiable in K but it lacks a basis of unifiers.
Moreover, if a unifiable formula admits a basis of unifiers, the cardinality of this basis
(and therefore the cardinality of all basis) may be 1, finite (different from 1) or infinite.
We use this to define the unification type of a logic.

Definition 3.11. The unification type of a logic is:

• Unitary (or 1) iff every unifiable formula has a basis of unifiers of size 1 (equiva-
lently, every unifiable formula admits a mgu);

• Finitary (or ω) iff every unifiable formula has a finite basis of unifiers and there is
at least one unifiable formula that does not have a basis of unifiers of size 1;

• Infinitary (or ∞) iff every unifiable formula has a finite or an infinite basis of
unifiers and there is at least one unifiable formula that does not have a finite
basis of unifiers;

• Nullary (or 0) iff there is a unifiable formula that does not have a basis of unifiers.

The Unification Theorem for intuitionistic propositional logic states that unification
type of IPL is finitary and the Unification Theorem for CPL states that the unification
type of CPL is unitary. In [6], Ghilardi also shows that any intermediate logic satisfying
the De Morgan axiom ¬(A∧ B) → (¬A∨¬B) has unitary unification type. The modal
logic S5 and Łukasiewicz logics Łn are other examples of logics with unitary unification
type. Modal logics S4 and K4 are examples of logics with finitary unification. K and
Łukasiewicz logic Łω are examples of logics with nullary unification type. In [4], W.
Dzik, S.Kost and P.Wojtylak point out that no example of a modal nor intermediate
logic with an infinitary unification type is known. For a comprehensive explanation of
unification in modal logics see [2] and [1], and for unification in Łukasiewicz logics
see [12].

3.2 The (−)σ operator

Every substitution induces a transformation between classes of Kripke models and
between classical valuations. This transformation will be extremely useful to obtain
a characterization of unifiable formulas in purely semantical terms and will be a
fundamental tool in the proof of the unification theorems for IPL and CPL.

We start with IPL and the transformation between Kripke models.

Definition 3.12. Let X, Y ⊆ Var be sets of propositional variables, and let σ : F(X) →
F(Y) be a substitution. The operator (−)σ : MY → MX sends a Kripke model
M = (M,⩽M, vM) to the Kripke model Mσ = (M,⩽M, vσ

M), where vσ
M : A → P(X) is

such that x ∈ vσ
M(m) iff M, m |= σ(x) for all m ∈ M.
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3. UNIFICATION IN INTUITIONISTIC LOGIC

It is easy to check that Mσ is a Kripke model in Y. We only need to verify the truth-
preserving property for vσ

M, but this is inherited from the truth-preserving property of
v. Sometimes we will use Mσ to denote the domain of Mσ. Even though Mσ = M, in
some cases it will be clearer to say explicitly whether we think of M as the domain of
M or as the domain of Mσ.

The (−)σ operator has a good behavior with respect to the operation of submodel
generation in the sense that both operations commute.

Proposition 3.13. Let X, Y ⊆ Var, σ : F(X) → F(Y) be a substitution, M ∈ MX and
p ∈ M. Then, (Mp)σ = (Mσ)p.

Proof. The frames of (Mp)σ and (Mσ)p are the same. It only remains to be proved that
(vσ

M)p = ((vM)p)σ. But for all q ∈ Mp and all x ∈ X, x ∈ (vσ
M)p(q) iff x ∈ (vσ

M)(q)
iff M, q |= σ(x) iff Mp, q |= σ(x) iff x ∈ ((vM)p)σ, using the definition of (−)σ and
Proposition 2.21. ⊠

The former proposition ensures that there is no ambiguity if we use Mσ
p to denote

(Mp)σ and (Mσ)p.
The following lemma describes the basic properties of the operator (−)σ. In spite

of its simplicity, this lemma will be the most used result of the chapter.

Lemma 3.14. Let X, Y, Z ⊆ Var, A ∈ F(X) and σ : F(X) → F(Y) be a substitution. Then

(i) for every M ∈ MY and every m ∈ M, Mσ, m |= A iff M, m |= σ(A);

(ii) |= σ(A) iff Mσ |= A for all M ∈ MY;

(iii) for every substitution τ : F(Y) → F(Z) and for every model N ∈ MZ, Nτσ = (Nτ)σ.

Proof.

(i) Let M = (M,⩽, vM) be in MY and m ∈ M. This part is proved by induction on
A. If A is a propositional variable, the result is immediate from the definition of
(−)σ, and if A is ⊥ or ⊤, the result is trivial. The inductive cases for ∧ and ∨ are
easy. Assume now that the result holds for formulas B and C. We will prove that
Mσ, m |= B → C iff M, m |= σ(B → C). For the left-to-right direction assume
Mσ, m |= B → C. We want M, m |= σ(B → C). But σ(B → C) = σ(B) → σ(C).
So let n ⩾M m be such that M, n |= σ(B). By the induction hypothesis, Mσ, n |= B.
Since Mσ, m |= B → C, Mσ, n |= C. By the induction hypothesis again, we have
M, n |= σ(C). Therefore, M, m |= σ(B) → σ(C), as wanted. The other direction
is proven similarly.

(ii) This is an immediate consequence of (i).

(iii) Let τ : F(Y) → F(Z) be a substitution and N ∈ MZ. The domains and the
relations of Nτσ and (Nτ)σ are the same. To prove the equality we only need to
check that vNτσ = v(Nτ)σ . But for all x ∈ X and all n ∈ N, we have x ∈ vNτσ(n)
iff N, n |= τσ(x) iff N, n |= τ(σ(x)) iff Nτ, n |= σ(x) iff (Nτ)σ, n |= x iff x ∈
v(Nτ)σ(n). Hence, vNτσ = v(Nτ)σ .

⊠
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3.2. The (−)σ operator

Before proving the characterization result about unifiable formulas, we need the
following lemmas about models where the valuation is constant. We say that a model
M ∈ MX has constant valuation if vM(m) = vM(m′) for all m, m′ ∈ M.

Lemma 3.15. Let X ⊆ Var and M ∈ MX be a model with constant valuation. Then for all
formula A ∈ F(X) and all m ∈ M

M |= A ⇐⇒ Mm |= A

Proof. We proceed by induction on A. The case for propositional variables is immediate
from the hypothesis that the valuation is constant, and the cases for ⊥ and ⊤ are trivial.
For the inductive cases, assume that for all m ∈ M, M |= B ⇐⇒ Mm |= B and
M |= C ⇐⇒ Mm |= C. We will only prove the result for B → C, that is, we will
prove that for all m ∈ M, M |= B → C ⇐⇒ Mm |= B → C. Let m ∈ M. We want
M |= C → D iff Mm |= C → D. The left-to-right direction is immediate from the truth
preserving result for formulas stated in Lemma 2.14. For the other direction, assume
Mm |= C → D, and suppose towards a contradiction that M ̸|= C → D. Then there is
some m′ ∈ M such that M, m′ |= C and M, m′ ̸|= D, that is, Mm′ |= C and Mm′ ̸|= D.
Hence, by the induction hypothesis, M |= C and M ̸|= D, and again by the induction
hypothesis we obtain Mm |= C and Mm ̸|= D, contradicting Mm |= C → D. ⊠

Lemma 3.16. Let X ⊆ Var and let M, N ∈ MX. If for all m ∈ M and all n ∈ N,
vM(m) = vN(n), then

M |= A ⇐⇒ N |= A for all A ∈ F(X)

.

Proof. We prove it by induction. The case when A is a propositional variable is an
immediate application of the hypothesis about vM and vN to the roots, and the cases
for ⊤ and ⊥ are trivial. For the inductive step, we only prove the case when A is of
the form B → C under the assumption that the result holds for B and C. We need
M |= B → C if and only if N |= B → C. We will prove only one direction, for the
other direction is proven similarly. Assume M |= B → C, and suppose towards a
contradiction that N ̸|= B → C. It implies that there is an n ∈ N such that N, n |= B
and N, n ̸|= C. Furthermore, observe that the hypothesis about vM and vN in the
statement implies that both M and N have constant valuation. Hence, by the previous
lemma, N |= B and N ̸|= C, and by the induction hypothesis we get M |= B and
M ̸|= C. It implies that there is an m ∈ M such that M, m |= B and M, m ̸|= C. Hence,
M ̸|= B → C, obtaining a contradiction.

⊠

As a consequence, we have the following characterization of unifiable formulas for
IPL.

Proposition 3.17. Let X ⊆ Var and A ∈ F(X). A is unifiable in IPL if and only if A is
satisfiable.

Proof. (⇒) Assume A is unifiable. Hence, there is a substitution σ : F(X) → F(Y),
for some Y ⊆ Var, such that |= σ(A). Let M be an arbitrary model in MY (take, for
instance, the one-point model where no propositional variable of Y holds). As |= σ(A),
M |= σ(A). By (i) of Lemma 3.14, Mσ |= A. Therefore, A is satisfiable.
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3. UNIFICATION IN INTUITIONISTIC LOGIC

(⇐) Assume A is satisfiable, and let M ∈ MX be a model of A. Since M is finite,
we can pick a maximal element w of M. Define the substitution σ : F(X) → F(∅) such
that

σ(x) =

{
⊤ if Mw |= x
⊥ otherwise

We will prove that |= σ(A). By (ii) of Lemma 3.14, it is enough to show that
Nσ |= A for all N ∈ M∅. So let N be in M∅. Notice that for all n ∈ Nσ and all x ∈ X,
x ∈ vσ

N(n) ⇔ N, n |= σ(x) ⇔ σ(x) = ⊤ ⇔ Mw |= x. Hence, Mw and Nσ satisfy the
hypothesis of Lemma 3.16. As Mw |= A, we conclude Nσ |= A, as wished. ⊠

For CPL and classical valuations, the definitions and results are analogous to
the definitions and results in IPL. Given a substitution σ : F(X) → F(Y) and a clas-
sical valuation a : F(Y) → {0, 1}, we define the classical propositional valuation
aσ : F(X) → {0, 1} as the unique classical valuation such that aσ(x) = 1 if and only
if a(σ(x)) = 1 for all x ∈ X. We state, without proof, the result concerning the basic
properties of aσ and the semantical characteization of unifiable formulas as satisfiable
formulas (with the semantics of CPL). The proofs are just adaptations of the proofs for
Kripke models.

Lemma 3.18. Let A ∈ F(X) be a formula and σ : F(X) → F(Y) be a substitution. Then,

(i) for every classical valuation a : F(Y) → {0, 1}, aσ |= A iff a |= σ(A).

(ii) |= σ(A) iff aσ |= A for all classical valutaion a : F(X) → {0, 1}.

(iii) for every substitution τ : F(Y) → F(Z) and avery classical valuation b : F(Z) → {0, 1},
bτσ = (bτ)σ.

Proposition 3.19. Let X ⊆ Var and A ∈ F(X). A is unifiable in CPL if and only if A is
satisfiable.

3.3 Projective formulas

Definition 3.20. Let ⊢ be a logic and X ⊆ Var. A formula A ∈ F(X) is projective if and
only if there is a substitution σ : F(X) → F(X) such that:

(1) ⊢ σ(A) (that is, σ is a unifier of A);

(2) A ⊢ x ↔ σ(x) for all x ∈ X.

In this case, we say that A is projective with σ.

Note that, by definition, every projective formula is unifiable. The definition above
is meant for every logic. However, for CPL and IPL we can give equivalent definitions
of projective formulas.

Remark 3.21. By completeness, in CPL and IPL, with their respective semantics, we
can replace conditions (1) and (2) for

(1’) |= σ(A) (that is, σ is a unifier of A);

(2’) A |= x ↔ σ(x) for all x ∈ X.
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Remark 3.22. In CPL and IPL, condition (2) is equivalent to the following (apparently
stronger) condition:

(2”) A |= B ↔ σ(B) for all B ∈ F(X).

This is shown by proving that (2”) is equivalent to (2’). The implication from (2”)
to (2’) is trivial. To show that (2’) implies (2”), we proceed by induction on A. For
propositional variables, it is exactly the statement (2’), and for constants ⊥ and ⊤,
the result is trivial. Now assume that (2”) holds for formulas C, D ∈ F(X). We want
A |= C ∧ D ↔ σ(C ∧ D). But C ↔ σ(C), D ↔ σ(D) |= C ∧ D ↔ σ(C)∧ σ(D). And by
hypothesis, A |= C ↔ σ(C) and A |= D ↔ σ(D). Thus, A |= C ∧ D ↔ σ(C) ∧ σ(D).
As σ(C)∧ σ(D) = σ(C ∧ D), we are done. The inductive step for the other connectives
is similar. Thus, we can replace (2’) by (2”) in the definition of projective formula.

Remark 3.23. In IPL, conditions (1) and (2) are equivalent, respectively, to

(1i) Mσ |= A for all M ∈ MX (equivalently, (MX)
σ ⊆ ModX(A), where (MX)

σ is
the image of MX under σ).

(2i) Mσ = M for all M ∈ ModX(A).

We show it by proving that (1i) and (2i) are equivalent to (1’) and (2’). The equivalence
(1’) if and only if (1i) is Lemma 3.14 (ii). The equivalence (2’) if and only if (2i) is
proved as follows. For the left-to-right direction assume that σ satisfies (2’) and let
M ∈ ModX(A), that is, M |= A. We want M = Mσ, but since the frames of M and Mσ

are the same, we only need to check that vM = vσ
M. But observe that for all m ∈ M

x ∈ vσ
M(m) ⇐⇒ Mσ, m |= x

⇐⇒ M, m |= σ(x) (by Lemma 3.14 )
⇐⇒ M, m |= x (by M |= A and (2’))
⇐⇒ x ∈ vM(m)

Thus, Mσ = M, as we wanted. For the direction from (2i) to (2’), assume σ satisfies
(2i). We want A |= x ↔ σ(x) for all x ∈ X. So let M ∈ MX be a model of A. For all
m ∈ M and all x ∈ X we have

M, m |= x ⇐⇒ Mσ, m |= x (for Mσ = M)
⇐⇒ M, m |= σ(x) (by Lemma 3.14 )

Then A |= x ↔ σ(x).
Notice that conditions (1i) and (2i) give us a characterization of projective formulas

in terms of properties of the operator (−)σ. Condition (1i) says that the operator (−)σ

collapses the class MX into the models of A, and condition (2i) says that the operator
(−)σ leaves unmodified the models of A. Thus, the operator (−)σ projects the class of
all models in X into the models of A.

Remark 3.24. In CPL, conditions (1) and (2) are equivalent, respectively, to

(1c) a(A) = 1 for all classical valuation a : F(X → {1, 0}.

(2c) aσ = a for all classical valuation a : F(X → {1, 0} such that a(A) = 1.

The proof is similar to the case of IPL.
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3. UNIFICATION IN INTUITIONISTIC LOGIC

Remark 3.25. In CPL and IPL, if A ∈ F(X) is projective with σ : F(X) → F(X), then
σ is a most general unifier of A. To see this, simply observe that, since σ satisfies (2),
for all substitution τ : F(X) → F(Y) we have τ(A) |= τ(x) ↔ τ(σ(x)) for each x ∈ X.
Furthermore, if τ is a unifier of A, we have |= τ(A), and thus |= τ(x) ↔ τ(σ(x)).
Therefore, τ ⪯ σ for every τ unifier of A.

The following lemma holds both for IPL and CPL.

Lemma 3.26. Let A ∈ F(X). If σ1, σ2 : F(X) → F(X) are substitutions satisfying (2’), then
σ1σ2 also satisfies (2’).

Proof. By assumption A |= x ↔ σ1(x) and A |= x ↔ σ2(x) for all x ∈ X, and we need
to prove A |= x ↔ σ1σ2(x) for all x ∈ X. On the one hand, recall that, by Remark 3.22,
(2”) also holds for σ1, so A |= A ↔ σ1(A), and therefore A |= σ1(A). On the other
hand, since A |= x ↔ σ2(x) for all x ∈ X, completeness and the substitution invariance,
we have σ1(A) |= σ1(x) ↔ σ1(σ2(x)) for all x ∈ X. From this and A |= σ1(A), we
get A |= σ1(x) ↔ σ1(σ2(x)) for all x ∈ X. Since also A |= x ↔ σ1(x), we conclude
A |= x ↔ σ1(σ2(x)) for all x ∈ X. ⊠

3.4 Boolean Unification

Before proving the unification theorem for intuitionistic propositional logic, we prove
now, as an illustrative and important example, the corresponding theorem for classical
propositional logic. To this end, given X ⊆ Var, a formula A ∈ F(X) and a classical
valuation a : F(X) → {0, 1}, we define θA

a (x) : F(X) → F(X) as the substitution
satisfying:

θA
a (x) =

{
A → x if a(x) = 1
A ∧ x otherwise

(3.1)

In CPL, if a formula A is satisfiable with a, A turns out to be projective with θA
a (x).

This nice property will simplify the problem of finding the unification type of CPL.

Proposition 3.27. . If A ∈ F(X) is a formula satisfiable with the classical valuation a, then
A is projective with θA

a (x).

Proof. We will show that A is projective with θA
a by showing that θA

a satisfies the
conditions (1c) and (2c) of Remark 3.24. We start by proving that θA

a satisfies (2c). Let b
be a classical valuation such that b(A) = 1. We want to check that bθA

a = b, for which it
is enough to show that bθA

a (x) = b(x) for all x ∈ X. We proceed by cases. If a(x) = 1,
then we have

bθA
a (x) = 1 ⇐⇒ bθA

a |= x

⇐⇒ b |= θA
a (x) (by Lemma 3.18)

⇐⇒ b |= A → x (by the assumption a(x) = 1)
⇐⇒ b(A → x) = 1
⇐⇒ b(x) = 1
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If a(x) ̸= 1, then we have

bθA
a (x) = 1 ⇐⇒ bθA

a |= x

⇐⇒ b |= θA
a (x) (by Lemma 3.18)

⇐⇒ b |= A ∧ x (by the assumption a(x) ̸= 1)
⇐⇒ b(A ∧ x) = 1
⇐⇒ b(x) = 1

Hence bθA
a (x) = b(x) for all x ∈ X and thus bθA

a = b, as desired.
Now we will prove that θA

a satisfies (1c). So let b : F(X) → {0, 1} be a classical
valuation. If b(A) = 1, (2c) implies bθA

a = b and we are done. It only remains to prove
that if b(A) ̸= 1, bθA

a (A) = 1 holds. Since a is already a model of A, we will do it
by proving that bθA

a = a. As before, it is enough to show that a(x) = bθA
a (x) for all

x ∈ X. So let x ∈ X. We have two cases: a(x) = 1 or a(x) ̸= 1. If a(x) = 1, then,
following the same steps as for the (2c) case, we have bθA

a (x) = 1 ⇐⇒ b(A → x) = 1.
Since we are assuming b(A) ̸= 1, trivially b(A → x) = 1, and then bθA

a (x) = 1. If
a(x) ̸= 1, a(x) = 0, and we have bθA

a (x) = 1 ⇐⇒ b(A ∧ x) = 1. But b(A) ̸= 1. Hence
b(A ∧ x) ̸= 1 and then bθA

a (x) = 0. Therefore, a = bθA
a , as wanted. ⊠

Observe that in the proof above, we have showed not only that the operator
(−)θA

a collapses all classical valuations to models of A. We also showed that classical
valuations that are not models of A are collapsed to one single point: the valuation
a. Moreover, observe that the election of a in the proof above is arbitrary except for
the requirement a(A) = 1. Thus, every classical valuation satisfying A induces a
substitution that makes A projective.

As a consequence of Proposition 3.19 and Proposition 3.27, in CPL we have the
following corollary.

Corollary 3.28. Let X ⊆ Var and A ∈ F(X). The following conditions are equivalent:

(i) A is unifiable;

(ii) A is satisfiable;

(iii) A is projective.

Finally, we have the unification theorem for CPL.

Theorem 3.29. The unification type of CPL is unitary, that is, if A ∈ F(X) is a unifiable
formula, then there is a most general unifier of A.

Proof. Let A ∈ F(X) be a unifiable formula. By Proposition 3.17, A is satisfiable. Let
a : F(X) → {0, 1} be a classical valuation such that a(A) = 1. By Proposition 3.27, A is
projective with θA

a . By Remark 3.25, θA
a is a most general unifier of A. Thus {θA

a } is a
basis of unifiers of A, as we wanted. ⊠

In the previous proof, observe that the only request for the classical valuation
a : F(X) → {0, 1} is that a(A) = 1. Hence, if A ∈ F(X), then for all classical valuations
b : F(X) → {0, 1}, such that a(A) = 1, {θA

b } is a base for the set of unifiers of A. In
particular, θA

a ⪯ θA
b for every pair of classical valuations a, b : F(X) → {0, 1} satisfying

A.
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3. UNIFICATION IN INTUITIONISTIC LOGIC

3.5 Unification in intuitionistic logic

From now on, unless the contrary is said, we will work with IPL. Following remarks
3.2 and 3.5, we will use the semantical version of the definitions in the previous sections.
For simplicity, since there is no ambiguity, we will omit the explicit reference to IPL in
the notation. Thus, we will use ⊢ instead of ⊢IPC and ⪯ instead of ⪯IPC.

We start this section by presenting a counterexample that shows that unification
in intuitionistic propositional logic is not unitary. We also take this opportunity to
present a very useful model construction and the disjunction property for intuitionistic
propositional logic.

Definition 3.30. Let X ⊆ Var. A sum of disjoint models M1, . . . , Mn ∈ MX (that is,
Mi ∩ Mj = ∅ for all i, j ∈ {1, . . . , n}, i ̸= j) is any model M in MX satisfying the
following conditions:

• M = M1 ∪ · · · ∪ Mn ∪ {r}, where r /∈ Mi for all 1 ⩽ i ⩽ n.

• ⩽M= (
⋃

1⩽i⩽n ⩽Mi) ∪ {(r, x) : x ∈ M1 ∪ · · · ∪ Mn ∪ {r}}.

• vM : M1 ∪ · · · ∪ Mn ∪ {r} → P(X) is the valuation such that vM(r) = ∅ and
vM(m) = vMi(m) for m ̸= r, where i is the only natural number such that m ∈ Mi.

A sum of arbitrary models N1, . . . , Nn ∈ MX is any sum of disjoint models N ′
1, . . . , N ′

n ∈
MX, where Ni

∼= N ′
i for each i.

The intuitive idea behind this definition is to build a new model from a finite list
of models putting the models of the list one side by side after the other and adding a
common root where no propositional variable holds.

Remark 3.31. It is easy to check that if N and N ′ are sums of arbitrary models N1, . . . , Nn ∈
MX, then N ∼= N ′. Since isomorphic models are indistinguishable from the point of
view of logic, as we showed in Proposition 2.25, we will use N1 + · · · Nn, or simply
∑1⩽i⩽n Ni, to denote any sum of models N1, . . . , Nn.

Remark 3.32. Furthermore, it follows from the definitions that if N1, . . . , Nn, N ′
1, . . . , N ′

n ∈
MX and Ni

∼= N ′
i for all 1 ⩽ i ⩽ n, then ∑1⩽i⩽n Ni

∼= ∑1⩽i⩽n N ′
i .

A nice application of the sum of models is the following proof of the disjunction
property for IPL.

Lemma 3.33 (Disjunction Property). Let X ⊆ Var and A, B ∈ F(X). If |= A ∨ B, then
|= A or |= B.

Proof. Suppose |= A ∨ B and assume by contradiction that ̸|= A and ̸|= B. Then, there
are models M, N ∈ MX such that M ̸|= A and N ̸|= B. Clearly, M + N, rM+N ̸|= A∨ B,
and then M + N ̸|= A ∨ B, obtaining a contradiction with |= A ∨ B. ⊠

Example 3.34 (Unification type of IPL is not unitary). Let X ⊆ Var and y ∈ X. Con-
sider the formula A := y ∨ ¬y. The substitutions σ1 : F(X) → F(∅) and σ2 : F(X) →
F(∅) such that σ1(x) = ⊤ and σ2(x) = ⊥ for all x ∈ X are unifiers of A. However,
there is no most general unifier of A. To see this, suppose by contradiction that there
is a most general unifier σ : F(X) → F(Y) for A, where Y ⊆ Var. Then, there are
substitutions τ1 : F(Y) → F(∅) and τ2 : F(Y) → F(∅) such that |= τ1(σ(x)) ↔ σ1(x)
and |= τ2(σ(x)) ↔ σ2(x) for all x ∈ X. In particular, |= τ1(σ(y)) ↔ σ1(y) and
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|= τ2(σ(y)) ↔ σ2(y), that is, |= τ1(σ(y)) ↔ ⊤ and |= τ2(σ(y)) ↔ ⊥. But σ is a
unifier of A, and consequently |= σ(y ∨ ¬y), so |= σ(y) ∨ ¬σ(y). By the disjunction
property, |= σ(y) or |= ¬σ(y). Now we reason by cases. On the one hand, if |= σ(y),
then |= σ(y) ↔ ⊤. Thus, |= τ2(σ(y)) ↔ τ2(⊤), by the substitution invariance, and
therefore |= τ2(σ(y)) ↔ ⊤, contradicting |= τ2(σ(y)) ↔ ⊥. On the other hand, if
|= ¬σ(y), then |= σ(y) ↔ ⊥. Following similar steps, we conclude |= τ1(σ(y)) ↔ ⊥,
contradicting |= τ1(σ(y)) ↔ ⊤. Therefore, A can not have a most general unifer.

Substitutions σA
Y and properties of (−)σA

Y

In the proof of the unification theorem for CPL, we worked with the substitution θA
a ,

and the result was relatively easy due to the good behaviour of this substitution, in
the sense that it makes A projective whenever A is satisfiable with a. In IPL, we will
work with a similar tool. Given a formula X ⊆ Var, A ∈ F(X) and a subset Y ⊆ X, we
define σA

Y : F(X) → F(X) as the substitution such that

σA
Y (x) =

{
A → x if x ∈ Y
A ∧ x otherwise

(3.2)

The following lemmas and corollaries describe the main properties of the operator
σA

Y .

Lemma 3.35. Let X ⊆ Var, A ∈ F(X), M ∈ MX and Y ⊆ X. For all m ∈ M such that
M, m |= A and all x ∈ X, we have M, m |= x if and only if MσA

Y , m |= x (equivalently,

x ∈ vM(m) if and only if x ∈ vσA
Y

M (m)).

Proof. Let x ∈ X and let m ∈ M be such that M, m |= A. Recall that MσA
Y , m |=

x ⇐⇒ M, m |= σA
Y (x). The formula σA

Y (x) can be either A → x or A ∧ x. But
since M, m |= A, in any case we have M, m |= σA

Y (x) ⇐⇒ M, p |= x. Therefore,
M, m |= A ⇐⇒ MσA

Y , m |= x, as desired. ⊠

Corollary 3.36. Let X ⊆ Var, A ∈ F(X) and Y ⊆ X. Then MσA
Y = M for all M ∈

ModX(A) (and its equivalent statements: A |= x ↔ σA
Y (x) for all x ∈ X, A |= B ↔ σA

Y (B)
for all B ∈ F(X)).

Lemma 3.37. Let X ⊆ Var, A ∈ F(X), M ∈ MX and Y ⊆ X. For all m ∈ M such that

M, m ̸|= A and all x ∈ X, if MσA
Y , m |= x, then x ∈ Y (equivalently, vσA

Y
M (m) ⊆ Y).

Proof. Let x ∈ X and let m ∈ M be such that M, m ̸|= A. Assume MσA
Y , m |= x. Then

M, m |= σA
Y (x). By contradiction, supposse x /∈ Y. This means that σA

Y (x) = A ∧ x. As
M, m |= σA

Y (x), M, m |= A, contradiction the assumption M, m ̸|= A. ⊠

Corollary 3.38. Let X ⊆ Var, A ∈ F(X) and Y ⊆ X. For all M ∈ MX such that M ̸|= A
and for every x ∈ X, if MσA

Y |= x, then x ∈ Y (equivalently, vM(rM)σA
Y ⊆ Y).

Lemma 3.39. Let X ⊆ Var, A ∈ F(X), M ∈ MX and Y ⊆ X. For all m ∈ M and all

x ∈ X, MσA
Y , m |= x if and only if MσA

Y σA
Y , m |= x (equivalently, vσA

Y
M = vσA

Y σA
Y

M ).
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Proof. Let m ∈ M and x ∈ X. We reason by cases. If M, m |= A, a double application of
Lemma 3.35 gives us M, m |= x if and only of MσA

Y , m |= x if and only if MσA
Y σA

Y , m |= x,
and we are done.

If M, m ̸|= A, observe that MσA
Y , m |= x ⇐⇒ M, m |= σA

Y (x) and MσA
Y σA

Y , m |=
x ⇐⇒ MσA

Y , m |= σA
Y (x). So to establish the desired conclusion, it is enough to show

that M, m |= σA
Y (x) ⇐⇒ MσA

Y , m |= σA
Y (x). We have two options: x ∈ Y or x /∈ Y.

If x /∈ Y, M, m |= σA
Y (x) ⇐⇒ M, m |= A ∧ x and MσA

Y , m |= σA
Y (x) ⇐⇒ MσA

Y , m |=
A ∧ x ⇐⇒ M, m |= σA

Y (A ∧ x) ⇐⇒ M, m |= σA
Y (A) ∧ σA

Y (x) ⇐⇒ M, m |= σA
Y (A) ∧

(A ∧ x). Thus, in this case the conclusion is reduced to prove M, m |= A ∧ x ⇐⇒
M, m |= σA

Y (A) ∧ A ∧ x, which is true, since both statements are false, for M, m ̸|= A.

If x ∈ Y, M, m |= σA
Y (x) ⇐⇒ M, m |= A → x and MσA

Y , m |= σA
Y (x) ⇐⇒

MσA
Y , m |= A → x ⇐⇒ M, m |= σA

Y (A → x) ⇐⇒ M, m |= σA
Y (A) → σA

Y (x) ⇐⇒
M, m |= σA

Y (A) → (A → x). Thus, the conclusion is proved if we manage to prove
M, m |= A → x ⇐⇒ M, m |= σA

Y (A) → (A → x). The left-to-right direction is
immediate. For the other direction, assume M, m |= σA

Y (A) → (A → x) and let
n ∈ M be such that n ⩾ m and M, n |= A. We want M, n |= x. But M, n |= A

is equivalent to Mn |= A. By Colorally 3.36, MσA
Y

n = Mn. Thus, MσA
Y

n |= A. By
Lemma 3.14, Mn |= σA

Y (A) and then M, n |= σA
Y (A). As M, m |= σA

Y (A) → (A → x),
M, n |= A → x. And since M, n |= A, also M, n |= x, as we wanted. ⊠

Corollary 3.40. Let X ⊆ Var, A ∈ F(X) and Y ⊆ X. For all M ∈ MX, it holds that
MσA

Y = MσA
Y σA

Y .

Lemma 3.41. Let X ⊆ Var, A ∈ F(X), M ∈ MX and Y, Z ⊆ X. If for all m ∈ M

MσA
Z , m |= A if and only if M, m |= A

then for all m ∈ M

MσA
Y , m |= x if and only if MσA

Z σA
Y , m |= x.

Proof. Let m ∈ M. We may assume that M, m ̸|= A. Otherwise, by Lemma 3.35, the
result holds. Observe that MσA

Y , m |= x ⇐⇒ M, m |= σA
Y (x) and (MσA

Z )σA
Y , m |= x ⇐⇒

MσA
Y , m |= σA

Z (x). Thus, it is enough to show that M, m |= σA
Y (x) ⇐⇒ MσA

Z , m |=
σA

Y (x). We have two cases: x ∈ Y or x /∈ Y.

If x /∈ Y, M, m |= σA
Y (x) ⇐⇒ M, m |= A ∧ x and MσA

Z , m |= σA
Y (x) ⇐⇒ MσA

Z , m |=
A ∧ x. Thus, in this case the conclusion is reduced to prove M, m |= A ∧ x ⇐⇒
MσA

Z , m |= A ∧ x, which is true by the hypothesis in the statement.

If x ∈ Y, M, m |= σA
Y (x) ⇐⇒ M, m |= A → x and MσA

Z , m |= σA
Y (x) ⇐⇒

MσA
Z , m |= A → x ⇐⇒ M, m |= σA

Z (A → x) ⇐⇒ M, m |= σA
Z (A) → σA

Z (x). Thus, the
conclusion is established if we prove M, m |= A → x ⇐⇒ M, m |= σA

Z (A) → σA
Z (x).

For the left-to-right direction, assume M, m |= A → x and let n ∈ M be such that
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n ⩾ m and M, n |= σA
Z (A). We want M, n |= σA

Z (x), which is proved as follows:

M, n |= σA
Z (A) ⇐⇒ MσA

Z , n |= A
⇐⇒ M, n |= A (by the hypothesis in the statement)
⇐⇒ M, n |= x (since M, m |= A → x)

⇐⇒ MσA
Z , n |= x (by Lemma 3.35, since M, n |= A)

⇐⇒ M, n |= σA
Z (x)

For the right-to-left direction, assume M, m |= σA
Z (A) → σA

Z (x) and let n ∈ M be
such that n ⩾ m and M, n |= A. We want M, n |= x, which is proved as follows:

M, n |= A ⇐⇒ M, n |= σA
Z (A) (as A |= A ↔ σA

Z (A) by Corollary 3.36)

=⇒ M, n |= σA
Z (x) (since M, m |= σA

Z (A) → σA
Z (x))

⇐⇒ MσA
Z , n |= x

⇐⇒ M, n |= x (by Lemma 3.35, since M, n |= A)

⊠

Corollary 3.42. Let X ⊆ Var, A ∈ F(X), M ∈ MX and Y, Z ⊆ X. If for all m ∈ M

MσA
Z , m |= A if and only if M, m |= A

then MσA
Y = MσA

Z σA
Y .

We summarize the achivements about (−)σA
Y made so far:

• The operator (−)σA
Y does not modify the worlds/models where A holds.

• After the application of (−)σA
Y , the propositional variables valid in any world

where A originally did not hold are always in Y.

• The opertator (−)σA
Y is idempotent.

• If we compose two operators (−)σA
Z and (−)σA

Y , and the first operator acting does
not make A true in any new world, then its action is completely irrelevant in the
composition.

Corollary 3.36 states that σA
Y satisfies the second condition in order to make A a

projective formula. The reader can easily check that, in general, substitutions σA
Y do

not satisfy the first condition, that is, σA
Y is not always a unifier of A, or equivalently,

the operator (−)σA
Y does not collapse all models of MX to ModX(A). However, the

application of (−)σA
Y to a certain model might make that A holds in more worlds of

the model. By Lemma 3.35, it never occurs that A becomes false in a world after the
application (−)σA

Y if A was already true in that world before the action of (−)σA
Y . What

if we systematically apply substitutions of the form (−)σA
Y ? Will we end up with a

model of A? If so, due to Lemma 3.26 the composition of the the substitutions used
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would be a substitution that makes A projective. We explore this idea in detail in the
rest of this section.

For the rest of this section, we will assume that X ⊆ Var is finite, and X1, X2, . . . , Xn
is a sequence of all the subsets of X satisfying the following condition: if Xi ⊆ Xj then
i ⩽ j. Examples of these kind of sequences are the lists obtained by listing first the
empty set, then all the subsets of X of one element, then all the subsets of X of two
elements, then all the subsets of X of three elements, and so on until listing the set X
itself.

Define the substitution σA : F(X) → F(X) as the composition σA
Xn

· · · σA
X2

σA
X1

. The

substitution σA has its corresponding operator (−)σA
: MX → MX. By Lemma

3.14 (iii), we know that for all M ∈ MX, (((MσA
Xn ) · · · )σA

X2 )
σA

X1 = MσA
. Therefore, the

operator (−)
σA

can be characterized as the composition (−)
σA

X1 ◦ (−)
σA

X2 ◦ · · · ◦ (−)
σA

Xn .

However, note the reverse order: σA = σA
Xn

◦ · · · ◦ σA
X2

◦ σA
X1

and (−)
σA

= (−)
σA

X1 ◦

(−)
σA

X2 ◦ · · · ◦ (−)
σA

Xn .

Lemma 3.43. Let A ∈ F(X) and M ∈ MX be such that MσA |= A. If Xi ⊆ vσA

M (r) for

some 1 ⩽ i ⩽ n, then MσA
Xn ···σ

A
Xi |= A.

Proof. Let i ∈ {1, . . . , n} be such that Xi ⊆ vσA

M (r). We may assume that MσA
Xn ̸|=

A. Otherwise, by Corollary 3.36, M
σA

Xn ···σ
A
Xj |= A for all j ∈ {1, . . . , n} and we are

done. Then, since MσA |= A and MσA
Xn ̸|= A, there is a k ∈ {1, . . . , n − 1} such that

MσA
Xn ···σ

A
Xk |= A but MσA

Xn ···σ
A
Xk+1 ̸|= A. We want MσA

Xn ···σ
A
Xi |= A. As MσA

Xn ···σ
A
Xk |= A,

to obtain the result it is enough to show that i = k or, by and Corollary 3.36, that

(−)
σA

Xi acts after (−)
σA

Xk , that is, i < k (recall the reverse order). We will show then

that i ⩽ k. Observe that, by Corollary 3.38, we know that v
σA

Xn ···σ
A
Xk

M (r) ⊆ Xk, and since

MσA
Xn ···σ

A
Xk |= A, by Corollary 3.36 we have v

σA
Xn ···σ

A
Xk

M (r) = v
σA

Xn ···σ
A
X1

M (r) = vσA

M (r). Thus,
vσA

M (r) ⊆ Xk. But Xi ⊆ vσA

M (r), by the hypothesis in the statement. Hence Xi ⊆ Xk.
However, by the condition on the list X1, . . . , Xn, this implies i ⩽ k, which concludes
the proof. ⊠

Definition 3.44. A model M ′ ∈ MX is said to be a variant of the model M ∈ MX if
and only if M′ = M, ⩽M′=⩽M and vM′(m) = vM(m) for all m ̸= r.

Remark 3.45. If M ′ is a variant of M, the valuation vM′ of M ′ is completely determined
by the valuation vM in M and vM′(rM).

Lemma 3.46. Let A ∈ F(X) and M ∈ MX be such that M ̸|= A but M, m |= A for all
m ̸= r. If there is a variant M ′ of M such that M ′ |= A, then M ′ = MσA

Y where Y = vM′(r).

Proof. By definition, the frames of M ′ and MσA
Y are the same. Thus, to prove the

equality M ′ = MσA
Y we need to show that vM′ = vσA

Y
M . However, since M, m |= A

for all m ̸= r, using Lemma 3.35 and the definition of variant, we already know that

vM′(m) = vσA
Y

M (m) for every m ̸= r. It only remains to prove that vM′(r) = vσA
Y

M (r). We
do it by showing the double inclusion.
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Let x ∈ vM′(r) = Y. We want x ∈ vσA
Y

M (r). But x ∈ vσA
Y

M (r) ⇐⇒ MσA
Y , r |= x ⇐⇒

M, r |= σA
Y (x) ⇐⇒ M, r |= A → x. We will prove this last statement. So let m ⩾ r be

such that M, m |= A. Observe that m ̸= r, for M ̸|= A. Furthermore, since x ∈ vM′(r),
M ′, m |= x, by the truth-preservation condition. But M ′ is a variant of M and m ̸= r.
As a consequence, M, m |= x. Hence, M, r |= A → x and this shows the inclusion

vM′(r) ⊆ vσA
Y

M (r).

Now let x ∈ vσA
Y

M (r). Then, MσA
Y , r |= x and so M, r |= σA

Y (x). Suppose, by

contradiction, that x /∈ vM′(r) = Y. Reasoning as above, x ∈ vσA
Y

M (r) ⇐⇒ MσA
Y , r |=

x ⇐⇒ M, r |= σA
Y (x) ⇐⇒ M, r |= A ∧ x. In particular M, r |= A, contradicting

M ̸|= A. Thus, vσA
Y

M (r) ⊆ vM′(r). ⊠

It is time to introduce one of the key concepts of this and next chapter.

Definition 3.47. A class K of Kripke models is said to have the extension property if and
only if for every n ∈ ω and all M1, . . . , Mn ∈ K, there is a variant of (some) ∑1⩽i⩽n Mi
in K.

Remark 3.48. If K is a class closed under isomorphism (that is, if for all M ∈ K
and every model N such that M ∼= N, N ∈ K holds), the definition above can be
restricted to pairwise disjoint models. That is: a class K of Kripke models closed under
isomorphism has the extension property if and only if for every n ∈ ω and all pairwise
disjoint models M1, . . . , Mn ∈ K, there is a variant of ∑1⩽i⩽n Mi in K.

We end this section with a characterization of projective formulas using σA
Y and the

extension property.

Theorem 3.49. Let A ∈ F(X). The following conditions are equivalent:

(i) σA is a unifier of A;

(ii) A is projetive;

(iii) ModX(A) has the extension property.

Proof.
(i) ⇒ (ii). Recall that each σA

Xi
appearing in σA satisfies A |= x ↔ σA

Xi
(x) and

substitutions satisfying such condition are closed under composition. Thus, σA satisfies
A |= x ↔ σA(x). If, moreover, σA is a unifier of A, then A is projective with σA.

(ii) ⇒ (iii). Let M1, . . . , Mn ∈ ModX(A). We need to find a variant of ∑1⩽i⩽n Mi
in ModX(A). Since A is projective, there is a substitution σ : F(X) → F(X) such that
Mσ ∈ ModX(A) for all M ∈ MX and Mσ = M for all M ∈ ModX(A). In particular,
(∑1⩽i⩽n Mi)

σ belongs to ModX(A). We will show that (∑1⩽i⩽n Mi)
σ is a variant of

∑1⩽i⩽n Mi, and thus it is the model we want. Observe for all m ∈ ∑1⩽i⩽n Mi different
from the root, ∑1⩽i⩽n Mi, m |= A, as M1, . . . , Mn ∈ ModX(A). Therefore, using Remark
3.23 and Proposition 3.13, we conclude that (∑1⩽i⩽n Mi)

σ is a variant of (∑1⩽i⩽n Mi).
(iii) ⇒ (i). Assume ModX(A) has the extension property. And suppose by con-

tradiction that σA is not a unifier of A. Thus, there is a model M ∈ MX such that
M ̸|= σA(A). Without loss of generality, we may assume that:

• For all m ∈ M with m different from the root r, M, m |= σA(A). If M does not
have this property, take a submodel of M that does have that property.
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• If m1, . . . , mn are the immediate successors of the root r, then Mm1 , . . . , Mmn are
mutually disjoint (that is Mi ∩ Mj = ∅ for all i ̸= j). If M does not have this
property, take a model with root r and followed with isomorphic copies of
M1, . . . , Mn mutually disjoints.

By Lemma 3.14, MσA ̸|= A but MσA
, m |= A for all m ̸= r. Thus, by Corollary 3.36,

MσA

mi
= Mmi for each mi immediate successor of r, and then each MσA

mi
is in ModX(A).

Thus, ∑1⩽i⩽n MσA

mi
is a variant of MσA

. Moreover, since ModX(A) has the extension
property, there is a variant N of ∑1⩽i⩽n MσA

mi
in ModX(A). The model N is obviously

also a variant of MσA
. By Lemma 3.46, N = MσAσA

Y where Y = vN(r). But X1, . . . , Xn

is a list of all subsets of X. Thus, Y = Xi for some i, 1 ⩽ i ⩽ n. Hence, N = (MσA
)

σA
Xi

for some i, 1 ⩽ i ⩽ n, that is, N = MσA
Xn ···σ

A
X1

σA
Xi . We have two options: i = 1 of i > 1.

We will see that both cases lead us to a contradiction.
If i = 1, then N = MσA

Xn ···σ
A
X1

σA
X1 = MσA

Xn ···σ
A
X1 = MσA

, by Corollary 3.40. But
MσA ̸|= A and N |= A, obtaining a contradiction.

If i > 1, it suffices to show that MσA
Xn ···σ

A
X1

σA
Xi = MσA

Xn ···σ
A
Xi . To see why this is

enough, observe that if N = MσA
Xn ···σ

A
X1

σA
Xi = MσA

Xn ···σ
A
Xi , then, as N |= A, Corollary

3.36 would imply N = MσA
Xn ···σ

A
X1 = MσA

, contradicting MσA ̸|= A and N |= A. To

prove the equality MσA
Xn ···σ

A
X1

σA
Xi = MσA

Xn ···σ
A
Xi , notice first that MσA

Xn ···σ
A
X1

σA
Xi |= Xi (that

is, MσA
Xn ···σ

A
X1

σA
Xi |= x for all x ∈ Xi), for MσA

Xn ···σ
A
X1

σA
Xi = N, N |= vN(r) and vN(r) =

Y = Xi. In particular, M
σA

Xn ···σ
A
X1

σA
Xi

m |= Xi for all m ̸= r. Moreover, M
σA

Xn ···σ
A
X1

m |= A

for all m ̸= r, as MσA
, m |= A for all m ̸= r. But Corollary 3.36 implies M

σA
Xn ···σ

A
X1

m =

M
σA

Xn ···σ
A
X1

σA
Xi

m , and then, as M
σA

Xn ···σ
A
X1

σA
Xi

m |= Xi, M
σA

Xn ···σ
A
X1

m |= Xi for all m ̸= r. Lemma

3.43 implies M
σA

Xn ···σ
A
Xi

m |= A for all m ̸= r. Equivalently, MσA
Xn ···σ

A
Xi , m |= A for all

m ̸= r. As MσA
Xn ···σ

A
X1 ̸|= A (for MσA ̸|= A) and MσA

Xn ···σ
A
Xi , m |= A for all m ̸= r, Lemma

3.35 implies that the operators (−)
σA

Xk , for 1 ⩽ k < i, do not make A valid in new
worlds (the only world where A does not hold is r). Hence, by Lemma 3.41, we

obtain MσA
Xn ···σ

A
X1

σA
Xi = MσA

Xn ···σ
A
Xi

σA
Xi . But MσA

Xn ···σ
A
Xi = MσA

Xn ···σ
A
Xi

σA
Xi , by Corollary 3.40,

concluding MσA
Xn ···σ

A
X1

σA
Xi = MσA

Xn ···σ
A
Xi .

⊠

Implicational Complexity and n-equivalence

The implicational complexity of a formula A ∈ F(X) is the number of nested implica-
tions in A. More precisely, we have the following recursive definition.

Definition 3.50. Let X ⊆ Var. The implicational complexity of a formula A ∈ F(X),
denoted as c(A), is defined as:

• c(A) = 0 if A is a propositional variable, ⊥ or ⊤;

• c(A) = max{c(B), c(C)} if A = (B ∗ C), where ∗ ∈ {∧,∨};

• c(A) = max{c(B), c(C)}+ 1 if A = (B → C).
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We will use CX
n to denote the set of all formulas in F(X) of implicational complexity

less or equal than n, and CX
n /≡ to denote the set of all equivalence classes of CX

n under
the relation of logical equivalence.

Remark 3.51. Observe that once we have CX
n , CX

n+1 can be defined inductively as:

• For all A ∈ CX
n , A ∈ CX

n+1.

• For all formulas B, C ∈ CX
n , B → C ∈ CX

n+1.

• For all formulas B, C ∈ CX
n+1, (B ∗ C) ∈ CX

n+1, where ∗ ∈ {∧,∨};

• No other formula belongs to CX
n+1.

This fact allows us to do inductive reasoning to prove properties valid for all the
formulas in Cn+1. To show that every formula of implicational complexity less or equal
than n + 1 has cartain property, it will be enough to prove that the property holds
for formulas in Cn, for formulas of the form B → C, where B, C ∈ Cn, and that the
property is preserved when applying operations ∧ and ∨.

One important part of the the unification theorem for IPL rests on the fact that
whenever X ⊆ Var is finite, CX

n /≡ is also finite for all n ∈ ω. To prove this fact, we
need a preliminary result. Given X ⊆ Var and L ⊆ F(X), we will use L∧∨ to denote
the least set of formulas containing L closed under ∧ and ∨. That is, L∧∨ is the least set
of formulas such that: (1) A ∈ L∧∨ for all A ∈ L, and (2) B ∧ C ∈ L∧∨ and B ∨ C ∈ L∧∨
for all C, B ∈ L∧∨. The following result says that the truth of formulas in L∧∨ at any
world (in any model) is completely determined by the truth of formulas in L at that
world. The truth of formulas of L at other worlds is irrelevant.

Lemma 3.52. Let X ⊆ Var and L ⊆ F(X). For all models M, M ′ ∈ MX and every m ∈ M
and m′ ∈ M ′,

(i) The following equivalence holds

{[A] ∈ L/≡ : M, m |= A} = {[A] ∈ L/≡ : M ′, m′ |= A}

⇐⇒
For all B ∈ L∧∨, M, m |= B if and only if M ′, m′ |= B.

(ii) The amount of non-equivalent formulas in L∧∨ is bounded by 2|L/≡|, that is, |L∧∨/≡| ⩽
2|L/≡|.

Proof.
(i) The right-to-left direction is immediate, as L ⊆ L∧∨. For the left-to-right

implication, we proceed by induction on L∧∨. If B ∈ L, the result holds since
{A ∈ L : M, m |= A} = {A ∈ L : M ′, m′ |= A} is a trivial consequence of the
hypothesis {[A] ∈ L/≡ : M, m |= A} = {[A] ∈ L/≡ : M ′, m′ |= A}. If B = C ∧ D,
with C and D in L∧∨, and the result holds for C and D, we have

M, m |= B ⇐⇒ M, m |= C ∧ D
⇐⇒ M, m |= C and M, m |= C
⇐⇒ M, m′ |= C and M ′, m′ |= C (Induction Hypothesis)
⇐⇒ M, m′ |= C ∧ D
⇐⇒ M, m′ |= B.
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3. UNIFICATION IN INTUITIONISTIC LOGIC

A similar argument works when B = C ∨ D, with C and D in L∧∨, and the result holds
for C and D.

(ii) Assume by contradiction that there are more than 2|L/≡| non-equivalent formu-
las in L∧∨. The previous result implies that there are more than 2|L/≡| subsets of |L/≡|,
which is a contradiction. ⊠

Lemma 3.53. If X ⊆ Var is finite, then CX
n /≡ is finite for all n ∈ ω.

Proof. The proof goes by induction on n. If n = 0, simply observe that CX
0 = (X ∪

{⊥,⊤})∧∨. The previous Lemma implies |CX
0 /≡| ⩽ 2|(X∪{⊥,⊤})/≡| = 2|X|+2, which is

finite, since so is X. Now assume that CX
n /≡ is finite. We need to prove that CX

n+1/≡
is finite as well. Observe that CX

n+1 = (CX
n ∪ In)∧∨, where In = {A → B : A, B ∈ CX

n }.
Notice first that In/≡ is finite, since so is CX

n /≡. Furthermore, the previous lemma
implies |CX

n+1/≡| ⩽ 2|(C
X
n ∪In)/≡|. But |(CX

n ∪ In)/≡| ⩽ |CX
n /≡|+ |In/≡|, which is finite.

Therefore, |Cn+1/≡| is finite too. ⊠

Definition 3.54. Let M, N ∈ MX.

• M and N are said to be 0-equivalent, denoted as M ∼0 N, iff vM(rM) = vN(rN).

• M and N are said to be n + 1-equivalent, denoted as M ∼n+1 N, iff for all p ∈ M
there exists a q ∈ N such that Mp ∼n Nq and for all q ∈ N there exists an p ∈ M
such that Nq ∼n Mp.

• M is said to be 0-less than N, denoted as M ⩽0 N, iff vM(rM) ⊇ vN(rN).

• M is said to be n + 1-less than N, denoted as M ⩽n+1 N, iff for all p ∈ M there
exists a q ∈ N such that Mp ∼n Nq.

Remark 3.55. It is easy to check that for all n ∈ ω, ∼n defines an equivalence relation
on MX, and ⩽n defines a preorder on MX (i.e. ⩽n is reflexive and transitive).

Remark 3.56. It is also immediate from the definitions that given M, N ∈ MX, then
for all n ∈ ω, we have M ⩽n N and N ⩽n M if and only if M ∼n N. This fact, in
conjunction with the transitivity of ⩽n stated in the remark above, implies:

• If M ⩽n N and M ∼n S, then S ⩽n N;

• If M ⩽n N and N ∼n S, then M ⩽n S.

Remark 3.57. For every n ∈ ω and all M, N, M ′, N ′, S ∈ MX, it can be easily checked
that

• If M ∼= N, then and M ∼n N;

• If M ∼= M ′, N ∼= N ′ and M ⩽n N, then M ′ ⩽n N ′;

• If M ∼= M ′, N ∼= N ′ and M ∼n N, then M ′ ∼n N ′.
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3.5. Unification in intuitionistic logic

Example 3.58. Consider the models M and N on the set of variables {x, y} depicted
below:

M N

e xy

xy a b x xy c d x

rM rN

Next to each point appear only the variables that are true at that point. For instance,
neither x nor y are true in rM, and x and y are both true in a. We have M ∼0 N, for
vM(rM) = ∅ = vN(rN), and M ∼1 N, since for all for all p ∈ M there exists a q ∈ N
such that Mp ∼0 Nq (that is, vM(p) = vN(q)) and vice versa. However, M ̸∼2 N. To
see this, notice that for d ∈ N, there is no element p ∈ M such that Mp ∼1 Nd, as the
reader can check.

Remark 3.59. Both M ∼n N and M ⩽n N have an equivalent formulation in game
theoretical terms. Even though we will not use this formulation, it could shade light
on the intuitive understanding of both notions. For n = 0, we just define M ∼0 N iff
vM(rM) = vN(rN) and M ⩽0 N iff vM(rM) ⊇ vN(rN), as before. For n > 0, consider
the two-player dynamic game with the following rules. Each player has a maximum
of n movements. At each movement, Player I challenges Player II by choosing either
a point in M or a point in N, and Player II must answer the challenge by choosing a
point in the other model satisfying the same propositional variables than the point
picked by Player I does. If Player II succeeds, the game continues, whenever there are
more movements left, if not, Player I wins. However, once Player I and Player II have
made a move, in the next move, if it is still allowed, both players must pick points
grater or equal (in the order of their respective models) than the elements picked in the
last move. If Player II manages to successfully answer the n challenges proposed by
Player I, then Player II wins. We define M ∼n N if and only if Player II has a winning
strategy, and M ⩽n N if and only if Player II has a winning strategy in the modified
game with the additional restriction that Player I must pick always an element of
M. Observe, for instance, that in Example 3.58, Player II can successfully answer any
one-movement challenge, which means that N ∼1 M, while it can not successfully
answer the two-movement challenge when Player I plays d first and then e, which
shows that N ̸⩽2 M and N ̸∼2 M. The game-theoretical definitions of ∼n and ⩽n are
studied in detail by Ghilardi in [7].

Lemma 3.60. Let X ⊆ Var. For every n ∈ ω and all M, N ∈ MX,

• if M ∼n N then M ∼m N for all m ⩽ n.

• if M ⩽n N then M ⩽m N for all m ⩽ n.
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Proof. We prove only the first statement, since the prove of the second is similar. If
n = 0 the result is trivial. For n ⩾ 1, it is enough to prove that for all M, N ∈ MX, if
M ∼n N, then M ∼n−1 N. We prove this last statement by induction on n.

For n = 1, assume M ∼1 N. We want M ∼0 N. Since M ∼1 N, there is a
q ∈ N such that MrM ∼0 Nq. Thus, vM(rM) = vN(q). But vN(rN) ⊆ vN(q), by the
truth-preserving condition. Then, vN(rN) ⊆ vM(rM). A similar argument shows that
vM(rM) ⊆ vN(rN). Thus, vN(rN) = vM(rM), and therefore M ∼0 N.

For the inductive step, assume that the result holds for n ⩾ 1 and suppose M ∼n+1
N. We want M ∼n N. So let p ∈ M. Since M ∼n+1 N, there exist an q ∈ N such that
Mp ∼n Nq. And by the induction hypothesis Mp ∼n−1 Nq. Thus, M ⩽n N. A similar
argument shows that N ⩽n M. Therefore, M ∼n N. ⊠

For the next result, we fix some basic notation. If M ∈ MX, by [M]n we will
denote the equivalence class of M under the relation ∼n, that is, [M]n = {N ∈ MX :
M ∼n N}. With MX/∼n we will denote the set of all equivalence classes of ∼n, that
is, MX/∼n = {[M]n : M ∈ MX}. Moreover, we will use ∥M∥n for the set of all the
equivalence classes of generated submodels of M, that is, ∥M∥n = {[Mp]n ∈ MX/∼n :
p ∈ M}. Obviously, we have that M ∼n N if and only if [M]n = [N]n. We have the
following characterization of ∼n+1.

Lemma 3.61. Let X ⊆ Var. For all M, N ∈ MX, ∥M∥n = ∥N∥n if and only if M ∼n+1 N.

Proof. For the left-to-right implication, assume ∥M∥n = ∥N∥n. To prove M ∼n+1 N
we will show that M ⩽n+1 N and N ⩽n+1 M. Let p ∈ M. Since ∥M∥n = ∥N∥n,
there is q ∈ N such that [Mp]n = [Nq]n. Thus Mp ∼n Nq. This shows M ⩽n+1 N.
Using a similar argument we get N ⩽n+1 M. Therefore, M ∼n+1 N. For the other
implication, assume M ∼n+1 N. To prove ∥M∥n = ∥N∥n, consider first the case
where [Mp]n ∈ ∥M∥n. As M ∼n+1 N, there is q ∈ N such that Mp ∼n Nq. Thus,
[Mp]n = [Nq]n. As [Nq]n ∈ ∥N∥n, [Mp]n ∈ ∥N∥n, and we conclude ∥M∥n ⊆ ∥N∥n.
The other inclusion is proven in the same fashion, concluding ∥M∥n = ∥N∥n. ⊠

Lemma 3.62. Let X ⊆ Var. If X is finite, then MX/∼n is finite for all n ∈ ω.

Proof. We proceed by induction on n. For n = 0, the result is clear since there are
as many elements in MX/∼0 as elements in P(X). Now assume that MX/∼n is fi-
nite. Since this is so, to prove that MX/∼n+1 is also finite it is enough to show that
|MX/∼n+1 | ⩽ |P(MX/∼n)|. Suppose by contradiction that |MX/∼n+1 | > |P(MX/∼n)|.
Consider the application ∥ − ∥n : MX/∼n+1 → P(MX/∼n) that sends a class [M]n+1
to ∥M∥n. By lemma 3.61, ∥ − ∥n is well defined. Furthermore, as |MX/∼n+1 | >
|P(MX/∼n)|, the application ∥ − ∥n is not injective. This means that there are classes
[M]n+1, [N]n+1 ∈ MX/∼n+1 , [M]n+1 ̸= [N]n+1, such that ∥M∥n = ∥N∥n. But, by
Lemma 3.61, this implies M ∼n+1 N, contradicting [M]n+1 ̸= [N]n+1. Therefore,
|MX/∼n+1 | ⩽ |P(MX/∼n)|. ⊠

The following result establishes the relationship between the implicational com-
plexity and the n-equivalence. The relation ⩽n can be captured by some formula of
complexity n.

Lemma 3.63. Let X ⊆ Var. For every n ∈ ω and every N ∈ MX, there is a formula φn
N

such that:
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(i) c(φn
N) = n;

(ii) for all N ′ ∈ MX, N ′ |= φn
N if and only if N ′ ⩽n N;

(iii) for all M ∈ MX, if M ∼n N, then φn
M ≡ φn

N .

Proof. We prove it by induction on n. For n = 0, let N ∈ MX and take φ0
N =

∧
vN(rN).

It is clear that φ0
N satisfies the desired conditions. For the inductive step, assume that

the result holds for n. To prove the result for n + 1, let N ∈ MX and let SN be a set
with one representative of each class in {[M] ∈ MX/∼n : M ̸∼n Nq for all q ∈ N},
and for each S ∈ SN , let TS be a set with one representative of each class in {[M] ∈
MX/∼n : S ̸⩽n M}. SN and each TS are finite, by Lemma 3.62. We define

φn+1
N =

∧
S∈SN

(φn
S →

∨
T∈TS

φn
T)

By the induction hypothesis, formulas φn
S and φn

T exist and satisfy conditions (i),
(ii) and (iii). Conditions (i) and (iii) for φn+1

N are easy consequences of conditions (i)
and (iii) for formulas φn

S and φn
T. It only remains to prove condition (ii).

For the left-to-right direction, let N ′ ∈ MX be such that N ′ |= φn+1
N . Assume

towards a contradiction that N ′ ̸⩽n+1 N. Then, there exists a p ∈ N ′ such that
N ′

p ̸∼n Nq for all q ∈ N. Thus, [N ′
p] ∈ {[M] ∈ MX/∼n : M ̸∼n Nq for all q ∈ N}.

Hence, there is an S ∈ SN such that N ′
p ∼n S. In particular, N ′

p ⩽n S. By the induction
hypothesis, N ′

p |= φn
S. Equivalently, N ′, p |= φn

S. As N ′ |= φn+1
N and N ′, p |= φn

S, we get
N ′, p |= φn

T for some T ∈ TS. Thus, N ′
p |= φn

T. By the induction hypothesis, N ′
p ⩽n T.

As, moreover, N ′
p ∼n S, we have S ⩽n T, by Remark 3.56. But S ̸⩽n T, for T ∈ TS,

obtaining a contradiction. Therefore, N ′ ⩽n+1 N.
For the right-to-left direction, let N ′ ∈ MX be such that N ′ ⩽n+1 N. To show that

N ′ |= φn+1
N , we will prove that N ′ |= φn

S → ∨
T∈TS

φn
T for all S ∈ SN . So let S ∈ SN

and p ∈ N′ be such that N ′, p |= φn
S. By the induction hypothesis, N ′

p ⩽n S. Moreover,
since N ′ ⩽n+1 N, there is a q ∈ N such that N ′

p ∼n Nq. We have then Nq ∼n N ′
p ⩽n S.

Thus, Nq ⩽n S. But Nq ̸∼n S, for S ∈ SN . Remark 3.56 implies S ̸⩽n Nq. As a
consequence, there is a T ∈ TS such that Nq ∼n T. Hence, since N ′

p ∼n Nq ∼n T and
T ∈ TS, we have N ′

p ⩽n T for some T ∈ TS. By the induction hypothesis, N ′
p |= φn

T
for some T ∈ TS. Equivalently, N ′, p |= φn

T for some T ∈ TS. Thus, N ′, p |= ∨
T∈TS

φn
T.

And therefore N ′ |= ∧
S∈SN

(φn
S → ∨

T∈TS
φn

T), as we wanted. ⊠

Lemma 3.64. Let X ⊆ Var. For all n ∈ ω and all M, N ∈ MX, the following equivalence
holds: M ⩽n N if and only if for all A ∈ F(X) such that c(A) ⩽ n, if N |= A, then M |= A.

Proof. We proceed by induction on n. For n = 0, assume first that M ⩽0 N and let
A ∈ F(X) be such that c(A) ⩽ 0. Then, A is a propositional variable, ⊤ or ⊥. The cases
for ⊤ are ⊥ trivial. For propositional variables, the result holds since vN(rN) ⊆ vM(rM).
This proves one direction. For the other direction, assume that for all A ∈ F(X) such
that c(A) ⩽ 0, if N |= A, then M |= A. In particular, if N |= x, then M |= x for all
x ∈ X. Thus, vN(rN) ⊆ vM(rM), that is, M ⩽0 N.

For the inductive case, assume that the result holds for n and let us prove it for
n + 1. For the left-to-right direction assume M ⩽n+1 N. We need to show that for all
A ∈ F(X) such that c(A) ⩽ n + 1, if N |= A, then M |= A. Following Remark 3.51,
we will reason by induction on the set Cn+1. As we pointed out in such remark, to
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prove that the property holds for every formula in Cn+1, it is enough to show that the
property holds for every formula in Cn, for every formula of the form B → C with
B, C ∈ Cn, and that the property is preserved when applying operations ∧ and ∨. So
let A ∈ Cn+1 be such that N |= A.

• If A ∈ Cn, then c(A) ⩽ n. Furthermore, Lemma 3.60 implies M ⩽n N, for
M ⩽n+1 N. Then, the induction hypothesis implies M |= A.

• If A = B → C for some B, C ∈ Cn, we know that c(B) ⩽ n and c(C) ⩽ n. To show
that M |= B → C, take p ∈ M such that M, p |= B or, equivalently, Mp |= B. As
M ⩽n+1 N, there is a q ∈ N such that Mp ∼n Nq. In particular, Nq ⩽n Mp. As
c(B) ⩽ n, the induction hypothesis implies Nq |= B. Since N |= A, Nq |= C. But
Mp ⩽n Nq as well, for Mp ∼n Nq, and c(C) ⩽ n. Hence, the induction hypothesis
implies Mp |= C, that is, M, p |= C. Therefore, M |= B → C, as wanted.

• Now assume that B, C ∈ Cn+1 are such that if N |= B, then M |= B and if N |= C,
then M |= C. If A = B ∧ C, then, as N |= A, also N |= B and N |= C. By the
induction hypothesis on B and C, M |= B and M |= C. And therefore M |= A,
as we wanted. The case for ∨ is similar.

For the right-to-left direction, assume that for all A ∈ F(X) such that c(A) ⩽ n + 1,
if N |= A, then M |= A. By Lemma 3.63, there is a formula φn+1

N of complexity n + 1
such that for all N ′ ∈ MX, N ′ |= φn+1

N if and only if N ′ ⩽n+1 N. Obviously, N |= φn+1
N ,

for N ⩽n+1 N. Hence, by the hypothesis in this implication, M |= φn+1
N , and therefore

M ⩽n+1 N, as desired. ⊠

Corollary 3.65. For all n ∈ ω and all M, N ∈ MX, M ∼n N if and only if M and N satisfy
the same formulas of complexity less or equal than n.

Stable classes

Definition 3.66. Let X ⊂ Var and n ∈ ω. A class K of Kripke models on X is said to
be ⩽n-closed if for each M ∈ K and all N ∈ MX such that N ⩽n M, N ∈ K holds.

Remark 3.67. The class MX is clearly ⩽n-closed. Thus, given a class of models in X, the
smallest ⩽n-closed class of models in X containing K, denoted as K↓n , always exists. It
can be easily checked that K↓n =

⋂{L ⊆ MX : K ⊆ L and L is ⩽n-closed} = {N ∈
MX : N ⩽n M for some M ∈ K}. It is also clear that a class K is ⩽n-closed if and only
if K = K↓n .

Remark 3.68. In view of Remark 3.57, we know that K↓n is closed under isomorphisms.

Definition 3.69. Let X ⊆ Var. A class K of Kripke models in X is said to be stable if for
all M ∈ K and every p ∈ M, Mp ∈ K holds.

Remark 3.70. It is easy to check that if M ∈ K↓n , then Mp ∈ K↓n for all p ∈ M. Thus,
K↓n is stable for all n ∈ ω.

Lemma 3.71. Let X ⊆ Var, n ∈ ω and K be a class of Kripke models on X. Then the
following statements are equivalent:

(i) K = ModX(A) for some A ∈ F(X) with c(A) ⩽ n;
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(ii) K is ⩽n-closed.

Proof. Assume first K = ModX(A) for some A ∈ F(X) with c(A) ⩽ n, and let M ∈ K
and N ⩽n M. We want N ∈ K. As K = ModX(A), M |= A. By the Lemma 3.64,
N |= A, and therefore N ∈ K, as wanted.

Now assume K is ⩽n-closed. We need to find a formula A of implicational complex-
ity less or equal than n such that K = ModX(A). Let K be a set with one representative
of each class in

{[M]n ∈ MX/∼n : M ∈ K and there is no N ∈ K such that M ⩽n N and N ̸∼n M }.

In other words, K contains exactly one representative for each ⩽n-maximal class of
K. Observe that K ⊆ K, for K is ⩽n-closed. Moreover, notice that K is finite, for so is
MX/∼n. Then, we can define A =

∨
M∈K φn

M. The formula A has complexity n, and
observe that

N ∈ ModX(A) ⇐⇒ N |= A
⇐⇒ N |= φn

M for some M ∈ K ⊆ K
⇐⇒ N ⩽n M for some M ∈ K (Lemma 3.63)
⇐⇒ N ∈ K (K is ⩽n-closed)

Hence, K = ModX(A), which concludes the proof. ⊠

The following theorem states that for stable clases the extension property is inher-
ited from K to each K↓n .

Lemma 3.72. Let X ⊆ Var and K be a stable class of Kripke models in X. If K has the
extension property, then for all n ∈ ω, the class K↓n has the extension property.

Proof. First, we will prove the result for n = 0, and then for n ̸= 0.
For n = 0, let N1, . . . , Nl be in K↓0 . We need to find a variant of (∑1⩽i⩽l Ni) in K↓0 .

But

K↓0 = {N ∈ MX : N ⩽0 M for some M ∈ K}
= {N ∈ MX : vM(rM) ⊆ vN(rN) for some M ∈ K}

Thus, for each Ni there is a Mi ∈ K such that vMi(rMi) ⊆ vNi(rNi). Since K
has the extension property, there is a variant M of (∑1⩽i⩽l Mi) in K. By the truth-
preserving condition, we know that vM(rM) ⊆ vM(rMi) for each 1 ⩽ i ⩽ l. Consider
the variant N of (∑1⩽i⩽l Ni) such that vN(rN) = vM(rM), which is well defined since
vN(rN) = vM(rM) ⊆ vM(rMi) = vMi(rMi) ⊆ vNi(rNi) = vN(rNi) for each 1 ⩽ i ⩽ l.
Since vN(rN) = vM(rM) and M ∈ K, we conclude N ∈ K↓0 . Therefore, N is the variant
we needed.

For n ̸= 0, let N1, . . . , Nl be in K↓n . In view of Remarks 3.48 and 3.68, we may
assume that N1, . . . , Nl are pairwise disjoint. It suffices to find a variant of (∑1⩽i⩽l Ni)
in K↓n . As K↓n = {N ∈ MX : N ⩽n M for some M ∈ K}, we need a variant N
of (∑1⩽i⩽l Ni) and a model M ∈ K such that N ⩽n M. Consider a list of disjoint
models N ′

1, . . . , N ′
m consisting of N1 . . . , Nl at the beginning and isomorphic copies

of all their generated submodels afterwards. By Remarks 3.70 and 3.57, we know
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that all N ′
1, . . . , N ′

m are in K↓n . Thus, for each 1 ⩽ j ⩽ m, there is a model Mj ∈ K
such that N ′

j ⩽n Mj. This means that for all 1 ⩽ j ⩽ m, there is a pj ∈ Mj such
that N ′

j ∼n−1 (Mj)pj . For simplicity, we will use M ′
j to denote (Mj)pj . Since K is

stable and each Mj ∈ K, every M ′
j is also in K, for M ′

j is submodel of Mj. But K
also has the extension property. Thus, there is a variant M of (∑⩽j⩽m M ′

j) in K. Let
N be the variant of (∑1⩽i⩽l Ni) such that vN(rN) = vM(rM). First of all, we need
to show that this valuation defines a Kripke model. To do this, we need to prove
that vN(rN) ⊆ vN(rNi) for all 1 ⩽ i ⩽ l. But Ni ∼n−1 M ′

i for all 1 ⩽ i ⩽ l, and
then, by Lemma 3.60, Ni ∼0 M ′

i for all 1 ⩽ i ⩽ l, that is, vNi(rNi) = vM′
i
(rM′

i
). As

vN(rN) = vM(rM) ⊆ vM(rM′
i
) = vM′

i
(rM′

i
) = vNi(rNi) = vN(rNi) for all 1 ⩽ i ⩽ l, we

obtain what we wanted.
We will prove now that N ⩽n M. Let p ∈ N.

• If p ̸= rN , then p is in Ni for some 1 ⩽ i ⩽ l. Thus, the model (Ni)p is (isomorphic
to) N ′

j for some l < j ⩽ m. As N ′
j ∼n−1 M ′

j , we have (Ni)p ∼n−1 M ′
j . But

M ′
j
∼= M ′′

j , where M ′′
j is the isomorphic copy of M ′

j in M. By Remark 3.57,
(Ni)p ∼n−1 M ′′

j . And since (Ni)p = (NrNi
)p = Np and M ′′

j = (M ′′
j )rM′′

j
= MrM′′

j
,

we have Np ∼n−1 MrM′′
j
.

• For p = rN , we will show that NrN ∼n−1 MrM , that is, N ∼n−1 M. We prove it by
showing that for all 0 ⩽ k ⩽ n − 1, N ∼k M. We do it by induction on k.

– For k = 0, the result is immediate, since we defined vN(rN) = vM(rM).

– Now assume that the result holds for k − 1, that is, N ∼k−1 M. We want
N ∼k M. We may assume n ̸= 1. Otherwise, the case k = 0 is enough to
prove the result. Thus, n > 2.
We first prove N ⩽k M. For each p ∈ N we want a q ∈ M such that
Np ∼k−1 Mq for some q ∈ M. If p = rN , by the induction hypothesis
he have NrN ∼k−1 MrM . If p ̸= rN , p is in Ni for some 1 ⩽ i ⩽ l and
Np = (Ni)p ∼n−1 M ′

j
∼= M ′′

j = MrM′′
j

for some l < j ⩽ m, where M ′′
j is the

isomorphic copy of M ′
j in M. Therefore, Np ∼n−1 MrM′′

j
. But 1 ⩽ k ⩽ n − 1.

Hence Np ∼k−1 Mpj , by Lemma 3.60. This completes the proof of N ⩽k M.
Now we will show M ⩽k N. So let p ∈ M. If p = rM, by the induction
hypothesis he have NrN ∼k−1 MrM . If p ̸= rM, p is in the isomorphic copy
M ′′

j (in M) of some M ′
j , 1 ⩽ j ⩽ m. But M ′

j ∼n−1 N ′
j , and then M ′′

j ∼n−1 N ′
j .

Thus, there is a qj ∈ N ′
j such that (M ′′

j )p ∼n−2 (N ′
j )qj . Since 1 ⩽ k ⩽ n − 1,

we have 0 ⩽ k − 1 ⩽ n − 2. Hence, (M ′′
j )p ∼k−1 (N ′

j )qj . However, N ′
j is

either one among N1 . . . , Nl or an isomorphic copy of a generated submodel
of some Ni. In any case, there is an Ni, for some 1 ⩽ i ⩽ l, and an element
q ∈ Ni such that (M ′′

j )p ∼k−1 (Ni)q. As (M ′′
j )p = Mp and (Ni)q = Nq, we

have Mp ∼k−1 Nqj , as we wanted. This completes the proof of M ⩽k N.
Therefore, N ∼k M.

We have proven that N ∼k M for all 0 ⩽ k ⩽ n − 1. In particular, we have
N ∼n−1 M, that is NrN ∼n−1 MrM .
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Since we have showed that for each p ∈ N there is a q ∈ M such that Np ∼n−1 Mq,
we have N ⩽n M, concluding the proof.

⊠

Bisimilar models

Definition 3.73. Let X ⊆ Var. Two models M, N ∈ MX are said to be bisimilar, in
symbols M ∼∞ N, if M ∼n N for all n ∈ ω.

Remark 3.74. In view of Corollary 3.65, two models M, N ∈ MX are bisimilar if and
only if they satisfy the same formulas. That is to say, bisimilar models are indistin-
guishable in IPL.

Lemma 3.75. Let X ⊆ Var. Given M, N ∈ MX, we have:

(i) M ∼∞ N if and only if the following two conditions hold:

(a) For all p ∈ M there is a q ∈ N such that Mp ∼∞ Nq;

(b) For all q ∈ N there is a p ∈ M such that Mp ∼∞ Nq.

(ii) M ∼∞ N if and only the following three conditions hold:

(a) M ∼0 N;

(b) For all p ∈ M there is a q ∈ N, q ̸= rN , such that Mp ∼∞ Nq;

(c) For all q ∈ N there is a p ∈ M, p ̸= rM, such that Mp ∼∞ Nq.

Proof.

(i) Assume M ∼∞ N. We prove only (a), since (b) is analogous. Let p ∈ M and
assume by contradiction that there is no q ∈ N such that Mp ∼∞ Nq. It means that
for each q ∈ N there is an nq ∈ ω such that Mp ̸∼nq Nq. Let m be the maximum
of {nq ∈ ω : q ∈ N}, which exists because N is finite. It is clear that Mp ̸∼m Nq
for each q ∈ N. But this implies M ̸∼m+1 N, contradicting M ̸∼∞ N.

Now assume (a) and (b). Assume towards a contradiction that M ̸∼∞ N. Hence,
M ̸∼m+1 N for some m ∈ ω. This implies that there is a p ∈ M such that
Mp ̸∼m Nq for all q ∈ N or that there is a q ∈ N such that Mp ̸∼m Nq for all
p ∈ M. In each case, we have a contradiction with (a) or (b), respectively.

(ii) The left-to-right direction is immediate from the definition of ∼∞ and (i). For the
right-to-left direction assume (a), (b) and (c). We need to prove that for all n ∈ ω,
M ∼n N. We prove it by induction on n. By (a), the result holds for n = 0. Now
assume M ∼n N. We want M ∼n+1 N. So let p ∈ M. If p = rM, by the induction
hypothesis we have MrM ∼n NrN . If p ̸= rN , condition (b) implies that there is a
q ∈ N such that Mp ∼n Nq. This shows M ⩽n+1 N. A similar argument shows
N ⩽n+1 M. Hence, M ∼n+1 N. Therefore, M ∼∞ N.

⊠
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Main theorem

Lemma 3.76. Let X ⊆ Var. If A ∈ F(X) is a unifiable formula and σ : F(X) → F(Y) is a
unifier of A, then there is formula B ∈ F(X) such that:

(i) c(B) ⩽ c(A);

(ii) B is projective;

(iii) B |= A;

(iv) σ is a unifier of B.

Proof. Consider the class K = {M ∈ MX : M ∼∞ Nσ for some N ∈ MY}. The class
K↓c(A)

is trivially ⩽c(A)-closed. Thus, by Lemma 3.71, we know that K↓c(A)
= ModX(B)

for some formula B ∈ F(X) such that c(B) ⩽ c(A). We claim that B is the formula we
need. It remains to be proven that B is projective, B |= A, and σ is a unifier of B.

To show that B is projective, we will use Theorem 3.49. By this theorem, it is enough
to show that ModX(B) has the extension property. To this end, we will use Lemma
3.72. This lemma implies that in order to prove that ModX(B) (which is K↓c(A)

) has the
extension property it is enough to show that K is stable and has the extension property.

To show that K is stable, let M ∈ K and p ∈ M. We need to prove that Mp ∈ K,
that is, we need to find a model N in MY such that Mp ∼∞ Nσ. But since M ∈ K
we know, by definition of K, that there is a model N ′ ∈ MY such that M ∼∞ (N ′)σ.
By Lemma 3.75 (i), there is q ∈ N′ such that Mp ∼∞ ((N ′)σ)q. Taking N = N ′

q and
recalling that the operator (−)σ commutes with the submodel generation (Proposition
3.13), we are done.

To show that K has the extension property, let M1, M2 . . . , Mn be in K. We need
to find a variant of (∑1⩽i⩽n Mi) in K. By definition of K, for each Mi there is a
Ni ∈ MY such that Mi ∼∞ (Ni)

σ. Consider the model N = (∑1⩽i⩽n Ni) and its
image Nσ under the operator (−)σ. Let M be the variant of (∑1⩽i⩽n Mi) such that
vM(rM) = vσ

N(rN). To show that this valuation indeed defines a Kripke model we
need to prove that vM(rM) ⊆ vM(rMi). But vMi(rMi) = vσ

Ni
(rNi), for Mi ∼∞ (Ni)

σ,
and vσ

N(rN) ⊆ vσ
N(rNi) = vσ

Ni
(rNi), for the operator (−)σ commutes with submodel

generation. We claim that M ∼∞ Nσ. We will show this using Lemma 3.75 (ii).
Condition (a) of 3.75 is immediately satisfied by the definition of M. Conditions (b)
and (c) are also easily satisfied for Mi ∼∞ (Ni)

σ for all 1 ⩽ i ⩽ n. Hence, M is the
variant of (∑1⩽i⩽n Mi) that we wanted.

Thus, K is stable and has the extension property. Using Theorem 3.49 and Lemma
3.72, this implies that B is projective.

We now need to prove that B |= A. We will do it by showing ModX(B) ⊆ ModX(A).
Recall that K↓c(A)

= ModX(B) and K↓c(A)
is the smallest ⩽c(A)-closed class containing

K. Hence, to obtain the desired inclusion it is enough to show that ModX(A) is
⩽c(A)-closed and contains K.

We first prove that ModX(A) is ⩽c(A)-closed. Let N ∈ ModX(A) and M ∈ MX be
such that M ⩽c(A) N. Since N |= A, Lemma 3.64 implies M |= A, and we are done.

Now we proceed to prove that ModX(A) contains K. Let M ∈ K. We know
M ∼∞ Nσ for some N ∈ MY. In particular, M ∼c(A) Nσ. Corollary 3.65 implies
M |= A if and only if Nσ |= A. But σ is a unifier of A. Thus, Nσ |= A. Therefore
M |= A, that is, M ∈ ModX(A), and we have the inclusion K ⊆ ModX(A).
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It only remains to be proven that σ is a unifier of B, but this follows from the
inclusions (MY)

σ ⊆ K ⊆ K↓c(A)
= ModX(B). ⊠

Finally, we can conclude this section by proving the Unification Theorem for IPL.

Theorem 3.77. The unification type of IPL is finitary.

Proof. In Example 3.34 we already showed that there is a unifiable formula not ad-
mitting a basis of unifiers of size 1. Now we will show that every unifiable formula
has a finite basis of unifiers. So let A be a unifiable formula. Take X ⊆ Var finite such
that A ∈ F(X). Let SA be a set of representatives of the set of classes CX

c(A)/≡ (recall
that CX

c(A) is the set of all formulas in F(X) of implicational complexity less or equal
than c(A)). Now take BA = {B ∈ SA : B is projective and B |= A}. By Lemma 3.76,
BA is non-empty, as A is unifiable. For each B ∈ BA, pick a unifier σB such that B is
projective with σB, and consider the set ΣA = {σB : B ∈ BA}. By Lemma 3.53, SA, BA
and ΣA are all finite. We claim ΣA is a basis of unifiers of A.

First, we need to show that substitutions in ΣA are indeed unifiers of A. So let
B ∈ BA and σB ∈ ΣA. Since B |= A, σB(B) |= σB(A). Moreover, σB is a unifier of B, for
B is projective with σB. Therefore, |= σB(A), and we conclude that σB is a unifier of A
as well.

Now we need to show that every unifier of A is less general than some substitution
in ΣA. So let σ be a unifier of A. By Lemma 3.76, there is formula B′ ∈ F(X) such that
B′ is projective, B′ |= A, c(B′) ⩽ c(A) and σ is a unifier of B′. It is easy to see that
B′ ≡ B for some B ∈ BA. Clearly, σ is a unifier of B as well. Furthermore, by Remark
3.25, we know that σB is a most general unifier of B. Hence σ ⪯ σB, as we wanted.

Therefore, ΣA is a finite basis of unifiers of A, which concludes the proof. ⊠

39





Bibliography

[1] P. Balbiani. Unification in modal logic. In Md. Aquil Khan and Amaldev Manuel,
editors, Logic and Its Applications, pages 1–5, Berlin, Heidelberg, 2019. Springer
Berlin Heidelberg.

[2] P. Balbiani, C. Gencer, M. Mojtahedi, M. Rostamigiv, and T. Tinchev. A gentle intro-
duction to unification in modal logics. In 13èmes Journées d’Intelligence Artificielle
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[10] E. Jeřábek. Blending margins: the modal logic K has nullary unification type.
Journal of Logic and Computation, 25(5):1231–1240, 10 2013.
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