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Abstract: The capital allocation framework presents capital allocation principles as solutions to
particular optimisation problems and provides a general solution of the quadratic allocation problem
via a geometric proof. However, the widely used haircut allocation principle is not reconcilable
with that optimisation setting. Our study complements and generalises the unified capital allocation
framework. The goal of the study is to contribute in the following two ways. First, we provide an
alternative proof of the quadratic allocation problem based on the Lagrange multipliers method
to reach the general solution, which complements the geometric proof. This alternative approach
to solve the quadratic optimisation problem is, in our opinion, easier to follow and understand
by researchers and practitioners. Second, we show that the haircut allocation principle can be
accommodated by the optimisation setting with the quadratic optimisation criterion if one of the
original conditions is relaxed. Two examples are provided to illustrate the accommodation of this
allocation principle.
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1. Introduction

Capital allocation proposed by Dhaene et al. [1] is a key concept in economics and
finance. Although they are related, the meaning of capital allocation is slightly different
in these two research fields. In economics, capital allocation is related to the allocation of
limited resources (capital) to the most-efficient alternatives [2–6]. In financial and actuarial
applications, capital allocation is associated with the individual risk contribution to an
aggregate risk [7]. Our study focuses on capital allocation from a financial and actuarial
perspective. Risk in quantitative risk management is defined as a random variable (r.v.)
associated with costs or losses [8–10]. Capital allocation problems arise when a total amount
associated with the aggregate risk has to be distributed across the multiple units of risk
that make it up [11,12]. The total capital amount to allocate across the individual risks
is usually calculated by means of a risk measure, such as the Value-at-Risk (VaR) or the
Tail-Value-at-Risk (TVaR) [13]. A capital allocation principle is the set of guidelines that
indicates how the total capital must be allocated across the individual risks. The resulting
capital allocations reflect the contributions of the individual risks to the total risk evaluated
under that capital allocation principle.

There is an extensive amount of studies in the literature dealing with capital allocation
problems. Examples of capital allocation problems can be found, for instance, in asset
allocation strategies for portfolio selection [14–19], the allocation of the total solvency
capital requirement across business lines [20–23], or when distributing total claim costs
across the coverage of an insurance policy [24], among others. A comparative analysis of
alternative capital allocation principles can be found in Xu and Hu [25] and Balog et al. [26].
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Although capital allocation problems have mainly been analysed from a static ap-
proach and only one organisation level [1,27–29], some studies have included a time-
dependent perspective taking into account dynamics in capital risk allocations [17,30–33],
and other studies have dealt with hierarchical corporate structures at two or more organi-
sational levels in which a given total capital must be allocated among business lines and
also their sub-business lines [34,35]. A standard assumption in the literature is that the
aggregate risk is formed as linear combinations of individual risks, but there are some
attempts to investigate capital allocation for portfolios with nonlinear aggregation [36].

There are two main streams to motivate capital allocation principles. Some capital
allocation principles have been motivated based on game theory in which capital allocation
problems are interpreted as coalition games [37–40]. In that context, the Aumann–Shapley
value is one of the most-popular capital allocation rules [37,41,42]. An alternative ap-
proach to derive capital allocation principles emerges from the economy theory. Capital
allocation problems are interpreted as optimisation problems in which a loss function of
particular interest for risk managers is minimised [7,43–47]. Under this second approach,
Dhaene et al. [1] provided a unified theoretical framework in which a capital allocation
principle is the outcome of a particular optimisation problem. This framework was later
generalised by Zaks and Tsanakas [34] considering a hierarchical corporate structure, and
more recently, Cai and Wang [35] considered different loss functions for capital shortfall
risk and capital surplus risk.

The goal of this study is to complement and generalise the unified capital allocation
framework provided by Dhaene et al. [1] in order to overcome some of the drawbacks
of their allocation setting. Dhaene et al. [1] showed that their unified capital allocation
framework has a unique allocation solution when the quadratic optimisation criterion
is considered. The authors argued that most of the capital allocation principles used in
practice can be accommodated by that framework, but the haircut allocation principle did
not seem to be reconcilable with that setting ([1] Table 1). The contribution of our study
is twofold. First, we provide an alternative approach to solve the quadratic optimisation
problem, which is, in our opinion, easier to follow and understand by researchers and
practitioners. Second, we prove that the haircut allocation principle can be accommodated
by that quadratic optimisation setting by relaxing one of the original constraints. Therefore,
we extend the number of capital allocations principles represented by that unified capital
allocation framework.

In the optimisation setting proposed by Dhaene et al. [1], the solution of the quadratic
allocation criterion is derived via a geometric proof. In this article, we provide an al-
ternative proof of the solution to the quadratic allocation problem based on the La-
grangian method. To our knowledge, this proof has not been previously provided in
the literature. Dhaene et al. [1] and Zaks and Tsanakas [34] followed geometric ap-
proaches to obtain solutions to their quadratic optimisation problems. On the other hand,
Cai and Wang [35] used the Lagrangian method, but their optimisation problem was based
on the absolute allocation criterion. That is, their loss function was based on absolute devia-
tions, allowing for different weighting functions to apply to positive and negative deviations.

A second contribution here is that we accommodate the haircut allocation principle
into the capital allocation setting provided by Dhaene et al. [1]. The haircut allocation
principle has been widely used in the industry due to its simplicity [1,22] (pp. 6, 750). Under
the haircut allocation principle, the portion of the aggregate capital allocated to a risk unit is
computed as the proportion that the VaR associated with this risk unit represents in relation
to the sum of VaRs for all risk units. In this paper, we prove that the haircut allocation
principle can be accommodated by the quadratic optimisation criterion by relaxing one
of the original conditions of Dhaene et al. [1]. The general optimisation framework of
Dhaene et al. [1] depends on a set of non-negative auxiliary random variables with the
expected value equal to one, which are used as weight factors to the (scaled) deviations
between losses and allocated risk capitals. Previously, Belles-Sampera et al. [24] suggested a
mechanism to accommodate the haircut allocation principle into the quadratic optimisation
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framework by allowing auxiliary random variables to take negative values. However, as
appointed by Cai and Wang [35], when the auxiliary random variables take negative values,
the loss function could be concave and the optimisation problem may not have minimisers.
In addition, the proof of Proposition 1 of Belles-Sampera et al. [24] was based on Theorem 1
of Dhaene et al. [1], which can only be applied to non-negative auxiliary random variables
with the expected value equal to one. Inspired by Belles-Sampera et al. [24], we here define
a particular form of the auxiliary random variables from which the haircut allocation
principle is derived. We show that the solution exists and it is unique. Therefore, we
demonstrate that the haircut allocation principle can be understood as the solution of a
quadratic optimisation problem. Finally, two particular examples are provided where the
haircut allocation principle is obtained.

The paper is structured as follows. The general optimal capital allocation framework is
defined in the next section, and the proof of the solution of the quadratic allocation criterion
via the Lagrangian method is shown. Section 3 provides the steps to accommodate the
haircut allocation principle into this framework, as the solution to a quadratic optimisation
problem. Two examples are provided in Section 4. An illustrative application is given in
Section 5. Section 6 concludes.

2. Risk Capital Allocation as a Quadratic Optimisation Problem

The optimal allocation framework introduced in this section may be used to describe
capital allocation principles as solutions to optimisation problems. We assumed that all
components and concepts of the optimisation setting exist and are mathematically well-
defined. For instance, the existence of moments of a specific order of the random variables
involved in the allocation setting will be assumed when it would be required to prove a
proposition.

Assume that a capital K > 0 has to be allocated across n business units denoted by
j = 1, ..., n. The random variable Xj with finite expectation refers to the loss associated with
the jthbusiness. Based on the capital allocation framework given by Dhaene et al. [1], we
argue that most capital allocation problems can be described as the optimisation problem
given by

min
K1,K2,...,Kn

n

∑
j=1

vjE
[

ζ jD

(
Xj − Kj

vj

)]
s.t.

n

∑
j=1

Kj = K, (1)

with the following characterising elements:

(a) A function D : R→ R+;
(b) A set of positive values vj, j = 1, ..., n;
(c) A set of random variables ζ j such that E

[
ζ j
]
> 0, j = 1, ..., n.

The optimisation framework given in (1) is more general than the original optimisation
framework proposed by Dhaene et al. [1] (see Remark 2 for a description of the original
setting). Note that, if D(x) = x2 is selected, then the optimisation criterion in (1) is
called the quadratic optimisation criterion. The explicit and unique solution to the quadratic
minimisation problem is given in the following proposition.

Proposition 1. Assume that random variables Xj, ζ j, and ζ jXj have finite moments of first and
second order, j = 1, . . . , n. Then, the solution of the minimisation problem proposed in the general
framework defined in (1) under the quadratic optimisation criterion is

Ki =
E[ζiXi]

E[ζi]
+

vi
E[ζi]

n

∑
j=1

vj

E
[
ζ j
]
(

K−
n

∑
j=1

E
[
ζ jXj

]
E
[
ζ j
] ), for i = 1, ..., n. (2)
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Proof of Proposition 1. Let us rewrite expression (1) when D(x) = x2 in the following way:

min
K1,K2,...,Kn

n

∑
j=1

E

 ζ j

E
[
ζ j
] (Xj − Kj

)2

vj

E
[
ζ j
]

 s.t.
n

∑
j=1

Kj = K. (3)

Now, let ηj =
ζ j

E
[
ζ j
] and wj =

vj

E
[
ζ j
] for all j = 1, . . . , n, so E

[
ηj
]
= 1 for all j. The

expression (3) can be rewritten as

min
K1,K2,...,Kn

n

∑
j=1

E
[

ηj

(
Xj − Kj

)2

wj

]
s.t.

n

∑
j=1

Kj = K. (4)

Note that ηj is a random variable, while wj is a constant. A similar procedure inspired
by the proof of Theorem 1 by Dhaene et al. [1] is followed. Let us consider that

E
[
ηj
(
Xj − Kj

)2
]
= E

[
ηjX2

j − 2ηjXjKj + ηjK2
j

]
= E

[
ηjX2

j

]
− 2E

[
ηjXj

]
Kj + K2

j (because E
[
ηj
]
= 1 )

= E
[
ηjX2

j

]
− 2E

[
ηjXj

]
Kj + K2

j +E
[
ηjXj

]2 −E
[
ηjXj

]2
=
(
E
[
ηjXj

]2 − 2E
[
ηjXj

]
Kj + K2

j

)
−E

[
ηjXj

]2
+E

[
ηjX2

j

]
=
(
E
[
ηjXj

]
− Kj

)2 −E
[
ηjXj

]2
+E

[
ηjX2

j

]
.

The last two elements do not depend on Kj. Therefore, the minimisation problem in (4)
is equivalent to

min
K1,K2,...,Kn

n

∑
j=1

(
E
[
ηjXj

]
− Kj

)2

wj
s.t.

n

∑
j=1

Kj = K. (5)

Following a similar strategy to Zaks et al. [44], the notation xj =
Kj −E

[
ηjXj

]
√wj

is

introduced (√wj is properly defined since wj =
vj

E
[
ζ j
] > 0). Note that

n

∑
j=1

√
wjxj =

n

∑
j=1

Kj −
n

∑
j=1

E
[
ηjXj

]
,

so the optimisation problem (5) is equivalent to

min
x1,x2,...,xn

n

∑
j=1

x2
j s.t.

n

∑
j=1

√
wjxj = K−

n

∑
j=1

E
[
ηjXj

]
. (6)

The selected method to solve problem (6) is the Lagrange multipliers’ method. Fol-
lowing the notation of Magnus and Neudecker [48] (Ch. 7), both φ(x1, x2, ..., xn) = ∑n

j=1 x2
j

and g(x1, x2, ..., xn) = ∑n
j=1
√wjxj − K + ∑n

j=1 E
[
ηjXj

]
are suitable for the application of

this optimisation method because φ is differentiable at any c ∈ Rn, g is twice differentiable
at any c ∈ Rn, and the 1× n Jacobian matrix of g has full rank 1. Consider the Lagrangian
function:

L(λ, x1, x2, . . . , xn) =
n

∑
j=1

x2
j + λ

(
n

∑
j=1

√
wjxj − K +

n

∑
j=1

E
[
ηjXj

])
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The partial derivatives of function L with respect to xi and λ are

∂L
∂xi

= 2xi + λ
√

wi, i = 1, . . . , n, (7)

∂L
∂λ

=
n

∑
j=1

√
wjxj − K +

n

∑
j=1

E
[
ηjXj

]
. (8)

By equalling the first partial derivative (7) to zero, we obtain

x0i = −
λ0

2
√

wi. (9)

Then, x0i = −
λ0

2
√

wi, and from (8) equal to zero, we obtain

−λ0

2
=

[
K−∑n

j=1 E
[
ηjXj

]]
∑n

j=1 wj
,

then substituting in (9),

x0i =

√
wi

∑n
j=1 wj

[
K−

n

∑
j=1

E
[
ηjXj

]]
. (10)

The objective function and constraints in (6) are convex functions, so the solution is
unique. Changing the notation from (6) to (5), then (10) can be expressed as

Ki −E[ηiXi]√
wi

=

√
wi

∑n
j=1 wj

[
K−

n

∑
j=1

E
[
ηjXj

]]
.

The solution to problems (4) and (5) is

Ki = E[ηiXi] +
wi

∑n
j=1 wj

[
K−

n

∑
j=1

E
[
ηjXj

]]
.

Finally, the solution of problem (3) is

Ki =
E[ζiXi]

E[ζi]
+

vi
E[ζi]

∑n
j=1

vj

E
[
ζ j
]
[

K−
n

∑
j=1

E
[
ζ jXj

]
E
[
ζ j
] ].

A proof that the solution x0 = (x01, x02, . . . , x0n) in (10) is a minimum is provided.
According to Magnus and Neudecker [48], the bordered Hessian matrix of L, HL(λ, x) is:

HL(λ, x) =


0

√
w1

√
w2 . . .

√
wn√

w1 2 0 . . . 0√
w2 0 2 . . . 0
...

...
...

. . .
...√

wn 0 0 . . . 2
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The characteristics of the HL(λ, x) matrix do not depend either on λ or on x. As
stated in (Magnus and Neudecker [48] p. 156), the point x0 = (x01, x02, . . . , x0n) with

x0i =

√
wi

∑n
j=1 wj

[
K−∑n

j=1 E
[
ηjXj

]]
for all i, i = 1, . . . , n, is a minimum if all minors ∆k:

∆k =

∣∣∣∣∣∣∣∣∣∣∣

0
√

w1
√

w2 . . .
√

wk√
w1 2 0 . . . 0√
w2 0 2 . . . 0
...

...
...

. . .
...√

wk 0 0 . . . 2

∣∣∣∣∣∣∣∣∣∣∣
(11)

of HL(λ0, x0) have their sign equal to −1 for k = 2, . . . , n. As is shown in Appendix A, ∆k
are equal to:

∆k = −
(

2k−1
k

∑
j=1

wj

)
, ∀k = 2, . . . , n.

Therefore, it is satisfied that sign(∆k) = −1 for all k ≥ 2, because ∑k
j=1 wj > 0 for all

k ≥ 2 due to wj > 0 for all j. Therefore, x0 is a minimum in (6).
An alternative proof can be given following the strategy in Dhaene et al. [1]. The

problem (6) can be understood as finding the closest point to the origin (with respect to the
Euclidean distance) that belongs to the hyperplane:{

(x1, x2, . . . , xn) |
n

∑
j=1

√
wjxj = K−

n

∑
j=1

E
[
ηjXj

]}
.

From this point of view, the solution x0 in (10) is unique and a minimum.

Remark 1. The proof of Proposition 1 requires that
vj

E[ζ j]
> 0, j = 1, . . . , n. This is satisfied with

Conditions (b) and (c). However, a more-general framework may be defined with the conditions (b)
and (c) expressed as follows:

(b) A set of weights vj, j = 1, ..., n;
(c) A set of random variables ζ j, j = 1, ..., n, with

vj
E[ζi ]

> 0.

The proof of the proposition still holds. However, the interpretation of a negative weight vj and
a negative expected value of ζ j in the context of risk management is not as straightforward as with
positive values.

Remark 2. The original allocation problem proposed by Dhaene et al. [1] considered (b) and (c) in
(1) as follows:

(b) A set of non-negative weights vj, j = 1, ..., n, such that ∑n
i=1 vi = 1;

(c) A set of non-negative random variables ζ j, j = 1, ..., n, with E
[
ζ j
]
= 1.

Under these constraints, the solution (2) can be simplified as

Ki = E[ζiXi] + vi

(
K−

n

∑
j=1

E
[
ζ jXj

])
, for all i = 1, ..., n.

3. Haircut Allocation Principle

In this section, it is shown that the haircut allocation principle can be accommodated
by the capital allocation setting (1).
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The haircut allocation principle is defined as follows. If a capital K > 0 has to be
allocated across n business units, the haircut allocation principle states that the capital Ki
assigned to each business unit is

Ki = K
F−1

Xi
(α)

n

∑
j=1

F−1
Xj

(α)

∀i = 1, ..., n, (12)

where Xi is the random loss linked to the ith business unit, F−1
Xi

is the inverse of the
cumulative distribution function of Xi, and α ∈ (0, 1) is a given confidence level.

To accommodate the haircut allocation principle into (1), we first introduce the follow-
ing lemma.

Lemma 1. Consider a constant c ∈ R and two random variables X and Y such that E[X] < ∞,
E[Y] < ∞, E[XY] < ∞, and E[XY] 6= E[X]E[Y]. Let us define ζ as

ζ =
(Y−E[Y])c +E[XY]−E[X]Y

E[XY]−E[X]E[Y] (13)

which satisfies

(a) E[ζ] = 1;
(b) E[ζX] = c.

Proof of Lemma 1. Taking expectations in (13),

E[ζ] = (E[Y]−E[Y])c +E[XY]−E[X]E[Y]
E[XY]−E[X]E[Y]

=
E[XY]−E[X]E[Y]
E[XY]−E[X]E[Y]

= 1.

Now, the numerator of ζ is multiplied by X:

(XY− XE[Y])c +E[XY]X− XYE[X].

The expectation of the previous expression is

(E[XY]−E[X]E[Y])c +E[XY]E[X]−E[XY]E[X] = (E[XY]−E[X]E[Y])c.

Therefore, it holds that:

E[ζX] =
(E[XY]−E[X]E[Y])c
E[XY]−E[X]E[Y]

= c.

Remark 3. The r.v. ζ defined in (13) may take non-positive values. Note that the values of ζ lie on
the straight line:

z = ay + b

where

a =
c−E[X]

E[XY]−E[X]E[Y] and b =
E[XY]− cE[Y]

E[XY]−E[X]E[Y] .
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If c 6= E[X], the intersection of the line with the horizontal axis, z = 0, is given by

y =
−b
a

=
cE[Y]−E[XY]

c−E[X]
.

There are four scenarios in which ζ takes non-positive values depending on the value taken by
Y. The four scenarios are summarised in Table 1.

Table 1. Scenarios for which r.v. ζ defined in (13) takes non-positive values.

E[XY]−E[X]E[Y] > 0 E[XY]−E[X]E[Y] < 0

c−E[X] > 0 Y(ω) ≤ cE[Y]−E[XY]
c−E[X]

Y(ω) ≥ cE[Y]−E[XY]
c−E[X]

c−E[X] < 0 Y(ω) ≥ cE[Y]−E[XY]
c−E[X]

Y(ω) ≤ cE[Y]−E[XY]
c−E[X]

Let us consider the following proposition.

Proposition 2. The three characterising elements required to represent the haircut allocation
principle (12) in the general framework defined by (3) are:

(a) D(x) = x2;

(b) vi =
E[ζiXi]

n

∑
j=1

E
[
ζ jXj

] , i = 1, . . . , n;

(c) ζi =
(Yi −E[Yi])F−1

Xi
(α) +E[XiYi]−E[Xi]Yi

E[XiYi]−E[Xi]E[Yi]
, where Yi is a random variable such that

E[XiYi] 6= E[Xi]E[Yi], for all i = 1, . . . , n.

Proof of Proposition 2. By Lemma 1, E[ζi] = 1 and E[ζiXi] = F−1
Xi

(α) for all i, so the
general solution (2) is equal to

Ki = E[ζiXi] +
E[ζiXi]

∑n
j=1 E

[
ζ jXj

][K−
n

∑
j=1

E
[
ζ jXj

]]

= K
E[ζiXi]

∑n
j=1 E

[
ζ jXj

]
= K

F−1
Xi

(α)
n

∑
j=1

F−1
Xj

(α)

, (14)

which is the haircut allocation principle (12).

Remark 4. Note that the condition ∑n
j=1 E

[
ζ jXj

]
6= 0 is implicitly assumed in Proposition 2 to

obtain well-defined weights vi. In fact, the equivalent condition ∑n
j=1 F−1

Xj
(α) 6= 0 is implicitly

required to apply the haircut allocation principle (12).

4. Examples of ζ in Haircut Allocation

In this section, two examples of random variable Y that could be used in the definition
of ζ in Proposition 2 to obtain the haircut allocation principle are provided.

Example 1. Suppose that inf{Xi} < F−1
Xi

(α) < sup{Xi} for all i = 1, . . . , n. If Yi =

1

[
Xi | Xi ≤ F−1

Xi
(α)
]
, then ζi is defined as follows to represent the haircut allocation principle (12)
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in the general framework defined by (1):

ζi =

(
1

[
Xi ≤ F−1

Xi
(α)
]
− α
)

F−1
Xi

(α) + αE
[

Xi | Xi ≤ F−1
Xi

(α)
]
− 1

[
Xi ≤ F−1

Xi
(α)
]
E[Xi ]

αE
[

Xi | Xi ≤ F−1
Xi

(α)
]
− αE[Xi ]

Proof of Example 1. Intuitively, we can state that r.v. Yi satisfies the necessary conditions
stated in Lemma (1) because

{
ω | Xi(ω) ≤ F−1

Xi
(α)
}

( Ω, due to the assumption that

inf{Xi} < F−1
Xi

(α) < sup{Xi}. Therefore,

E[XiYi] = E
[

Xi1
[

Xi ≤ F−1
Xi

(α)
]]

= αE
[

Xi | Xi ≤ F−1
Xi

(α)
]

( see the Appendix B) 6= αE[Xi]

= E[Yi]E[Xi] .

By Lemma 1, it holds that:

E[ζi] = 1, and

E[ζiXi] = F−1
Xi

(α) .

Taking into account these results and assumptions of Proposition 2, the solution of the
problem (1) given by Expression (2) is the haircut allocation principle (12).

Some remarks can be made in relation to Example 1.

Remark 5. Conditions inf{Xi} < F−1
Xi

(α) < sup{Xi} for all i = 1, . . . , n are often read as
‘random variable Xi has a bounded risk at α confidence level’. In addition, considering that positive
values of Xi represent losses, if F−1

Xi
(α) ≤ 0, then there is no risk of loss for the ith random variable

at the α confidence level.

Remark 6. Example 1 accommodates the haircut allocation principle into (almost) the original
framework of Dhaene et al. [1]. This ‘almost’ is because ζi in Example 1 is not restricted to be a
positive random variable.

An additional example of a random variable Yi satisfying the conditions of Proposition 2
is provided.

Example 2. Suppose Xi is a non-negative r.v. with finite variance (0 < V[Xi] = E[X2] −
E[X]2 < +∞) for i = 1, . . . , n. The r.v Yi is defined as Yi = Xi, then the expression of ζi is:

ζi =
(Xi −E[Xi])F−1

Xi
(α) +E[X2

i ]− XiE[Xi]

V[Xi]
.

Note that E[XiYi] 6= E[Xi]E[Yi] because the variance is greater than zero.

Remark 7. According to Dhaene et al. [1], a proportional capital allocation principle is a ‘business
unit driven proportional allocation principle’ when ζi depends on Xi and an ‘aggregate portfolio
driven proportional allocation principle’ when ζi depends on S = ∑n

i=1 Xi, for i = 1, . . . , n. Under
this classification, the haircut allocation principle defined in Proposition 2 is a ‘business unit driven
proportional allocation principle.’ Let us suppose that Yi is equal to S for all i in the definition of
ζi. Since the r.v. S can be mathematically dependent of Xi in some cases, the haircut allocation
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principle would be classified as the ‘business unit driven proportional allocation principle’ and also
the ‘aggregate portfolio driven proportional allocation principle’, which seems counter-intuitive.
Here, we propose to define an ‘aggregate portfolio driven’ as follows: ζi and E[ζiXi] must depend on
S. Now, the haircut allocation principle is a ‘business unit driven proportional allocation principle’,
but not a ‘aggregate portfolio driven proportional allocation principle’.

5. Illustrative Application

This section illustrates a financial application to compute the haircut allocation princi-
ple in the context of the market risk for a portfolio of stocks. All calculations were carried
out in the R software [49].

Let us suppose that we are U.S. institutional investors and we have to analyse a set
of investment funds in order to increase the value of the assets of the institution that we
represent. Once a week, we have to report the value of our assets to the institution’s
management board. We do not invest in assets denominated in currencies other than USD,
so the investment funds under analysis are not subject to currency risk. We considered four
funds that have the goal of beating the following indexes, respectively: the S&P500, the
NASDAQ, the Dow Jones Industrial Average Index, and the NYSE Composite Index (the
NYSE tickers for this indexes are, respectively, the following: ˆGSPC, ˆIXIC, ˆDJI, and ˆNYA).
We want to analyse the risk of each investment fund, on a weekly basis, if no additional
information other than the index of reference is available. In addition, we are interested
in ranking the investment funds based on their relative riskiness. As is shown hereinafter,
these objectives may be reached with the application of the haircut capital allocation
principle.

First, it should be determined what risk is under analysis and how it is measured. Any
monetary amount invested in a fund during a period of interest can increase or decrease
depending on the return of the fund for that period: a positive return generates an increase
of the assets’ value (profit), while a negative return generates a decrease of the assets’ value
(loss). Therefore, the random variables that represent the risks in our analysis should be
linked to the returns of the funds. As we report on a weekly basis to the management
board, weekly returns seem a natural choice. Note that, in the capital allocation framework
described in (1), a positive value of the risk random variable is considered a loss, so weekly
returns of the funds with a negative sign were selected as the risk random variables in this
illustration (see [8] (Section 1.2.1) for details about the ‘asset side’ risk perspective versus
the ‘liability side’ risk perspective). To measure the risk, we considered the Value-at-Risk
(VaR) with a confidence level α equal to 51/52 ('98.08%) because the information of this
risk measure value is easy to communicate to the institution’s management board, i.e.,

“with a frequency of one week in a year, losses in terms of returns can be higher than the VaR”. There
are alternative methods to estimate the VaR [50–52]. In this application, we selected the
empirical α-quantile of the historical returns of the fund (known as the historical VaR). The
last element to perform the haircut capital allocation exercise is to determine the aggregate
risk capital to be allocated among the four individual funds. We are only interested in the
relative riskiness of each investment fund, so we can set any amount as the total risk capital
to allocate. For instance, K is equal to 1000 risk units.

Summarising, the risk of the four investment funds is measured by the historical VaR
of negative weekly returns. The relative risk of the investment funds is computed by means
of a haircut allocation principle, in which a total amount of 1000 risk units is distributed
among the four funds based on their riskiness. Now, the dataset is created. The dataset
consists of negative discrete weekly returns of the indexes linked to the four investment
funds and covers the observational period from 6th August 2018 to 31st July 2023 ( data
were obtained from the web https://es.finance.yahoo.com, accessed on 31 August 2023). In
terms of (12), K = 1000, Xi = −Pi,t+1/Pi,t for i = 1, 2, 3, 4 (one i for each investment fund),
t and t + 1 are consecutive weeks, Pi,t is the level of the index of reference for the ith fund
in week t, α = 51/52, and F−1

Xi
(α) = VaR51/52(Xi). The samples of Xi, i = 1, 2, 3, 4 contain

261 observations, and VaR51/52(Xi) is estimated as V̂aR51/52({xi}t=1,...,261). The results are

https://es.finance.yahoo.com
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shown in Table 2. To ease the analysis, the funds will be named by the name of their index
of reference and expressions such as the return (or the risk) of the fund will be used to refer to
the return (or the risk) of the index of reference of the fund.

Table 2. Estimation of the haircut allocation principle for the four investment funds of the illustration.
The expected return of the fund (expectation of −Xi) is approximated by the sample mean with a
negative sign, while the risk of the fund is approximated by the historical VaR of the sample.

i Index of Reference E[−Xi] VaR51/52(Xi) Ki

1 S&P500 0.242% 5.338% 229.08
2 NASDAQ 0.326% 6.218% 266.84
3 DJI 0.198% 5.975% 256.42
4 NYA 0.099% 5.771% 247.66

Investment funds can be ranked based on the risk measure value displayed in Table 2.
The NASDAQ fund is the riskiest fund, and the S&P500 fund is the fund with the lowest risk.
The DJI fund is riskier than the NYA fund. The haircut allocation principle proportionally
distributes the 1000 risk units among the investment funds based on their relative risk
(266.84 + 256.42 + 247.66 + 229.08 = 1000). Note that there is a trade-off between risk and
return. For instance, if the ratio between the VaR and the expected return is considered(

VaR51/52(Xi)
E[−Xi ]

)
, the ranking of funds remarkably varies. Now, the NASDAQ fund would

be the most-attractive investment option in terms of the trade-off between risk and return
( 6.218%

0.326% ≈ 19.07), although it is the riskiest fund, as stated before. The less-attractive
investment option would be the NYA fund ( 5.771%

0.099% ≈ 58.29), followed by the DJI fund
( 5.975%

0.198% ≈ 30.18) and the S&P500 fund ( 5.338%
0.242% ≈ 22.06).

In Section 4, two examples of ζ are provided in which the haircut allocation principle
is accommodated by the general optimisation framework proposed in (1). Tables 3 and 4
show the expressions of ζi, i = 1, 2, 3, 4, in this illustration when the definitions pro-
posed in Example 1 and Example 2 are considered, respectively. The sample means of
E[ζi] and E[ζiXi] were estimated for each i in both examples and were equal to 1 and
V̂aR51/52({xi}t=1,...,261), respectively, as expected according to Lemma 1.

Table 3. Expressions of ζi defined in Example 1 to accommodate the haircut allocation principle into
the framework (1). Note that α is approximated by 0.98084, F−1

Xi
(α) is approximated by the historical

VaR, and the (conditional) expectations are approximated by the sample means. Therefore, the ζs are
also approximations.

i Index ζi

1 S&P500
(1[X1 ≤ 5.338%]− 0.98084)5.338%− 0.378% + 0.242%1[X1 ≤ 5.338%]

−0.378% + 0.242%0.98084

2 NASDAQ
(1[X2 ≤ 6.218%]− 0.98084)6.218%− 0.462% + 0.326%1[X2 ≤ 6.218%]

−0.462% + 0.326%0.98084

3 DJI
(1[X3 ≤ 5.975%]− 0.98084)5.975%− 0.345% + 0.198%1[X3 ≤ 5.975%]

−0.345% + 0.198%0.98084

4 NYA
(1[X4 ≤ 5.771%]− 0.98084)5.771%− 0.276% + 0.099%1[X4 ≤ 5.771%]

−0.276% + 0.099%0.98084
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Table 4. Expressions of ζi defined in Example 2 to accommodate the haircut allocation principle into
the framework (1). Note that F−1

Xi
(α) is approximated by the historical VaR, and the expectations and

variances are approximated by the sample means and sample variances, respectively. Therefore, the
ζs are also approximations.

i Index ζi

1 S&P500
(X1 + 0.242%)5.338% + 0.062% + 0.242%X1

0.061%

2 NASDAQ
(X2 + 0.326%)6.218% + 0.084% + 0.326%X2

0.083%

3 DJI
(X3 + 0.198%)5.975% + 0.064% + 0.198%X3

0.063%

4 NYA
(X4 + 0.099%)5.771% + 0.070% + 0.099%X4

0.070%

It is worth noting that the random variables in Table 3 always take positive val-
ues, so the first example in this application would fit the original optimisation frame-
work proposed by Dhaene et al. [1]. The positiveness of ζi in Example 1 for this appli-
cation can be deduced from Remark 3. For example, let us select the NASDAQ fund
(i = 2), which was the riskiest investment fund. The sample values of the weighted
random variable ζ2 for the two examples are shown in Figure 1. The ζ2 in Example
1 has c = 6.218% associated, and the approximated value of E[X2] is −0.326%, so c −
E[X2] = 6.544% > 0. Recalling that Y2 = 1[X2 ≤ 6.218%], now, we have to determine
the sign of E[X2Y2] − E[X2]E[Y2]. The sign of the sample value of this expression is
negative, −0.462% + 0.326%0.98084. According to Table 1, ζ2 is negative only when
1[X2 ≤ 6.218%] ≥ (6.218%0.98084 + 0.462%)/(6.218% + 0.326%) = 1.00258. However,
this is not feasible since Y2 takes only two values (0 or 1), and both are smaller than 1.00258.
The same reasoning can be followed by the rest of the funds in Example 1. Figure 1 shows
that sample values of ζ2 for Example 1 take only positive values. By contrast, the random
variables in Table 4 may take positive and negative values, as shown in Figure 1 for the
sample values of ζ2 of Example 2. Therefore, the second example in this application would
fit the generalised optimisation framework (1), but not the original setting (see Remark (6)).

Figure 1. Weekly returns of the NASDAQ index for the period under study, followed by the sample
values of the two weighted random variables ζ2 reported in Tables 3 and 4, respectively. The ζ2

weighted random variable derived from Example 1 is always positive in this application.
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6. Conclusions

In this paper, we generalised the capital allocation framework proposed by Dhaene
et al. [1]. We proved that the haircut capital allocation principle can now be accommodated
by that general optimisation framework. Under this general capital allocation setting, we
provide an alternative and interpretable form to obtain the optimal solution to the quadratic
optimisation problem that complements the existing geometrical proof. All required steps
to obtain the optimal solution to that capital allocation framework were described in order
to be easy to follow by a broad (not necessarily expert) audience. We argue that the majority
of relevant scenarios from a risk management perspective can be represented in our capital
allocation framework.

The theoretical findings were complemented with a financial illustration to evaluate
the market risk for a set of investment funds. We showed how the haircut capital allocation
principle can be applied in a real context to analyse the risk of each investment fund and
to rank them based on their relative riskiness. The two examples of weighted random
variables proposed in the study to define the haircut capital allocation principle as a
quadratic optimisation problem were estimated in the illustration. We showed that the
weighting random variable involved in the first example only took positive values in
the illustration and, therefore, would fit the optimisation setting of Dhaene et al. [1]. By
contrast, the weighted random variable involved in the second example took positive and
negative values in the illustration and, therefore, would fit the generalised optimisation
framework proposed in this study, but not the optimisation setting of Dhaene et al. [1].

To conclude, capital allocation principles defined as the outcomes of optimisation
problems contribute to a deeper understanding of the implications and limitations of using
a particular capital allocation principle. Providing a unified optimisation setting of capital
allocation principles is useful for risk managers to select the most-adequate allocation
principle in a specific risk context. The availability of a unified optimisation framework
eases the risk management’s task of comparison between capital allocation principles. The
generalised optimisation framework defined in our study includes the widely used haircut
capital allocation principle in the unified optimisation setting. It, therefore, represents an
improvement from a risk management point of view. However, our study is not without
limitations. The analysis was carried out considering the quadratic optimisation criterion in
a hierarchical corporate structure with one organisational level. A natural extension of our
study is to consider other optimisation criteria, such as the absolute deviation criterion and
hierarchical corporate structures with two or more organisational levels. Another potential
future line of research is to consider the haircut capital allocation principle in portfolios
with nonlinear risk aggregation.
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Appendix A

Let ∆k, k ≥ 2, be the determinant in Expression (11). We want to show that

∆k = −2k−1
k

∑
j=1

wj, ∀k = 2, . . . , n.

We propose a proof by induction. Starting from k = 2,

∆2 =

∣∣∣∣∣∣
0

√
w1

√
w2√

w1 2 0√
w2 0 2

∣∣∣∣∣∣ = (−1)1+3√w2

∣∣∣∣√w1 2√
w2 0

∣∣∣∣+ (−1)1+2√w1

∣∣∣∣√w1 0√
w2 2

∣∣∣∣
= −2w2 − 2w1 = −2(w1 + w2) = −22−1

2

∑
j=1

wj.

Now, let us assume that ∆k−1 = −2k−2
k−1

∑
j=1

wj. In this case, note that

∆k =

∣∣∣∣∣∣∣∣∣∣∣

0
√

w1
√

w2 . . .
√

wk√
w1 2 0 . . . 0√
w2 0 2 . . . 0
...

...
...

. . .
...√

wk 0 0 . . . 2

∣∣∣∣∣∣∣∣∣∣∣

= (−1)k+1+1√wk

∣∣∣∣∣∣∣∣∣∣∣

√
w1

√
w2 . . .

√
wk

2 0 . . . 0
0 2 . . . 0
...

...
. . .

...
0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣
+ (−1)k+1+k+12∆k−1

= (−1)k+2√wk(−1)1+k√wk2k−1 + (−1)k+k+22(−2k−2
k−1

∑
j=1

wj)

= −2k−1wk − 2k−1
k−1

∑
j=1

wj = −2k−1
k

∑
j=1

wj.

Appendix B

This Appendix proves that Yi defined in Example 1 satisfies that E[XiYi] 6= E[Xi]E[Yi],
i = 1, . . . , n. First of all, let us state the following Lemma A1, where X is an integrable
random variable (with finite expected value) and distribution function F, survivor function
S = 1− F, and α ∈ (0, 1).

Lemma A1. For any p ∈ (−∞,+∞),

E[X] = p−
∫ p

−∞
F(x)dx +

∫ +∞

p
S(x)dx
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Proof.

E[X] =
∫ p

−∞
xdF(x) +

∫ +∞

p
xdF(x)

= [xF(x)]p−∞ −
∫ p

−∞
F(x)dx + [−xS(x)]+∞

p +
∫ +∞

p
S(x)dx

= pF(p) + pS(p)−
∫ p

−∞
F(x)dx +

∫ +∞

p
S(x)dx. (A1)

For alternative representations of the mathematical expectation in the continuous and
the discrete cases, see Denuit et al. [53] (Chapters 1.6.4 and 1.6.5).

Note that it holds that Yi = 1

[
Xi ≤ F−1

Xi
(α)
]

satisfies that E[XiYi] 6= E[Xi]E[Yi] is
equivalent to proving that:

αE[Xi]−E
[

Xi1
[

Xi ≤ F−1
Xi

(α)
]]
6= 0.

Taking into account Lemma A1 with p = F−1
Xi

(α),

αE[Xi]−E
[

Xi1
[

Xi ≤ F−1
Xi

(α)
]]

=αF−1
Xi

(α)− α
∫ F−1

Xi
(α)

−∞
FXi (x)dx + α

∫ +∞

F−1
Xi

(α)
SXi (x)dx

−E
[

Xi1
[

Xi ≤ F−1
Xi

(α)
]]

=αF−1
Xi

(α)− α
∫ F−1

Xi
(α)

−∞
FXi (x)dx + α

∫ +∞

F−1
Xi

(α)
SXi (x)dx

−
∫ F−1

Xi
(α)

−∞
xdFXi (x)dx

=αF−1
Xi

(α)− α
∫ F−1

Xi
(α)

−∞
FXi (x)dx + α

∫ +∞

F−1
Xi

(α)
SXi (x)dx

−
[
xFXi (x)

]F−1
Xi

(α)

−∞ +
∫ F−1

Xi
(α)

−∞
FXi (x)dx

=αF−1
Xi

(α)− α
∫ F−1

Xi
(α)

−∞
FXi (x)dx + α

∫ +∞

F−1
Xi

(α)
SXi (x)dx

− αF−1
Xi

(α) +
∫ F−1

Xi
(α)

−∞
FXi (x)dx

=(1− α)
∫ F−1

Xi
(α)

−∞
FXi (x)dx + α

∫ +∞

F−1
Xi

(α)
SXi (x)dx > 0 (A2)

The last inequality holds because FXi and SXi are greater than or equal to 0 and because
α ∈ (0, 1).
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