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Key Points

• SMZL transformation is
associated with
genomic complexity
and distinct genomic
alterations (TNFAIP3,
CDKN2A/B, TP53,
and 6p+).

• KLF2 mutations and
complex karyotypes in
transformed SMZL
confer a shorter
survival.
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The genetic mechanisms associated with splenic marginal zone lymphoma (SMZL)

transformation are not well defined. We studied 41 patients with SMZL that eventually

underwent large B-cell lymphoma transformation. Tumor material was obtained either

only at diagnosis (9 patients), at diagnosis and transformation (18 patients), and only at

transformation (14 patients). Samples were categorized in 2 groups: (1) at diagnosis (SMZL,

n = 27 samples), and (2) at transformation (SMZL-T, n = 32 samples). Using copy number

arrays and a next-generation sequencing custom panel, we identified that the main genomic

alterations in SMZL-T involved TNFAIP3, KMT2D, TP53, ARID1A, KLF2, 1q gains, and losses

of 9p21.3 (CDKN2A/B) and 7q31-q32. Compared with SMZL, SMZL-T had higher genomic

complexity, and higher incidence of TNFAIP3 and TP53 alterations, 9p21.3 (CDKN2A/B)

losses, and 6p gains. SMZL and SMZL-T clones arose by divergent evolution from a common

altered precursor cell that acquired different genetic alterations in virtually all evaluable

cases (92%, 12 of 13 cases). Using whole-genome sequencing of diagnostic and

transformation samples in 1 patient, we observed that the SMZL-T sample carried more

genomic aberrations than the diagnostic sample, identified a translocation t(14;19)(q32;q13)

present in both samples, and detected a focal B2M deletion due to chromothripsis acquired

at transformation. Survival analysis showed that KLF2 mutations, complex karyotype, and

International Prognostic Index score at transformation were predictive of a shorter survival

from transformation (P = .001; P = .042; and P = .007; respectively). In summary, SMZL-T are

characterized by higher genomic complexity than SMZL, and characteristic genomic

alterations that could represent key players in the transformation event.
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Table 1. Clinico-biological features of patients with SMZL-T at

transformation time point.

Characteristic Total (%)

Age >60 y 24/36 (66.7)

Male/female 14/27 (34.1/65.8)

B symptoms 21/31 (67.7)

ECOG performance status ≥2 8/32 (25)

Ann Arbor stage III–IV 28/32 (87.5)

Bulky disease (>7 cm) 6/28 (21.4)

Hemoglobin < 100 g/L 10/32 (31.3)

Platelets < 100 × 109/L 5/32 (15.6)

Lactate dehydrogenase > UNL 21/28 (75)

B2-microglobulin > UNL 21/24 (87.5)

High–intermediate or high-risk IPI 20/32 (62.5)

Complex karyotype

Diagnosis 6/12 (50)

Transformation 7/11 (63.6)

del7q

Diagnosis 3/12 (25)

Transformation 3/11 (27.3)

FISH at transformation

BCL2 rearrangement 0/15 (0)

BCL6 rearrangement 2/20 (10)

MYC rearrangement 1/23 (4.3)

Histological transformation

At diagnosis 5/36 (13.9)

During follow-up 31/36 (86.1)

Median time to transformation (range), y 2.42 (0-17)

Median time to treatment (range), y 0.21 (0-11.7)

ECOG, Eastern Cooperative Oncology Group; UNL, upper normal limit.
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Introduction

Splenic marginal zone lymphoma (SMZL) is an infrequent low-
grade B-cell lymphoma that involves the spleen, bone marrow,
and peripheral blood, and accounts for <2% of all lymphoid neo-
plasms.1-3 Compared with other B-cell lymphomas, SMZL is
characterized by few recurrent chromosomal abnormalities,
including deletions of 7q31-q32 (30% to 40%) and 6q (8% to
24%), and gains of chromosomes 3/3q (20% to 30%) and 18/18q
(8% to 25%).4-8 The most frequent mutations in SMZL include
KLF2 (20% to 30%), NOTCH2 (10% to 25%), TP53 (15%),
KMT2D (10% to 15%), and TNFAIP3 (7% to 15%).9-13 Recently,
Bonfiglio et al14 reported a large comprehensive genomic and
transcriptomic characterization of 303 SMZLs at diagnosis,
dividing SMZL into 2 main genetic clusters: (1) DMT cluster
characterized by alterations in DNA-damage response and
mitogen-activated protein kinase, and Toll-like receptor pathways
(~30% of SMZL); and (2) NNK cluster, characterized by alterations
on nuclear factor κB (NF-κB), NOTCH2, and KLF2 (~60% of
SMZL), and associated with an inferior survival.14

Despite the indolent clinical course of SMZL, ~70% of the patients
require treatment because of progressive disease, and between
10% to 15% of patients eventually transform to an aggressive
lymphoma, generally diffuse large B-cell lymphoma (DLBCL) with
dismal prognosis.15-19 The molecular mechanisms involved in the
transformation to high-grade lymphomas have been elucidated in
other low-grade lymphoid neoplasms20-22 but are not well under-
stood in SMZL. In line with this, only a few clinico-biological
parameters have been associated with higher risk of histological
transformation, including elevated lactate dehydrogenase, >4
nodal sites involved at diagnosis, or complex karyotype.15,23-25 The
recently described C1/BN2 or NOTCH2 molecular DLBCL clus-
ters are defined by alterations in NOTCH2 and genes of the NF-κB
pathway, and have been postulated to be of extrafollicular/marginal
zone origin,26-29 with genetic features mostly resembling marginal
zone lymphoma.

Given that the information on transformed SMZL (SMZL-T) is very
limited, we have investigated the SMZL-T genomic landscape
using targeted next-generation sequencing (NGS) and copy
number (CN) analysis, with the aim of establishing the underlying
mechanisms and clonal dynamics of this aggressive transformation.

Methods

Patients

In total, 41 patients diagnosed with SMZL that underwent trans-
formation (SMZL-T) were studied (Table 1). The diagnostic criteria
were based on the International Extranodal Lymphoma Study
Group and World Health Organization guidelines.1 The pathology
and/or flow cytometry data were reviewed upon inclusion in the
study. The criterion for considering a case as transformed was
histopathological, and was based on the presence of sheets of
large cells. In the transformed cases with peripheral blood
involvement the presence of large cells was evaluated by immu-
nophenotype and/or cytomorphology. The cases were from the
Hospital Clinic de Barcelona, other institutions of the Spanish
Lymphoma Group (GELTAMO), and the Royal Marsden National
3696 GRAU et al
Health Service (NHS) Foundation Trust, London, United Kingdom.
Informed consent was obtained in accordance with the institutional
review boards of the respective institutions. The study was con-
ducted in accordance with the Declaration of Helsinki. Tumor
material was obtained at diagnosis from 9 patients who subse-
quently transformed but material at transformation was not avail-
able for molecular studies; in 18 patients, tumor material was
obtained at diagnosis and transformation; and in 14 patients, tumor
material was obtained only at transformation; corresponding to a
total of 59 samples (supplemental Table 1). We categorized the
samples: (1) at diagnosis (SMZL), 27 samples; and (2) at trans-
formation (SMZL-T), 32 samples. Using a QIAmp DNA/RNA Mini
Kit (Qiagen, Germany) and AllPrep DNA/RNA FFPE Kit (Qiagen),
DNA was extracted from 11 fresh-frozen lymphoma tissues, 6
involved peripheral blood samples, and 42 formalin-fixed paraffin-
embedded tissues, respectively. IGHV-IGHD-IGHJ rearrangements
were analyzed using IGHV leader primers or consensus primers for
IGHV FR1 and/or FR3 regions (supplemental Table 1).30,31 To
assess the clonality of the transformed samples, the FR1 region of
the IGHV was amplified using BIOMED-2 multiplex polymerase
chain reaction protocol. Cytogenetic and fluorescence in situ
25 JULY 2023 • VOLUME 7, NUMBER 14
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hybridization (FISH) analyses were performed as previously
described32 (supplemental Methods).

CN analysis and NGS

Copy number alterations (CNAs) were assessed in 49 of 59
samples, corresponding to 22 SMZL at diagnosis and 27 SMZL-T.
Oncoscan CNV FFPE assay (ThermoFisher Scientific, Massachu-
setts, USA) (46 samples) and CytoScan HD assay (3 samples)
(Thermo Fisher Scientific) were used based on DNA source. Nexus
version 9.0 Discovery Edition software (Biodiscovery, El Segundo,
CA) was used for identification and visualization of CNAs using the
human genome assembly GRCh37/hg19. Gains and losses of
>100kb and copy neutral loss of heterozygosity (CN-LOH) terminal
and of >10 Mb were considered. Driver CNAs were determined by
GISTIC algorithm (2.0.23).33 Chromothripsis was defined when ≥7
switches between ≥2 CN states were detected on individual
chromosomes.34

Single nucleotide variants (SNVs) and insertions/deletions (indels)
were assessed in all 59 samples using a targeted NGS panel
capturing 37 genes associated with SMZL pathogenesis
(supplemental Table 2). Libraries were generated from 150 ng of
DNA using molecular-barcoded adapters (ThruPLEX Tag-seq Kit;
Takara) coupled with a custom hybridization capture-based
method (SureSelectXT Target Enrichment System Capture strat-
egy, Agilent Technologies) and sequenced in a MiSeq instrument
(Illumina, 2 × 150 base pairs). NGS data were analyzed using an in-
house bioinformatics pipeline previously described (supplemental
Methods).35,36 We obtained a mean coverage of 489×, with
88% of the targeted regions of at least 100× (supplemental
Table 3; supplemental Figure 1). The panel includes 7 CN
regions recurrently altered in SMZL: 3q26.1, 7q32.1-q32.2,
8q24.21, 9p21.3, 12q21.1, 17p13.1, and 18q21.33-q22.1
(supplemental Table 4). Information of these 7 regions was used in
the 10 samples lacking SNP-array. CNVkit tool kit37 was used to
infer CNA after segmentation into discrete regions. The thresholds
(defined without ploidy correction) were a log2 ratio of >0.2 for
gains and of <0.2 for losses.

Whole-genome sequencing (WGS)

WGS was performed in 1 patient (SMZL055). Library preparation
was performed using TruSeq DNA PCR-Free Kit (Illumina) for
germline DNA and transformed samples, and the TruSeq DNA
Nano protocol (Illumina) for the diagnostic sample. Libraries were
sequenced on a NovaSeq6000 (2 × 151 base pairs) instrument
(Illumina). Details of the bioinformatic analysis are provided in
supplemental Methods. The mean coverage obtained was 69.46×
for SMZL, 70.55× for SMZL-T, and 41.95× for germline sample.

Statistical analysis

Comparison of the frequency of each alteration between diagnosis
and transformation was performed using a mixed-effects logistic
model, which accounts for the partially paired structure of the data.
A fully Bayesian approach was used to estimate this model, which
was also used to test the cooccurrence or mutual exclusivity
between alterations. Comparison of the total number of CNAs,
gains, losses, or mutations between diagnosis and transformation
were assessed using mixed-effects negative binomial models,
implemented in the glmer.nb function of the lme4 R package.
Fisher exact test was used to compare the mutation frequencies at
25 JULY 2023 • VOLUME 7, NUMBER 14
diagnosis between 2 different SMZL series. P values were adjusted
using the Benjamini-Hochberg method. Survival from trans-
formation (SFT) was calculated from the time of transformation to
the last visit or to the death of the patient. Association between
SFT and binary or continuous variables was measured with the
log-rank test or Cox regression, respectively. SFT curves were
estimated with the Kaplan-Meier method. Details of all statistical
analyses are provided in supplemental Methods.

Results

Baseline features

Clinical data of 26 of 41 (63%) cases were previously published.15

Of the study participants, 27 patients were female and 14 male
(Table 1; supplemental Table 1). The median age at diagnosis and
at transformation was 61 years (range, 41-82 years) and 66 years
(range, 43-89 years), respectively. The median time to trans-
formation was 2.4 years (range, 0-17 years). Complex karyotypes
were found in 6 of 12 (50%) patients at diagnosis and 7 of 11
(63.6%) patients at transformation. The site of the transformation
was nodal in 17 of the 32 cases (53.1%), extranodal in 6 (18.8%)
(soft tissues, lachrymal gland and labial vestibule), the spleen in 4
(12.5%), the peripheral blood in 3 (9.4%), and the bone marrow in
2 (6.2%) patients. In the peripheral blood and the bone marrow the
diagnosis of transformation was based on the presence of
numerous large B cells.

Histological review confirmed transformation to DLBCL, except for
1 case (SMZL017T), in which the neoplastic cells had a blastoid
appearance, raising the diagnosis of high-grade B-cell lymphoma,
not otherwise specified. This tumor expressed cyclin D1 by
immunohistochemistry without t(11;14)(q13;q32) translocation.
Consistent with the established diagnostic histopathological
criteria, sheets of large cells were observed in all transformed
cases. In 11 cases, a coexistence of the low-grade component with
the large-cell lymphoma in the transformed biopsy was observed. In
5 patients, transformation was already present at diagnosis. The
median Ki67 of SMZL-T was 75% (range 50% to 90%) (Figure 1).
FISH studies at transformation showed rearrangements of BCL6 in
10% of cases (2/20), MYC in 4.3% (1/23), and no BCL2 rear-
rangements in the 15 tumors tested.

Genetic alterations in SMZL-T samples

CNAs in SMZL-T. We detected CNA in 24 of 27 (89%) tumors,
with a median of 8 CNAs per case (range, 0-28 CNAs), 4 gains
(range, 0-20 gains), and 4 losses (range, 0-15 losses). In addition,
we identified a total of 32 CN-LOH with a median of 1 CN-LOH per
case (range, 0-5 CN-LOH) (supplemental Table 5). The most
frequent (n ≥ 14%) alterations were gains of 1p36.12, 1q, 2p16.1-
p15 (REL and BCL11A), 3q, 6p, 7q21.11-q22.3, 8q (MYC), 12q,
17q and 18q (BCL2); losses of 1p36.32 (TNFRSF14), 1p36.11
(ARID1A), 3p21.31 (SETD2), 6q23.3-q25.2 (TNFAIP3), 6q25.3
(ARID1B), 7q31-q32, 9p21.3 (CDKN2A/B), and 17p13 (TP53);
and CN-LOH of 9p24.3-p21.3 (CDKN2A/B) (Figure 2A). In the 5
cases lacking CN array, we found the following alterations by NGS
analyses: 7q32.1-q32.2 losses and 18q21.33-q22.1 gains in 2
cases; and 3q26.1 gain, 9p21.3 loss, 12q21.1 gain, and 17p13.1
loss in 1 case each. Using GISTIC we detected 8 driver CNAs (Q-
value < 0.05): gains of 1q, 3q, and 18q (BCL2) and losses in
1p36.11 (ARID1A), 3p21.31 (SETD2), 7q31-q32, 9p21.3
GENETICS OF TRANSFORMED SMZL 3697
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Figure 1. Morphological and immunohistochemical features of SMZL-T. (A) Case SMZL058T showing a lymph node with a diffuse proliferation composed of large

lymphocytes with a centroblastic appearance (hematoxylin and eosin stain, original magnification ×20). (B-C) Detail of case SMZL07T showing the interphase between a

transformed area (left) and an area with remnant marginal splenic B-cell lymphoma (right). In panel B, hematoxylin and eosin stain (original magnification ×20); and in panel C,

immunohistochemical staining for Ki67 showing the different proliferative index between both areas (original magnification ×20). (D-G). Case SMZL012T showing the spleen

infiltrated by a lymphoid proliferation arranged in a nodular growth pattern, original magnification ×4 (D), constituted of large, atypical cells (inset, original magnification ×40). (E)

These cells were positive for CD20 (original magnification ×2; inset, original magnification ×20), (F) had Kappa light chain restriction (original magnification ×40), and (G) were

negative for Lambda light chain (original magnification ×40).
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(CDKN2A/B), and 13q14.13-q14.3 (RB1, DLEU1/2)
(supplemental Table 6). Furthermore, we observed acquired
chromothripsis at transformation in 2 patients, both with biallelic
TP53 inactivation (supplemental Figure 2).

Gene mutations and integrative analysis in SMZL-T. We
detected a total of 172 SNVs/indels distributed among 30 of 37
genes analyzed, with a median of 4 mutations per case (range, 1-
17 mutations) (supplemental Table 7). We integrated the CNAs,
SNVs, and indels and observed that the most frequently altered
genes were TNFAIP3 (59.4%), KMT2D (46.9%), TP53 (34.4%),
ARID1A (31.3%), and KLF2 (31.3%). The most frequent CNAs
were losses of 9p21.3 (CDKN2A/B) (40.6%) and 7q31-q32
(34.4%), and gains of 1q (40.7%) (Figure 2B). Although we
identified a low frequency of truncating mutations in NOTCH2
(11.1%) and NOTCH1 (3.7%) genes, this signaling pathway was
altered by mutations in other downstream genes, such as SPEN
(28.1%) (supplemental Table 7). In addition, we identified homo-
zygous deletions of CDKN2A/B in 5 patients, and biallelic inacti-
vation (deletion and mutation) of TP53 and TNFAIP3 in 5 and 3
patients, respectively.

Although we used a small targeted sequencing panel that does not
encompass the full spectrum of mutations required, we applied the
LymphGen algorithm to assign the 32 SMZL-T samples to DLBCL
molecular subtypes in order to see whether common pathway
alterations were present. Of these samples, 56.2% (18 of 32) could
be classified: BN2 (11 cases), EZB (2 cases), MCD (2 cases), N1
(1 case), A53 (1 case), and BN2/MCD (1 case) (supplemental
Table 1). The fact that the majority of SMZL-T samples were
assigned to the BN2 cluster substantiates the postulated extra-
follicular/marginal zone origin of this genetic DLBCL subgroup.27

We investigated the cooccurrence and mutual exclusivity of the
genetic alterations present in the 41 patients of the study,
considering SMZL and SMZL-T samples (supplemental Figure 3).
We found coocurrence between TP53 and ARID1A alterations (P
value = .001), and MYD88 mutations with 8p23-p22 loss (P
value = .004) (supplemental Figure 4).

Genomic evolution during SMZL transformation

Genetic alterations at diagnosis and transformation. We
performed CNA (n = 22) and NGS (n = 27) in diagnostic SMZL
samples and found that the most frequent alterations (n = 8) were
1q and 3q gains; 7q losses; and KMT2D, FAT4, and KLF2 muta-
tions (supplemental Figure 5). In order to investigate the underlying
genomic alterations associated with transformation, we compared
the global frequency of genomic alterations at diagnosis with the
global frequency observed at transformation, as well as the specific
frequencies of those alterations present in at least 5 samples. We
observed a higher number of CNAs, gains, and losses at trans-
formation (8 vs 6, P < .001; 4 vs 3, P = .004; and 4 vs 2, P = .001;
respectively) (supplemental Figure 6). Losses and mutations of
Figure 2. Genetic landscape of SMZL-T. (A) CN profile of 27 cases of SMZL-T. On th

excluded); on the y-axis, the percentages of patients with CNAs are shown, with gains dep

target genes are indicated. (B) Oncoprint displaying the recurrent alterations (n ≥ 3) found

alterations are displayed by decreasing frequency. In the upper panel, SNVs and indels are

gains (blue), losses (red), and CN-LOH (yellow) of large and focal regions (potential targe
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TNFAIP3 and TP53, losses of 9p21.3 (CDKN2A/B), and gains of
6p were also significantly enriched at transformation (59.4% vs
29.6%, P < .001; 34.4% vs 14.8%, P = .04; 40.6% vs 11.1%, P =
.001; and 29.6% vs 13.6%, P = .05; respectively). Moreover, we
observed an enrichment of deletions at the 1p36.32 (TNFRSF14)
region, and CN-LOH of 9p24.3-p21.3 at transformation (25.9% vs
4.5%, P = .06 and 18.5% vs 0%, P = .06; respectively). (Figure 3;
supplemental Figures 7-8; supplemental Table 8). TP53 alterations
were detected in 11 SMZL-T corresponding to 6 of the 18 paired
samples (SMZL/SMZL-T), 4 of these samples had the alteration
already at diagnosis (SMZL015D, SMZL022D, SMZL045D, and
SMZL052D), with 2 of these the SMZL-T having acquired an
alteration of the second TP53 allele, either by mutation or deletion
(SMZL015T and SMZL022T); and in 2 other cases the TP53
alteration was acquired at SMZL-T (SMZL007T and SMZL09T).
From the 14 samples with DNA samples taken only at trans-
formation, 5 showed TP53 alterations (SMZL0T12, SMZL0T18,
SMZL026T, SMZL046T, and SMZL058T) (supplemental Figure 9).

We applied the genetic cluster classification described by Bonfiglio14

in the diagnostic SMZL, and 66.7% (18 of 27) could be classified: 11
as NNK-SMZL and 7 as DMT-SMZL (supplemental Table 1).

To explore whether certain genetic alterations present at diagnosis
could predispose transformation, we compared the genomic
alterations of a large published series of 303 SMZL14 cases at
diagnosis with the genomic aberrations detected in the diagnostic
samples of 27 SMZL that transformed during the follow-up in this
study. In our cases, we observed a higher incidence in 83% (19 of
23) of the genes described by Bonfiglio et al14 (supplemental
Figure 10; supplemental Table 9).

Clonal evolution. To gain a deeper insight in the evolution of
SMZL transformation, we focused on the 13 patients with paired
samples (supplemental Table 1) analyzed by both NGS and CNAs
assessment. All patients harbored at least 1 lesion shared by SMZL
and SMZL-T. We detected the presence of an enriched ancestral
common precursor cell in all cases, with a median of 41.6% shared
alterations (range, 11% to 100%). This finding supports the clonal
relationship between SMZL and SMZL-T (Figure 4A). The trans-
formed tumors had a median of 4 aberrations shared with the
diagnostic SMZL (range, 1-12 aberrations). In addition, we
observed additional alterations that were unique to the diagnostic
sample, suggesting a divergent evolution in 12 of 13 (92%) sample
pairs (Figure 4B-C; supplemental Figure 11). Only 1 patient
(SMZL045) had a linear evolution acquiring novel alterations (6p
gain, 11p12 loss, and 13q12 loss) in the transformed sample,
maintaining all the aberrations present at diagnosis (Figure 4D).

WGS

In SMZL055 we had available frozen material from the spleen and
the lymph node at diagnosis and transformation, respectively
(supplemental Figure 12). The WGS of the SMZL-T carried more
e x-axis, the chromosomes are represented horizontally from 1 to X (chromosome Y is

icted in blue and losses in red. Regions with an incidence of ≥4 cases and potential

in 32 SMZL-T cases. Each column corresponds to an individual SMZL-T sample. All

shown in gray, deletions in red, and BCL6 translocation in green. In the lower panel,

t genes are indicated) are shown.
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genomic aberrations than the diagnostic sample (11917 vs 9818
total mutations; 80 vs 68 coding mutations; 9 vs 8 CNAs; 29 vs 18
structural variants (Figure 5A; supplemental Tables 10-12).
Consistent with the NGS and CNA analysis, the WGS confirmed a
branching evolution pattern (Figure 5B).
3702 GRAU et al
A translocation t(14;19)(q32;q13) present at diagnosis and
transformation was identified (Figure 5C). The breakpoints were
located at the switch region IGHG2 and downstream of BCL3.
We validated this rearrangement using a BCL3 breakapart FISH
probe. Although the SMZL-T acquired 4477 specific mutations, we
25 JULY 2023 • VOLUME 7, NUMBER 14
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could not identify any additional potential driver gene mutation
among them. However, we found that the SMZL-T acquired a
deletion of B2M due to a chromothripsis event in chromosome 15
(Figure 5D). In addition, an unbalanced t(1;11) affecting
RERE::FCHSD2 genes, a gain of 11q, and a CN-LOH of 6p were
acquired at transformation.

Clinical analysis

After the diagnosis of histological transformation in the 32 patients
with available data, 28 received immunochemotherapy (R-CHOP
regimen in 24), followed by autologous stem-cell transplantation in
3 cases. Splenectomy was performed in 3 patients with no further
therapy, and the remaining patient died before any therapy could be
given. Twenty patients (65%) achieved complete response, 1 partial
response, and 10 were refractory to the treatment. Of the patients
in complete response, 8 eventually relapsed. Fifty percent (18/36)
of the patients eventually died. The median SFT was 6.55 years, and
the 5-year SFT was 53.2% (95% confidence interval, 37.1-76.4).
The causes of death were: death with progressive lymphoma or
during therapy (n = 14), death in the setting of infectious episodes
(n = 6), and death from causes unrelated to the lymphoma when in
complete response (n = 4; multifocal leukoencephalopaty, intersti-
tial pneumonia, sepsis, and secondary acute myeloid leukemia; 1
each). The main variables predicting shorter SFT were KLF2
mutations (P = .001), complex karyotype (P = .042), and a high-risk
international prognostic index score (IPI) (P = .007); there was a
trend for MYC gains (P = .066) (Figure 6; supplemental Figure 13).

Discussion

We performed a comprehensive genetic characterization of SMZL-
T, the molecular pathogenesis of which has, to date, been poorly
understood. For the first time, we identified that SMZL-T are
characterized by a distinct profile of driver CNAs, including gains of
1q, 3q, and 18q (BCL2) and losses in 1p36 (ARID1A), 3p21
(SETD2), 7q31-q32, 9p21.3 (CDKN2A/B), and 13q14.13-q14.3
(RB1 and DLEU1/2) that are potentially relevant in the trans-
formation event. This profile of alterations is similar to that of de
novo DLBCL except for 7q loss, a highly specific alteration of
SMZL, rarely found in other small B-cell neoplasms. We reveal that
SMZL-T are, on genetic grounds, significantly more complex
compared with SMZL, with twice as many alterations. This parallels
the findings from other studies documenting a higher genomic
complexity in small B-cell neoplasms histologically transformed into
high-grade lymphomas, such as follicular lymphoma (FL) and
chronic lymphocytic leukemia (CLL).20-22 In line with the high
complexity, 3 SMZL-T had chromothripsis, a phenomenon found in
several B-cell lymphomas and myelomas,34,38-40 associated with
shorter survival and TP53 deficiency.

Two altered regions, 9p21 deletion and 6p gain, were significantly
enriched in SMZL-T. To our knowledge, this is the first report of
9p21 deletions in SMZL-T, with the focal deletions delimit a mini-
mal region containing CDKN2A and CDKN2B tumor suppressor
genes. This was the most frequent deletion in SMZL-T (40.6%),
and was virtually absent in SMZL at diagnostic in our and other
published SMZL series.4,6,7,12,41 Moreover, in 6 cases we could
demonstrate the acquisition of 9p21 deletion upon transformation.
CDKN2A/B deletions have been reported in FL, CLL, and mantle
cell lymphoma (MCL), associated with aggressive course,
3704 GRAU et al
increased risk of transformation,20,22,42,43 and de novo
DLBCL.44,45 Of note, a poor overall survival and histological
transformation have been described in a subgroup of patients with
SMZL that harbored higher promoter methylation, being CDKN2A/
B 1 of the regions highly methylated. However, this study only
included 5 cases with histological transformation.46 The 6p gains,
also enriched in SMZL-T samples, were consistent with their high
prevalence in DLBCL,47 especially in the DLBCL C2 cluster,26 in
which 6p gains represent late events. Another region highly
enriched in SMZL-T was 1p36 deletion, including TNFRSF14
gene. 1p36 loss, CN-LOH, and mutation of TNFRSF14 have been
documented in FL, associated with a worse prognosis.48 Although
we detected a higher frequency of 1p36 loss in SMZL-T, we were
unable to ascertain the incidence of TNFRSF14 mutations,
because this gene was not included in our NGS panel. Neverthe-
less, Bonfiglio et al14 reported a 3% frequency of TNFRSF14
mutations in a large SMZL series, and thus, it seems to be an
infrequent event.

The most frequently altered genes in SMZL-T were TNFAIP3
(59.4%), KMT2D (46.9%), KLF2 (31.25%), and TP53 (34.4%).
TNFAIP3 (A20) encodes a protein that is a negative regulator of the
NF-κB signaling pathway, and is altered by mutations/deletions.
TNFAIP3 mutations have previously been found in 7% to 15% of
SMZL.9,10,12,14,49 Interestingly, truncating loss-of-function mutations
of TNFAIP3 have been described in 32% (6/19) of SMZL that
underwent transformation,10 and are enriched in the SMZL NNK
cluster, which is characterized by aberrations on NF-κB, NOTCH2,
and KLF2, and associated with inferior survival.14 KMT2D was
reported in ~11% to 15% of SMZL cases,10-12,14,49 and is preva-
lent in other lymphomas such as FL, DLBCL, and MCL.26,38,50 The
frequency of KMT2D alterations in our SMZL-T cases is higher than
that reported for SMZL. The third most frequently mutated gene in
SMZL-T is KLF2, a gene that is involved in marginal zone B-cell
homing.9 Loss-of-function KLF2 mutations have been reported in
~12% to 42% of SMZL,9,10,14,51,52 and are associated with 7q
deletion, NOTCH2, TNFAIP3, and ARID1A mutations and IGHV1-
02*02 family usage.9,10 TP53 is the fourth most frequently altered
gene in our SMZL-T samples. In previous SMZL studies it had been
reported to be mutated or deleted in ~12% to 16% of
cases.9,10,12,14 Of interest, in a study with a small number of
patients with SMZL who subsequently transformed, 4 cases with
a TP53 mutation at diagnosis further acquired a 17p deletion,
inactivating the remaining TP53 allele.10 The frequency of TP53
inactivation in our SMZL-T samples is very high (34.4%) and
included cases with TP53 alteration at diagnosis, cases with inac-
tivation of the second allele at transformation, and cases with wild
type at diagnosis and acquiring inactivation of TP53 in the trans-
formed sample, highlighting the relevant role of this gene in the
transformation process. Other frequently altered genes in SMZL-T,
previously described in SMZL, are ARID1A (31.25%), SPEN
(28.1%), NOTCH2 (11.1%), and NOTCH1 (3.7%). Of note, we
observed a lower frequency of NOTCH2 mutations compared with
previous studies; however, we detected a high prevalence of SPEN
mutations, a gene involved in NOTCH signaling, which might be
complementary. Overall, we show that SMZL-T have preferential
deregulation of the cell cycle (CDKN2A/B, TP53, and TNFRSF14),
DNA damage response (TP53, and ARID1A), and the NF-κB
pathway (TNFAIP3), suggesting that a deregulation of these path-
ways could represent key features in the development of SMZL-T.
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The activating MYD88L265P is a well-known recurrent mutation in
lymphoplasmacytic lymphoma but is also found in CLL and other
lymphomas, including SMZL.9,10,12,39,53,54 MYD88L265P mutations
in SMZL have been described as alternative to other drivers, such
25 JULY 2023 • VOLUME 7, NUMBER 14
as TP53 and NOTCH2, and are associated with favorable overall
survival.10 In our SMZL-T cohort, all cases with MYD88L265P had
concomitant alterations in: TNFAIP3 (4 cases), TP53 (3),
CDKN2A/B (3), and, in 1 case, also concomitant KLF2, KMT2D,
GENETICS OF TRANSFORMED SMZL 3705
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and NOTCH2 alterations. Globally, the mechanism of trans-
formation of SMZL with MYD88L265P mutation seems to be similar
to cases without this alteration.

We documented a clonal relationship in all 18 SMZL/SMZL-T
sample pairs. Furthermore, in all except 1 case, the SMZL-T
clone arose from an altered common precursor through the
acquisition of independent genetic events (divergent evolution), an
evolution pattern described for most FL transformed to
DLBCL.20,55-57

To date, WGS has been documented in only 6 SMZL,11 none of
which were SMZL-T. In the patient evaluated in this study, we
observed higher complexity in the transformed sample, detected a
divergent evolution pattern, and identified relevant genomic alter-
ations acquired at transformation (ie, B2M). In this context, B2M
genomic aberrations have been documented to be specifically
acquired at transformation in 3 FL that transformed to DLBCL.20

An interesting finding, not previously documented, is the prognostic
impact of KLF2 mutations in SMZL-T. KLF2 mutation is considered
to be an early event in SMZL, and has been associated with a short
median time to first treatment.10 We have shown that KLF2 is the
only mutation associated with shorter survival from the time of
transformation. Of note, a high prevalence of KLF2 mutations
(21.7%) has been described in the BN2 DLBCL molecular sub-
group compared with the other subgroups.27 Mutations in other
genes that are reportedly associated with histological trans-
formation, shorter overall survival, and event-free survival in SMZL
include TNFAIP3 and TP53.9,10 Our findings further support these
studies but with a much higher incidence of mutations of both
genes in SMZL-T (34.4% TP53 and 59.4% TNFAIP3). We have
not established an unfavorable prognostic of NOTCH2 mutations,
whose impact in small series of SMZL cases in the literature has
been controversial.10-12,58

In conclusion, our study has identified potential molecular players
responsible for the transformation in the largest series of SMZL-T
reported to date. Genomic alterations affecting the NF-κB
signaling pathway (TNFAIP3), cell cycle control, and DNA damage
responses (CDKN2A/B, TP53) are acquired distinctively at trans-
formation, and KLF2 mutations, complex karyotypes, and high IPI in
transformed SMZL are associated with short survival from
transformation.
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