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Identification of sexism on social media

Detection, Analysis, and Research on Sexism Content for Certain Languages in Social
Networks

Abstract

With the rapid advancement of communication technology, smartphone usage, and sop-
histicated algorithms, social media has become an integral and inseparable part of modern
society. Consequently, the prevalence of sexist content on these platforms has emerged as
a significant and far-reaching issue. This form of online harassment not only perpetuates
gender inequalities but also poses significant psychological and emotional harm to indi-
viduals targeted by such content. Thus, it is imperative to address this problem and take
proactive measures to mitigate its impact.

The main goal of this work is to study, identify and analyze the process of detection of se-
xist content through the application of natural language processing techniques. The study
utilizes two datasets from the EXIST competition, a shared task of sEXism Identification
in Social neTworks from IberLeF 2021 and CLEF 2023. Five state-of-the-art language mo-
dels, based on Transformers and Deep Learning, are trained and validated for subsequent
comparison. The primary objective is to identify instances of online sexism and determine
the optimal framework for each task, which accurately reflects real-world scenarios.



Identificación del sexismo en las redes sociales

Detección, análisis e investigación del contenido sexista de determinadas lenguas en
las redes sociales

Resumen

Con el rápido avance de la tecnología de comunicación, el uso de teléfonos inteligentes
y algoritmos sofisticados, las redes sociales se han convertido en una parte integral e
inseparable de la sociedad moderna. En consecuencia, la prevalencia de contenido sexista
en estas plataformas ha surgido como un problema significativo y de amplio alcance. Esta
forma de acoso en línea no solo perpetúa las desigualdades de género, sino que también
representa un daño psicológico y emocional significativo para las personas que son el
objetivo objetivo de dicho contenido. Por lo tanto, es imperativo abordar este problema y
tomar medidas proactivas para mitigar su impacto.

El objetivo principal de este trabajo es estudiar, identificar y analizar el proceso de de-
tección de contenido sexista a través de la aplicación de técnicas de procesamiento del
lenguaje natural. El estudio utiliza dos conjuntos de datos de la competición EXIST, una
tarea compartida de identificación de sEXismo en redes sociales de IberLeF 2021 y CLEF
2023. Se entrenan y validan cinco modelos de analisis de lenguaje natural basados en
Transformers y Deep Learning para su posterior comparación. El objetivo principal es
identificar casos de sexismo en línea y determinar el modelo óptimo para cada tarea, que
refleje con precisión escenarios del mundo real.
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Chapter 1

Introduction

This section of the Bachelor’s thesis will function as an introduction, setting the stage
for the remainder of the project. It will start by providing a concise overview of the
motivations behind choosing this particular topic, followed by a clear statement of the
problem that will be addressed. Additionally, the objectives to be accomplished and the
overall structure of the document will be outlined and discussed.

1.1 Motivation: Addressing Online Sexism for Gender Equal-
ity

The issue of sexism in social media is a growing concern that requires immediate attention.
As the Oxford English Dictionary defines it, sexism is the prejudice, stereotyping, or
discrimination against women on the basis of sex [1]. Unfortunately, this problem is
pervasive and has penetrated every facet of society, including the online space. Detecting
online sexism is challenging, as it can take various forms, including subtle expressions
of implicit sexist behaviors that are just as damaging as explicit misogyny. Therefore,
the automatic identification of sexism in its broadest sense is critical in designing and
determining the evolution of new equality policies while promoting better behavior in
society.

As a female who has experienced gender discrimination firsthand, I am particularly mo-
tivated to tackle this issue. Not only from my own experience but also from the women
around me, I have been observing the negative impacts of misogyny on women’s lives
from limiting their career opportunities to shaping their sexual image and expectations.
As a student pursuing a Computer science degree, I am eager to leverage my knowledge
to identify and combat sexism in real-life environments. This bachelor thesis project will
enable me to contribute to the cause of gender equality by developing and applying nat-
ural language processing techniques to detect sexism in tweets. Through this project, I
hope to make a tiny contribution towards creating a more equitable and fair society for
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2 Introduction

our community.

1.2 Problem to be solved: why this problem?

Social media platforms not only facilitate communication and information sharing at an
unprecedented level, but also provide an anonymous environment that enables users to
express aggressive attitudes towards specific individuals or groups by posting abusive
language. Among the various forms of offensive speech, one that is specifically directed
at female groups is sexism.

The prevalence of sexism on social media has negative real-life consequences for women.
Real-life examples show how women suffer from online sexism. According to a study [2]
that examined 51 countries, online harassment affects 38% of women globally, but only
25% report it to authorities, and 90% limit their online activity, worsening the gender
digital divide. Furthermore, women in politics and other public figures receive sexist
messages and threats, which can lead to self-censorship and avoidance of public life.
Moreover, women in everyday life may face gender-based discrimination in employment,
education, and personal relationships, perpetuated by online sexism. Therefore, address-
ing sexism on social media is crucial to promote gender equality and safeguard women’s
well-being.

To mitigate online sexism on social media, developing technical approaches is crucial due
to the scale and complexity of the problem. Manual censorship and modification of sexist
content has become difficult to manage in the past few years due to the increasing amount
of user-generated content and the diversity of user behavior toward women on social me-
dia. However, academic research in dealing with automatic detection of misogynistic
behavior and gender-based hate in both monolingual and multilingual contexts is rapidly
increasing [3] [4]. Machine learning algorithms can help automate the identification and
removal of offensive content, including sexist messages, by analyzing language patterns,
sentiment, and context. Also, technical approaches can be used to improve platform de-
sign and user experience to reduce the prevalence of online sexism, such as implementing
features that allow users to block or report abusive content or users. These solutions can
help create a safer and more inclusive online environment, empowering women to partic-
ipate in online discussions and activities without fear of harassment or discrimination.

1.3 Objectives

The main objective of the entire study, as indicated by the title of this thesis, is to ana-
lyze and develop NLP models that can accurately identify sexist content on social media
messages. To achieve this goal, several interconnected subobjectives have been outlined.

1. Firstly, we will conduct a thorough assessment of sexist content identification using
the EXIST dataset spanning two years, specifically 2021 [5] and 2023 [6]. Unfortu-
nately, the 2022 dataset has not been made available to the public at this time due
to internal reasons. It is important to highlight that detecting online sexism presents
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a significant challenge due to the diverse forms that posts can take. They may be
expressed in hateful and offensive language or appear benign and humorous, which
can mislead the classification models employed for this task. Additionally, to en-
sure the effectiveness of the models across various contexts, it is crucial to consider
implementing them in multiple languages.

2. Moreover, since this research will utilize state-of-the-art NLP models, our initial
focus will be on investigating these models and delving into the fundamentals of
the field. This exploration will provide a solid foundation for our subsequent work.

3. Another critical objective involves gaining a comprehensive understanding of the
aforementioned datasets through statistical analysis of the available source of data.
This analysis will enable us to extract valuable insights and design effective data
pre-processing pipelines. By properly preparing the datasets, we can ensure their
suitability for further modeling and analysis.

4. After that we will proceed to construct and evaluate different NLP models specif-
ically designed for the task of identifying sexist content. This process will involve
conducting numerous experiments for each language and dataset, where we will
focus on specific metrics and loss values that serve as indicators of performance and
effectiveness.

5. Finally, our final objective will be to compare the performance of the developed
models using each dataset. This comparative analysis will enable us to determine
the most effective model for accurately detecting sexist content within social media
messages.

1.4 Project Schedule

Lastly, I would like to show the meticulous scheduling involved in the completion of this
paper. Beginning with literature review in February and acquiring comprehensive knowl-
edge of cutting-edge technologies in the field of natural language processing, followed
by data compilation, model selection, actual pipeline coding, process documentation, and
extensive experimentation, culminating in the final analysis and organization, these con-
tinuous efforts spanning eighteen weeks, under the guidance of my supervisors, allowed
me to achieve the objectives initially established for this thesis. Attached herewith is a
Gantt chart illustrating the systematic breakdown of the entire schedule into smaller com-
ponents, providing approximate completion times for each segment, and more.



4 Introduction

Figure 1.1: Bachelor’s thesis Gantt Chart: Timeframe

1.5 Project Organization

This bachelor thesis is organized into five distinct parts. The first part is the Introduction
(Chapter 1), serving as the initial chapter to provide an explanation of the problem at
hand, outlining motivation, and stating the project goals. This introductory section aims
to contextualize readers and provide a comprehensive overview of the project.

Following the Introduction, the second part delves into the State-of-the-Art (SOTA) section
(Chapter 2). This chapter begins with a comprehensive review of various techniques,
encompassing a broad range of approaches. It gradually progresses towards exploring
the most advanced models available, such as transformer-based models. This section
emphasizes the significance of reading and comprehending current papers, as well as
presenting a detailed summary of their contents.

Subsequently, the Implementation chapter (Chapter 3) follows the literature review. This
section focuses on putting into practice the knowledge acquired during the literature re-
view phase. It encompasses various aspects, including data preparation, model selection,
model building, and obtaining results with an emphasis on the selection of optimal pa-
rameters.

The fourth chapter is dedicated to presenting the gathered results (Chapter 4). It show-
cases the outcomes obtained from different training and evaluation sessions of the models
and includes a thorough comparison of the results. This section provides a comprehensive
analysis of the performance of the implemented models, enabling a deeper understanding
of their effectiveness.
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Lastly, the fifth and final chapter is dedicated to the conclusions and future work of the
entire thesis (Chapter 5). This section reflects upon the lessons learned throughout the
course of the research, offering valuable observations and evaluations of the objectives
achieved. Moreover, it discusses future directions for further exploration and develop-
ment. Specifically, the future work includes generalizing the trained model to encompass
datasets from other fields, thereby extending its applicability. The concluding chapter
aims to provide a comprehensive overview and summary of the thesis, effectively con-
solidating the key findings and underscoring the research’s significance in advancing the
field.



Chapter 2

State-of-the-art of NLP

This chapter aims to provide a comprehensive understanding of the project by presenting
the fundamental concepts and techniques employed in NLP data processing. It begins
with a concise introduction to these concepts, ensuring a solid foundation for the subse-
quent discussions. Emphasis will be placed on analyzing and comparing existing models
and algorithms within the field, forming the core content of this chapter. By examining the
strengths and weaknesses of these approaches, a deeper insight into the state-of-the-art
methods will be attained.

2.1 Contextualization: what is NLP and its application in
social media

Natural Language Processing (NLP) is an interdisciplinary field that combines computer
science, artificial intelligence, linguistics, and psychology to study the complexity of hu-
man language and develop computational methods to analyze and generate it. To simplify
its definition, NLP is about making computers understand and use human language.

It may not be universally acknowledged that NLP technology has become pervasive in
modern society. The capability of NLP to categorize text and analyze sentiments enables
its utilization in a spectrum of fields, such as chatbots and online customer service, as
it requires understanding and responding to human language inputs, and email spam
filtering systems, which are commonly utilized by individuals.

2.2 Pre-processing techniques

Pre-processing and data cleaning are equally important to developing an effective ma-
chine learning model. Therefore, the quality of the information has a huge impact on how
reliable your model is. In order to develop effective NLP models, pre-processing tech-
niques are essential to clean and convert raw text into a more structured and informative

6



2.2 Pre-processing techniques 7

format. These techniques help to reduce the dimensionality of the data, identify similar
words, and standardize the language.

Tokenization

Tokenization involves breaking down a text into individual tokens or words [7]. This pro-
cess segments sentences, paragraphs, or entire documents into smaller units, enabling the
analysis of each word in isolation as shown in Figure 2.1. Tokenization simplifies subse-
quent tasks such as counting word frequencies, identifying key phrases, and analyzing
syntactic structures. It forms the fundamental step in text analysis, allowing algorithms
to understand and process text effectively.

Figure 2.1: Tokenization in Natural Language Processing

Stopwords Removal

Stopwords are commonly used words, such as articles (e.g., “a,” “an,” “the”), pronouns
(e.g., “he,” “she,” “it”), and conjunctions (e.g., “and,” “but,” “or”). These words add little
semantic value and can introduce noise into the analysis. Stopwords removal filters out
these words from the text, reducing the dimensionality of the data and improving the
accuracy of subsequent analyses. Removing stopwords is particularly useful in tasks like
information retrieval and document classification.

Stemming and Lemmatization

For grammatical reasons, documents like messages always use different forms of a word.
The approach of stemming and lemmatization involves the same methodologies. They
both reduce the inflectional forms of each word into a common root word as depicted in
Figure 2.2. However, the main difference is in the way these methods are implemented
and the result they come up with. Stemming involves removing prefixes and suffixes
from words to obtain their root, known as a stem. For example, stemming transforms
“running” and “runner” to “run”. On the other hand, lemmatization maps words to
their corresponding base form, known as a lemma, by considering the word’s part of
speech. For instance, lemmatization transforms “better” to “good”. These techniques
normalize word variations, consolidating similar words and reducing redundancy in the
text. Stemming is computationally simpler but may result in non-grammatical stems,
while lemmatization provides linguistically meaningful lemmas.

Sentiment-oriented Pre-processing Procedures
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Figure 2.2: Comparison of stemming and lemmatization [8]

The objective of sentiment analysis is to determine the underlying emotional expression
in a given text. To enhance the accuracy of sentiment analysis outcomes, various pre-
processing techniques can be implemented with a focus on sentiments. These techniques
encompass dealing with negations, such as converting “not happy” to “not_happy”. Fur-
thermore, it is crucial to address emoticons and emojis, as emojis are composed of combi-
nations of punctuation marks and have been observed to convey significant connotations,
particularly in the context of abusive language on social media platforms. Hence, in some
cases, it may be appropriate to retain emojis as separate tokens (see Figure 2.3). Addi-
tionally, replacing elongated words and slang, like transforming “soooo” to “so”, is also
imperative. Moreover, sentiment-specific lexicons can be employed to augment the senti-
ment analysis process by establishing associations between words and their corresponding
sentiment polarities, such as positive, negative, or neutral.

In addition, the process of lowercasing involves converting every word to lowercase, as
the name implies. The primary purpose of this conversion is to address the issue where
words with identical meanings but different cases are treated as distinct words in the
vector space if left unchanged. By converting them to lowercase, the dimensions and cost
associated with these variations are reduced.

2.3 Traditional models and approaches

Language is a learned ability that takes humans a lifetime to master, and the process of
learning frequently starts with understanding the meaning of the words, as language has
meaning because of the way words are formed into other words. Thus we might ask: how
do machines interpret language?

In fact, a computer’s comprehension of words closely resembles that of a human. When
someone says, "It’s going to rain outside soon," we already know in our heads what the
words “outside”, “soon” and “rain” mean in their most general senses. We have an es-
tablished neural connection between the abstract ideas of these words mentioned above
in our minds that is prepared to be awakened and activated when we hear the phrase.
This neural connection will then tell us that we could either remain inside or bring an
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Figure 2.3: Emoji Classification for sentiment analysis [9]

umbrella before leaving the house. In other words, we grasp the meaning of the sentence
and the meaning underlying the entire statement by comprehending the meaning of each
word and by way of this process of word reorganization. At this point, we can there-
fore confidently assume that understanding the meaning of words is the key to language
comprehension.

We are all aware that computers are capable of processing objects made up of nothing
but numbers, such as all images that can be expressed using a specific integer for each
pixel. Instead of being able to comprehend the pervasive complexity of human language,
the computer is able to categorize the language, or rather the words, into the appropriate
location. This allows it to process words and recognize the emotions hidden between the
lines. Actually, the comprehension of words of machines seems to be their comprehension
of place and area. This is where Word Embedding vectors come into play as their mathe-
matical representations. Some techniques are Bag of Words, TF-IDF or CountVectorizer.

2.3.1 Bag-of-words

Bag-of-Words (BoW) is a popular and effective model used in NLP field which builds a
representation of text that describes the occurrence of words within a document [10]. It
involves two things:

1. A vocabulary of unique words from corpus.

2. A measure of the presence of known words, commonly as vector.

It is called a "bag" of words because any information about the order or structure of



10 State-of-the-art of NLP

words in the document is discarded. The model is only concerned with whether known
words occur in the document, not where in the document. Although it is a widely used
approach in NLP due to its simplicity, BoW discards the context of words and the rela-
tionship between words in a sentence or document, which can result in loss of semantic
meaning. Furthermore, it creates high dimensional data as the number of unique words
in a document can be large, leading to the curse of dimensionality problem.

2.3.2 TF-IDF

TF-IDF is a statistical technique that assesses the relevance of a word to a document within
a corpus, which involves computing the product of two measures: Term Frequency (TF)
and Inverse Document Frequency (IDF). Specifically, TF corresponds to the frequency of
a word in a document, while IDF refers to the logarithmic value of the ratio of the total
number of documents to the number of documents containing the word (see Figure 2.4).
Despite being an improvement in word representation, the technique relies on the Bag-of-
Words (BoW) model, which lacks the ability to capture semantic relations, word positions
within documents, and co-occurrences.

Figure 2.4: Fig. TF-IDF formula for word representation

2.3.3 Word2Vec: skip-gram, CBoW

skip-gram

In the field of natural language processing, skip-gram is a popular Neural Network algo-
rithm that focuses on word embeddings and contextual representations. Figure 2.5 shows
its architecture. The skip-gram model, introduced by Mikolov [11], operates on the prin-
ciple of using the current word to predict its neighboring words within a given context.
This approach offers valuable insights into the semantic relationships between words and
enhances our understanding of language structures.

By leveraging skip-gram, NLP researchers can capture the subtle nuances of word asso-
ciations and syntactic patterns. The skip-gram model proves particularly useful in tasks
such as language modeling, part-of-speech tagging, and sentiment analysis. It enables the
extraction of rich contextual information from textual data, contributing to advancements
in machine translation, information retrieval, and other related applications.

CBoW: Continuous Bag-of-Words
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The continuous bag-of-words (CBoW) model is another significant algorithm employed in
NLP field. Unlike skip-gram, CBoW focuses on predicting the current word based on the
contexts surrounding it. The limit on the number of words in each context is determined
by a parameter called “window size”.

The CBoW model[11], excels in capturing the local syntactic and semantic dependencies
of words. It efficiently represents the meaning of a word by considering the collective
context it appears in, without relying on word order. This makes CBoW particularly suit-
able for tasks such as text classification and named entity recognition. The utilization of
CBoW aids in uncovering important contextual information and improving the accuracy
of various NLP tasks due to its simplicity and efficiency.

Figure 2.5: skip-gram neural network [12]

2.3.4 Neural networks: RNNs, LSTMs

The primary advantage of deep learning approaches is its "end-to-end" capability, which
does not refer to the transfer of data from the client to the cloud. Rather, it denotes that
in the past, developers were required to consider which features to design to extract from
data. However, in the end-to-end era, this is no longer necessary, as the original input can
be fed directly into a competent feature extractor, which will automatically extract useful
features without human intervention.

RNN is a popular choice for NLP applications due to its ability to process linear sequences
of sentences with varying lengths and capture long-range features through the inclusion of
three gates in LSTM models. Despite its remarkable performance, the original RNN model
faces optimization difficulties during back propagation, caused by the linear sequence
structure, which results in gradient vanishing or explosion problems. To address this
issue, LSTM and GRU models were introduced with intermediate state information to
propagate backward directly, effectively resolving the gradient disappearance problem.
These models have become the standard RNN models and achieved impressive results in
various NLP tasks.
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2.4 Deep learning approaches with Transformers

In order to achieve a comprehensive comprehension of the Transformer, it is necessary to
acquire a prior understanding of two fundamental concepts extensively employed in NLP
tasks – the Encoder-Decoder architecture [13] and the Attention mechanism.

2.4.1 Encoder-Decoder architecture

In the context of text processing, the encoder-decoder framework can be conceptualized
as a general processing model appropriate for processing the creation of a new sentence
(or chapter) from an existing sentence (or chapter). The target sentence Target is supposed
to be produced by the Encoder-Decoder framework given the input sentence Source [14]
(see Figure 2.6).

Source = < x1, x2, ..., xm >

Source = < y1, y2, ..., ym >

The Encoder, as the name implies, transforms the input sentence Source through a non-
linear transformation into an intermediate semantic representation C:

C = f (x1, x2, ..., xm)

The decoder’s job is to generate the words that will be formed at moment i based on the
historical data that has already been generated in the past and the intermediate semantic
representation C of the phrase Source:

yi = g(y1, y2, ..., yi−1)

After forming each yi in sequence in this manner, it appears as if the entire system has
produced the Target sentence, which is derived from Source.

The Encoder-Decoder framework is used to solve the machine translation problem when
the Source is a Chinese sentence and the Target is an English sentence. When the Source
is an article and the Target is a collection of general descriptive sentences, the framework
is used to summarize the content.

Figure 2.6: Abstract Encoder-Decoder framework for language processing [14]



2.4 Deep learning approaches with Transformers 13

2.4.2 Attention mechanism

The primary objective of attention in deep learning is to selectively focus on various fea-
tures when making predictions, similar to humans’ selective visual attention mechanism.
To illustrate, consider the example of predicting sentiment based on the sentence:

“My mom cooked a delicious meal today.”

In this scenario, only the word “delicious” carries significant weight in determining the
sentiment, whereas the remaining parts of the sentence are relatively less critical.

Hence, simply taking the average of the token embeddings to represent the entire sentence
could introduce a significant amount of noise. The attention mechanism is proposed to
overcome this limitation and assign varying weights to input tokens based on the task
objective. The proposed mechanism allows the weights of the input tokens to be adjusted
based on their relevance to the task. Ideally, the attention weights would assign a relatively
higher weight to the tokens that carry more significant information, such as “delicious”
and “meal” while assigning relatively lower weights to other tokens such as “today” or
“cooked”.

The following attention mechanism is referred to as self-attention and it is widely used
in NLP tasks. The input Source and output Target contents within the encoder-decoder
framework for general tasks are inherently distinct. The nomenclature "self-attention"
does not denote the attention mechanism operating between the target and the source;
instead, it pertains to the attention mechanism within the constituent elements of the
source or the target, which is commonly referred to as the attention mechanism in the
special case where the target is equal to the source.

This mechanism is introduced due to its ability of capture semantic properties between
words within a sequence [15]. Let us consider the following sentence as the input for a
given translation task:

“The animal didn’t cross the street because it was too tired.”

Determining the referent of the pronoun "it" in the previous sentence may be an effortless
task for humans, but can pose a challenge for an algorithmic system, ascertaining whether
"it" pertains to the street or the animal, as shown in Figure 2.7. In this regard, self-attention
enables the system to establish an association between "it" and "animal".

2.4.3 Transformers

After comprehending the previous two concepts, we can now discuss the Transformer.
The Transformer is a new encoder-decoder architecture based solely on attention mech-
anisms, which improves the most criticized drawback of slow training of RNN by us-
ing self-attention mechanism to achieve fast parallelism. Figure 2.8 depicts its archi-
tecture, which was introduced in 2017 by Vaswani et al. in their seminal paper titled
”Attention is all you need.” [16]. Following its publication, the Transformer has achieved
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Figure 2.7: Self-attention mechanism [15]

Figure 2.8: Connect the encoder and decoder through an attention mechanism–
Transformer architecture [16]
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state-of-the-art (SOTA) results on several benchmark datasets across various NLP tasks,
marking a significant breakthrough in this field.

The Transformer architecture consists of an encoder and a decoder, both of which are
composed of a stack of 6 identical layers. Each encoder layer has two sub-layers: the first
sub-layer utilizes a multi-head self-attention mechanism that takes as input a sequence
of token embeddings and computes a set of attention scores for each token, which al-
lows the model to capture different aspects of the input and learn more complex patterns
and relationships between the tokens. The second sub-layer uses a fully connected feed-
forward network (MLP) transforming the output of the multi-head self-attention layer into
a higher-level representation of the input sequence by applying two linear transformations
with a non-linear activation function in between. The dimension of the model, dmodel , is
set to 512.

Similarly, the decoder consists of a stack of identical layers, each comprising three sub-
layers. The first two sub-layers in the decoder mirror those in the encoder. However,
the third sub-layer performs multi-head attention over the output of the encoder stack,
enabling the decoder to extract the pertinent information required for the given task. Fur-
thermore, the decoder incorporates the first masked stack, which is specifically designed
to prevent positions from attending to subsequent positions. This mechanism ensures
consistent behavior during both training and prediction stages.

The previously described attention mechanism in Section 2.4.2 refers to a critical compo-
nent of a Transformer’s NN architecture. Regarding the components of the Source, they
can be conceptualized as a set of < Key, Value > data pairs. To determine the weight
coefficient of each Key that corresponds to Value(V) for a particular element of the Target,
the similarity or correlation between the Query(Q) and each Key(K) must be evaluated.
Once the relevant Values have been weighted and subsequently summed, the final At-
tention value is attained. Essentially, the Attention mechanism is a weighted summation
of the Value values for each component in the Source, wherein the Query and Key are
instrumental in computing the weight coefficients associated with the relevant Value.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V

where
√

dk is the dimension of the key vector k and query vector q .

2.4.4 BERT: Bidirectional Encoder Representations from Transformers

TThe BERT model was proposed in “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding” by a group of Google AI researchers [17]. It is a bidirectional
transformer pre-trained using a combination of masked language modeling (MLM) ob-
jective - which implies the selection and replacement of a random sample of the tokens
in the input sequence to the special token [MASK]. The MLM objective is a cross-entropy
loss in predicting the masked tokens. And next sentence prediction (NSP), a binary clas-
sification loss for predicting whether two segments follow each other in the original text.
Both are trained on a large corpus comprising the Toronto Book Corpus and Wikipedia.
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Figure 2.9: Differences in pre-training model architectures: BERT, GPT and ELMo [17]

Figure 2.10: BERTBase VS BERTLarge [17]

The release of BERT is an event described as marking the beginning of a new era in NLP
as it broke several records for how well models can handle language-based tasks.

According to the paper, its approach enables the model to achieve a better understanding
of the language context and word surroundings in comparison to other techniques, which
looked at sequences either from left-to-right/right-to-left or with a combination of both
single-direction language models [18]. Figure 2.9 illustrates this significant change of
BERT:

BERT is fundamentally a trained Transformer Encoder stack with a multitude of encoder
layers - 12 for the Base version and 24 for the Large version - that the article refers to as
Transformer Blocks (see Figure 2.10).

In terms of its foundational influences and underlying concepts, the BERT model revolves
around several key aspects:

1. Semi-supervised Sequence Learning: BERT adopts various approaches, includ-
ing unsupervised feature-based methods, unsupervised fine-tuning procedures, and
transfer learning from supervised data. These techniques enable the model to lever-
age unlabeled data effectively.

2. Embeddings from Language Models (ELMo): ELMo, trained to predict the next
word in a sequence, generates contextualized embeddings by combining hidden
states and initial embeddings in a specific manner. This approach, known as lan-
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guage modeling, allows the model to learn from extensive amounts of unlabeled
text input.

3. Universal Language Model Fine-tuning for Text Classification (ULM-FiT): ULM-
FiT provides a transfer learning technique for NLP akin to the advancements wit-
nessed in Computer Vision. It efficiently fine-tunes the language model for different
tasks, expanding the applicability of transfer learning in NLP.

4. OpenAI Transformers: BERT leverages self-attention mechanisms, made possible
by OpenAI Transformers. This utilization marks BERT as the first NLP approach to
rely solely on self-attention mechanisms.

In essence, BERT is pre-trained to predict hidden or masked tokens within a sentence
based on contextual cues and to comprehend the relationship between two given sen-
tences. The framework of BERT consists of two steps: pre-training, where the model is
trained on unlabeled data across multiple tasks, and fine-tuning. During fine-tuning, the
model is initially initialized with the pre-training parameters and subsequently fine-tuned
using labeled data. This process ensures the model’s adaptation to specific downstream
tasks.

2.4.5 RoBERTa: Robustly optimized BERT approach

While BERT stands as one of the leading language models in the field, it has certain limita-
tions. Notably, BERT’s training was evidently insufficient, utilizing only 16GB compared
to RoBERTa’s extensive 160GB training corpus [19]. Furthermore, both the pre-training
and fine-tuning phases of the framework could benefit from enhancements. A primary
drawback of BERT lies in its single application of masking during pre-training, resulting
in a static mask that persists throughout each epoch. In response to these shortcomings,
Facebook adopted the open-source BERT, originally developed by Google, and introduced
their own optimization: RoBERTa [20].

While having the same architecture, BERT and RoBERTa diverge on some aspects [21].
To augment the performance of the BERT architecture, Facebook AI researchers made
several straightforward design modifications in both the model’s architecture and training
procedure. These alterations include:

1. Removal of the Next Sentence Prediction objective: In BERT, the model is trained
to predict whether observed document segments originate from the same or differ-
ent documents, achieved through an auxiliary Next Sentence Prediction (NSP) loss.
The authors conducted experiments by removing or incorporating the NSP loss in
different versions and found that eliminating it either matched or slightly improved
downstream task performance.

2. Training with bigger batch sizes and longer sequences: Initially, BERT was trained
for 1 million steps with a batch size of 256 sequences. However, in this study, the
authors trained the model for 125,000 steps with a batch size of 2,000 sequences, as
well as for 31,000 steps with a batch size of 8,000 sequences. This approach offers two
advantages: larger batches enhance perplexity on the masked language modeling
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objective and improve end-task accuracy. Additionally, larger batches facilitate easier
parallelization through distributed parallel training.

3. Dynamically masking approach: In the original BERT architecture, masking is per-
formed once during data pre-processing, resulting in a single static mask. To over-
come this limitation, the training data is duplicated and masked 10 times, each
time employing a distinct mask strategy over 40 epochs, resulting in 4 epochs with
the same mask. This strategy is compared with dynamic masking, where different
masking is generated every time data is passed into the model.

RoBERTa has demonstrated superior performance compared to BERT and other state-
of-the-art models across various natural language processing tasks, including language
translation, text classification, and question answering. It has also served as a founda-
tional model for numerous successful NLP models and has gained popularity within both
research and industry applications.

2.4.6 XLNet: eXtreme Learning NetworK

XLNet [22], a state-of-the-art language model, combines the strengths of two successful
models, Transformer-XL [23] and BERT [17]. Transformer-XL addresses the limitations
of recurrent neural networks (RNNs) and LSTM networks by reusing hidden states from
previous segments, enabling the model to capture longer-term dependencies and pre-
vent context fragmentation. This auto-regressive language model outperforms traditional
models by leveraging the power of vanilla Transformers.

Two innovative techniques contribute to XLNet’s success in overcoming limitations in
auto-regressive language modeling [24]. First, the recurrence mechanism caches the hid-
den state sequence generated for the previous segment during training. This extended
context allows the model to utilize past knowledge effectively. Second, relative positional
encoding ensures consistency in positional information when reusing hidden states. By
encoding only relative positional information in the hidden states, the model obtains a
temporal guide on how to obtain information and dynamically injects relative distance
into each layer’s attention score.

Building upon the architecture and techniques of Transformer-XL, XLNet is an auto-
regressive language model that outputs the joint probability of token sequences. It learns
bidirectional context by considering all possible permutations of the input sequence fac-
torization order, combining the advantages of auto-regressive modeling (Transformer-XL)
and auto-encoding modeling (BERT). Unlike BERT, XLNet does not rely on masked input
or token independence, resulting in consistent training and fine-tuning.

2.4.7 HateBERT and DeHateBERT: Language-Specific Abusive Language
Detection Models

In order to enhance the performance of abusive language detection across different lan-
guages, two separate models specifically trained on English and Spanish text will be cho-
sen to utilize. The first model, HateBERT [25], is based on the BERT architecture and
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Figure 2.11: MLM top 3 candidates for the templates “Women are [MASK.]” [25]

has been retrained to focus on detecting abusive language in English. The second model,
DeHateBERT [26], is a multilingual language model with a specific Spanish version model
trained to detect the abusive language in Spanish text called DeHateBert-mono-spanish.
By incorporating these language-specific models, the aim is to achieve better results and
more accurate detection of abusive language in both English and Spanish contexts, as
these are the languages involved in the datasets that we are going to experiment with.

HateBERT, a modified version of the English BERT base-uncased model, was retrained on
the RAL-E dataset with 1,478,348 training messages. Using the Masked Language Model
(MLM) objective and training for 100 epochs, HateBERT consistently filled mask tokens
with profanities or abusive terms (see Figure 2.11). In comparison, the generic BERT
model rarely generated such outputs. This modification allowed HateBERT to identify
offensive and abusive language effectively. The results were demonstrated through a
template sentence analysis, highlighting the differences between BERT and HateBERT in
predicting masked tokens.

On the other hand, DeHateBERT, is a model that offers similar capabilities for detecting
abusive language in Spanish, which has been trained on two datasets: Basile [27], pro-
vided multilingual hate speech dataset against immigrants and women, and Pereira [28],
provided hate speech dataset for the Spanish language. Both models have been fine-tuned
on extensive datasets in their respective languages to ensure optimal performance and
language-specific detection capabilities.

2.5 Evaluations and metrics

In evaluating the performance of pre-trained and fine-tuned models, it is essential to con-
sider multiple metrics. Assessing models using diverse evaluation metrics is crucial to
ensure their accurate and optimal functioning. A model may excel in one metric but per-
form poorly in another, making the evaluation of various metrics necessary. Additionally,
employing a wide range of metrics facilitates comprehensive model comparisons on a
state-of-the-art (SOTA) scale. Within this context, the confusion matrix depicted in Figure
2.12 plays a vital role as a tool for evaluating models. It provides a summary of perfor-
mance by presenting counts of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). These concepts are essential in assessing the required evaluation
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metrics for models. The matrix enables the identification of model strengths and weak-
nesses, highlights errors across different classes, and assists in decision-making for model
improvement.

Figure 2.12: Confusion Matrix [29]

Within this project, the key metrics to be utilized are as follows:

1. Accuracy: This metric measures the proportion of correct predictions or tokens made
by the model. It is calculated by dividing the sum of true positives and true negatives
by the total population.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

2. Precision: Precision gauges the ratio of accurate positive predictions to the total
number of positive predictions. In other words, it is calculated by dividing TP by
the total number of positive calls.

Precision =
TP

TP + FP
(2.2)

3. Recall: Recall assesses the proportion of correct positive predictions among all in-
stances that are actually positive. It is determined by dividing the number of TP by
the sum of TP and false negatives (FN).

Recall =
TP

TP + FN
(2.3)

4. F1-score: The F1-score represents the harmonic mean of precision and recall. It pro-
vides a balanced measure of the model’s performance, accounting for both precision
and recall simultaneously.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(2.4)

These metrics serve as essential benchmarks for evaluating the performance of models
and enable meaningful comparisons between different approaches. By considering these
metrics, we gain valuable insights into the accuracy, precision, recall, and overall perfor-
mance of the models. The F1-score, in particular, combines precision and recall to provide
a comprehensive assessment of the model’s effectiveness.



Chapter 3

Implementation

This chapter is dedicated to providing a comprehensive explanation of the implementa-
tion process in this project. The discussion will begin with the project’s implementation
scenario, and will include the IDE environment, tools utilized, data preparation and the
specific structure designed for the purpose of collecting results.

3.1 Implementation scenario

This project aligns with the prevailing trend in data science, deep learning, and the NLP
field by selecting Python as the primary programming language and leveraging Jupyter
Notebook for coding support. Python is widely recognized as the best language for ma-
chine learning and deep learning research due to its simplicity, consistency, and extensive
library ecosystem [30]. These libraries enable efficient data access, handling, and transfor-
mation, which will be discussed in detail later. Jupyter Notebook serves as an interactive
computational environment for developing Python-based data science applications. It
seamlessly integrates code, images, text, and output, allowing for a step-by-step illustra-
tion of the analysis process. Additionally, it facilitates the documentation of the thought
process undertaken by data scientists during analysis development.

In this project, Python 3.10 and Jupyter Notebook were selected due to their versatility and
compatibility with pre-trained models. The hardware used for implementation consisted
of an Huawei Matebook 14 laptop with an AMD Ryzen 7 4800H processor with Radeon
Graphics processor which operates at a base frequency of 2.90 GHz, 16GB of RAM, and
512GB SSD. Considering the limitations of local resources, the idea of using client-server
applications like Google Colab or Kaggle, which provide access to server-side GPUs and
CPUs, was explored. However, since they are free public services, the usage time of these
platforms is limited.

On the software side, the chosen IDE for this project is Jupyter Notebook, but due to
resource limitations, it is supplemented by Google Colab. Google Colab is a client-server
application provided by the Jupyter Project, acts as a bridge between code and explanatory
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texts, allowing for code compilation and execution. Jupyter Notebook enables developers
to combine code with rich text, equations, images, and multimedia renderings in one
place. It also facilitates result sharing and analysis. Although resource constraints are
present, they do not hinder the achievement of project goals.

3.2 Libraries

This section discusses the Python libraries used to accomplish the project goals. The
purpose of each library is explained along with the functions and features applied. The
following libraries were used for general and data science purposes:

3.2.1 LIBRARIES FOR GENERAL AND DATA SCIENCE PURPOSES

1. os: A Python module that provides functions to interact with the operating system.
It was used to create directories for storing the results.

2. re: A Python module that contains regular expression matching operations. It was
used to search for specific patterns and keywords, such as hashtags and URLs.

3. time: A Python module that provides time-related functions. It was used to measure
the time spent during training and validation.

4. datetime: A Python module that provides time and date-related functions. It was
used to transform time in seconds into a more readable format.

5. enum: A Python module that defines enumeration classes used for defining unique
dataset types while saving predictions and metadata.

6. json: A Python module that provides an API for converting Python objects to a
serialized representation called JavaScript Object Notation (JSON). It was used for
loading emojis and abbreviation dictionaries.

7. pickle: A Python module that implements binary protocols for serializing and de-
serializing data, such as metadata files.

8. googletrans: An open-source Python library that provides an interface for Google
Translate. It enables developers to easily integrate language translation capabilities
into their applications, allowing for the translation of text from one language to
another.

9. collections: A Python module that implements specialized container data types. The
used types were namedtuple, defaultdict, and Counter.

10. random: A Python module that generates pseudo-random numbers. It was used to
start random numbers given an initial seed.

11. logging: A Python API that defines functions and classes for implementing an event
logging system. It was used to disable smote_variants logging to avoid spam during
training.



3.2 Libraries 23

12. unicodedata: A Python module that provides access to the Unicode Character Database.
It was used to remove accents from Unicode characters that contain them.

13. Scikit-Learn (SkLearn): An open-source machine learning API that provides nu-
merous efficient tools for statistical modeling and supervised-unsupervised learn-
ing. The following submodules were used:

(a) feature_extraction.text: A submodule for building feature vectors from text
documents. It provided vectorizers (TfidfVectorizer and CountVectorizer) needed
for preprocessing the datasets.

(b) metrics: A submodule that includes score functions, performance metrics, and
pairwise metrics and distance computations, like accuracy scores and F1 met-
rics used in validation processes.

(c) model_selection: This submodule is used for cross-validation.

(d) pipeline: A submodule that helps build the pipeline used for generating the
Tf-Idf matrix of one dataset.

(e) preprocessing: A submodule that includes scaling, centering, normalization,
binarization methods, such as FunctionTransformer and OneHotEncoder. These
are the functions used during the generation of the pipeline and training, re-
spectively.

14. Numpy: A Python library that consists of multidimensional array objects and a
collection of routines for processing these arrays. It was used for numerical and
statistical functions, such as sum and mean, and stacking methods for arrays.

15. Pandas:An open-source Python library that provides multiple machine learning
functions for dealing with DataFrames and Data Science tasks. It was used for load-
ing datasets or files and concatenating and creating DataFrames from those loaded
files.

16. Scipy: An open-source Python library that is used to solve scientific and mathemat-
ical problems involving matrices. It was used to load sparse matrices from npz files
and also save them.

17. Torch: An open-source Python machine learning library and a scientific framework
that provides a wide range of algorithms and methods for deep learning. The fol-
lowing submodules were used:

(a) nn: A submodule enables the creation and training of neural networks and
provides Loss functions for their evaluation.

(b) utils.data A submodule provides functions for loading, dealing, and interacting
with data, along with several data samplers to specify the sequence of keys used
in data loading, including DataLoader.
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3.2.2 LIBRARIES FOR VISUALIZATION PURPOSES

1. Matplotlib: the open-source library is used to create static, animated, and interactive
visualizations in Python.

(a) pyplot: A submodule provides a state-based interface and an implicit, MATLAB-
like way of plotting, with the main goal of outputting figures for visualizing the
pre-processing, training, and validation results.

2. Seaborn: Based on Matplotlib, this library is used for drawing attractive and in-
formative statistical graphics to aid in the understanding of training and evaluation
results.

3.2.3 NLP-RELATED LIBRARIES

1. Transformers: A Python library that provides thousands of pre-trained models for
performing tasks such as sentiment analysis or text classification. For this thesis, the
pre-trained models used were Bert, RoBERTa, and XLNet, along with their respective
learning rate schedulers from this library.

2. Spellchecker: A Python module that allows setting a Levenshtein Distance algo-
rithm to find permutations, within an edit distance of 2, from an original word. The
goal of this module is to check for erroneous words and return their correct spelling.

3. NLTK: A Python package used for natural language processing tasks such as tok-
enization, stemming, lemmatization, parsing, tagging, and semantic reasoning. It
provides several submodules, such as:

(a) corpus: This submodule provides functions for reading corpus files, which are
large collections of texts used for natural language processing research. In this
case, the goal is to obtain stopwords collections for languages such as Spanish
and English.

(b) stem.wordnet: This submodule provides the principal function for lemmatiza-
tion, which is the process of reducing words to their base or root form. This is
an important step in pre-processing natural language data.

(c) tokenize.regexp: This submodule provides a regular expression tokenizer that
can be used to tokenize corpus words without digits, while ignoring punctua-
tion, except for specific cases such as Usernames and Hashtags. Tokenization is
the process of splitting text into smaller units, such as words or sentences, for
further processing or analysis.

3.3 Structure of Jupyter Notebook

After introducing the necessary libraries, modules, APIs, and packages, it is essential to
discuss the execution of the project. The development process was carried out within
Jupyter Notebooks, with each notebook dedicated to a specific dataset. Consequently,
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the project consists of two separate notebooks, each encompassing the entire pipeline,
from data imports to the training process of all five models, finally culminating in the
evaluation of the final models. In Section 3.3, we will provide in-depth insights into these
notebooks through dedicated subsections. While the overall structure remains consistent
across both notebooks, they are certain distinctions in the code, such as modified functions
and dataset-specific adjustments, which reflect the unique characteristics of each dataset.

Furthermore, it is important to highlight that the framework for the subsequent parts,
including statistical analysis and corpus pre-processing, draws upon the previous work
of María Isabel González in 2022. Her thesis titled "Research and Analysis of Hate and Other
Emotions in Social Media" [31] focused on studying hate speech and other emotions in
social media using datasets such as HatEval2019, Detoxis, Emoevent, and Universal Joy
Dataset, along with various NLP techniques. Notably, we share the same mentor for our
respective theses. However, it is crucial to emphasize that in adapting her framework to
the domain of sexism detection, significant modifications have been made. Function by
function, we have tailored and customized the code to meet the specific requirements and
characteristics of the different datasets used in our study. This ensures a robust framework
that aligns with the unique aspects of our field and facilitates accurate model training.

3.3.1 Preparation: Install, imports and data loading

To begin, each Jupyter Notebook will include the necessary imports for the subsequent
code. In a Google Colab environment, the notebook will also handle Drive Mount and
relevant pip installations. The imports are structured in sections, starting with General
Purpose or Data Science libraries, followed by NLP-specific ones. In between, there is a
configuration step using matplotlib and seaborn libraries to enhance data visualization
and highlight the statistical results. Additionally, the datasets from the inputs directory
will be loaded. These datasets mainly consist of files with tsv (Tab-Separated Values) and
json (JavaScript Object Notation) extensions. Pandas library functions will read these files
and save them as DataFrames, with names that identify their dataset and task.

3.3.2 Data used for training

This section focuses on the discussion of two datasets selected for training and evaluating
the models. To identify sexist content, the EXIST dataset1 is used, covering the years
2021 and 2023. Unfortunately, the 2022 dataset is currently unavailable to the public due
to internal reasons. The datasets are organized into three parts: training, development,
and test. The EXIST 2021 dataset lacks a separate development dataset, whereas the 2023
dataset includes one. In cases where a development dataset is absent, a portion of the
training data is allocated for this purpose. Additionally, it is noteworthy that the EXIST
2021 test dataset is labeled, whereas there are no labels for the corresponding dataset in
2023. The train set is the largest, facilitating model training and classification of tasks such
as hate speech detection and offensive language identification. The development set is

1For more information about the EXIST dataset, please refer to http://nlp.uned.es/exist2021/ and
http://nlp.uned.es/exist2023/.
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smaller and serves to evaluate the training progress. Finally, the test set is used to assess
the overall performance. Each dataset follows a similar structure, ensuring consistency in
the evaluation process, which will be explained as follows.

EXIST2021

EXIST2021 dataset consists of more than 11.000 short text, tweets and gabs, both in English
and Spanish. In particular, the EXIST training set contains 6977 tweets while the test set
contains 3386 tweets and 982 gabs [5]. Distribution between both languages has been
balanced.

The training and test sets are provided in a tsv format. In particular, the training dataset
contains the following columns:

1. Test_case: tag needed in the EvALL framework for evaluating classification tasks.
In EXIST 2021, this tag is set to "EXIST2021".

2. Id: denotes a unique identifier of the tweet.

3. Source: defines the social network where the text was crawled, only "twitter" in the
training set.

4. Language: denotes the languages of the text ("en" or "es").

5. Text: represents the text of the tweet.

6. Task1: indicates if the tweet is sexist ("sexist") or not ("non-sexist").

7. Task2: categorize the message according to the type of sexism. Possible categories
are: "ideological-inequality", "stereotyping-dominance", "objectification", "sexual-violence"
and "misogyny-non-sexual-violence".

Figure 3.1 plots a few examples of tweets in the training set.

Figure 3.1: EXIST 2021 dataset loading preview

EXIST2023

The EXIST 2023 dataset differs from the EXIST2021 dataset in terms of data format, using
JSON instead of TSV. It consists of over 10,000 labeled tweets in English and Spanish. The
training set contains 6,920 tweets, the development set has 1,038 tweets, and the test set
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includes 2,076 tweets. The distribution between both languages is balanced. The data
sets are provided in JSON format, where each tweet is represented as a JSON object with
various attributes:

1. id_EXIST: denotes a unique identifier of the tweet.

2. lang: denotes the languages of the text (“en” or “es”).

3. tweet: represents the text of the tweet.

4. number_annotators: the number of persons that have annotated the tweet.

5. annotators: the name of persons that have annotated the tweet, represented with
anonymous format.

6. gender_annotators: the gender of the different annotators. Possible values are: “F”
and “M”, for female and male respectively.

7. age_annotators: the age group of the different annotators. Possible values are: 18-22,
23-45, and 46+.

8. labels_task1: a set of labels (one for each of the annotators) that indicate if the tweet
contains sexist expressions or refers to sexist behaviours or not. Possible values are:
“YES” and “NO”.

9. split: subset within the dataset the tweet belongs to (“TRAIN”, “DEV”, “TEST”
+“EN”/“ES”).

The two remaining tags: “labels_task2” and “labels_task3”, for source intention detection
and sexism categorization respectively, are not related to the code implementation dis-
cussed in this project, thus are not included in the list presented above. Figure 3.2 depicts
a comparison between the original training data in JSON format and the corresponding
data loaded in a Pandas DataFrame format.

Figure 3.2: EXIST 2023 original training data (json) VS training data loading preview
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3.3.3 Statistical analysis of dataset

This subsection’s main goal is to perform a specialized study of the imported datasets in
accordance with the particular task being carried out. In order to do this, functions that
offer comprehensive details about the contents of each dataset, both separately and jointly,
will be defined. Additional categories for the study include:

1. Distribution of features

An important aspect to consider when analyzing a dataset is the distribution of its
features, which are used to classify and categorize data into different fields. This
task heavily relies on the last columns of the dataset, which have been previously
encoded from text to numerical representations. In order to achieve this objective,
we implemented a specific function print_distribution_exist. This function serves
the purpose of analyzing the distribution of data points for each language and sub-
sequently determining the proportion of text classified as sexist (1) or non-sexist
(0) using the encoded column (task1_encoding) within the corpus. The analysis is
conducted separately for Spanish and English texts.

In addition to our own implementation, we also refer to the work of María Isabel
[31], whose code includes a similar functionality called print_distribution_hateval
for her analysis on Hateval2019 Dataset. While our focus is on analyzing the dis-
tribution of sexist content in different languages, Maribel’s function emphasizes the
classification of text as hate speech or non-hate speech, along with corresponding
levels of aggressiveness categorized into numerical levels. The comparison of these
two functions, as shown in Figure 3.3, aims to explain our adaptation of the code to
our specific domain of sexism detection, highlighting the importance of tailoring the
analysis to the unique characteristics of the dataset and research objective.

The distribution of features in the two datasets, EXIST2021 and EXIST2023, provides
valuable insights into the composition of the texts (see Figure 3.4). To elaborate, in
the EXIST2021 Dataset, a total of 11,345 texts were analyzed. Among these, 5,701
texts were in Spanish, while 5,644 texts were in English. In terms of the distribution
of sexist and non-sexist messages, the percentage of sexist messages in Spanish was
found to be 50.24%, while the percentage of non-sexist messages in Spanish was
49.76%. In contrast, the percentage of sexist messages in English was 49.50%, and
the percentage of non-sexist messages in English was 50.50%. Moving on to the
EXIST2023 Dataset, a total of 7,958 texts were examined. Of these, 4,209 texts were in
Spanish, while 3,749 texts were in English. The distribution of sexist and non-sexist
messages revealed that the percentage of sexist messages in Spanish was 49.42%,
while the percentage of non-sexist messages in Spanish was 50.58%. In the case of
English texts, the percentage of sexist messages was 41.53%, while the percentage of
non-sexist messages was 58.47%.

These distributions highlight the linguistic composition and the varying prevalence
of sexist messages in both datasets. However, it is important to note that the huge
decrease in the EXIST2023 dataset size is due to the availability of labeled data. In
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(a) print_distribution_hateval function in María Isabel’s hateval2019 Notebook

(b) print_distribution_exist function in EXIST2023 Notebook

Figure 3.3: Illustration of code adaptation across datasets
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the case of EXIST2021, all three sets (training, development, and test) are labeled,
allowing us to include the entire dataset for this feature analysis. On the other hand,
in EXIST2023, the test set is unlabeled, resulting in a smaller dataset size consisting
of only the training and development sets. This distinction in dataset size should be
considered when interpreting the results. The analysis of these distributions serves
as a foundation for understanding the characteristics of the data and will contribute
to the subsequent steps of the study.

(a) EXIST 2021

(b) EXIST 2023

Figure 3.4: Feature Distributions through Datasets

2. Patterns information of the corpus

In this analysis, the text patterns with the highest frequency of occurrence will be
emphasized, including usernames, hashtags, and URLs. Each pattern will be ac-
companied by its count of usage within the corpus, with the most frequently used
ones listed for the datasets. Here is an example of the most commonly mentioned
(persons or hashtags) and its categorization in English text of EXIST 2021, as shown
in Figures 3.5 and 3.6.



3.3 Structure of Jupyter Notebook 31

Figure 3.5: Hashtags patterns found in EXIST2021 English.

Figure 3.6: Mentions patterns found in EXIST2021 English.

Figure 3.5 provides valuable insights into the classification of tweets based on spe-
cific mentions. Notably, approximately 78% (100% - 22%) of the text associated with
the hashtag #horny is classified as sexist, while 67% of tweets using #womensday
are categorized as non-sexist. Similarly, as shown in Figure 3.6, tweets containing
terms like “porn”, such as “@porn_click_1360” and “@sex_porn_linkk” are consis-
tently identified as 100% sexist messages. These observations highlight the varying
nature of tweets based on different hashtags and mentions, as well as the presence
of explicit content associated with sexism.

3. Corpus characteristics using statistics

To gain a better understanding of the corpus, it is necessary to conduct a general
review by analyzing its characteristics and statistics. This involves examining three
key aspects of the datasets: the number of characters per tweet, the number of
words per tweet, and the average length of a word in a tweet. However, the analysis
is not limited to these three values alone. For each aspect studied, the minimum,
maximum, and average values will be calculated and displayed. By performing
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this simple statistical analysis, the objective is to ascertain the typical structure of a
tweet. This information will be useful for determining the appropriate length for
each tweet, aligning it with the maximum length supported by the models used in
future implementation.

Figure 3.7 summarizes these characteristics in details. In case of EXIST2021 dataset,
the tweets in this dataset vary in length. The number of characters ranges from 1 to
3520, with an average of approximately 174.6 characters per tweet. The mean num-
ber of words in the tweets is around 28.8, with a maximum of 553 words per tweet.
The average word length is approximately 5.5 characters. Similarly, the EXIST2023
dataset exhibits similar characteristics. The number of characters in the tweets ranges
from 12 to 3520, with an average of approximately 179.8 characters per tweet. The
mean number of words is around 29.2, with a maximum of 553 words per tweet.
The average word length is approximately 5.6 characters.

(a) Corpus Characteristics of EXIST 2021

(b) Corpus Characteristics of EXIST 2023

Figure 3.7: Corpus Characteristics of Datasets

4. Bar charts of statistics

Building on the information collected in the previous subsections, this final section
presents a series of illustrative graphs. The primary goal of these visualizations is
to present the calculated statistics in a clear and easily understandable format. To
accomplish this, two types of bar charts are utilized. Firstly, the focus will be on
the stopwords present in the corpus and their respective weight. Two separate bar
charts will be plotted: one for the most frequently used stopwords and another for
the non-stopwords. The last two bar charts will focus on the most common bigrams
and trigrams present in the corpus, respectively. These charts will highlight the
most frequently occurring combinations of words used in posts, providing valuable
insights for further analysis.
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Figure 3.8: Most common bigrams in English EXIST 2021.

Figure 3.9: Most common trigrams in English EXIST 2023

3.3.4 Dataset pre-processing procedure

After completing the initial stage of dataset analysis and presenting its statistical informa-
tion, the focus shifts towards the fundamental aspects of the notebooks: pre-processing
and training. The following section will primarily address the topic of pre-processing the
corpus, which is essential for its subsequent utilization in training. To accomplish this, we
will employ numerous techniques and methods elaborated upon in the earlier Section 2.2,
specifically highlighting pre-processing techniques.

In essence, the central concept around which the pre-processing revolves is the conversion
of the corpus from text into a Document-Term matrix populated with TF-IDF frequen-
cies. This matrix captures the frequencies of words extracted from the corpus, and before
anything else, undergoes an initial pre-processing phase. The feature_extraction.text mod-
ule of the Sklearn library provides the TfidfVectorizer function for this conversion, trans-
forming nearly raw tweets into a matrix of TF-IDF features. The initial pre-processing
phase comprises three techniques mentioned earlier:

1. Tokenization: as previously explained, involves segmenting the entire text of tweets
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or posts into individual word-based units called tokens. Numbers are not consid-
ered for token formation, and accents and punctuation are ignored at this stage for
subsequent treatment in the second pre-processing phase.

2. Stopwords Removal: two sets of stopwords will be initialized: “en_stop_set” for
English stopwords and “es_stop_set” for Spanish stopwords, depending on the input
text’s language, which allows the code to use the appropriate stopwords set for the
given language during the stopwords removal step.

3. Lemmatization: in the final step of the preprocessing stage, we initialize a linguistic
tool called the WordNetLemmatizer from the NLTK library. This powerful tool en-
ables us to reduce words to their base or dictionary form, known as lemmas. The
process begins by iterating through each token in the list of tokens. For each to-
ken, the lemmatizer is applied using the part-of-speech tag ’v’ (verb), allowing us
to obtain the corresponding lemma. In cases where a token is empty, it is assigned
an empty string as its lemma. These lemmas are then stored in the dedicated lem-
mas list. By comparing this list of lemmas with the stopwords obtained during the
previous stage, we effectively eliminate the stopwords from the lemmatized tokens.
This crucial step ensures that only significant keywords remain for further analysis,
enhancing the overall quality and relevance of the resulting dataset.

This whole process is being carried out by the defined function tokenization_text and the
result of using TfidfVectorizer will be the vectorizer needed for the next phase of pre-
processing.

The second phase involves creating a Pipeline necessary for training models using the
generated vectorizer. This Pipeline, also from Sklearn, primarily requires two parameters:
the aforementioned vectorizer and a transform function, each in a tuple with its name
tag. The transform function employs the FunctionTransformer function from the Sklearn
pre-processing module, providing the required interface for the pipeline. This interface in-
cludes standard methods like fit or transform, eliminating the need to manually implement
each stage of the pipeline. This streamlined execution allows feeding the pre-processed
data directly to the fit and transform methods of the Pipeline.

The direct_replacement function will be used in our pipeline, and prior to its execution,
another secondary function will be invoked to load the necessary dictionaries in JSON
format for further pre-processing steps (emojis and abbreviations). These dictionaries
facilitate the replacement of emojis, both simple and complex, and abbreviations within
the tokens with meaningful words. Both components of the text hold significant value
for sentiment analysis since the use of certain emojis as abbreviations conveys strong
emotional connotations, as shown in Figure 2.3.

Once the dictionaries are loaded with the function load_dictonaries, appropriate replace-
ments for the tokens are made, including the following key steps:

1. Lower-casing every token to avoid repetition.

2. Standardizing contractions and special characters such as apostrophes, ellipses, quo-
tation commas, and others.
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3. Removing any remaining digits.

4. Replacing emojis and abbreviations with their corresponding meanings. If a mean-
ing is not found in either dictionary, the emoji is removed from the list of tokens.

5. Removing accents.

After completing the token replacement and processing, the Pipeline required for the next
section will be fully prepared to use.

For the proper functioning of this pipeline, it is crucial to provide it with appropriate data.
Specifically, the pipeline requires undergoing the fitting process to acquire the necessary
knowledge for text processing, feature extraction, and result modeling. To accomplish this
goal, we will utilize a dedicated function called load_Tfidf_processing for each subdataset.
This function initiates the fitting process of the pipeline. Before starting its execution, it
verifies whether the extensive and time-consuming learning process has been performed
previously. If it has, the function retrieves the stored information from a compressed .npz
file.

3.3.5 Neural Network Pre-processing, Training and Evaluation Metrics

This subsection addresses a crucial aspect: training. After creating and training the
pipeline, our focus shifts to training the different models in a comprehensive manner and
pre-processing the subdatasets to ensure their readiness for the neural networks. Regard-
ing data pre-processing, it closely resembles the process described earlier for generating
the vectorizer in the pipeline. However, there is a difference. To facilitate tokenization
in datasets without masked words, we remove hashtags and usernames. To achieve this,
we employ the direct_replacement() method from the TF-IDF pre-processing section. For
each subdataset, we utilize the preprocessing_nn() function to perform this generic pre-
processing for neural networks. Additionally, an auxiliary function has been defined to
sample the pre-processing performance of each subdataset, which will display the original
text, followed by its tokenization and translation into IDs. After that, in order to highlight
the necessity of pre-processing, a comparison which includes tokenization and translation
to IDs of the pre-processed text with the original text will be shown.

The subsequent step consists of preparing the essential parameters to generate the final
datasets, which will be used for training the models. These parameters include the tok-
enizer, the pre-processed text, the labels, and the maximum length of the tokenized text.
While the tokenizer will be discussed in its specific section for each model, we will delve
into the other parameters. Regarding data and labels, as mentioned previously, the data
contains pre-processed texts for the neural network, and the labels are derived from the
corresponding column in the set used for training. For example, in the case of the EX-
IST 2021 set, the labels correspond to the sexism detection column, “task1_encoding”,
where we have encoded sexist content as 1, and non-sexist as 0 in data loading proce-
dures. Lastly, the maximum length of the tokenized text refers to the maximum number
of tokens allowed for the inputs of the transformer model. This value is calculated by
determining the minimum between the pre-established maximum length in the tokenizer
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configuration and the maximum length of tokens found in the text.

Once these parameters are prepared, the final datasets will be generated using the gener-
ate_dataset() function. We establish the device for training as the first GPU with CUDA.
The optimizer utilized is the AdamW optimizer from the torch.optim module. With this
optimizer, we can configure the model parameters, set the desired learning rate, and
optionally adjust epsilon. The remaining decisions involve selecting the batch size and
determining the number of epochs for training. As with other training and evaluation
functions, the train function requires the model to train, the pre-processed training and
validation subdatasets, the optimizer, the batch size, the number of epochs, and the device.

This initial method acts as a prelude to the main training function, train_with_dataloader.
Its primary purpose is to create and configure the training and validation DataLoaders
and pass them to the main method, along with all the provided parameters, except for
the datasets, which are replaced by the DataLoaders. Before commencing training, certain
values must be established for the epoch process:

1. Sending the model to the chosen device, in this case, as we use Google Colab plat-
form, GPU 0 with CUDA.

2. Setting the scheduler for the learning rate using get_linear_schedule_with_warmup().
This scheduler creates a schedule with the specified learning rate, gradually decreas-
ing it from the initial value to 0 after a warmup period. During the warmup, the
learning rate increases linearly from 0 to the initial value defined in the optimizer.

3. Setting a random seed throughout the codebase to ensure reproducibility of the
training process (Torch, Numpy, etc.).

4. Initializing the timer. For each epoch, we initiate an additional timer to measure the
duration of each epoch.

We reset the total training loss to 0 and switch the model to training mode. Subsequently,
for each step of the DataLoader, we extract the batch and divide it into three parts: the
input token IDs, the attention masks for the model, and the labels. Before evaluating
the model on the training batch, it is crucial to clear any previously calculated gradients
using the zero_grad() function. This prevents the accumulation of gradients from previous
loss.backward() calls. The next step is the forward propagation, where the input data passes
through the neural network’s neurons, and the model determines the expected output.
Afterward, we accumulate the training loss across all batches to calculate the average
loss at the end. Backward pass or backpropagation is then performed to compute the
gradients, and the norm of the gradients is clipped to 1.0 to control exploding gradients.
Finally, we update the optimizer parameters and scheduler steps and repeat the process
until the training with all the epoch data is complete. Progress updates are displayed on
the screen every 40 steps.

Once an epoch is finished, before evaluating the results, we calculate the average training
loss by dividing the total accumulated loss during the epoch steps by the size of the
training DataLoader. We stop the epoch timer since its purpose has been fulfilled, and
switch the model to validation mode.
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The validation mode closely resembles the training mode. Firstly, we initialize the loss
accumulator to zero. For each step of the validation DataLoader, we retrieve its batch,
which is then divided into input IDs, attention masks, and labels. However, unlike in the
training mode, there is no need to reset the model gradients since we evaluate the model
without calculating them. In this case, forward propagation is performed to obtain the
loss, which is accumulated, and the logits, representing the non-normalized predictions
generated by the model.

Both the logits and labels from the batch are excluded from backpropagation, and their
data is transferred to the CPU as Numpy arrays instead of remaining as tensors on the
GPU. These arrays serve as predictions and ground truth values for calculating the rele-
vant metrics. Among the metrics mentioned in Section 2.5, we have chosen accuracy and
F1-score. To facilitate the calculation of these metrics, we utilize the auxiliary function
score, which also generates a classification report. This function is used to display the
training statistics immediately after completing the training.

To visualize the training data and metrics, we plot a graph depicting the training loss and
validation loss across epochs. Additionally, we create a Pandas DataFrame that presents
a detailed overview of the training data and metrics. Figure 3.10 illustrates the aforemen-
tioned explanation regarding the training and validation of an epoch.

Figure 3.10: The 4th Epoch of Training and Validation for DeHateBERT model with EXIST
2023 dataset
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3.4 Model building

The remaining structure of the Jupyter notebook consists of the construction of models
and the actual experimental process of training and evaluating these models to achieve
our initial objectives.

While we have previously provided a technical explanation in Chapter 2, it is important to
emphasize what we mentioned earlier: the code framework of current work is an exten-
sion based on María Isabel’s research, extending beyond the scope of datasets to encom-
pass the utilization of different models as well. In María Isabel’s study, BERT, RoBERTa,
and XLNet models were employed to detect hate speech. However, in this work, we not
only employ these models but also introduce an additional baseline model based on SVM
(see Section 3.4.6). Furthermore, recognizing the importance of language specificity, we
utilize specialized models for each language: HateBERT for English and DeHateBERT for
Spanish, which will be elaborated upon in detail later in this section. Thus, our approach
encompasses a broader range of models to cater to the nuances of different languages and
extends beyond the scope of María Isabel’s work. With this in mind, we will now shift our
focus towards providing an in-depth exploration of the individual models within each cat-
egory, including their respective tokenizers, and any additional configurations they may
require.

3.4.1 BERT

The transformers library offers a wide range of models, including their tokenizers and
configurations, which are essential for our project. Specifically, we employ the BertForSe-
quenceClassification [32] model derived from the pre-trained bert-base-uncased model. This
BERT model is specifically designed for tasks involving sequence classification, such as
sentiment analysis or text categorization.

To complement the model loading process, we also initialize the corresponding tokenizer,
BertTokenizer, from the aforementioned model. The tokenizer plays a crucial role in con-
verting raw text into tokens that can be comprehended and processed by the BERT model.
Through tokenization, the text is divided into smaller meaningful units, such as words or
subwords, and each unit is assigned a unique identifier.

Given our resource constraints, it is worth mentioning that BERT has two versions: BERT
Base and BERT Large (Figure 2.10). To optimize our disk space usage, we have decided
to focus solely on the bert-base-uncased model for both the EXIST 2021 and EXIST 2023
datasets. Moreover, additional configurations such as setting hyperparameters and ad-
justing learning rates will be addressed in subsequent stages of our project. These con-
figurations play a vital role in fine-tuning the model and optimizing its performance, and
will be carefully considered during the experimental process.

3.4.2 RoBERTa

When it comes to RoBERTa [33], the procedure for loading the model is comparable to that
of BERT. We begin by initializing the configuration using the RobertaConfig class, which is
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based on the roberta-base pre-trained model. Similarly, we employ the RobertaTokenizer as
the corresponding tokenizer. Opting for the base version of RoBERTa is advantageous as
it can handle all the necessary tasks without consuming excessive disk space or compro-
mising performance.

3.4.3 XLNet

For XLNet model, the first thing is to initialize the pre-trained model xlnet-base-cased [34],
and its tokenizer, XLNetTokenizer. Besides, it is worth mentioning that, Google Colab
provides a limited amount of computational resources, including memory (RAM) and
GPU availability. Training models with large batch sizes requires more memory to store
and process the data. If the batch size is set too high and exceeds the available memory,
it can lead to out-of-memory (OOM) errors during the training process [35]. Therefore,
training larger models such as XLNet demands a substantial memory capacity to ensure
effective training. As the batch size is augmented, the memory requirement escalates
proportionally, posing difficulties in training the model with a high batch size within the
constraints of Google Colab’s limited memory resources. Thus, this limitation impedes the
progress of certain experiments and prevents them from being successfully performed.

3.4.4 HateBERT

As highlighted in Section 2.4.7, our approach involves employing distinct models that
are specifically trained on English and Spanish text to enhance the performance of sex-
ist content detection. For the English corpus, we have opted for the HateBERT [25] 2

model, which has demonstrated superior performance in hate speech detection compared
to BERT. Access to this model will be facilitated through the Hugging Face community
platform. This model will be used to process the English text part for both EXIST 2021
and EXIST 2023 datasets.

3.4.5 DeHateBERT

Following our approach to optimizing training on Spanish text, we will incorporate the
DeHateBERT model, more precisely, the dehatebert-mono-spanish [36] 3 version. This par-
ticular model has been pre-trained using the Spanish datasets [27] [28], which enhances
its ability to process Spanish text effectively. We will use this model exclusively on the
Spanish text portion of the EXIST 2021 and EXIST 2023 datasets. By leveraging the
language-specific expertise of the DeHateBERT model, we aim to improve the accuracy
and performance of hate speech detection in Spanish-language content.

3.4.6 Baseline model: SVM based on TF-IDF vectorization

In order to establish a benchmark for our experiments, a baseline model will be developed
for both English and Spanish languages. The baseline model serves as a reference point

2Available at Hugging Faces: https://huggingface.co/gronlp/hatebert
3Available at Hugging Faces: https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-spanish

https://huggingface.co/gronlp/hatebert
https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-spanish
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against which we can evaluate the performance of more advanced models and techniques.
The baseline model is based on a Support Vector Machine (SVM) classifier, utilizing the
TF-IDF vectorization approach.

To build the baseline model, we first created separate instances of the TfidfVectorizer for
English and Spanish text. This vectorizer allows us to convert the textual data into numer-
ical representations based on the TF-IDF weighting scheme. Next, we filtered the training
and test data based on language, creating separate datasets for English and Spanish. For
the English dataset, we fitted the TfidfVectorizer on the training data and transformed
both the training and testing data. The transformed data was then used to train an SVM
classifier with a linear kernel. The same process was repeated for the Spanish dataset. The
trained SVM classifiers were used to make predictions on the test data, generating pre-
dicted labels for both English and Spanish texts. The performance of the baseline model
was evaluated using accuracy and F1-score metrics.
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Results and analysis

This chapter discusses the methodology employed to do the evaluation of the models, that
is said, the experiments of each model, building upon the implementation explained in
the previous chapter. Furthermore, it includes the presentation of selected model results
from each dataset, facilitating meaningful comparisons. Subsequently, a comprehensive
analysis of these results will be carried out, shedding light on their implications and
significance.

4.1 Experiments Setup

In this section, we will provide an overview of the configuration of the models and
datasets used in the experiments. It is important to note that the implementation sce-
nario, including the selection of programming language, IDE setup and external Jupyter
Notebooks have been previously explained in Section 3.1. Therefore, the following part
will be focused on reproducing the experiments described in the subsequent sections. To
accomplish this, we need to understand two key concepts: the distribution of the datasets
and the configurable parameters of the models.

Datasets

As mentioned previously, each dataset is divided into three sets: train, dev, and test. These
partitions serve specific purposes such as training, validation, and testing. In the case of
EXIST 2023, the dataset is already pre-divided into these three parts for the competition,
and the distribution percentages for each part have been detailed in Section 3.3.2.

However, for EXIST 2021, a portion of the training data is allocated to serve as the devel-
opment data, as there is no separate dev subset available for this year’s competition. So it
is important to emphasize the percentage distribution of each subdataset in this case. Ini-
tially, there is a split between the train-dev and test set using the train_test_split function
from sklearn.model_selection module. The test set represents 38% of the original dataset,

41



42 Results and analysis

while the combined training and validation set account for 62%. Within this 62%, the val-
idation set is set to 20%. Therefore, the testing set consists of 20% of the data, the training
set comprises approximately 49.6%, and the validation set comprises 12.4%.

Hyperparameters

Regarding the models’ parameters, there are four adjustable parameters that can be modi-
fied to specific needs. These parameters include the learning rate, epsilon, batch size, and
number of epochs. Throughout the experiments, a consistent configuration was applied
to the epsilon and number of epochs across all notebooks, setting them to 4 epochs and
ϵ = 1.10−8, respectively. However, it is important to note that the learning rate and batch
size can vary considerably depending on the dataset and model under consideration. To
identify the appropriate values for these parameters, please consult Table 4.1 below.

Parameters of hyperparameters used per Model and Dataset in the experiments
Models BERT RoBERTa XLNet HateBERT DeHateBERT
Datasets Learning Rates Batch Sizes Learning Rates Batch Sizes Learning Rates Batch Sizes Learning Rates Batch Sizes Learning Rates Batch Sizes

EXIST2021

2.10−4 5.10−4 1.10−4 2.10−4 1.10−5

5.10−4 8 1.10−5 4 2.10−5 4 5.10−4 8 2.10−5 4
3.10−5 16 3.10−5 8 3.10−5 8 3.10−5 16 3.10−5 8
5.10−5 32 5.10−5 16 5.10−5 16 5.10−5 32 5.10−5 16

EXIST2023

1.10−5 1.10−5 1.10−4 1.10−5 1.10−5

2.10−5 8 2.10−5 4 2.10−5 4 2.10−5 8 2.10−5 4
3.10−5 16 3.10−5 8 3.10−5 8 3.10−5 16 3.10−5 8
5.10−5 32 5.10−5 16 5.10−5 Not Available 5.10−5 32 5.10−5 16

Table 4.1: Summary of hyperparameters used per Model and Dataset in the Experiments

4.2 Results of training and evaluation

In this section, we will evaluate the overall performance of each task using the aforemen-
tioned models and compare their results as model evaluation. We will present the key
metrics that provide insights into the performance of each dataset, highlighting challenges
encountered during the study and the factors contributing to those challenges.

4.2.1 EXIST 2021 Dataset

In the EXIST task, the datasets for each year consist of a combination of English and
Spanish information. In order to evaluate the model’s performance in each language,
we will train separate models for English and Spanish using the respective text. This
approach allows us to gather data on the model’s effectiveness in both languages.

The classification of sexist or non-sexist messages in the text field is the first task to be
completed for this dataset. Focusing on the dataset reveals that it is not the most unbal-
anced one to be found. In reality, as shown in the classification report in Figure 3.3.(a),
it shows both percentages of sexist and non-sexist messages’ presence are quite balanced,
with 50.24% of Spanish text is sexist and 49.50% of English is sexist.

The training and evaluation process demonstrated successful outcomes for all five models
utilized in this project. As evidence of the progress made, Figure 4.1 presents an example
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of the evaluation conducted on the training dataset using the HateBERT model and En-
glish text. The model was trained with a learning rate of 5.10−5 and a batch size of 16.
While the overall process yielded positive results, it also highlighted a significant concern:
the presence of overfitting, one of the most common problems in model training.

(a) Classification Report with HateBERT, English

(b) Loss Graph through epochs

Figure 4.1: EXIST 2021 dataset status after training and validating

Overfitting occurs when a machine learning model becomes too closely tailored to the
training data, resulting in reduced performance on new, unseen data. This phenomenon
poses a challenge in the context of research, as it impacts the effectiveness of the trained
models. During the evaluation process, clear indications of overfitting emerge, as the
models exhibit an exceptional understanding of the training data. Figure 4.1.(a) presents
the classification report, revealing precision and recall scores of 1, which further high-
lights the occurrence of overfitting. Additionally, Figure 4.1.(b) shows the training and
validation losses, where the training loss steadily decreases with each epoch, while the
validation one increases. These patterns are clear indicators of the presence of overfitting,
further emphasizing the need to address this issue to ensure optimal model performance.
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Taking a look at Figure 4.2, which can also be found with the rest of tables in Appendix,
that relatively higher Learning Rates, such as 2.10−5 and 3.10−5 , are more prone to this
particular issue. The quick way to detect the lack of learning progression, as can be seen in
the red squared area in Figure 4.2, is by comparing the evaluation metrics of the training:
Accuracy (Acc), F1-Score and loss values.

Figure 4.2: HateBERT Overfitting during EXIST2021 English text training, red squared
area (without translation)

It is evident from the results that the Accuracy and F1-score have no significant changes
across the four training epochs, which is highly indicative. Furthermore, the loss values,
both for training and validation, demonstrate remarkable stability. Typically, during the
learning process, the training loss rapidly converges towards zero, while the validation
loss decreases gradually. However, in this case, both losses remain consistent, with a
slight increase observed. This consistency indicates that the model has reached a plateau
and is not experiencing substantial improvements or deteriorations in performance.

4.2.2 Data augmentation

One of the most used techniques in NLP field to enhance the available data and mitigate
the problem of limited training samples, as well as dealing with overfitting, is data aug-
mentation. These techniques were employed in code implementation in order to compare
with the original training. The Googletrans module is a free, open-source, and widely-used
Python library that provides a convenient interface for accessing the Google Translate API.

Data augmentation through translation involves the conversion of text messages from one
language to another. In our case, we focused on translating text from English to Spanish
and vice versa. Leveraging the capabilities of the Googletrans library, we developed an
auxiliary function called translate_text, which streamlined the translation process. This
function accepts a text message as input, automatically detects its language, and performs
the translation only if the target language differs from the detected language. The Google
Translate API is utilized to carry out the translation, and the resulting translated text is
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saved as a TSV file at the specified file path. To optimize efficiency, the function checks
if the translation has already been performed and saved at the specified path, and if so,
skips the translation process to save time and computational resources.

By incorporating data translation as part of our augmentation strategy, we aimed to in-
crease the volume of available training data. The augmented dataset allows us to train
single-language models with a larger and more diverse set of examples, enabling them to
capture a wider range of language patterns and nuances. This approach is particularly
valuable in situations where obtaining a substantial amount of labeled data in a single
language is challenging or costly.

To visually demonstrate the impact of data translation on the dataset, we have included
Figure 4.3, which illustrates the change in dataset size before and after applying the data
translation technique to the training dataset.

(a) Size of Training Dataset before applied data translation

(b) Size of Training Dataset after applied data translation

Figure 4.3: Application of data translation to the Training Dataset of EXIST2021

Before applying data translation, the original dataset had a shape of 6,977 instances. After
applying the technique, the dataset size increased to 13,954 instances. This indicates a
significant augmentation, effectively doubling the size of the training data. The percentage



46 Results and analysis

of augmentation can be calculated as (New Size - Original Size) / Original Size * 100,
which in this case would be ((13,954 - 6,977) / 6,977) * 100 = 99.96%. This demonstrates
the substantial impact of data translation in expanding the dataset and providing more
diverse training examples for our models.

However, it is important to note that while data translation serves as a valuable tool for
data augmentation, it also comes with certain limitations. Translating text from one lan-
guage to another can sometimes result in a loss of meaning or subtle changes in the
original message. These variations may impact the performance of the models, partic-
ularly when dealing with tasks that require precise semantic understanding or cultural
context.

4.2.3 Best-performing model and results for EXIST 2021

Despite the potential challenges associated with translation, we decided to explore this
strategy in order to compare the results. Therefore, the next step is to conduct exhaustive
experiments using all the parameters specified in Table 4.1. These experiments will be
performed on both the training set with translation and the training set without transla-
tion.

Upon analyzing the best results achieved by each model, we observed from Figure 4.4 that
most models exhibited only slight variations in performance for the binary classification
task of sexist content detection. However, it is interesting to note that the baseline model,
as mentioned earlier, showed distinct performance metrics. In terms of Accuracy, the
baseline model achieved 0.71 for English and 0.70 for Spanish. Similarly, its F1 Score for
English was 0.71, while for Spanish it was 0.70.

To provide a comprehensive overview of the results, we have categorized them by lan-
guage and whether or not translation was applied to the training dataset. For detailed
results, please refer to the Appendix, where tables listing the results per language and
dataset are provided. These tables will provide a more comprehensive analysis of the per-
formance of each model, taking into account the presence or absence of translation during
training.

After analyzing the best results achieved by each model, we observed from Figure 4.4 that
most models exhibited only slight variations in performance for the binary classification
task with English text. In contrast, we observed slightly greater fluctuations in perfor-
mance when dealing with Spanish. Notably, the baseline model, as previously mentioned,
exhibited distinct performance metrics. Specifically, the baseline model achieved an accu-
racy score of 0.71 for English and 0.70 for Spanish, with corresponding F1 scores of 0.71
for English and 0.70 for Spanish.

This outcome is comprehensible, as it aligns with the prevailing trend in the field of NLP,
wherein models are predominantly trained on English as the preferred language. Con-
sequently, the availability of highly precise models for less commonly spoken languages
remains limited.

To offer a comprehensive overview of the results, we have categorized them based on lan-
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guage and the application of translation to the training dataset. For a detailed breakdown
of the findings, we refer to the Appendix, which includes tables enumerating the results
for each language and dataset. These tables will provide a thorough analysis of each
model’s performance, taking into account the presence or absence of translation during
the training process.

Figure 4.4: Best results per model comparison of EXIST 2021 Dataset

To analyze and summarize the results shown above, we refer to the Table 4.2. The best
results are bolded in each language, with or without translation.

Table 4.2: Results obtained in the EXIST 2021 Identification Task

Model/Dataset Accuracy F1-Score
English with Translation

HateBERT (Best) 0.83 0.83
RoBERTa and XLNet (Worst) 0.70 0.70

English without Translation
BERT and HateBERT (Best) 0.78 0.78
RoBERTa (Worst) 0.66 0.66

Spanish with Translation
DeHateBERT (Best) 0.74 0.74
RoBERTa (Worst) 0.53 0.69

Spanish without Translation
BERT (Best) 0.75 0.75
HateBERT (Worst) 0.56 0.52

In all cases, the HateBERT model achieved the highest performance for the EXIST 2021
identification task in English, attaining an Accuracy and F1-Score of 0.83 each, using the



48 Results and analysis

dataset extended with Translation. BERT also performs well in English without trans-
lation, with accuracy and F1-score of 0.78. Conversely, in the case of Spanish text, the
BERT model demonstrated the best performance without translation, achieving an Accu-
racy and F1-Score of 0.75 each. DeHateBERT achieves the highest accuracy of 0.74 and
F1-score of 0.74 in Spanish with translation. Overall, HateBERT and BERT emerge as
the top-performing models, with HateBERT being particularly effective in English, while
BERT demonstrates strong performance in both English and Spanish.

However, it is important to mention that even though we made efforts to enhance the
training process by increasing the size of the training data and implementing extensive
augmentation techniques, these measures do not significantly improve the model’s per-
formance. While the best-performing model for English text is indeed one trained with
translation (BERT), it does not guarantee consistent outcomes in all cases. This highlights
the fact that certain models have the ability to effectively grasp the language-specific pat-
terns and nuances without relying on translation, as exemplified by the case of Spanish.
In fact, in this scenario, the worst performing model’s accuracy even experienced a greater
decrease when translation was employed.

By analyzing the decrease in performance of models with adding translation text, some
important factors can be pointed out. Firstly, the translation quality, particularly when
using a free API like Googletrans, is not guaranteed. Machine translation can introduce
errors, inaccuracies, and changes in meaning that directly impact the training data. Con-
sequently, these distortions undermine the model’s ability to accurately identify sexist
content and can even result in mislabeled examples. To illustrate this, a comparison is
presented below between two tweets, before and after using Googletrans translation ser-
vice:

Original text: "Ella se hace llamar antifeminazi ¿Qué tal si callan en su vil comen-
tario sobre un ciudadano responsable de ancianos tu sach muuch ghani baawri-bewdi
hai bey https: // t. co/ zmxtdwwsy5d "

Translated text: "She calls herself anti-feminazi how about shut the fucking up on
your vile commentary on an elderly responsible citizen tu sach muuch ghani baawri-
bewdi hai bey https: // t. co/ ZMxTDwsY5D "

Original text: "Realmente solo quiero ser rico pero no de una esposa trofeo rica, rica
en la mía"

Translated text: "I really just want to be rich but not trophy wife rich, rich with my
own"

Another factor to consider is the influence of cultural and linguistic nuances. Sexist con-
tent heavily relies on subtle nuances that vary across languages. Unfortunately, machine
translation may struggle to capture these nuances accurately, leading to a loss of context
and inhibiting the model’s recognition of more nuanced forms of sexism.

Moreover, machine translation can inadvertently introduce additional noise or imbalances
into the translated training dataset. This, in turn, can give rise to grammatical inconsisten-
cies and syntactic errors. The presence of such noise can confuse the model and impede its

https://t.co/zmxtdwwsy5d
https://t.co/ZMxTDwsY5D
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capacity to effectively learn the underlying patterns and characteristics of sexist content.

4.2.4 EXIST 2023 Dataset

Moving on to the dataset of this year’s competition, the data consists of both English and
Spanish texts. Interestingly, their structures exhibit considerable similarity, except that
the datasets for 2023 are provided in JSON format (for a detailed description, see Section
3.3.2).

Unlike the EXIST 2021 task, where Machine Translation was used for data augmentation,
a different approach was adopted this time. Instead, the data was augmented by incorpo-
rating the complete dataset from the previous task, which includes the labeled training,
development, and test sets, into this year’s training dataset. This integration of datasets
aims to enhance the training data size and diversify the content for improved model per-
formance.

The resulting changes in the size of each dataset after implementing this approach are
depicted in Figure 4.6. Before the integration, the dataset had a shape of 6,920 records.
After incorporating the previous task’s dataset, the size of the training data expanded to
13,954. This corresponds to an augmentation of approximately ((13,954 - 6,920) / 6,920)
* 100 = 101.01%. This significant increase in the amount of training data contributes to a
richer and more diverse dataset, thereby enhancing the effectiveness of the models trained
on it.

The first challenge we faced when conducting experiments with the EXIST 2023 dataset
was the encoding of the task1 labels. To facilitate the training process, it was necessary
to assign numerical values to the labels_task1 column. In the example from 2021, this
encoding step was relatively straightforward, as we simply transformed “sexist” tags to
1 and “non-sexist” to 0. However, this year, the organizing committee introduced a more
detailed classification system, which involved multiple opinions from each rater, along
with age range and gender information, all stored as lists (refer to Section 3.3.2 for more
details). Consequently, numerically encoding this year’s labels required additional steps.
Specifically, we followed these two steps:

1. Step 1: We determined the majority opinion for each instance. If the number of
“YES” classification exceeded the number of “NO”, we assigned the code 1; oth-
erwise, it was assigned as 0. However, since there were six annotators in total,
situations where there was a tie, with three “YES” and three “NO” responses, could
occur. In such cases, we temporarily assigned the special code -1. Consequently, we
obtained 3367 instances labeled as absolute "NO," 2697 instances labeled as absolute
"YES," and 856 instances labeled as -1.

2. Step 2: We proceeded to process the data corresponding to the -1 label, which
couldn’t be resolved in the previous step. Considering that the nature of this task
involves detecting gender discrimination, we decided to give more weight to the
opinions of female annotators while considering their viewpoints. Since there were
three male annotators and three female annotators in total, after this step, we ob-
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(a) Size of Training Dataset before adding 2021 data

(b) Size of Training Dataset after adding 2021 data

Figure 4.5: Comparison of the Training dataset size



4.2 Results of training and evaluation 51

tained the definitive numerical encoding for all instances, ensuring there were no
more tied opinions. Finally, we had 3792 instances labeled as absolute non-sexist
messages and 3128 instances labeled as“YES” representing sexist messages.

We repeated this encoding process for both the training and development sets, and stored
the results in the new column label1_encoded. After that, our experiments proceeded
smoothly. Figure 4.7 shows an example of the evaluation conducted on the training dataset
using the DeHateBERT model and Spanish text. The model was trained with a learning
rate of 1.10-5 and a batch size of 16.

(a) Classification Report with DeHateBERT, Spanish

(b) Loss Graph through epochs

Figure 4.6: EXIST 2023 dataset Status after training and validating

4.2.5 Best-performing model and results for EXIST 2023

We evaluated each model on both extended English and Spanish datasets, with and with-
out translation, as what we did in case of EXIST 2021. Figure 4.8 summarizes the best-
achieved accuracy and F1-score for each model and dataset. In this year, the baseline
model exhibits an Accuracy on English of 0.75 and an F1 Score on English of 0.75, while
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its Accuracy on Spanish is 0.72 and its F1-Score, the same value.

For the English with Translation dataset, both BERT and HateBERT are the best-performing
model, reaching an accuracy and F1-score of 0.83. On the other hand, RoBERTa had the
lowest performance among the English models, with an accuracy of 0.69 and an F1-score of
0.70. When came to without translation, HateBERT emerged as the only best model, with
accuracy and F1-score of 0.81. RoBERTa exhibited the lowest performance among the En-
glish models, attaining an accuracy of 0.69 and an F1-score of 0.70. Similarly, XLNet faced
a similar situation, with both accuracy and F1-score of 0.70. These results demonstrate
that both RoBERTa and XLNet fall below the baseline model in terms of performance.

Here arises the question: why do RoBERTa and XLNet underperform the baseline model?
To address this issue, several factors could be considered. Firstly, it is essential to evaluate
the suitability of the dataset for RoBERTa and XLNet. Not all models perform equally well
on every dataset, and both RoBERTa and XLNet may not be optimally suited to the specific
characteristics of the EXIST2023 dataset. The training sets used for these models might
not have adequately captured the nuances and complexities present in the evaluation set,
leading to a mismatch between the training and evaluation data. Additionally, the process
of feature engineering should be taken into consideration. The quality of the features
extracted from the dataset and fed into RoBERTa and XLNet can significantly impact their
ability to capture relevant information. If the features did not adequately represent the
data, it could have hindered the performance of both models. Moreover, the complexity of
RoBERTa and XLNet should not be overlooked. Although both models are sophisticated
with a large number of parameters, superior performance is not guaranteed in all cases,
especially when the dataset is small or the task is relatively simple. In such instances, a
simpler baseline model may outperform more complex models like RoBERTa or XLNet.

Moving on to the Spanish with Translation dataset, a noteworthy aspect is that the major-
ity of models exhibit a certain level of stability both with and without translation, except
for HateBERT. Interestingly, when no translated data is added, HateBERT experiences a
significant drop in accuracy. DeHateBERT showed the highest performance, achieving ac-
curacy and F1-score of 0.79. In contrast, XLNet and RoBERTa had the lowest performance,
with an accuracy of 0.73 and an F1-score of 0.73.

Finally, for the Spanish dataset without translation, DeHateBERT once again performed
the best, with accuracy and F1-score of 0.78. On the other hand, HateBERT had the lowest
performance among the Spanish models, as we mentioned before, with an accuracy of
0.53 and an F1-score of 0.67, also falling below the baseline model. This significant drop
could be attributed to the nature of the training data as the HateBERT model had been
specifically retrained on English corpus to focus on detecting abusive language in English
[25]. The retraining process may have fine-tuned its’ parameters and features to align with
the characteristics of English hate speech, making it more effective in that specific domain.
When no translated data is included, HateBERT lacks exposure to hate speech examples
in the original language. As a result, it may struggle to effectively identify and understand
the contextual nuances in the original language.

A summary is presented in Table 4.3, among all the models evaluated, the best model
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Figure 4.7: Best results per model comparison of EXIST 2023 Dataset

for the English dataset was both BERT and HateBERT, while DeHateBERT emerged
as the top performer for the Spanish dataset. RoBERTa consistently showed the lowest
performance across both languages.

4.2.6 EXIST 2023 Task 1 submission

In fact, as of May this year, EXIST 2023 remained as an active competition, and fortunately,
we managed to align our research and experimentation timeline of the Task 1: Sexism
Identification 1 with the submission deadline for the EXIST 2023 task, so as to submit re-
sults for this specific binary classification task. The systems must decide whether a given
tweet contains sexist expressions or behaviors (i.e., it is sexist itself, describes a sexist sit-
uation, or criticizes a sexist behavior) and classify it according to two categories: YES and
NO. To achieve that, we employed the top-performing models during the stages of ex-
periments in task 2021 on this year’s dataset and obtained the best and worst-performing
models for this year’s data, separately, as depicted in Table 4.3. Specifically, for English,
we used BERT and HateBERT, while for Spanish, we employed DeHateBERT. We orga-
nized the outputs generated by these models and conscientiously followed the submission
guidelines provided in the competition. It is important to note that our primary objective
in participating was not solely to win a reward or emerge as the top team among all par-
ticipants. Rather, our intention was to assess the performance of our models on this year’s
test dataset and evaluate their effectiveness in tackling the given task.

1EXIST 2023 competition: http://nlp.uned.es/exist2023/

http://nlp.uned.es/exist2023/
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Table 4.3: Results obtained in the EXIST 2023 Identification Task

Model/Dataset Accuracy F1-Score
English with Translation

BERT and HateBERT (Best) 0.83 0.83
RoBERTa (Worst) 0.69 0.70

English without Translation
HateBERT (Best) 0.81 0.81
RoBERTa (Worst) 0.69 0.70

Spanish with Translation
DeHateBERT (Best) 0.79 0.79
RoBERTa and XLNet (Worst) 0.73 0.73

Spanish without Translation
DeHateBERT (Best) 0.78 0.78
HateBERT (Worst) 0.53 0.69

Hard labels VS Soft labels

According to the guidelines provided, participants were instructed to format their runs
for Task 1 in JSON format, with each tweet represented as a JSON object containing spe-
cific attributes. These attributes included id_exist, hard_label, and soft_label. The hard_label
attribute allowed for values of either “YES” or “NO”, following the conventional practice
in machine learning. On the other hand, the soft_label attribute required participants to
assign a probability to each of the two possible labels (“YES” and “NO”), ensuring that
the sum of the probabilities equaled 1.0. Participants had the flexibility to provide hard
labels, soft labels, or a combination of both.

It is worth noting that, up until now, the outcomes we have obtained have consistently
comprised hard labels. In other words, we have been exclusively using hard labels for
evaluation purposes. As an initial approach, we organized two submission runs using
only hard labels. The first run employed BERT for English and DeHateBERT for Spanish,
while the second run utilized HateBERT for English and DeHateBERT for Spanish, as we
mentioned ealier, both BERT and HateBERT archived best resuls for English.

Therefore, we decided to make changes to our implementation in order to obtain results in
the form of soft labels. This modification aimed to assess whether the introduction of soft
labels would have any impact on the evaluation metrics. Specifically, we made slight mod-
ifications to the evaluation code, particularly the evaluate_with_dataloader method. Within
the prediction loop, after calculating the logits using the model, we incorporated the
torch.softmax function to obtain the class probabilities. These probabilities were then re-
turned for each predicted class.

Figure 4.9 provides a clear comparison between the two submission formats for EXIST
2023 competition. One example shows the hard label format, while the other demonstrates
the use of soft labels.

Unfortunately, despite transitioning from hard labels to soft labels as the output method,
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(a) Hard labeled test set (b) Soft labeled test set

Figure 4.8: Different submission formats comparison

the best results achieved by the model did not surpass the performance observed during
the period of hard label evaluation. In other words, the highest Accuracy and F1-Score
achieved for the English part remained at 0.83, while the Accuracy for Spanish was 0.77,
accompanied by the same F1-Score.

While this transition from hard labels to soft labels did not result in improved overall
performance, exploring the use of soft labels is still worthwhile. Soft labels provide a more
nuanced representation of prediction probabilities, capturing the model’s confidence in its
predictions. They allow for a more detailed understanding of the content’s offensiveness
spectrum.

After careful consideration, we made the decision to stick with the use of hard labels, as
we had implemented initially. The submission of our two runs resulted in rankings of
32 and 38, out of a total of 70 teams, in the hard label leaderboard [37]. The first run
achieved an F1-Score of 0.76, while the second run demonstrated the same metric of 0.75.
The rankings and scores presented above provide insights into the effectiveness of our
approach in accurately identifying and classifying sexist content. While we may not have
reached the top positions on the leaderboard, our results demonstrate a solid performance.

4.2.7 Comparative among all models

Once all five models and their characteristics have been seen, several key observations
emerge.

Firstly, when considering the best performing models based on the evaluation results,
BERT and HateBERT stand out as the optimal choices for the English dataset, while De-
HateBERT proves to be the recommended model for the Spanish dataset, considering
both the EXIST 2021 and EXIST 2023 datasets. Secondly, it becomes evident that achieving
consistent progress requires a greater number of epochs and higher batch sizes. How-
ever, considering our study period, four epochs can already provide valuable insights. In
addition, when examining the optimal results achieved for each model and dataset, an
interesting pattern emerges. It becomes apparent that this occurrence is more pronounced
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when using lower learning rates, such as 3e-05 or 5e-05, in comparison to higher learning
rates like 1e-04 or 2e-04. This observation is supported by our comprehensive analysis of
various parameter settings, which can be found in the tables provided in the Appendix.
Additionally, overfitting remains as a significant challenge to tackle with. While data aug-
mentation serves as a viable approach in addressing this issue, it is important to note that
there are numerous alternative methods beyond machine translation, such as leveraging
synthetic data generation techniques, exploring transfer learning from related tasks, or
employing ensemble models to combine diverse sources of information.



Chapter 5

Conclusions and future work

Having reached this point, a brief summary of what has been learned during this Bach-
elor’s thesis will be made. Furthermore, we will delve into the future prospects and
objectives that lie ahead.

What has been learned so far

Reflecting upon the journey, this research conducted in this project spanned a five-month
period, entailing dedication and countless hours invested in comprehending the funda-
mental principles of Natural Language Processing (NLP) up to the implementation of
state-of-the-art models, and further to the experimental process and results’ analysis.

The extensive exploration of numerous papers not only restored a fluent understanding
of technical information, but also introduced a neglected field of computer science that I
did not delve into in four years of college. As the interest for this work grew, the imple-
mentation phase started, initially analyzing the two important datasets: EXIST 2021 and
EXIST 2023. From being completely puzzled by the unfamiliar dataset at the beginning, to
gradually becoming familiar through meticulous statistical analysis, and to implementing
actual code for models that initially seemed complex and difficult to comprehend based
on the knowledge gained from papers, our models were able to successfully run on the
dataset! Consequently, we obtained a large amount of experimental data, which allowed
us to gain insights into the characteristics of each model. However, along with these ad-
vancements, challenges emerged during the training process. We also explored possible
solutions to these issues, although due to time constraints, we regrettably could not delve
deeply into them. Nonetheless, the process of problem-solving was highly rewarding.

Finally, with lots of satisfaction and conviction, we affirm that all the objectives outlined in
Section 1.3 of the Introduction have been successfully achieved. The most valuable lesson
learned from this Bachelor’s thesis is the significant impact even minor details, such as
learning rates and batch sizes, can have on the overall results. Moreover, the captivating
field of natural language processing harbors endless intrigue, beckoning further explo-
ration and immersion. This has also sparked my interest in pursuing a related master’s
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program in the following semester.

Besides, as mentioned in the initial sections of this project (see Section 1.1), being a woman
who has personally experienced gender discrimination, I am well aware of how misogy-
nistic remarks on the internet can impact the living environment for women. Therefore,
I am delighted to contribute, even a tiny step, to fostering a fair and just society through
this work. During the completion of this thesis, I have come to realize that the road ahead
is still long and challenging. For instance, a major obstacle in addressing online gender
discrimination is the lack of high-quality datasets, which are essential for model training.
Nevertheless, every journey has its highlights, and while this bachelor’s thesis may mark
a temporary conclusion, the project itself continues to thrive and evolve.

What the future holds for this project

As I mentioned earlier, there is currently a scarcity of datasets specifically targeting online
sexism detection. Many researchers resort to supplementing their training with other hate
speech datasets, which may not capture the nuances of gender discrimination adequately.
Therefore, further research in this area could involve conducting more in-depth studies,
such as incorporating additional languages, especially those for which state-of-the-art
models have limited support, and employing enhanced preprocessing techniques.

After delving deeper into the study of gender-based hate speech detection and under-
standing its complexity, it is time to expand beyond the scope of the same theme. Looking
ahead, the focus will shift towards multi-class analysis and classification, while leveraging
the vast opportunities presented by social media as an inexhaustible source of data. This
ever-evolving landscape offers tremendous potential. The next step is to embark on this
exciting new phase.



Chapter 6

Appendix

Training-Evaluation Tables

In this first chapter of the Appendix, one will find all the tables with the training outcomes
mentioned above in chapters 3 and 4.

1. The Batch sizes: it could be from 4 to 32, (4, 8, 16, 32).

2. The Learning Rates: it can be found in the left side column.

3. Metrics and Losses: they can be found below the batch sizes ans they will be:

• Accuracy (shown as ACC)

• F1-score (shown as F1)

• Training Loss

• Validation Loss (shown as Valid. Loss)

It should be noted that every table will have two epochs in different color. If the epoch is
highlighted in electric blue, this will be the epoch with the best metric values in the whole
experiment or table. Notice that we have not been able to obtain results for the XLNet
model with batch sizes higher than 8 in the EXIST 2023 dataset due to GPU limitations.
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6.1 EXIST 2021 Tables with Translation

6.1.1 English

BERT with EXIST2021 English(4 epochs per per training) with translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

2.10−4

1 0.53 0.69 0.71 0.69 0.53 0.69 0.71 0.70 0.47 0.64 0.70 0.70
2 0.53 0.69 0.71 0.69 0.47 0.64 0.71 0.70 0.47 0.64 0.70 0.70
3 0.47 0.64 0.70 0.69 0.47 0.64 0.71 0.69 0.53 0.69 0.70 0.69
4 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69

5.10−4

1 0.47 0.64 0.72 0.71 0.53 0.69 0.71 0.77 0.53 0.69 0.71 0.69
2 0.47 0.64 0.72 0.72 0.53 0.69 0.71 0.69 0.47 0.64 0.70 0.70
3 0.47 0.64 0.71 0.70 0.53 0.69 0.71 0.69 0.47 0.64 0.70 0.70
4 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.47 0.64 0.70 0.70

3.10−5

1 0.75 0.74 0.13 1.69 0.76 0.76 0.07 1.62 0.75 0.74 0.58 0.51
2 0.74 0.74 0.07 2.02 0.75 0.75 0.04 1.92 0.75 0.74 0.40 0.55
3 0.75 0.75 0.03 2.16 0.75 0.75 0.01 1.98 0.76 0.76 0.24 0.64
4 0.74 0.74 0.01 2.34 0.75 0.75 0.01 2.05 0.76 0.75 0.14 0.75

5.10−5

1 0.53 0.69 0.68 0.70 0.75 0.75 0.18 1.29 0.75 0.75 0.28 1.36
2 0.47 0.64 0.69 0.69 0.74 0.74 0.12 1.41 0.76 0.76 0.19 1.56
3 0.53 0.69 0.69 0.69 0.75 0.75 0.05 1.77 0.76 0.76 0.12 1.66
4 0.53 0.69 0.70 0.69 0.74 0.74 0.02 1.83 0.76 0.76 0.07 1.75

RoBERTa with EXIST2021 English (4 epochs per per training) with translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

5.10−4

1 0.47 0.64 0.70 0.75 0.47 0.64 0.70 0.75 0.53 0.69 0.75 0.74
2 0.47 0.64 0.68 0.72 0.47 0.64 0.68 0.72 0.53 0.69 0.71 0.69
3 0.47 0.64 0.71 0.70 0.47 0.64 0.71 0.70 0.53 0.69 0.71 0.69
4 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69

1.10−5

1 0.47 0.64 0.70 0.71 0.53 0.69 0.70 0.71 0.68 0.68 0.56 0.62
2 0.53 0.46 0.70 0.78 0.53 0.46 0.70 0.74 0.67 0.66 0.51 0.68
3 0.64 0.62 0.60 0.64 0.67 0.67 0.62 0.63 0.67 0.67 0.47 0.67
4 0.67 0.67 0.57 0.70 0.67 0.67 0.55 0.66 0.69 0.69 0.42 0.67

3.10−5

1 0.61 0.59 0.69 0.65 0.62 0.60 0.57 0.66 0.53 0.69 0.49 0.69
2 0.59 0.55 0.64 0.73 0.65 0.64 0.48 0.71 0.48 0.33 0.69 0.70
3 0.68 0.68 0.58 0.62 0.68 0.68 0.41 0.70 0.53 0.69 0.70 0.69
4 0.68 0.68 0.52 0.69 0.70 0.70 0.37 0.86 0.53 0.69 0.69 0.69

5.10−5

1 0.47 0.64 0.71 0.70 0.47 0.64 0.69 0.72 0.53 0.69 0.69 0.71
2 0.47 0.64 0.71 0.70 0.47 0.64 0.69 0.71 0.46 0.32 0.69 0.71
3 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.71 0.69
4 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69
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XLNet with EXIST2021 English(4 epochs per per training) with translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−4

1 0.52 0.69 0.71 0.73 0.47 0.64 0.70 0.75 0.53 0.69 0.72 0.73
2 0.53 0.69 0.71 0.68 0.47 0.64 0.68 0.72 0.53 0.69 0.71 0.69
3 0.53 0.69 0.70 0.69 0.47 0.64 0.71 0.70 0.53 0.69 0.70 0.69
4 0.47 0.64 0.71 0.69 0.53 0.69 0.70 0.69 0.47 0.64 0.70 0.69

2.10−5

1 0.70 0.69 0.53 1.24 0.65 0.65 0.62 0.68 0.70 0.70 0.43 0.67
2 0.66 0.66 0.45 1.59 0.64 0.63 0.56 0.71 0.70 0.70 0.35 0.70
3 0.70 0.70 0.35 1.45 0.70 0.70 0.47 0.61 0.70 0.70 0.30 0.73
4 0.69 0.69 0.27 1.66 0.70 0.70 0.39 0.73 0.70 0.70 0.25 0.89

3.10−5

1 0.53 0.69 0.69 0.70 0.53 0.69 0.68 0.72 0.53 0.69 0.68 0.69
2 0.47 0.64 0.70 0.69 0.53 0.69 0.68 0.69 0.53 0.69 0.69 0.69
3 0.53 0.69 0.70 0.69 0.53 0.69 0.69 0.69 0.53 0.69 0.69 0.69
4 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.69 0.69

5.10−5

1 0.60 0.53 0.65 0.70 0.55 0.39 0.68 0.71 0.53 0.69 0.70 0.69
2 0.47 0.64 0.66 0.69 0.53 0.35 0.69 0.69 0.47 0.64 0.70 0.69
3 0.63 0.58 0.65 0.69 0.53 0.35 0.70 0.69 0.53 0.69 0.70 0.69
4 0.64 0.62 0.62 0.73 0.53 0.35 0.70 0.69 0.53 0.69 0.70 0.69

HateBERT with EXIST2021 English(4 epochs per per training) with translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

2.10−4

1 0.53 0.69 0.69 0.70 0.53 0.69 0.70 0.70 0.53 0.69 0.70 0.69
2 0.47 0.64 0.70 0.69 0.47 0.64 0.70 0.69 0.47 0.64 0.69 0.70
3 0.47 0.64 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69
4 0.47 0.64 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69

5.10−4

1 0.47 0.64 0.72 0.71) 0.53 0.69 0.71 0.74 0.53 0.69 0.71 0.69
2 0.47 0.64 0.72 0.72 0.53 0.69 0.71 0.69 0.47 0.64 0.70 0.70
3 0.47 0.64 0.71 0.70 0.53 0.69 0.70 0.69 0.47 0.64 0.70 0.69
4 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69

3.10−5

1 0.74 0.74 0.05 2.29 0.81 0.80 0.03 1.23 0.82 0.82 0.03 2.44
2 0.74 0.74 0.02 2.37 0.83 0.83 0.02) 1.22 0.81 0.80 0.01 2.06
3 0.74 0.74 0.01 2.46 0.83 0.82 0.01 1.31 0.82 0.81 0.00 2.00
4 0.75 0.75 0.01 2.44 0.83 0.83 0.00 1.33 0.82 0.82 0.00 2.00

5.10−5

1 0.76 0.76 0.09 1.67 0.81 0.81 0.50 0.43 0.79 0.79 0.03 1.65
2 0.74 0.74 0.07 2.03 0.82 0.82 0.28 0.45 0.74 0.72 0.03 2.12
3 0.74 0.74 0.01 2.32 0.79 0.78 0.12 0.80 0.82 0.81 0.01 1.72
4 0.74 0.74 0.01 2.37 0.83 0.83 0.04 0.80 0.81 0.81 0.00 1.75
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6.1.2 Spanish

BERT with EXIST2021 Spanish(4 epochs per per training) with translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

2.10−4

1 0.53 0.67 0.60 0.72 0.68 0.68 0.17 1.66 0.47 0.64 0.71 0.70
2 0.61 0.61 0.45 1.20 0.69 0.69 0.11 1.67 0.47 0.64 0.71 0.70
3 0.61 0.61 0.45 1.20 0.70 0.70 0.03 2.16 0.53 0.69 0.70 0.69
4 0.61 0.61 0.23 1.76 0.71 0.71 0.02 2.14 0.53 0.69 0.70 0.69

5.10−4

1 0.61 0.61 0.68 0.80 0.47 0.64 0.72 0.71 0.47 0.64 0.72 0.73
2 0.63 0.63 0.53 1.29 0.47 0.64 0.71 0.72 0.47 0.64 0.71 0.70
3 0.68 0.68 0.27 1.45 0.47 0.64 0.71 0.71 0.53 0.69 0.71 0.69
4 0.68 0.68 0.05 1.89 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69

3.10−5

1 0.71 0.71 0.06 2.24 0.71 0.71 0.02 2.41 0.70 0.69 0.01 2.55
2 0.71 0.71 0.05 2.06 0.72 0.72 0.02 2.38 0.72 0.72 0.01 2.50
3 0.71 0.71 0.03 2.26 0.72 0.72 0.00 2.73 0.72 0.72 0.01 2.56
4 0.73 0.73 0.01 2.28 0.72 0.72 0.01 2.56 0.72 0.72 0.00 2.60

5.10−5

1 0.70 0.70 0.44 0.73 0.63 0.61 0.67 0.66 0.72 0.72 0.02 2.41
2 0.70 0.70 0.33 1.19 0.71 0.71 0.57 0.56 0.71 0.70 0.01 2.30
3 0.71 0.71 0.20 1.31 0.71 0.71 0.44 0.62 0.71 0.71 0.01 2.40
4 0.71 0.71 0.07 1.82 0.73 0.73 0.29 0.68 0.73 0.73 0.00 2.33

RoBERTa with EXIST2021 Spanish (4 epochs per per training) with translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

5.10−4

1 0.47 0.64 0.75 0.69 0.53 0.69 0.74 0.69 0.47 0.64 0.74 0.71
2 0.53 0.69 0.72 0.69 0.47 0.64 0.71 0.70 0.47 0.64 0.71 0.72
3 0.47 0.64 0.71 0.74 0.47 0.64 0.71 0.75 0.47 0.64 0.71 0.71
4 0.53 0.69 0.71 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69

1.10−5

1 0.47 0.68 0.69 0.71 0.53 0.69 0.69 0.69 0.53 0.69 0.68 0.69
2 0.53 0.69 0.68 0.69 0.53 0.69 0.69 0.69 0.53 0.69 0.69 0.69
3 0.53 0.69 0.69 0.69 0.53 0.69 0.69 0.69 0.53 0.69 0.69 0.69
4 0.53 0.69 0.70 0.69 0.53 0.69 0.69 0.69 0.53 0.69 0.69 0.69

3.10−5

1 0.47 0.64 0.60 0.70 0.47 0.64 0.68 0.70 0.53 0.69 0.68 0.69
2 0.47 0.64 0.68 0.70 0.47 0.64 0.68 0.69 0.53 0.69 0.69 0.69
3 0.47 0.64 0.69 0.69 0.53 0.69 0.69 0.69 0.53 0.69 0.69 0.69
4 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.69 0.69

5.10−5

1 0.47 0.68 0.70 0.47 0.47 0.64 0.68 0.69 0.47 0.64 0.72 0.71
2 0.47 0.64 0.68 0.70 0.47 0.64 0.68 0.71 0.47 0.64 0.71 0.72
3 0.47 0.64 0.69 0.70 0.47 0.64 0.69) 0.70 0.47 0.64 0.71 0.69
4 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69
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XLNet with EXIST2021 Spanish(4 epochs per per training) with translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−4

1 0.53 0.69 0.67 0.69 0.53 0.69 0.69 0.69 0.47 0.64 0.72 0.72
2 0.61 0.60 0.69 0.67 0.47 0.64 0.70 0.71 0.47 0.64 0.71 0.72
3 0.50 0.39 0.69 0.73 0.47 0.64 0.70 0.70 0.47 0.64 0.71 0.72
4 0.63 0.62 0.67 0.67 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69

2.10−5

1 0.64 0.64 0.66 0.65 0.53 0.69 0.69 0.69 0.47 0.64 0.69 0.69
2 0.61 0.60 0.61 0.70 0.47 0.64 0.69 0.69 0.53 0.69 0.69 0.69
3 0.64 0.63 0.61 0.66 0.53 0.35 0.69 0.69 0.53 0.69 0.69 0.69
4 0.66 0.65 0.58 0.66 0.53 0.35 0.69 0.69 0.53 0.69 0.69 0.69

3.10−5

1 0.49 0.38 0.67 0.69 0.47 0.32 0.68 0.70 0.47 0.64 0.68 0.70
2 0.65 0.65 0.66 0.72 0.47 0.64 0.69 0.71 0.47 0.64 0.68 0.69
3 0.64 0.64 0.64 0.69 0.47 0.64 0.69 0.69 0.53 0.69 0.69 0.69
4 0.65 0.64 0.62 0.65 0.53 0.69 0.70 0.69 0.53 0.69 0.69 0.69

5.10−5

1 0.47 0.64 0.73 0.70 0.53 0.69 0.67 0.69 0.47 0.64 0.62 0.71
2 0.47 0.64 0.71 0.70 0.47 0.64 0.68 0.71 0.47 0.64 0.66 0.70
3 0.47 0.64 0.71 0.72 0.47 0.64 0.69 0.71 0.53 0.69 0.68 0.69
4 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.69 0.69

HateBERT with EXIST2021 Spanish(4 epochs per per training) with translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

2.10−4

1 0.53 0.69 0.69 0.69 0.47 0.64 0.69 0.72 0.47 0.64 0.70 0.70
2 0.47 0.64 0.70 0.72 0.47 0.64 0.70 0.70 0.47 0.64 0.70 0.69
3 0.47 0.64 0.71 0.70 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69
4 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.69 0.69

5.10−4

1 0.53 0.69 0.72 0.69 0.47 0.64 0.71 0.71 0.47 0.64 0.71 0.73
2 0.47 0.64 0.71 0.70 0.47 0.64 0.71 0.74 0.47 0.64 0.70 0.71
3 0.47 0.64 0.71 0.74 0.47 0.64 0.71 0.71 0.53 0.69 0.70 0.69
4 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69 0.53 0.69 0.70 0.69

3.10−5

1 0.69 0.69 0.08 2.48 0.72 0.72 0.25 1.13 0.65 0.63 0.20 1.34
2 0.71 0.71 0.06 2.27 0.70 0.70 0.19 1.41 0.69 0.68 0.09 1.52
3 0.72 0.72 0.03 2.50 0.70 0.70 0.12 1.96 0.69 0.69 0.05 1.81
4 0.71 0.71 0.02 2.63 0.70 0.70 0.06 2.12 0.70 0.70 0.07 1.74

5.10−5

1 0.72 0.72 0.33 1.32 0.69 0.69 0.18 2.04 0.64 0.62 0.65 0.63
2 0.71 0.71 0.19 1.60 0.67 0.67 0.17 2.29 0.72 0.72 0.52 0.57
3 0.71 0.71 0.11 2.01 0.71 0.71 0.10 2.02 0.72 0.71 0.38 0.63
4 0.73 0.73 0.04 2.09 0.72 0.72 0.04 2.23 0.72 0.72 0.28 0.68

DeHateBERT with EXIST2021 Spanish(4 epochs per per training) with translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.71 0.71 0.64 1.23 0.72 0.72 0.01 3.05 0.69 0.69 0.62 0.60
2 0.71 0.71 0.50 1.67 0.71 0.71 0.01 3.27 0.70 0.70 0.56 0.57
3 0.71 0.71 0.35 2.12 0.71 0.71 0.01 3.31 0.73 0.73 0.52 0.57
4 0.71 0.71 0.21 2.43 0.70 0.70 0.05 3.41 0.74 0.74 0.51 0.55

2.10−5

1 0.70 0.70 0.45 1.23 0.72 0.71 0.06 2.37 0.71 0.71 0.31 0.91
2 0.71 0.71 0.27 1.68 0.71 0.71 0.05 2.58 0.72 0.71 0.29 0.77
3 0.71 0.71 0.13 1.97 0.71 0.70 0.04 2.74 0.72 0.72 0.30 0.80
4 0.71 0.71 0.07 2.03 0.71 0.70 0.09 2.74 0.72 0.72 0.39 0.71

3.10−5

1 0.71 0.71 0.23 1.88 0.72 0.71 0.20 1.57 0.70 0.70 0.12 1.92
2 0.71 0.71 0.15 1.98 0.72 0.71 0.18 1.53 0.71 0.71 0.17 1.75
3 0.71 0.71 0.07 2.33 0.72 0.71 0.15 1.89 0.72 0.72 0.19 1.45
4 0.71 0.71 0.08 2.33 0.70 0.70 0.15 2.00 0.72 0.72 0.35 1.17

5.10−5

1 0.71 0.70 0.64 1.39 0.74 0.73 0.54 0.60 0.69 0.69 0.21 1.36
2 0.72 0.71 0.47 1.30 0.71 0.70 0.45 0.80 0.71 0.71 0.21 1.58
3 0.71 0.71 0.33 1.81 0.72 0.72 0.39 1.04 0.72 0.72 0.22 1.65
4 0.72 0.72 0.20 1.99 0.72 0.72 0.31 1.19 0.70 0.69 0.30 1.19
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6.2 EXIST 2021 Tables without Translation

6.2.1 English

BERT with EXIST2021 English(4 epochs per per training) without translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

2.10−4

1 0.51 0.68 0.71 0.72 0.78 0.78 0.59 0.50 0.74 0.74 0.19 1.13
2 0.51 0.68 0.70 0.69 0.76 0.76 0.36 0.57 0.73 0.73 0.07 1, 37
3 0.49 0.65 0.70 0.70 0.76 0.76 0.16 1.10 0.75 0.75 0.04 1.45
4 0.51 0.68 0.70 0.69 0.75 0.75 0.04 1.32 0.76 0.76 0.01 1.63

5.10−4

1 0.51 0.68 0.71 0.71 0.51 0.68 0.73 0.77 0.49 0.65 0.85 0.69
2 0.51 0.68 0.70 0.69 0.51 0.68 0.71 0.71 0.51 0.68 0.70 0.71
3 0.51 0.68 0.70 0.69 0.49 0.65 0.71 0.70 0.49 0.65 0.70 0.70
4 0.51 0.68 0.70 0.69 0.51 0.68 0.69 0.69 0.51 0.68 0.70 0.69

3.10−5

1 0.51 0.68 0.68 0.69 0.51 0.68 0.68 0.69 0.51 0.68 0.69 0.69
2 0.51 0.68 0.68 0.69 0.51 0.68 0.68 0.69 0.51 0.68 0.69 0.69
3 0.51 0.68 0.68 0.69 0.51 0.68 0.69 0.69 0.51 0.68 0.69 0.69
4 0.51 0.68 0.68 0.69 0.51 0.68 0.69 0.69 0.51 0.68 0.69 0.69

5.10−5

1 0.51 0.68 0.67 0.70 0.77 0.77 0.58 0.50 0.51 0.68 0.68 0.69
2 0.51 0.68 0.67 0.69 0.75 0.75 0.34 0.60 0.51 0.68 0.69 0.69
3 0.49 0.65 0.70 0.70 0.74 0.74 0.15 1.06 0.49 0.65 0.69 0.69
4 0.51 0.68 0.70 0.69 0.76 0.76 0.06 1.16 0.51 0.68 0.69 0.69

RoBERTa with EXIST2021 English (4 epochs per per training) without translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

5.10−4

1 0.51 0.68 0.74 0.70 0.51 0.68 0.76 0.69 0.51 0.68 0.73 0.76
2 0.51 0.68 0.72 0.69 0.51 0.68 0.72 0.69 0.51 0.68 0.72 0.71
3 0.51 0.68 0.71 0.69 0.51 0.68 0.71 0.69 0.49 0.65 0.71 0.70
4 0.51 0.68 0.70 0.69 0.51 0.68 0.70 0.69 0.51 0.68 0.70 0.69

1.10−5

1 0.51 0.68 0.68 0.69 0.51 0.68 0.68 0.70 0.51 0.68 0.72 0.69
2 0.51 0.68 0.68 0.69 0.51 0.68 0.69 0.69 0.51 0.68 0.70 0.70
3 0.51 0.68 0.69 0.69 0.64 0.63 0.62 0.70 0.50 0.37 0.47 0.69
4 0.51 0.68 0.70 0.69 0.66 0.66 0.49 0.69 0.56 0.47 0.68 0.69

3.10−5

1 0.51 0.68 0.68 0.70 0.51 0.68 0.69 0.71 0.51 0.68 0.74 0.70
2 0.51 0.68 0.68 0.69 0.51 0.68 0.69 0.69 0.51 0.68 0.70 0.70
3 0.49 0.65 0.69 0.69 0.49 0.65 0.69 0.69 0.49 0.65 0.70 0.70
4 0.51 0.68 0.69 0.69 0.51 0.68 0.70 0.69 0.51 0.68 0.70 0.69

5.10−5

1 0.51 0.68 0.68 0.72 0.51 0.68 0.70 0.72 0.51 0.68 0.73 0.71
2 0.51 0.68 0.68 0.69 0.51 0.68 0.71 0.69 0.51 0.68 0.71 0.70
3 0.51 0.68 0.69 0.69 0.51 0.68 0.71 0.69 0.49 0.65 0.70 0.70
4 0.51 0.68 0.69 0.69 0.51 0.68 0.70 0.69 0.51 0.68 0.70 0.69
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XLNet with EXIST2021 English(4 epochs per per training) without translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−4

1 0.51 0.68 0.74 0.72 0.53 0.68 0.70 0.83 0.53 0.68 0.70 0.83
2 0.51 0.68 0.71 0.69 0.53 0.68 0.68 0.80 0.53 0.68 0.68 0.80
3 0.51 0.68 0.70 0.69 0.61 0.61 0.62 1.12 0.61 0.61 0.62 1.12
4 0.51 0.68 0.70 0.69 0.61 0.61 0.62 1.23 0.61 0.61 0.62 1.23

2.10−5

1 0.66 0.66 0.70 0.63 0.51 0.64 0.70 0.63 0.51 0.64 0.70 0.63
2 0.70 0.70 0.58 0.60 0.51 0.64 0.70 0.69 0.51 0.64 0.70 0.69
3 0.69 0.69 0.52 1.11 0.69 0.69 0.69 0.68 0.69 0.69 0.69 0.68
4 0.70 0.70 0.46 1.25 0.71 0.70 0.68 0.69 0.71 0.70 0.68 0.69

3.10−5

1 0.67 0.66 0.33 1.84 0.51 0.64 0.70 0.80 0.51 0.64 0.70 0.80
2 0.67 0.67 0.24 1.81 0.51 0.64 0.53 1.02 0.51 0.64 0.53 1.02
3 0.67 0.67 0.19 1.74 0.63 0.61 0.28 1.23 0.63 0.61 0.28 1.23
4 0.67 0.67 0.15 1.94 0.63 0.61 0.06 1.57 0.63 0.61 0.06 1.57

5.10−5

1 0.67 0.67 0.63 1.29 0.67 0.67 0.63 1.29 0.67 0.67 0.60 0.66
2 0.66 0.65 0.54 1.14 0.66 0.65 0.54 1.14 0.66 0.65 0.54 0.66
3 0.68 0.68 0.40 1.55 0.68 0.68 0.40 1.55 0.68 0.68 0.32 0.98
4 0.69 0.69 0.28 1.54 0.69 0.69 0.30 1.55 0.71 0.70 0.17 1.21

HateBERT with EXIST2021 English(4 epochs per per training) without translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

2.10−4

1 0.51 0.68 0.70 0.73 0.51 0.68 0.66 0.69 0.66 0.65 0.64 0.71
2 0.51 0.68 0.69 0.69 0.65 0.64 0.59 0.68 0.70 0.70 0.52 0.65
3 0.49 0.65 0.70 0.69 0.68 0.68 0.57 0.68 0.71 0.71 0.48 0.68
4 0.51 0.68 0.70 0.69 0.67 0.67 0.56 0.67 0.69 0.69 0.48 0.64

5.10−4

1 0.51 0.68 0.73 0.69 0.51 0.68 0.74 0.76 0.51 0.68 0.77 0.78
2 0.51 0.68 0.71 0.69 0.51 0.68 0.70 0.71 0.51 0.68 0.71 0.70
3 0.51 0.68 0.71 0.69 0.49 0.66 0.71 0.70 0.49 0.65 0.71 0.70
4 0.51 0.68 0.70 0.69 0.51 0.68 0.70 0.69 0.51 0.68 0.70 0.70

3.10−5

1 0.75 0.74 0.01 3.18 0.76 0.76 0.03 1.68 0.77 0.77 0.02 2.31
2 0.75 0.75 0.03 2.63 0.76 0.76 0.00 1.97 0.75 0.75 0.01 2.24
3 0.75 0.75 0.01 2.76 0.77 0.77 0.00 2.07 0.77 0.77 0.02 2.03
4 0.76 0.76 0.00 2.79 0.78 0.78 0.00 2.08 0.77 0.77 0.00 2.03

5.10−5

1 0.73 0.73 0.04 2.38 0.77 0.76 0.55 0.50 0.75 0.75 0.02 2.07
2 0.75 0.75 0.04 2.57 0.76 0.76 0.27 0.62 0.76 0.76 0.02 2.16
3 0.75 0.75 0.01 2.54 0.78 0.78 0.09 1.08 0.77 0.77 0.00 2.15
4 0.75 0.75 0.01 2.64 0.78 0.78 0.03 1.21 0.75 0.75 0.00 2.19
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6.2.2 Spanish

BERT with EXIST2021 Spanish(4 epochs per per training) without translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

2.10−4

1 0.50 0.67 0.70 0.69 0.50 0.67 0.72 0.70 0.50 0.67 0.69 0.71
2 0.50 0.67 0.70 0.69 0.50 0.67 0.71 0.69 0.50 0.67 0.69 0.69
3 0.50 0.67 0.70 0.70 0.50 0.67 0.71 0.73 0.50 0.67 0.69 0.69
4 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69 0.50 0.67 0.69 0.69

5.10−4

1 0.50 0.67 0.74 0.70 0.50 0.67 0.72 0.71 0.50 0.67 0.74 0.70
2 0.50 0.67 0.73 0.70 0.50 0.67 0.71 0.69 0.50 0.67 0.70 0.69
3 0.50 0.67 0.71 0.71 0.50 0.67 0.71 0.73 0.50 0.67 0.70 0.70
4 0.50 0.67 0.71 0.70 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69

3.10−5

1 0.50 0.67 0.70 0.70 0.70 0.70 0.66 0.59 0.70 0.70 0.61 0.62
2 0.50 0.67 0.71 0.69 0.73 0.73 0.54 0.54 0.70 0.70 0.53 0.65
3 0.50 0.67 0.69 0.69 0.73 0.72 0.38 0.63 0.70 0.69 0.48 0.64
4 0.50 0.67 0.69 0.69 0.73 0.73 0.25 0.72 0.73 0.73 0.40 0.65

5.10−5

1 0.50 0.67 0.69 0.69 0.70 0.70 0.40 0.66 0.50 0.67 0.71 0.71
2 0.74 0.74 0.64 0.57 0.70 0.70 0.19 1.12 0.50 0.67 0.70 0.69
3 0.73 0.73 0.49 0.58 0.72 0.72 0.10 1.42 0.56 0.56 0.69 0.69
4 0.75 0.75 0.38 0.65 0.73 0.73 0.04 1.60 0.68 0.68 0.66 0.63

RoBERTa with EXIST2021 Spanish (4 epochs per per training) without translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

5.10−4

1 0.50 0.67 0.74 0.88 0.50 0.67 0.73 0.70 0.50 0.67 0.72 0.70
2 0.50 0.67 0.73 0.72 0.50 0.67 0.73 0.71 0.50 0.67 0.72 0.69
3 0.50 0.67 0.71 0.75 0.50 0.67 0.71 0.72 0.50 0.67 0.71 0.73
4 0.50 0.67 0.71 0.69 0.50 0.67 0.71 0.70 0.50 0.67 0.71 0.69

1.10−5

1 0.50 0.67 0.70 0.69 0.50 0.67 0.68 0.69 0.50 0.67 0.69 0.69
2 0.50 0.67 0.70 0.69 0.50 0.67 0.68 0.69 0.50 0.67 0.69 0.69
3 0.50 0.67 0.70 0.69 0.50 0.67 0.69 0.69 0.50 0.67 0.69 0.69
4 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69

3.10−5

1 0.50 0.67 0.70 0.69 0.50 0.67 0.68 0.70 0.50 0.67 0.72 0.69
2 0.50 0.67 0.70 0.69 0.50 0.67 0.68 0.69 0.50 0.67 0.71 0.69
3 0.50 0.67 0.70 0.69 0.50 0.67 0.69 0.69 0.64 0.63 0.69 0.67
4 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69 0.65 0.65 0.62 0.63

5.10−5

1 0.50 0.67 0.70 0.69 0.50 0.67 0.68 0.70 0.50 0.67 0.70 0.71
2 0.50 0.67 0.70 0.70 0.50 0.67 0.68 0.69 0.50 0.67 0.70 0.69
3 0.50 0.67 0.70 0.70 0.50 0.67 0.69 0.69 0.50 0.67 0.69 0.73
4 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69
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XLNet with EXIST2021 Spanish (4 epochs per per training) without translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−4

1 0.50 0.67 0.74 0.88 0.50 0.67 0.73 0.70 0.50 0.67 0.72 0.70
2 0.50 0.67 0.73 0.72 0.50 0.67 0.73 0.71 0.50 0.67 0.72 0.69
3 0.50 0.67 0.71 0.75 0.50 0.67 0.71 0.72 0.50 0.67 0.71 0.73
4 0.50 0.67 0.71 0.69 0.50 0.67 0.71 0.70 0.50 0.67 0.71 0.69

2.10−5

1 0.50 0.67 0.70 0.69 0.50 0.67 0.68 0.69 0.50 0.67 0.69 0.69
2 0.50 0.67 0.70 0.69 0.50 0.67 0.68 0.69 0.50 0.67 0.69 0.69
3 0.50 0.67 0.70 0.69 0.50 0.67 0.69 0.69 0.50 0.67 0.69 0.69
4 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69

3.10−5

1 0.50 0.67 0.70 0.69 0.50 0.67 0.68 0.70 0.50 0.67 0.75 0.69
2 0.50 0.67 0.70 0.69 0.50 0.67 0.68 0.69 0.50 0.67 0.71 0.69
3 0.50 0.67 0.70 0.69 0.50 0.67 0.69 0.69 0.66 0.65 0.70 0.66
4 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69 0.65 0.65 0.62 0.63

5.10−5

1 0.50 0.67 0.70 0.69 0.50 0.67 0.68 0.70 0.50 0.67 0.70 0.71
2 0.50 0.67 0.70 0.70 0.50 0.67 0.68 0.69 0.50 0.67 0.70 0.69
3 0.50 0.67 0.70 0.70 0.50 0.67 0.69 0.69 0.50 0.67 0.69 0.73
4 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69

HateBERT with EXIST2021 Spanish(4 epochs per per training) without translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

2.10−4

1 0.50 0.67 0.72 0.69 0.50 0.67 0.71 0.70 0.50 0.67 0.70 0.71
2 0.50 0.67 0.71 0.70 0.50 0.67 0.71 0.69 0.50 0.67 0.70 0.69
3 0.50 0.67 0.70 0.71 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69
4 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69

5.10−4

1 0.50 0.67 0.73 0.70 0.50 0.67 0.72 0.50 0.67 0.71 0.74 0.70
2 0.50 0.67 0.72 0.69 0.50 0.67 0.71 0.69 0.50 0.67 0.70 0.69
3 0.50 0.67 0.70 0.71 0.50 0.67 0.70 0.73 0.50 0.67 0.70 0.70
4 0.50 0.67 0.70 0.70 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69

3.10−5

1 0.50 0.67 0.67 0.70 0.50 0.67 0.71 0.70 0.50 0.67 0.69 0.69
2 0.50 0.67 0.67 0.70 0.50 0.67 0.70 0.69 0.50 0.67 0.69 0.69
3 0.50 0.67 0.67 0.71 0.50 0.67 0.70 0.69 0.50 0.67 0.69 0.69
4 0.50 0.67 0.70 0.70 0.50 0.67 0.70 0.69 0.50 0.67 0.70 0.69

5.10−5

1 0.50 0.67 0.68 0.70 0.50 0.67 0.70 0.70 0.50 0.67 0.68 0.69
2 0.50 0.67 0.69 0.69 0.50 0.67 0.69 0.69 0.50 0.67 0.68 0.69
3 0.50 0.67 0.69 0.69 0.50 0.67 0.70 0.69 0.50 0.67 0.69 0.69
4 0.50 0.67 0.69 0.69 0.56 0.52 0.69 0.71 0.50 0.67 0.69 0.69

DeHateBERT with EXIST2021 Spanish(4 epochs per per training) without translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.71 0.71 0.64 1.23 0.72 0.72 0.01 3.05 0.69 0.69 0.62 0.60
2 0.71 0.71 0.50 1.67 0.71 0.71 0.01 3.27 0.70 0.70 0.56 0.57
3 0.71 0.71 0.35 2.12 0.71 0.71 0.01 3.31 0.73 0.73 0.52 0.57
4 0.71 0.71 0.21 2.43 0.70 0.70 0.05 3.41 0.74 0.74 0.51 0.55

2.10−5

1 0.70 0.70 0.45 1.23 0.72 0.71 0.06 2.37 0.71 0.71 0.31 0.91
2 0.71 0.71 0.27 1.68 0.71 0.71 0.05 2.58 0.72 0.71 0.29 0.77
3 0.71 0.71 0.13 1.97 0.71 0.70 0.04 2.74 0.72 0.72 0.30 0.80
4 0.71 0.71 0.07 2.03 0.71 0.70 0.09 2.74 0.72 0.72 0.39 0.71

3.10−5

1 0.71 0.71 0.23 1.88 0.72 0.71 0.20 1.57 0.70 0.70 0.12 1.92
2 0.71 0.71 0.15 1.98 0.72 0.71 0.18 1.53 0.71 0.71 0.17 1.75
3 0.71 0.71 0.07 2.33 0.72 0.71 0.15 1.89 0.72 0.72 0.19 1.45
4 0.71 0.71 0.08 2.33 0.70 0.70 0.15 2.00 0.72 0.72 0.35 1.17

5.10−5

1 0.71 0.70 0.64 1.39 0.74 0.73 0.54 0.60 0.69 0.69 0.21 1.36
2 0.72 0.71 0.47 1.30 0.71 0.70 0.45 0.80 0.71 0.71 0.21 1.58
3 0.71 0.71 0.33 1.81 0.72 0.72 0.39 1.04 0.72 0.72 0.22 1.65
4 0.72 0.72 0.20 1.99 0.72 0.72 0.31 1.19 0.70 0.69 0.30 1.19
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6.3 EXIST 2023 Tables with Translation

6.3.1 English

BERT with EXIST2023 English(4 epochs per per training) with translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.74 0.74 0.70 0.70 0.78 0.78 0.28 0.74 0.81 0.81 0.60 0.42
2 0.76 0.76 0.45 1.27 0.78 0.78 0.15 1.11 0.82 0.83 0.43 0.41
3 0.76 0.76 0.05 1.83 0.78 0.78 0.07 1.46 0.82 0.83 0.20 0.49
4 0.76 0.76 0.02 2.13 0.80 0.80 0.04 1.56 0.82 0.81 0.08 0.65

2.10−5

1 0.76 0.76 0.13 1.96 0.78 0.78 0.28 0.74 0.53 0.69 0.71 0.69
2 0.76 0.76 0.07 2.02 0.78 0.78 0.15 1.11 0.47 0.64 0.70 0.70
3 0.76 0.76 0.03 2.16 0.78 0.78 0.07 1.46 0.47 0.64 0.70 0.70
4 0.76 0.76 0.01 2.34 0.80 0.80 0.04 1.56 0.47 0.64 0.70 0.70

3.10−5

1 0.76 0.76 0.13 1.74 0.81 0.81 0.07 1.25 0.82 0.81 0.58 0.42
2 0.76 0.76 0.05 2.27 0.81 0.81 0.05 1.31 0.83 0.83 0.36 0.41
3 0.74 0.75 0.02 2.36 0.82 0.81 0.02 1.45 0.81 0.81 0.20 0.49
4 0.74 0.75 0.02 2.31 0.81 0.80 0.00 1.52 0.82 0.81 0.10 0.65

5.10−5

1 0.76 0.76 0.13 1.96 0.81 0.81 0.08 1.25 0.82 0.81 0.58 0.42
2 0.76 0.76 0.07 2.02 0.81 0.81 0.05 1.31 0.83 0.83 0.36 0.41
3 0.78 0.78 0.03 2.16 0.82 0.81 0.02 1.56 0.81 0.81 0.20 0.49
4 0.78 0.78 0.01 2.34 0.81 0.80 0.00 1.78 0.82 0.81 0.10 0.65

RoBERTa with EXIST2023 English (4 epochs per per training) with translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.44 0.61 0.80 0.80 0.44 0.61 0.70 0.70 0.56 0.72 0.68 0.69
2 0.44 0.64 0.80 0.80 0.56 0.72 0.69 0.69 0.56 0.72 0.68 0.69
3 0.56 0.67 0.69 0.69 0.65 0.65 0.69 0.69 0.65 0.65 0.68 0.65
4 0.56 0.67 0.69 0.69 0.56 0.72 0.68 0.69 0.64 0.64 0.68 0.69

2.10−5

1 0.49 0.67 0.70 0.70 0.49 0.67 0.70 0.53 0.69 0.70 0.70 0.62
2 0.56 0.72 0.69 0.69 0.56 0.72 0.69 0.69 0.56 0.72 0.69 0.69
3 0.65 0.65 0.69 0.69 0.65 0.65 0.69 0.69 0.65 0.65 0.69 0.69
4 0.63 0.62 0.68 0.69 0.63 0.62 0.68 0.69 0.56 0.72 0.68 0.69

3.10−5

1 0.44 0.61 0.78 0.70 0.49 0.67 0.70 0.70 0.44 0.61 0.70 0.70
2 0.61 0.64 0.70 0.73 0.49 0.67 0.69 0.69 0.56 0.72 0.69 0.69
3 0.65 0.65 0.69 0.89 0.53 0.67 0.69 0.69 0.64 0.64 0.69 0.69
4 0.64 0.63 0.68 0.96 0.63 0.62 0.68 0.69 0.56 0.72 0.68 0.69

5.10−5

1 0.44 0.61 0.68 0.70 0.47 0.64 0.70 0.70 0.44 0.61 0.78 0.70
2 0.56 0.75 0.69 0.69 0.53 0.59 0.69 0.69 0.50 0.72 0.70 0.69
3 0.56 0.75 0.69 0.69 0.53 0.69 0.56 0.86 0.65 0.65 0.70 0.69
4 0.56 0.75 0.68 0.69 0.63 0.62 0.52 1.01 0.65 0.65 0.69 0.69
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XLNet with EXIST2023 English(4 epochs per training) with translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Not available due to GPU’s limitation

1.10−4

1 0.51 0.68 0.74 0.72 0.51 0.68 0.98 0.82
2 0.51 0.68 0.71 0.69 0.51 0.68 0.91 0.82
3 0.51 0.68 0.70 0.69 0.51 0.68 0.91 0.82
4 0.51 0.68 0.70 0.69 0.51 0.68 0.91 0.82

2.10−5

1 0.66 0.66 0.78 0.63 0.67 0.66 0.65 0.63
2 0.70 0.70 0.65 0.57 0.64 0.63 0.56 0.71
3 0.69 0.69 0.52 1.09 0.70 0.70 0.51 1.11
4 0.70 0.70 0.39 1.35 0.70 0.70 0.39 1.23

3.10−5

1 0.67 0.66 0.33 1.86 0.67 0.67 0.32 1.65
2 0.67 0.67 0.24 1.79 0.67 0.67 0.12 1.89
3 0.67 0.67 0.19 1.64 0.67 0.67 0.09 2.01
4 0.67 0.67 0.15 1.86 0.67 0.67 0.03 2.17

5.10−5

1 0.67 0.67 0.67 1.29 0.68 0.68 0.65 1.07
2 0.66 0.65 0.55 1.27 0.66 0.66 0.54 1.27
3 0.68 0.68 0.42 1.64 0.68 0.68 0.42 1.44
4 0.68 0.68 0.18 1.84 0.68 0.68 0.09 1.86

HateBERT with EXIST2023 English(4 epochs per per training) with translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.81 0.80 0.00 2.43 0.82 0.82 0.00 2.31 0.53 0.69 0.70 0.69
2 0.80 0.80 0.00 2.49 0.83 0.83 0.00 2.37 0.47 0.64 0.69 0.70
3 0.81 0.80 0.00 2.43 0.81 0.81 0.01 2.54 0.53 0.69 0.70 0.69
4 0.81 0.80 0.00 2.42 0.82 0.82 0.00 2.38 0.53 0.69 0.70 0.69

2.10−5

1 0.80 0.80 0.07 1.32 0.82 0.82 0.00 1.92 0.53 0.69 0.71 0.69
2 0.81 0.81 0.03 1.44 0.82 0.82 0.00 1.98 0.47 0.64 0.70 0.70
3 0.79 0.79 0.01 1.89 0.81 0.81 0.00 1.89 0.47 0.64 0.70 0.69
4 0.80 0.80 0.00 1.92 0.82 0.82 0.01 1.84 0.53 0.69 0.70 0.69

3.10−5

1 0.80 0.80 0.04 1.42 0.81 0.80 0.03 1.23 0.82 0.82 0.03 2.44
2 0.80 0.80 0.01 1.64 0.83 0.83 0.02 1.22 0.81 0.80 0.01 2.06
3 0.79 0.79 0.00 1.79 0.83 0.82 0.01 1.31 0.82 0.81 0.00 2.00
4 0.80 0.80 0.01 1.76 0.83 0.83 0.00 1.33 0.82 0.82 0.00 2.00

5.10−5

1 0.80 0.80 0.51 0.46 0.81 0.81 0.50 0.43 0.79 0.79 0.03 1.65
2 0.80 0.79 0.31 0.69 0.82 0.82 0.28 0.45 0.74 0.72 0.03 2.12
3 0.83 0.82 0.12 0.80 0.79 0.78 0.12 0.80 0.82 0.81 0.01 1.72
4 0.83 0.83 0.04 0.96 0.83 0.83 0.04 0.80 0.81 0.81 0.00 1.75



70 Appendix

6.3.2 Spanish

BERT with EXIST2023 Spanish(4 epochs per per training) with translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.70 0.69 0.23 1.56 0.70 0.70 0.00 3.56 0.71 0.71 0.14 1.23
2 0.70 0.70 0.17 1.90 0.70 0.70 0.03 2.62 0.68 0.67 0.09 2.03
3 0.71 0.71 0.08 2.36 0.71 0.71 0.01 2.55 0.69 0.69 0.03 2.36
4 0.72 0.72 0.01 2.60 0.71 0.71 0.01 2.62 0.70 0.70 0.01 2.23

2.10−5

1 0.70 0.69 0.37 1.95 0.71 0.71 0.04 2.28 0.71 0.71 0.02 2.22
2 0.70 0.70 0.07 2.24 0.70 0.70 0.03 2.29 0.73 0.73 0.01 2.04
3 0.71 0.71 0.04 2.53 0.71 0.71 0.01 2.56 0.72 0.72 0.01 2.19
4 0.72 0.72 0.01 2.60 0.71 0.71 0.01 2.53 0.72 0.72 0.00 2.33

3.10−5

1 0.70 0.69 0.14 1.94 0.71 0.71 0.24 1.00 0.74 0.73 0.32 0.65
2 0.70 0.70 0.07 2.24 0.72 0.72 0.16 1.41 0.71 0.71 0.18 0.89
3 0.71 0.71 0.04 2.53 0.70 0.70 0.09 1.60 0.71 0.71 0.11 1.28
4 0.72 0.72 0.01 2.60 0.73 0.73 0.07 1.70 0.71 0.71 0.10 1.16

5.10−5

1 0.71 0.71 0.18 1.94 0.71 0.71 0.18 1.47 0.64 0.63 0.68 0.64
2 0.70 0.69 0.12 1.90 0.70 0.70 0.16 1.51 0.72 0.72 0.57 0.53
3 0.73 0.73 0.04 2.48 0.69 0.69 0.08 2.06 0.74 0.74 0.46 0.55
4 0.72 0.72 0.01 2.55 0.71 0.71 0.03 2.04 0.74 0.74 0.34 0.56

RoBERTa with EXIST2023 Spanish (4 epochs per per training) with translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.72 0.72 0.63 0.58 0.70 0.70 0.21 1.24 0.73 0.73 0.00 3.53
2 0.72 0.72 0.49 0.60 0.71 0.71 0.07 2.04 0.72 0.72 0.01 3.46
3 0.71 0.71 0.40 0.60 0.72 0.72 0.06 2.13 0.73 0.73 0.00 3.31
4 0.72 0.72 0.33 0.65 0.72 0.72 0.08 2.10 0.72 0.72 0.01 3.33

2.10−5

1 0.72 0.72 0.63 0.58 0.70 0.70 0.21 1.24 0.71 0.70 0.05 2.11
2 0.72 0.72 0.49 0.60 0.71 0.71 0.07 2.04 0.72 0.72 0.05 2.61
3 0.71 0.71 0.49 0.60 0.72 0.72 0.06 2.13 0.74 0.74 0.01 2.69
4 0.71 0.71 0.43 0.65 0.72 0.72 0.08 2.10 0.74 0.74 0.02 2.74

3.10−5

1 0.72 0.72 0.63 0.58 0.70 0.70 0.21 1.24 0.70 0.70 0.21 1.48
2 0.72 0.72 0.50 0.60 0.71 0.71 0.07 2.04 0.72 0.72 0.19 1.39
3 0.71 0.71 0.37 0.68 0.72 0.72 0.06 2.13 0.72 0.72 0.09 1.96
4 0.72 0.72 0.25 0.69 0.72 0.72 0.08 2.10 0.72 0.72 0.06 2.28

5.10−5

1 0.72 0.72 0.63 0.58 0.70 0.70 0.81 0.59 0.71 0.71 0.19 1.75
2 0.72 0.72 0.49 0.60 0.72 0.72 0.52 0.57 0.72 0.72 0.14 1.70
3 0.71 0.71 0.40 0.60 0.72 0.72 0.36 0.67 0.73 0.73 0.07 2.10
4 0.72 0.72 0.33 0.65 0.73 0.73 0.24 0.75 0.73 0.73 0.05 2.22
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XLNet with EXIST2023 English(4 epochs per training) with translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Not available due to GPU’s limitation

1.10−4

1 0.73 0.73 0.00 3.53 0.54 0.67 0.70 0.70
2 0.72 0.72 0.01 3.46 0.54 0.71 0.69 0.70
3 0.73 0.73 0.00 3.31 0.66 0.66 0.69 0.69
4 0.72 0.72 0.01 3.33 0.66 0.66 0.69 0.69

2.10−5

1 0.71 0.70 0.05 2.11 0.70 0.70 0.21 1.24
2 0.72 0.72 0.05 2.31 0.71 0.71 0.07 2.04
3 0.73 0.73 0.03 2.49 0.72 0.72 0.06 2.13
4 0.74 0.74 0.02 2.74 0.72 0.72 0.08 2.10

3.10−5

1 0.70 0.70 0.21 1.48 0.70 0.70 0.21 1.24
2 0.72 0.72 0.19 1.39 0.71 0.71 0.07 2.04
3 0.72 0.72 0.09 1.96 0.72 0.72 0.06 2.13
4 0.72 0.72 0.06 2.28 0.72 0.72 0.08 2.10

5.10−5

1 0.71 0.71 0.19 1.75 0.70 0.70 0.81 0.59
2 0.72 0.72 0.14 1.70 0.72 0.72 0.52 0.57
3 0.73 0.73 0.07 2.10 0.72 0.72 0.36 0.67
4 0.73 0.73 0.05 2.22 0.73 0.73 0.24 0.75

HateBERT with EXIST2023 Spanish(4 epochs per per training) with translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.70 0.70 0.21 1.24 0.47 0.73 0.73 0.00 0.70 0.70 0.21 1.24
2 0.71 0.71 0.07 2.04 0.72 0.72 0.01 3.46 0.71 0.71 0.07 2.04
3 0.72 0.72 0.06 2.16 0.73 0.73 0.00 3.31 0.72 0.72 0.08 2.10
4 0.72 0.72 0.08 2.10 0.72 0.72 0.00 3.33 0.72 0.72 0.08 2.10)

2.10−5

1 0.72 0.72 0.63 0.58 0.71 0.70 0.05 2.11 0.70 0.70 0.21 1.24
2 0.72 0.72 0.49 0.60 0.72 0.72 0.05 2.61 0.71 0.71 0.07 2.04
3 0.72 0.72 0.06 2.13 0.74 0.74 0.01 2.69 0.53 0.69 0.70 0.69
4 0.72 0.72 0.33 0.65 0.74 0.74 0.02 2.74 0.72 0.72 0.08 2.10

3.10−5

1 0.70 0.70 0.21 1.48 0.70 0.70 0.21 1.48 0.70 0.70 0.21 1.24
2 0.72 0.72 0.19 1.39 0.72 0.72 0.19 1.39 0.71 0.71 0.07 2.04
3 0.72 0.72 0.09 1.96 0.72 0.72 0.09 1.96 0.72 0.72 0.06 2.13)
4 0.72 0.72 0.06 2.28 0.72 0.72 0.06 2.28 0.72 0.72 0.08 2.10

5.10−5

1 0.70 0.70 0.81 0.59 0.71 0.71 0.19 1.75 0.70 0.70 0.81 0.59
2 0.72 0.72 0.52 0.57 0.72 0.72 0.14 1.70 0.72 0.72 0.52 0.57
3 0.72 0.72 0.36 0.67 0.73 0.73 0.07 2.10 0.72 0.72 0.36 0.67
4 0.73 0.73 0.24 0.75 0.73 0.73 0.05 2.22 0.73 0.73 0.24 0.75

DeHateBERT with EXIST2023 Spanish(4 epochs per per training) with translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.72 0.72 0.59 0.50 0.77 0.77 0.59 0.56 0.75 0.75 0.59 0.50
2 0.72 0.72 0.50 0.50 0.74 0.74 0.51 0.66 0.77 0.77 0.52 0.49
3 0.73 0.73 0.49 0.48 0.77 0.77 0.45 0.59 0.79 0.79 0.49 0.48
4 0.73 0.73 0.47 0.49 0.77 0.77 0.40 0.64 0.79 0.79 0.47 0.49

2.10−5

1 0.75 0.75 0.59 0.50 0.77 0.77 0.59 0.56 0.77 0.77 0.58 0.50
2 0.75 0.75 0.50 0.49 0.74 0.74 0.51 0.66 0.77 0.76 0.50 0.51
3 0.79 0.79 0.49 0.48 0.77 0.77 0.45 0.59 0.77 0.77 0.46 0.51
4 0.79 0.79 0.47 0.49 0.77 0.77 0.40 0.64 0.78 0.78 0.42 0.51

3.10−5

1 0.75 0.75 0.50 0.49 0.77 0.77 0.59 0.56 0.76 0.75 0.59 0.51
2 0.77 0.77 0.52 0.49 0.74 0.74 0.51 0.66 0.77 0.77 0.53 0.49
3 0.79 0.79 0.49 0.48 0.77 0.77 0.45 0.59 0.78 0.78 0.49 0.48
4 0.79 0.79 0.47 0.49 0.77 0.77 0.40 0.64 0.77 0.77 0.47 0.49

5.10−5

1 0.75 0.75 0.60 0.70 0.75 0.75 0.60 0.55 0.76 0.75 0.59 0.51
2 0.77 0.77 0.60 0.79 0.72 0.72 0.51 0.62 0.77 0.77 0.53 0.49
3 0.78 0.78 0.52 0.79 0.77 0.77 0.46 0.58 0.78 0.78 0.49 0.48
4 0.78 0.78 0.47 0.86 0.76 0.76 0.41 0.60 0.77 0.77 0.47 0.49
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6.4 EXIST 2023 Tables without Translation

6.4.1 English

BERT with EXIST2023 English(4 epochs per per training) without translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.76 0.76 0.13 1.96 0.79 0.79 0.08 1.25 0.80 0.80 0.08 0.74
2 0.76 0.76 0.07 2.02 0.79 0.79 0.05 1.31 0.80 0.79 0.03 1.01
3 0.76 0.76 0.03 2.16 0.79 0.80 0.02 1.56 0.79 0.80 0.02 1.10
4 0.76 0.76 0.01 2.34 0.79 0.80 0.00 1.78 0.80 0.80 0.01 1.14

2.10−5

1 0.76 0.76 0.13 1.74 0.79 0.79 0.07 1.25 0.80 0.80 0.58 0.42
2 0.76 0.76 0.05 2.27 0.79 0.79 0.05 1.31 0.80 0.80 0.36 0.41
3 0.74 0.75 0.02 2.36 0.80 0.80 0.02 1.56 0.79 0.79 0.20 0.49
4 0.74 0.75 0.02 2.31 0.79 0.80 0.00 1.52 0.79 0.79 0.10 0.65

3.10−5

1 0.76 0.76 0.13 1.96 0.78 0.78 0.28 0.74 0.78 0.78 0.60 0.42
2 0.76 0.76 0.07 2.02 0.78 0.78 0.15 1.11 0.80 0.80 0.43 0.41
3 0.76 0.76 0.03 2.16 0.78 0.78 0.07 1.46 0.78 0.78 0.20 0.49
4 0.76 0.76 0.01 2.34 0.80 0.80 0.04 1.56 0.78 0.78 0.08 0.65

5.10−5

1 0.74 0.74 0.70 0.70 0.79 0.80 0.28 0.74 0.76 0.77 0.36 0.41
2 0.76 0.76 0.45 1.27 0.78 0.78 0.15 1.11 0.80 0.80 0.20 0.49
3 0.76 0.76 0.05 1.83 0.78 0.78 0.07 1.46 0.80 0.80 0.10 0.49
4 0.76 0.76 0.02 2.13 0.80 0.80 0.04 1.56 0.80 0.80 0.10 0.65

RoBERTa with EXIST2023 English (4 epochs per per training) without translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.44 0.61 0.80 0.80 0.44 0.61 0.70 0.70 0.56 0.72 0.68 0.69
2 0.44 0.64 0.80 0.80 0.56 0.72 0.69 0.69 0.56 0.72 0.68 0.69
3 0.56 0.67 0.69 0.69 0.65 0.65 0.69 0.69 0.65 0.65 0.68 0.65
4 0.56 0.67 0.69 0.69 0.56 0.72 0.68 0.69 0.64 0.64 0.68 0.69

2.10−5

1 0.49 0.67 0.70 0.70 0.49 0.67 0.70 0.53 0.69 0.70 0.70 0.62
2 0.56 0.72 0.69 0.69 0.56 0.72 0.69 0.69 0.56 0.72 0.69 0.69
3 0.65 0.65 0.69 0.69 0.65 0.65 0.69 0.69 0.65 0.65 0.69 0.69
4 0.63 0.62 0.68 0.69 0.63 0.62 0.68 0.69 0.56 0.72 0.68 0.69

3.10−5

1 0.44 0.61 0.78 0.70 0.49 0.67 0.70 0.70 0.44 0.61 0.70 0.70
2 0.61 0.64 0.70 0.73 0.49 0.67 0.69 0.69 0.56 0.72 0.69 0.69
3 0.65 0.65 0.69 0.89 0.53 0.67 0.69 0.69 0.64 0.64 0.69 0.69
4 0.64 0.63 0.68 0.96 0.63 0.62 0.68 0.69 0.56 0.72 0.68 0.69

5.10−5

1 0.44 0.61 0.68 0.70 0.47 0.64 0.70 0.70 0.44 0.61 0.78 0.70
2 0.56 0.75 0.69 0.69 0.53 0.59 0.69 0.69 0.50 0.72 0.70 0.69
3 0.56 0.75 0.69 0.69 0.53 0.69 0.56 0.86 0.65 0.65 0.70 0.69
4 0.56 0.75 0.68 0.69 0.63 0.62 0.52 1.01 0.65 0.65 0.69 0.69
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XLNet with EXIST2023 English(4 epochs per training) without translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Not available due to GPU’s limitation

1.10−4

1 0.51 0.68 0.74 0.72 0.51 0.68 0.98 0.82
2 0.51 0.68 0.71 0.69 0.51 0.68 0.91 0.82
3 0.51 0.68 0.70 0.69 0.51 0.68 0.91 0.82
4 0.51 0.68 0.70 0.69 0.51 0.68 0.91 0.82

2.10−5

1 0.66 0.66 0.78 0.63 0.67 0.66 0.65 0.63
2 0.70 0.70 0.65 0.57 0.64 0.63 0.56 0.71
3 0.69 0.69 0.52 1.09 0.70 0.70 0.51 1.11
4 0.70 0.70 0.39 1.35 0.70 0.70 0.39 1.23

3.10−5

1 0.67 0.66 0.33 1.86 0.67 0.67 0.32 1.65
2 0.67 0.67 0.24 1.79 0.67 0.67 0.12 1.89
3 0.67 0.67 0.19 1.64 0.67 0.67 0.09 2.01
4 0.67 0.67 0.15 1.86 0.67 0.67 0.03 2.17

5.10−5

1 0.67 0.67 0.67 1.29 0.68 0.68 0.65 1.07
2 0.66 0.65 0.55 1.27 0.66 0.66 0.54 1.27
3 0.68 0.68 0.42 1.64 0.68 0.68 0.42 1.44
4 0.68 0.68 0.18 1.84 0.68 0.68 0.09 1.86

HateBERT with EXIST2023 English(4 epochs per per training) without translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.80 0.79 0.00 2.51 0.82 0.82 0.00 2.31 0.53 0.69 0.70 0.69
2 0.80 0.80 0.00 2.49 0.83 0.83 0.00 2.37 0.47 0.64 0.69 0.70
3 0.81 0.80 0.00 2.43 0.81 0.81 0.01 2.54 0.53 0.69 0.70 0.69
4 0.81 0.80 0.00 2.42 0.82 0.82 0.00 2.38 0.53 0.69 0.70 0.69

2.10−5

1 0.80 0.80 0.07 1.32 0.82 0.82 0.00 1.92 0.53 0.69 0.71 0.69
2 0.81 0.81 0.03 1.44 0.82 0.82 0.00 1.98 0.47 0.64 0.70 0.70
3 0.79 0.79 0.01 1.89 0.81 0.81 0.00 1.89 0.47 0.64 0.70 0.69
4 0.80 0.80 0.00 1.92 0.82 0.82 0.01 1.84 0.53 0.69 0.70 0.69

3.10−5

1 0.80 0.80 0.04 1.42 0.78 0.78 0.51 0.40 0.78 0.78 0.06 2.14
2 0.80 0.80 0.01 1.64 0.78 0.78 0.33 0.41 0.81 0.80 0.01 2.06
3 0.79 0.79 0.00 1.79 0.79 0.78 0.18 0.71 0.78 0.81 0.00 2.00
4 0.80 0.80 0.01 1.76 0.80 0.79 0.10 0.79 0.78 0.78 0.00 2.00

5.10−5

1 0.80 0.80 0.51 0.46 0.81 0.81 0.50 0.43 0.79 0.79 0.03 1.65
2 0.80 0.79 0.31 0.69 0.82 0.82 0.28 0.45 0.74 0.72 0.03 2.12
3 0.81 0.82 0.12 0.80 0.79 0.78 0.12 0.80 0.78 0.81 0.01 1.72
4 0.81 0.83 0.04 0.96 0.81 0.81 0.00 1.75 0.81 0.81 0.00 1.75
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6.4.2 Spanish

BERT with EXIST2023 Spanish(4 epochs per per training) without translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.70 0.69 0.23 1.56 0.69 0.69 0.15 1.58 0.71 0.71 0.14 1.23
2 0.70 0.70 0.17 1.90 0.68 0.68 0.09 1.75 0.68 0.67 0.09 2.03
3 0.71 0.71 0.08 2.36 0.71 0.71 0.05 1.65 0.69 0.69 0.03 2.36
4 0.72 0.72 0.01 2.60 0.72 0.72 0.02 1.79 0.70 0.70 0.01 2.23

2.10−5

1 0.70 0.69 0.37 1.95 0.71 0.71 0.04 2.28 0.71 0.71 0.02 2.22
2 0.70 0.70 0.07 2.24 0.70 0.70 0.03 2.29 0.73 0.73 0.01 2.04
3 0.71 0.71 0.04 2.53 0.71 0.71 0.01 2.56 0.72 0.72 0.01 2.19
4 0.72 0.72 0.01 2.60 0.71 0.71 0.01 2.53 0.72 0.72 0.00 2.33

3.10−5

1 0.70 0.69 0.14 1.94 0.71 0.71 0.24 1.00 0.74 0.73 0.32 0.65
2 0.70 0.70 0.07 2.24 0.72 0.72 0.16 1.41 0.71 0.71 0.18 0.89
3 0.71 0.71 0.04 2.53 0.70 0.70 0.09 1.60 0.71 0.71 0.11 1.28
4 0.72 0.72 0.01 2.60 0.73 0.73 0.07 1.70 0.71 0.71 0.10 1.16

5.10−5

1 0.71 0.71 0.18 1.94 0.71 0.71 0.18 1.47 0.64 0.63 0.68 0.64
2 0.70 0.69 0.12 1.90 0.70 0.70 0.16 1.51 0.72 0.72 0.57 0.53
3 0.73 0.73 0.04 2.48 0.69 0.69 0.08 2.06 0.74 0.74 0.46 0.55
4 0.72 0.72 0.01 2.55 0.71 0.71 0.03 2.04 0.75 0.75 0.03 0.89

RoBERTa with EXIST2023 Spanish (4 epochs per per training) without translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.72 0.72 0.63 0.58 0.70 0.70 0.21 1.24 0.73 0.73 0.00 3.53
2 0.72 0.72 0.49 0.60 0.71 0.71 0.07 2.04 0.72 0.72 0.01 3.46
3 0.71 0.71 0.40 0.60 0.72 0.72 0.06 2.13 0.73 0.73 0.00 3.31
4 0.72 0.72 0.33 0.65 0.72 0.72 0.08 2.10 0.72 0.72 0.01 3.33

2.10−5

1 0.72 0.72 0.63 0.58 0.70 0.70 0.21 1.24 0.71 0.70 0.05 2.11
2 0.72 0.72 0.49 0.60 0.71 0.71 0.07 2.04 0.72 0.72 0.05 2.61
3 0.71 0.71 0.49 0.60 0.72 0.72 0.06 2.13 0.74 0.74 0.01 2.69
4 0.71 0.71 0.43 0.65 0.72 0.72 0.08 2.10 0.74 0.74 0.02 2.74

3.10−5

1 0.72 0.72 0.63 0.58 0.70 0.70 0.21 1.24 0.70 0.70 0.21 1.48
2 0.72 0.72 0.50 0.60 0.71 0.71 0.07 2.04 0.72 0.72 0.19 1.39
3 0.71 0.71 0.37 0.68 0.72 0.72 0.06 2.13 0.72 0.72 0.09 1.96
4 0.72 0.72 0.25 0.69 0.72 0.72 0.08 2.10 0.72 0.72 0.06 2.28

5.10−5

1 0.72 0.72 0.63 0.58 0.70 0.70 0.81 0.59 0.71 0.71 0.19 1.75
2 0.72 0.72 0.49 0.60 0.72 0.72 0.52 0.57 0.72 0.72 0.14 1.70
3 0.71 0.71 0.40 0.60 0.72 0.72 0.36 0.67 0.73 0.73 0.07 2.10
4 0.72 0.72 0.33 0.65 0.73 0.73 0.24 0.75 0.73 0.73 0.05 2.22
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XLNet with EXIST2023 English(4 epochs per training) without translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Not available due to GPU’s limitation

1.10−4

1 0.73 0.73 0.00 3.53 0.54 0.67 0.70 0.70
2 0.72 0.72 0.01 3.46 0.54 0.71 0.69 0.70
3 0.73 0.73 0.00 3.31 0.66 0.66 0.69 0.69
4 0.72 0.72 0.01 3.33 0.66 0.66 0.69 0.69

2.10−5

1 0.71 0.70 0.05 2.11 0.70 0.70 0.21 1.24
2 0.72 0.72 0.05 2.61 0.71 0.71 0.07 2.04
3 0.74 0.74 0.01 2.69 0.72 0.72 0.06 2.13
4 0.74 0.74 0.02 2.74 0.72 0.72 0.08 2.10

3.10−5

1 0.70 0.70 0.21 1.48 0.70 0.70 0.21 1.24
2 0.72 0.72 0.19 1.39 0.71 0.71 0.07 2.04
3 0.72 0.72 0.09 1.96 0.72 0.72 0.06 2.13
4 0.72 0.72 0.06 2.28 0.72 0.72 0.08 2.10

5.10−5

1 0.71 0.71 0.19 1.75 0.70 0.70 0.81 0.59
2 0.72 0.72 0.14 1.70 0.72 0.72 0.52 0.57
3 0.73 0.73 0.07 2.10 0.72 0.72 0.36 0.67
4 0.73 0.73 0.05 2.22 0.73 0.73 0.24 0.75

HateBERT with EXIST2023 Spanish(4 epochs per per training) without translation
Batch/LR 8 16 32

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.53 0.69 0.21 0.78 0.53 0.69 0.63 1.53 0.49 0.38 0.21 0.69
2 0.53 0.69 0.07 1.04 0.53 0.69 0.49 0.61 0.49 0.38 0.07 0.69
3 0.53 0.69 0.06 1.09 0.53 0.69 0.61 1.02 0.53 0.69 0.06 0.69
4 0.53 0.69 0.08 1.10 0.53 0.67 0.60 1.21 0.53 0.69 0.08 0.69)

2.10−5

1 0.53 0.69 0.63 0.58 0.51 0.38 0.05 2.11 0.53 0.69 0.21 0.70
2 0.53 0.69 0.49 0.60 0.51 0.38 0.05 2.61 0.53 0.69 0.07 0.69
3 0.53 0.69 0.40 0.60 0.51 0.38 0.01 2.69 0.53 0.69 0.06 0.69
4 0.53 0.69 0.33 0.65 0.51 0.38 0.02 2.74 0.53 0.69 0.08 0.69

3.10−5

1 0.53 0.69 0.21 1.48 0.49 0.38 0.21 0.69 0.53 0.69 0.56 0.69
2 0.53 0.69 0.19 1.39 0.51 0.38 0.19 0.69 0.53 0.69 0.07 0.69
3 0.53 0.69 0.09 1.96 0.53 0.69 0.09 0.96 0.53 0.69 0.06 0.69
4 0.53 0.69 0.06 2.28 0.53 0.69 0.06 0.69 0.53 0.69 0.08 0.69

5.10−5

1 0.53 0.69 0.81 0.59 0.51 0.38 0.19 1.75 0.53 0.69 0.81 0.69
2 0.53 0.69 0.52 0.57 0.51 0.38 0.14 1.70 0.53 0.69 0.52 0.69
3 0.53 0.69 0.36 0.67 0.51 0.38 0.07 2.10 0.53 0.69 0.36 0.69
4 0.53 0.69 0.24 0.75 0.51 0.38 0.05 2.10 0.53 0.69 0.24 0.67

DeHateBERT with EXIST2023 Spanish(4 epochs per per training) with translation
Batch/LR 4 8 16

Metrics Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss Acc F1 score Training loss Valid. loss

1.10−5

1 0.77 0.77 0.59 0.56 0.77 0.77 0.58 0.50 0.75 0.75 0.59 0.50
2 0.74 0.74 0.51 0.66 0.77 0.76 0.50 0.51 0.77 0.77 0.50 0.49
3 0.77 0.77 0.45 0.59 0.77 0.77 0.46 0.51 0.77 0.77 0.49 0.48
4 0.77 0.77 0.40 0.64 0.78 0.78 0.42 0.51 0.77 0.77 0.47 0.49

2.10−5

1 0.77 0.77 0.59 0.56 0.75 0.75 0.59 0.50 0.72 0.72 0.59 0.50
2 0.74 0.74 0.51 0.66 0.77 0.77 0.52 0.49 0.72 0.72 0.50 0.50
3 0.77 0.77 0.45 0.59 0.77 0.77 0.49 0.48 0.73 0.73 0.49 0.48
4 0.77 0.77 0.40 0.64 0.77 0.77 0.47 0.49 0.73 0.73 0.47 0.49

3.10−5

1 0.77 0.77 0.59 0.56 0.76 0.75 0.59 0.51 0.75 0.75 0.60 0.70
2 0.74 0.74 0.51 0.66 0.77 0.77 0.53 0.49 0.77 0.77 0.60 0.79
3 0.77 0.77 0.45 0.59 0.78 0.78 0.49 0.48 0.78 0.78 0.52 0.79
4 0.77 0.77 0.40 0.64 0.77 0.77 0.47 0.49 0.78 0.78 0.47 0.86

5.10−5

1 0.75 0.75 0.60 0.55 0.76 0.75 0.59 0.51 0.75 0.75 0.59 0.50
2 0.72 0.72 0.51 0.62 0.77 0.77 0.53 0.49 0.77 0.77 0.52 0.49
3 0.77 0.77 0.46 0.58 0.77 0.77 0.46 0.58 0.77 0.77 0.49 0.48
4 0.76 0.76 0.41 0.60 0.77 0.77 0.47 0.49 0.77 0.77 0.47 0.49
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