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The impact of rare germline variants on human
somatic mutation processes
Mischan Vali-Pour 1,2, Solip Park3, Jose Espinosa-Carrasco4, Daniel Ortiz-Martínez4, Ben Lehner 1,2,5✉ &

Fran Supek 4,5✉

Somatic mutations are an inevitable component of ageing and the most important cause of

cancer. The rates and types of somatic mutation vary across individuals, but relatively few

inherited influences on mutation processes are known. We perform a gene-based rare variant

association study with diverse mutational processes, using human cancer genomes from over

11,000 individuals of European ancestry. By combining burden and variance tests, we identify

207 associations involving 15 somatic mutational phenotypes and 42 genes that replicated in

an independent data set at a false discovery rate of 1%. We associate rare inherited dele-

terious variants in genes such as MSH3, EXO1, SETD2, and MTOR with two phenotypically

different forms of DNA mismatch repair deficiency, and variants in genes such as EXO1,

PAXIP1, RIF1, and WRN with deficiency in homologous recombination repair. In addition, we

identify associations with other mutational processes, such as APEX1 with APOBEC-signature

mutagenesis. Many of the genes interact with each other and with known mutator genes

within cellular sub-networks. Considered collectively, damaging variants in the identified

genes are prevalent in the population. We suggest that rare germline variation in diverse

genes commonly impacts mutational processes in somatic cells.
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Cancer is primarily a disease of mutations, alterations in the
DNA sequence, which result from replication errors and/
or exogenous or endogenous DNA damaging agents1.

Genomic instability via an increased rate of mutagenesis is a
major enabling mechanism of cancer2, because it decreases the
time needed to accrue the typically 2–10 somatic mutations in
driver genes that are needed to initiate tumorigenesis3,4. Thus,
identifying genetic determinants of the variability of somatic
mutation rates is important for understanding and predicting
variation in cancer risk among individuals as well as for deter-
mining the mechanisms responsible for tumorigenesis. Moreover,
many of the most effective cancer therapies target vulnerabilities
associated with defects in specific repair pathways or mutation
processes and many widely used therapeutics are themselves
highly mutagenic5–7.

During the last decade, large-scale sequencing efforts have
greatly enabled the analysis of somatic mutations in tumor gen-
omes, both via whole-exome8 and whole-genome sequencing,
either from primary9 or metastatic tumors10. These studies have
identified driver genes and mutations4,11–13 and also highlighted
the abundance of ‘passenger’ mutations. Passenger mutations do
not confer a selective advantage to the cancer cell and can be used
to infer the sources of mutations in that particular individual and
their tumor1,14, either exogenous (chemicals, radiation) or
endogenous (e.g. DNA replication errors, spontaneous deami-
nation of cytosine)15.

Diverse mutation types have been analyzed in cancer
genomes14,16 including single base substitutions (SBS)17,18 and
the trinucleotide they are embedded in17,18, double base sub-
stitutions (DBS)19, small insertions and deletions (indels)19, copy
number alterations (CNAs)20 and other structural variants
(SVs)21. The extracted mutational patterns (often referred to as
mutational signatures) capture biological, technical, and, in many
cases, unknown sources of variation14,21. In addition to the
number and type of mutations, the regional distribution of
mutations can also be informative about the activity of mutational
processes16. For instance, in tumor genomes in which DNA
mismatch repair (MMR) is impaired, there is reduced enrichment
of mutations in late replicating regions (where presumably this
pathway is normally less active or accurate)16,22. Besides repli-
cation timing, the distribution of mutations also associate with
locations of chromatin marks (e.g. H3K36me323,24 and
H3K9me325), the direction of DNA replication (leading vs. lag-
ging strand)26,27, the direction of transcription (transcribed vs.
untranscribed strand)26, chromatin accessibility (e.g. DNase I
hypersensitive sites)28, CTCF/cohesin-binding sites29,30, and the
inactive X chromosome31. Moreover, the mitochondrial genome
carries mutational patterns that differ from those in the nuclear
genome32,33.

While the catalogs of variation in somatic mutational patterns
and rates between individuals are substantial18,19,24,26,34,35, the
extent to which this is determined by inherited genetic variants is
less well understood. Examples of inherited variants that influ-
ence mutation processes include variants that cause familial
cancer syndromes36. These include rare putative loss-of-function
(pLoF) variants in the MMR genes MSH2, MSH6, PMS2, and
MLH1 that predispose to early-onset cancer of the colorectum
and other organs (Lynch syndrome)37. Variants causing Lynch
syndrome have been associated with several somatic mutational
patterns38, most prominently short indels at microsatellite loci19,
but also a relative enrichment of mutations in early replicating
regions22, a replicative DNA strand asymmetry39, and an
increased number of mutations in several SNV-based cancer
signatures18 due to the inefficient repair of base–base mismatches
and smaller DNA loops. In addition, individuals with damaging
variants in the genes BRCA1, BRCA2, PALB2, and RAD51C have

an increased risk of breast, ovarian, pancreatic, and prostate
cancer, and have distinct somatic mutational patterns40,41 such as
SBS Signature 3 mutations17, deletions at microhomology-flanked
sites17, a copy number signature20 and several rearrangement-
based signatures21,42. The products of these genes function in the
repair of DNA double-strand breaks (DSBs) via homologous
recombination, and impairment of this pathway necessitates
repair via other, more error-prone mechanisms such as
microhomology-mediated end joining, which create certain
mutational patterns43. Further, tumor genomes with inactivation
in the DNA glycosylase MUTYH44 or NTHL145 display specific
mutational signatures. Finally, tumor genomes from individuals
born with pathogenic variants in TP53 frequently have complex
chromosomal rearrangements (so-called chromothripsis)46.

These known examples illustrate how rare inherited variants
can affect somatic mutation rates in humans38, and have moti-
vated recent analyses aiming to identify additional variants
associated with specific somatic mutational patterns. In a whole-
genome pan-cancer association study9, a previously reported
association47,48 of a common deletion polymorphism in the
coding region of APOBEC3B, altering APOBEC-signature muta-
genesis, was replicated, and another nearby quantitative trait
locus (QTL) associating with APOBEC mutation burden was
seen9. Known associations of rare variants in BRCA1 and BRCA2
with somatic CNA phenotypes were recapitulated9. In addition,
an association between rare pLoF variants in the DNA glycosylase
MBD4 with an increase of C>T mutations at CpG sites was
reported9, which was also found in several independent
studies49,50. Furthermore, in a breast-cancer-specific study, the
association of rare pLoF variants with APOBEC and deficient
homologous recombination (dHR) SNV mutational signatures
was investigated across ancestries, however without detecting hits
significant across both ancestries51.

These examples illustrate how genome-wide analyses can be
used to discover germline determinants of human somatic
mutation processes. Additionally, in model organisms, genetic
screens have revealed that mutations in many different genes
influence mutation processes52,53.

Here, we perform a comprehensive rare variant association
study using human genome sequencing data from three large-
scale projects and identify genes associating with diverse somatic
mutational processes. We use a gene-based testing approach
combining a burden test and a variance test, two dimensionality
reduction methods to define mutational phenotypes, and
we consider multiple models of inheritance and multiple in silico
variant effect prediction tools. We report 207 replicating asso-
ciations involving 15 somatic mutational phenotypes and 42
genes, and an additional 149 associations involving 24 pheno-
types and 44 genes at a more permissive false discovery rate. Rare
inherited variants in a diverse set of genes therefore contribute to
inter-individual differences in somatic mutation accumulation.

Results
Somatic mutation phenotypes in 15,000 human tumors. To
capture inter-individual variation in somatic mutation processes,
we extracted 56 mutational features from ~15,000 tumor genomes
analyzed as part of the Cancer Genome Atlas Program (TCGA)8,
the Pan-Cancer Analysis of Whole Genomes (PCAWG)9 and the
Hartwig Medical Foundation (Hartwig) study10. These features
included different types of mutational signatures based on SBS,
DBS, indels, and CNAs. Additionally we considered the dis-
tribution of SBS density across the genome with respect to
transcription strand, gene expression, DNA replication (both the
strand and timing), chromatin state (accessibility via DNAse
hypersensitivity, presence of active chromatin mark H3K36me3),

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31483-1

2 NATURE COMMUNICATIONS | (2022)13:3724 | https://doi.org/10.1038/s41467-022-31483-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


CTCF-binding sites, as well as localization on the X chromosome
or in the mitochondrial genome; all of these features were pre-
viously associated with local mutation rate variability (see the
“Methods” section) (Fig. 1a).

To remove the redundancy in the features, we used two
different dimensionality reduction techniques—independent

component analysis (ICA) and a variational autoencoder
(VAE) neural network—to deconvolve the (often correlated)
mutation features into mutational components (Fig. 1b). These
components should both better reflect underlying causal
mechanisms and their use should increase the statistical power
to detect genetic associations by reducing the multiple testing
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burden. 15 components were derived from the ICA and 14
components from the VAE (see the “Methods” section).
Thirteen of the 29 components capture known mutagenic
mechanisms (Fig. 1c), including UV radiation exposure (UVICA

and UVVAE, including e.g. CC>TT substitutions), tobacco
smoking (SmokingICA and SmokingVAE), deficiencies in MMR
(dMMR; dMMRICA, dMMRVAE1, and dMMRVAE2), deficiency in
the repair of DSBs via homologous recombination (dHR;
dHRICA, dHRVAE1, and dHRVAE2), and APOBEC-mediated
mutagenesis (APOBECICA, APOBECVAE1, and APOBECVAE2).
Many of the components combined different classes of
mutational features. For instance, dMMRVAE2, has a high
correlation with the SNV signature RefSig MMR154, several
types of short indels at microsatellite loci and the relative
mutation rate with respect to replication timing. The remaining
16 components do not have a known mechanistic cause but can
be further described via the features with which they are strongly
correlated. For instance, we extracted components covering
X-chromosomal hypermutation (X-hypermutation), a compo-
nent covering mitochondrial SNVs (Mitochondria), and two
components related to SNV-signature 5 mutations (Sig.5ICA and
Sig.5VAE). We note that using the outputs of both ICA and VAE
methods reintroduced some redundancy in the dataset (e.g. see
Fig. 1c for dMMRVAE1 and dMMRICA or for dHRVAE2 and
dHRICA). Since we did not know a priori which method would
better capture biological mechanisms for each process, we kept
the extracted components from both tools for subsequent
association testing.

Rare variant association using a combined burden and var-
iance test. To identify genes with rare germline variants that
impact somatic mutational processes (Fig. 2a), we defined five
different sets of rare pLoF variants utilizing variants with
a population allele frequency of <0.1 % to extract potentially
causal variants. One set involved protein-truncating variants
(PTVs), two sets utilized PTVs and predicted deleterious mis-
sense variants by the tool CADD55 at two different strin-
gency thresholds, and the two other sets involved only those
missense variants in conserved gene segments predicted by the
missense tolerance ratio (MTR)56 or by constrained coding
regions (CCR)57 method (see Methods and Fig. 2b bottom).
Three models of inheritance were tested by only considering rare
pLoF variants (dominant model; only germline variants), rare
pLoF variants in combination with somatic loss-of-heterozygosity
(LOH)58 (additive model), and by only considering samples with
biallelic inactivations of the corresponding gene (excluding genes
with rare pLoF variants without somatic LOH; recessive model)58.
In total, 15 different models were tested (Fig. 2b top). To reduce
the multiple testing burden, we restricted testing to a set of 891
genes constituting known cancer predisposition genes, DNA
repair and replication genes and chromatin modifiers. The
combined test SKAT-O59, which unifies burden testing and the
SKAT variance test60,61, was utilized for association testing
(Fig. 2b bottom). In brief, the test statistic in SKAT-O is the
weighted sum of the test statistic from a burden test and a SKAT

test. Importantly, the burden test is more powerful when all rare
pLoF variants in a gene are causal, while SKAT is more powerful
when some rare pLoF variants are not causal or when rare pLoF
variants are causal but with effects in opposite directions59.
In SKAT-O the parameter ρ indicates whether the burden or
the variance test was predominantly used to identify the
particular association.

42 genes robustly associated with somatic mutation pheno-
types. Testing was performed in the discovery cohort (TCGA)
across 6799 individuals of European ancestry and 12 different
cancer types as well as in a pan-cancer analysis for all 15 models.
Genes were only tested via the dominant or additive model when
at least 2 individuals carried a rare pLoF variant in that gene. For
the recessive model, genes were only tested when the gene was
biallelically affected in at least two samples either by a biallelic
rare pLoF variant or via a rare pLoF variant+ LOH (see the
“Methods” section). In total 594,462 tests were conducted. We
estimated false discovery rates (FDRs) via randomization by
comparing the observed p-value distribution against a random
one (see the “Methods section and Supplementary Fig. 2). As an
additional negative control, we considered a random set of genes,
comparing the number of replicated hits at a certain empirical
FDR with the random gene set to the number with our candidate
gene list (Supplementary Fig. 2). It should be noted that this
yields a conservative upper bound to the FDR since the random
gene lists may also include genes which affect somatic mutation
processes e.g. yet-undiscovered DNA repair factors.

In total, we identified 6488 associations (out of 591,302 tests) in
the discovery phase at an empirical (randomization-based) FDR
of 1% (Supplementary Fig. 12). Out of the 6488 hits, 3807 had a
sufficient number of rare pLoF variants in the matching cancer
type (see the “Methods” section) to allow re-testing in an
independent validation cohort (merged PCAWG and Hartwig) in
the matching cancer type, consisting of 4683 patients of European
ancestry. 207 associations replicated in the validation cohort at an
empirical FDR of 1%, covering 42 individual genes, 15 mutational
components, 46 unique gene–cancer type pairs, and 65 unique
gene–cancer type–component combinations (Fig. 3). We also
checked the number of replicated associations at a more
permissive FDR of 2%. At an FDR of 2%, 12,480 hits were
detected in the discovery cohort, 7290 hits were able to be re-
tested in the validation cohort, out of which 356 associations
were replicated covering 86 individual genes, 24 mutational
components, 105 unique gene-cancer type pairs, and 140 unique
gene–cancer type–component combinations (Supplementary
Fig. 13).

The modest validation rate (i.e. high false-negative rate) could
be attributed to the low statistical power to detect medium effect-
size genes, as suggested by our power analysis using the
PAGEANT62 tool (Supplementary Figs. 3 and 4). Further, by
simulations that reduce the size of the validation cohort, we
show that the number of replicated hits was sensitive to even
small reductions in the sample size. Taken together, these
analyses support that higher sample sizes will lead to the

Fig. 1 Somatic mutation phenotypes in ~15,000 human tumors. a Somatic mutations were extracted from approximately 9300 whole-exome and 5500
whole-genome sequenced cancer genomes (left). 56 different somatic mutation features were estimated in each cancer genome, covering different types
of mutations (right table). b Final set of somatic components was extracted by applying two methods to the input matrix (tumor samples as rows and
somatic mutation features as columns): independent component analysis (ICA) and a variational autoencoder (VAE). 15 ICA-derived and 14 VAE-derived
components (mutation phenotypes) were extracted. c Overview of extracted somatic mutation components (x-axis) and their Pearson correlation (color
code) with the input somatic mutation features (y-axis). Gray strip at the bottom displays whether the component was extracted via ICA or VAE.
Components were named based on the underlying mutational process or strongest correlating input feature(s). dMMR, deficient DNA mismatch repair,
dHR, deficient homologous recombination. Data underlying panel c are provided as a Source Data file.
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discovery and/or validation of additional associated genes
(Supplementary Figs. 6–11).

Notably, seven genes associated across more than one cancer
type, of which three (BRCA1, EP300, MTOR) associated with the
same somatic mutational component across two different cancer
types (Supplementary Fig. 15). Furthermore, out of the hits at a
FDR of 1%, seven genes were known cancer predisposition
genes36 (BRCA1, BRCA2, FANCC, MLH1, MSH2, PALB2, and

APC) and at a FDR of 2% six additional cancer predisposition
genes36 were identified (AXIN2, COL7A1, DIS3L2, DOCK8, SOS1,
and WRN) amongst our set, suggesting that genes that affect
somatic mutation processes can also confer cancer risk.

At an FDR of 1%, most of the replicated hits were identified in
the pan-cancer analysis (57%), followed by breast cancer (24%),
skin cancer (7%), and prostate cancer (4%) (Fig. 2c), reflecting
differential sample sizes between cancer types (Supplementary
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Fig. 12f). Furthermore, approximately half of the mutational
components (15 out of 29) were associated with at least one
replicated gene–cancer type pair (Fig. 2d), suggesting that many
mutagenic processes are affected by germline variation in human.
Many replicated hits were associated with features related with
dHR (dHRICA: 21%, dHRVAE1: 17%; dHRVAE2: 16%), followed by
dMMR (dMMRICA: 11%; dMMRVAE1: 7%), consistent with well-
established roles of HR and MMR failures in accelerating
mutation rates in tumors38. Notably, 25 genes were only
identified via an ICA derived component, while eight genes were
only identified via a VAE-derived component (Fig. 2e), suggesting
a complementary role of the two methods to summarize mutation
processes.

Many of the replicated associations were identified via the
dominant (42%) and the additive (39%) models (Fig. 2f),
suggesting that heterozygous variants can alter mutation rates
in humans, as was suggested for a model organism52. The
comparatively lower number of replicated hits of the recessive
model can be however largely attributed to the fact that rare pLoF
variant combined with somatic LOH events are lowly frequent
and thus associations could not be tested for many genes (only
4% of the 591,302 tests performed in the discovery phase were
from the recessive model). Considering the proportion of
replicated hits to the number of re-tested hits, the validation
rate was ~2.5 times higher for the recessive model (Supplemen-
tary Fig. 12e), which was expected since many DNA repair genes
are likely haplosufficient63,64.

Uncertainties in variant pathogenicity predictions increase the
utility of a variance test over a burden test. We further con-
sidered the number of replicated associations using different
approaches and stringency thresholds for declaring a missense
variant to be pathogenic. The highest number of hits replicated
using the more permissive thresholds, using PTVs+missense
variants at a CADD55 score ≥ 15 (79/207, 38%), followed by
PTVs+missense variants at a CADD score ≥ 25 (62/207, 30%)
and PTVs only (50/207, 24%) (Fig. 2g). This suggests that some
missense variants that were assigned a lower pathogenicity score
—likely due to difficulties in assessing variant pathogenicity in
silico65—can nonetheless bear on somatic mutation phenotypes.
We further tested by only considering rare pLoF variants in
conserved gene segments via CCR and MTR, however this yielded
few replicated hits (Fig. 2g). It should be noted, however, that
some hits were only identified when using the PTV-only set and
were not recovered in more permissive rare pLoF variant sets.

The SKAT-O test we employed combines burden testing and a
variance test component (SKAT)59. Examining the SKAT-O
parameter ρ for the 207 validated hits, in both the discovery and
the validation cohort, revealed that most hits replicated via the

variance test (ρ < 0.5 in 393/414 tests) (Fig. 2h). The variance test
is the more powerful test of the two when many variants in the
tested set are not causal59. We hypothesized that a common
reason why allegedly pathogenic rare pLoF variants would not be
causal is because of inaccurate prediction of damaging variants by
in silico predictors66. If so, at the more stringent settings more
hits would replicate via the burden test (which has higher power
when many variants in the set are causal), while at the less
stringent settings more hits would replicate via the variance test
(which is robust to inclusion of non-causal variants). Indeed,
several hits replicated via the burden test when using the most
stringent rare pLoF variant set (PTVs only; Fig. 2i), including
MLH1, BRCA1, and BRCA2. For the more permissive rare pLoF
variant sets, the number of hits replicating via the burden test
decreased and all of the replicated hits had a ρ lower than 0.25
(meaning, they used nearly exclusively the variance component)
for the rare pLoF variant set including missense variants at
CADD ≥ 15. The positive control genes BRCA1 and BRCA2 still
replicated in the PTV+missense CADD ≥ 15 rare pLoF variant
set, but with a ρ of 0 (variance test exclusively used), suggesting
that this variant set included many non-causal variants.

In summary, many hits were recovered even with the more
permissive rare pLoF variant sets by utilizing the combined
testing approach of the SKAT-O method, suggesting the variance
(SKAT) test can partially compensate for the inaccuracy of the in
silico predictors. Most of the replicated hits would not have been
identified by use of classical burden testing in a data set of
this size.

Genes associating with mutational patterns of defects in
homologous recombination repair. Within the set of 207
replicated associations at an FDR of 1%, 117 (57%) involved
associations of BRCA1, BRCA2, and PALB2 with various muta-
tional components associated with dHR (Fig. 3), consistent with
the known roles of these genes in the repair of DSBs. All three
genes associated with features of defective HR, such as deletions
at microhomology-flanked sites (dHRICA and dHRVAE2) and SNV
signature 3 mutations (dHRVAE1). In addition, BRCA1, but not
BRCA2, associated with the component “Sig.MMR2+ ampli.”,
reflecting an increased number of amplification events. This is in
accordance with a recent report, in which BRCA1-type dHR vs.
BRCA2-type dHR were differentiated via the presence of dupli-
cation events40.

We also detected additional genes associating with these dHR
mutational components. In skin cancer, PAXIP1, EXO1, and RIF1
associated with dHRVAE1, the component correlating with SNV
signature 3 mutations. In support of this, PAXIP1 and RIF1 have
been implicated in the repair of DNA DSBs67–69 and interact with
each other70. Thus, these associations suggest that individuals

Fig. 2 Discovery and validation of rare putative loss-of-function (pLoF) variants associating with somatic mutation components via a gene-based
combined burden and variance test. a Associations were identified in the discovery cohort (TCGA WES) and replicated in the validation cohort
(PCAWG+Hartwig WGS). b Associations were tested by 15 models in total, by utilizing 3 models of inheritance and 5 differently prioritized rare pLoF
variant sets (all with population allele frequency <0.1%; PTVs, protein-truncating variants) (top). CADD, MTR, and CCR are different in silico variant
prioritization tools. The combined test SKAT-O was applied, which calculates a weighted sum between a burden test statistic and the SKAT variance test
statistic. When ρ= 1, the test reduces to a burden test, and when ρ= 0, the test reduces to the variance (SKAT) test. A schematic (not actual data) to
show how the two tests can result in contrasting outcomes (bottom). c Number of replicated hits at a false discovery rate (FDR) of 1% and 2% across
cancer types and d across somatic mutational components. e Overlap of number of genes replicating at a FDR of 1% and 2% via the two different
dimensionality reduction methods. f Number of replicated hits at 1% and 2% FDR across models of inheritance (left) and overlap of replicated hits between
models at a 1% FDR (right). g Number of replicated hits at 1% and 2% FDR across rare pLoF variant sets (left) and overlap of replicated hits between rare
pLoF variant sets at a 1% FDR (right). h Distribution of ρ values from the SKAT-O test (x-axis) for the 207 hits that replicated at 1% FDR, in the discovery
(gray) and validation cohort (red). i Distribution of SKAT-O ρ values (y-axis) for the 207 hits, in the discovery (top row) and validation cohort (bottom
row), across models of inheritance (columns) and rare pLoF variant sets (x-axis). Data underlying panels c–i are provided as a Source Data file.
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Fig. 3 Overview of replicated associations at a false discovery rate (FDR) of 1%. Gene-cancer type pairs (x-axis) and the somatic mutational component
(y-axis 1st column) for which the association replicated at a 1% FDR. Corresponding rare putative loss-of-function (pLoF) variant set(s) are shown in each
tile, where symbols and color code denote model(s) of inheritance by which they associated. Further, each tile shows the number of individuals carrying
rare pLoF variants (2nd and 3rd column) or rare pLoF variants+ somatic LOH (4th and 5th column) for the corresponding rare pLoF variant set associated.
Gene–phenotype associations that have been previously identified are highlighted (pink for deficient DNA mismatch repair (dMMR) and orange for
deficient homologous recombination (dHR)). Underlying data are provided as a Source Data file.
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carrying damaging variants in either gene have an increase in
signature 3 mutations, potentially reflecting a downstream effect
of disrupted DSB repair. Additionally, EXO1 knockout in a cell
line model71 was reported to result in a mutational signature
correlating with signature 3 (Pearson R= 0.71) and signature 5
(R= 0.71)71, supporting our association observed in tumors.

Furthermore, we identified pan-cancer replicated associations
of APEX1, RECQL, and DNMT1 with dHRICA (with DNMT1
additionally associating with dHRVAE2). These associations with a
microhomology deletion mutation phenotype are diagnostic of an
increased activity of the microhomology-mediated end joining
(MMEJ), a highly error-prone DSB repair pathway, suggesting
that variants in these genes may disrupt normal functioning of
the less error-prone HR and/or NHEJ pathways.

Five additional genes (ATR, JADE2, SMARCAL1, TIMELESS,
and WRN) were identified at a more permissive threshold,
associating with at least one dHR-related component (dHRICA

and/or dHRVAE2). Notably, ATR and WRN proteins physically
interact with BRCA1 (Fig. 4e) and play known roles in repair of
DSBs72–74, which would support these associations. In particular,
pathogenic recessive variants in WRN cause Werner syndrome75

and it has been suggested that the WRN helicase is crucial for the
repair of dMMR-associated DSBs76,77. Additionally, SMARCAL1
and TIMELESS proteins directly interact with ATR (Fig. 4e).

Our analyses therefore replicate well-known associations
between rare inherited variants in HR genes and dHR-like
somatic mutational components, as well as identifying associa-
tions with additional genes.

MTOR and interacting protein variants, as well as some
chromatin modifiers, associate with mismatch repair pheno-
types. In the context of Lynch syndrome, germline variants in
MLH1, MSH2, MSH6, and PMS278 affect somatic mutation pat-
terns via an impairment of the DNA mismatch repair pathway,
observed as microsatellite instability (MSI, indels at simple DNA
repeats)79,80. MSI was also associated with SNV mutational
signatures18, as well as with a redistribution of mutations across
DNA replication timing domains22. In accordance with this, we
detected associations of rare pLoF variants in MLH1 and MSH2
with multiple dMMR-related components, i.e. those having a high
contribution of small indels at microsatellite loci (dMMRICA

and dMMRVAE1), and with the SNV-derived signature MMR1
mutations and replication timing (dMMRVAE2; for MLH1).

Beyond the known Lynch syndrome genes, we also discovered
associations between variation in EXO1, which has an established
role in MMR81 and increases the frequency of 1 bp indels when
inactivated in cultured cells82, and dMMRVAE1 and dMMRVAE2.
However, EXO1 also associated with dHR-related components,
suggesting a more pleiotropic role for the EXO1 exonuclease in
shaping somatic mutational processes in human tumors. Con-
sistent with the association with dHR components, it was
reported in yeast as well as human cell lines that EXO1 processes
DSB ends83 and is required for the repair of DSBs via HR84.

Multiple other genes were associated with dMMR phenotypes
(all associated with dMMRICA and dMMRVAE1), including the
chromatin-modifying enzyme genes TRAAP in ovarian and
SETD1A in breast, and the growth signaling gene MTOR in
prostate cancer (and in stomach+ esophagus cancer with
dMMRVAE1 only at a FDR of 2%). Additionally, TTI2 in prostate,
APC in breast, MAD2L2 in pan-cancer, HERC2 in prostate, and
MDN1 in brain cancer associated with the mutation component
dMMRICA. There is additional evidence supporting these
associations for some of these genes from prior studies. MTOR
was identified as one of four genes that regulate MSH2 protein
stability85. Thus, a possible mechanism explaining the identified

association of MTOR with dMMR-linked components could be a
decreased stability of MSH2 leading to dMMR and consequently,
an increased number of indels. A similar mechanism could be
speculated for TTI2, which binds MTOR via the TTT complex
(TELO2–TTI1–TTI2) and is important for mTOR maturation86.
This hypothesis is further supported by TELO2 associating with
the same component (dMMRICA) in kidney cancer at a more
permissive FDR of 2% (Supplementary Fig. 14). Furthermore,
SETD2 associated in colorectal cancer with dMMRVAE1 at a FDR
of 2%. It has been shown in previous studies23,24, including in
cancer genomes24, that the encoded methyltransferase SETD2
regulates MMR activity by recruiting the MSH2–MSH6 complex
to H3K36me3-marked chromatin regions. Thus, this association
is supported by strong evidence from prior biochemistry and
genomic studies23,24 (Supplementary Note 1.1).

Taken together, we recovered known associations of MMR
genes with somatic mutational patterns and identified additional
genes where germline variants are associated with MMR
phenotypes, suggesting that a broad network of genes cooperates
to maintain MMR efficiency in human cells.

MSH3 and additional genes associate with a distinct dMMR
phenotype enriched in ≥2 nt indels. Interestingly, we identified
associations between rare pLoF variants in several genes and a
somatic mutational component (“Small indels 2 bp”) that reflects
indels of a size of 2 bp and longer, which is in contrast to the
predominantly 1 bp long indel genomic signature caused by
standard dMMR (reviewed in ref. 87). Furthermore, this com-
ponent does not have a contribution from SNV features, indi-
cating that it is specifically capturing indels (Fig. 1c and
Supplementary Fig. 27). Among others, the MMR gene MSH3
associated with this component in the pan-cancer analysis. In
contrast to the DNA mismatch repair genes PMS2,MLH1,MSH2,
and MSH6, germline variants in MSH3 have not been identified
in patients with Lynch syndrome, even though they were reported
to increase cancer risk37. The MSH2–MSH3 (MutSβ) complex
has a role in repairing insertion/deletion loops rather than
for base–base mismatches88–90. This is in contrast to the
MSH2–MSH6 (MutSα) complex, which repairs base–base mis-
matches and indels shorter than 2 nucleotides91,92. These prior
mechanistic studies support our association and suggest that loss
of MSH3 in cancer cells results in an increased rate of accumu-
lation of indels of 2 bp and longer. Other genes associating with
this component were CHD3 in bladder cancer, HERC2 in ovary
cancer, PIK3C2B in lung squamous cell cancer, EP300 in skin
cancer (and breast cancer at a FDR of 2%), RBBP5 in pan-cancer,
and SMC1B in pan-cancer. Additionally, MLH3 associated with
the same component at an FDR of 2%. The MLH3 protein is a
paralog of MLH1 that interacts with other MMR proteins
(Fig. 4e) and was previously associated with microsatellite
instability93.

Overall, we detected associations between germline variants in
MSH3 and several other genes, and somatic indels of at least 2 bp,
suggesting a causal role for MSH3 variants in a specific subtype of
MMR failure which does not markedly increase SNV rates.

Variants in APEX1 associate with increased levels of APOBEC
mutagenesis. We discovered and replicated associations between
APEX1 and three different somatic mutation components. APEX1
encodes for a apurinic/apyrimidinic (AP) endonuclease that
cleaves at abasic sites, which can be formed spontaneously or
during base excision repair pathway by a DNA glycosylase94. At a
FDR of 1%, APEX1 associated with dHRICA in pan-cancer, and at
a FDR of 2% it associated with dHRVAE2 in pan-cancer and
with APOBECVAE2 in stomach/esophagus cancer. The somatic
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components dHRICA and dHRVAE2 are enriched for deletions at
microhomology-flanked regions. Prior studies showed that the
encoded protein APE1 protein plays a role in the repair of DSBs
and that depletion of APE1 leads to an decrease of HR-directed
repair95, suggesting a higher reliance on alternative pathways.

The APOBECVAE2 component is enriched for SNV signature
13 (C>G) mutations18. These can be formed when the APOBEC-
induced uracil is excised via the uracil–DNA glycosylase
UNG and a cytosine is inserted opposite the abasic site by
the mutagenic translesion DNA synthesis enzyme REV196.
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Conceivably, a mechanism underlying the higher burden of C>G
mutations in tumors of individuals with inherited damaging
variants in APEX1 could be due to a decreased activity leading to
a slower repair of the abasic site and consequently, a preference
for lesion bypass via the error-prone REV1.

Network analysis reinforces the role of rare germline variants
in somatic mutation processes. The previously known dHR genes
encode proteins that physically interact as parts of the same protein
complexes97. Similarly, the products of the known dMMR genes
also physically interact98. We used protein–protein interactions
curated in the STRING99 database to test whether the genes in
which rare germline variants associated with somatic mutational
phenotypes also encoded physically interacting proteins. Such guilt-
by-association network analysis has been used to support associa-
tions between somatic mutations and cancer100,101 and between
common variants and disease phenotypes102 but has not yet been
widely adopted for the analysis of rare variants.

We first considered genes associated with somatic mutation
phenotypes at a FDR of 1%. These genes are strongly enriched for
encoding proteins with physical interactions (Fig. 4a; median
difference from a random distribution= 17 and P= 0.002 by
randomization, controlling for interaction node degree). This also
held true after removing dMMR/dHR genes with previously
reported associations (Fig. 4c; median difference= 7 and
P= 0.032 by randomization).

Secondly, we considered the 44 genes with moderate statistical
support of association with somatic mutation phenotypes (those
replicating at a FDR of 2%). 21 of the encoded proteins interact
with at least one of the proteins encoded by the more stringent
FDR 1% genes. This is again higher than expected by chance
(Fig. 4b; median difference= 6 and P= 0.021 by randomization),
further prioritizing these 21 genes for additional study. This also
held true after removing previously known genes (Fig. 4d; median
difference= 5 and P= 0.033 by randomization). Similar results
were seen using the HumanNet gene network103, which incorpo-
rates many data sources to predict functionally-related genes
(Supplementary Fig. 19).

Thus, genes with replicated associations with somatic mutation
phenotypes preferentially encode proteins that physically interact
in cellular networks. Genes replicating at a more permissive FDR
also often connected to the same sub-networks, illustrating the
potential for network-based analyses to provide supporting
evidence in rare variant association studies.

To further prioritize identified genes based on their functional
consistency, we made use of the networks of protein–protein
interactions to test (i) the strength of interaction each protein has
with known dMMR/dHR proteins (Supplementary Fig. 20) and
(ii) the strength of interaction each protein has with its direct
neighbors amongst the discovered set of genes (Supplementary
Fig. 21). Some of the hits have high interaction scores with known
dMMR/dHR genes, such as RBBP8, MSH3, RAD51, MLH3,
TP53BP1, EXO1, and WRN, suggesting a higher priority for

follow-up for these hits based on functional interaction data
(Supplementary Fig. 20).

Population prevalence of damaging germline variants in genes
associated with somatic mutational phenotypes. To better
estimate the contribution of rare pLoF variants to differences in
somatic mutational processes, we counted how many individuals
in our cancer patient datasets had certain rare pLoF variants and
compared this (i) to randomly selected protein-coding genes
while controlling for gene length and (ii) to the frequency of the
pLoF variants in the control, largely non-cancer-patient set of
gnomAD104 (Fig. 5). Considering known mutator genes, 0.6%
had PTVs in Lynch syndrome dMMR genes (MSH2, MLH1,
MSH6, PMS2), and 1.3% had PTVs in in dHR genes (BRCA1,
BRCA2, PALB2, RAD51C) in the discovery cohort (TCGA).
Considering only the associated genes excluding known dMMR
and dHR mutator genes, 1.4% had a PTV in genes that replicated
at a FDR of 1%, and 2.1% in genes that replicated at a FDR of 2%.
A similarly high prevalence of damaging variants in the dis-
covered genes, relative to known mutator genes, was seen in
prioritized missense variants via CADD at stringent (≥25) and
permissive thresholds (≥15; Fig. 5). Additionally, when compar-
ing this with prevalence of deleterious variants in control sets of
length-matched genes, as well as the frequency of the same var-
iants in gnomAD, there was an excess of damaging missense
variants in the known dHR and dMMR genes as well as in the
discovered genes at 1% and 2% FDR thresholds (excluding known
dMMR and dHR mutator genes; Fig. 5), suggesting possible roles
in cancer risk for these sets of genes, and also considered indi-
vidually (Supplementary Fig. 18).

Taken together, these results suggest that the candidate
mutator genes are affected by deleterious variants in a broadly
similar fraction of the population of cancer patients like the
known human germline dMMR and dHR genes.

Discussion
We have shown here that rare inherited variants in diverse genes
associate with different mutational processes. Our approach
incorporated a variance-based test via SKAT-O59, two different
dimensionality reduction algorithms to extract somatic mutation
patterns, the usage of different in silico variant prioritization
tools55–57, and the use of different models of inheritance for
association testing. This experimental design allowed us to
identify multiple replicating associations between genes and
somatic mutation phenotypes. The inclusion of several genetic
models and variant sets was also applied in a recent large-scale
multi-disease study, which demonstrated how this approach can
result in associations105.

Most of the associations we identified were replicated only via
the variance-based test SKAT, which suggests that the set of var-
iants predicted to be damaging still contains many non-causal
variants. This suggests that SKAT can help compensate for
inaccuracies in current variant pathogenicity prediction tools

Fig. 4 Network analysis supports the role of rare germline variation in somatic mutational processes. Data in all panels were generated using physical
protein interactions from the STRING database that have a combined score≥ 80%. In panels a–d, p-values were calculated via randomization using a one-
sided test. a Number of physical interactions in a random subset of the tested gene set, controlled for interaction node degree (x-axis, blue bars). Red line
shows the number of interactions within genes which replicated at a 1% false discovery rate (FDR). b Number of randomly selected genes from the tested
gene set interacting with at least one gene, which replicated at a 1% FDR (x-axis, red bars), controlled for interaction node degree. Red line shows the
number of genes, out of the ones which additionally replicated at a 2% FDR, interacting with at least one gene replicating at a 1% FDR. c–d Same as panels
a and b, after excluding known genes from the analysis (BRCA1, BRCA2, PALB2, MSH2, and MLH1). e Visualization of physical interactions between proteins
corresponding to genes replicating at 1% FDR (square) and at 2% FDR (ellipse). Color code in pie chart shows the somatic mutation components the
corresponding gene was associated with (bottom panel). Line width corresponds to combined (experimental, database, and text mining) STRING
interaction score. Data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31483-1

10 NATURE COMMUNICATIONS | (2022)13:3724 | https://doi.org/10.1038/s41467-022-31483-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


and/or other technical inaccuracies such as sequencing errors.
More accurate variant effect prediction tools should further
increase the power of these kinds of analyses66,106,107. We also
found that using two techniques to derive informative somatic
mutation phenotypes identified more replicated associations than
using either approach alone. This is consistent with findings in
other fields, where different algorithms have also been found to
capture complementary information, for example in gene
expression analysis108 and calling genetic variants from sequen-
cing data109.

We identified genes associating with dHR (e.g. RIF1, PAXIP1,
WRN, EXO1, and ATR) and with dMMR phenotypes (e.g.MTOR,
TTI2, SETD2, EXO1, MSH3, and MLH3). Several associations are
supported by strong evidence from prior studies such as EXO1
with dHR83,84 and dMMR71,81,82, SETD2 with dMMR23,24 and
MSH3 with a different form of dMMR82,88,89; reviewed in ref. 87.
On top of the associations with dHR- and dMMR-related

mutation components, we also identified an association of
APEX1 with APOBEC mutagenesis (as well as dHR), and addi-
tionally several genes associating with a mutational component
enriched in brain and liver cancers with an unknown underlying
mechanism (Supplementary Note 1.2 and Supplementary
Fig. 37). Guilt-by-association network analysis has not yet been
widely adopted in rare variant association studies but we found
that it was useful for both connecting high-stringency replicating
genes to each other and for connecting lower-confidence hits to
the high-confidence genes. These interactions are useful for
prioritizing the identified genes and provide specific mechanistic
hypotheses connecting them to known germline mutator genes.

Interestingly, the genetic associations distinguish between two
different dMMR mutational phenotypes. Firstly, the common
dMMR signature, enriched for 1 bp indels and the SNV-signature
MMR1; these associations involved, e.g. the Lynch syndrome
genes MSH2 and MLH1, and some additional genes, e.g. MTOR
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Fig. 5 Frequency of rare putative loss-of-function (pLoF) variants across cohorts in comparison to individuals from gnomAD. The frequencies of rare
pLoF variants within the individuals (y-axis) of the discovery cohort (TCGA-WES; n= 6799 individuals) and the validation cohort (PCAWG+Hartwig-
WGS; n= 4683 individuals) (rows) across different variant sets (columns) for different gene sets (x-axis). Known deficient homologous recombination
(dHR) gene set includes BRCA1, BRCA2, PALB2, and RAD51C, known deficient DNA mismatch repair (dMMR) gene set includes MSH2, MSH6, MLH1, and
PMS2, the replicated 1% false discovery rate (FDR) set includes genes replicating at a FDR of 1% after excluding known dMMR and dHR genes, and the
replicated 2% FDR only set includes all remaining genes that replicated at a FDR of 2%. Different pLoF variant sets include protein-truncating variants
(PTVs) only, and PTVs plus missense variants defined as damaging based on the in silico prediction tool CADD (thresholds at ≥ 25 or ≥ 15). Color code
shows frequency of individuals carrying rare pLoF variants for the gene sets in the utilized cancer genomic datasets (red), for matching variants in control
samples from gnomAD dataset with non-Finnish European ancestry (blue), and for length-matched randomly selected protein-coding gene sets in cancer
datasets (yellow). Random selection for length-matched genes was performed 10 times, and distribution shown in boxplot. Center of each boxplot shows
median, bounds of box are at 25th and 75th percentiles and minimum and maximum extend to the smallest and largest value, excluding values more than
1.5 times the interquartile range from the hinges. Only rare pLoF variants were considered that were found in gnomAD. Data are provided as a Source
Data file.
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and SETD2. Secondly, a distinct set of associations involved a
mutational component enriched for 2 bp and longer indels, but
did not encompass a notable increase in SNVs, involving the core
MMR gene MSH3, and additionally MLH3, EP300, and PIK3C2B.

Furthermore, the design of our study is likely to result in a
conservative bias in the number of replicated hits, because the
discovery and validation cohorts were based on different
sequencing technologies (WES versus WGS, respectively). WES
data yields more noisy somatic mutation features, as it covers
~2% of the genome and some features (e.g. replicative
DNA strand asymmetry, mutation rates at CTCF/cohesin-bind-
ing sites) are measurable at few loci and so enrichments are
difficult to estimate due to low mutation counts. Moreover, the
power to call germline variants at certain loci may be different for
WGS and WES data. The TCGA WES data also has batch effects
stemming from the different sequencing centers and sequencing
technologies110,111. To offset this risk, we only extracted germline
variants from regions with enough coverage in each of three
sequencing centers, as previously58. This limited the number of
rare pLoF variants extracted, and thus potentially also the number
of discoveries.

In order to increase the sample size and thus power, we
combined the cancer cohorts that contained both primary and
metastatic cancers, as well as treatment-naïve and pretreated.
Similarly, in the pan-cancer analyses, we aggregated data from all
cancer types, with the result that the distribution of cancer types
between the discovery and validation cohort was different. It is
possible that some hits did not replicate due to these differences
in cancer type composition.

Our initial set of somatic mutational features was largely
motivated by recent reports14,16–19,22,23,26–29,31,32,39,40,42. Con-
sideration of additional, complementary features could identify
additional associations in future studies. Lastly, our analysis was
performed on samples with European ancestry since this was the
most numerous group; including sequencing data from
more diverse populations is also likely to identify additional
associations.

In conclusion, our findings highlight the role of rare inherited
germline variants in shaping the mutation landscape in human
somatic cells, leading to variability in somatic mutagenesis
between individuals. The results support observations from
genetic screens in model organisms suggesting that mutational
processes can be affected by variation in diverse genes52,53 and
suggest that low mutation rates in human somatic cells are hard
to maintain. Cooperation between many genes is required to
guard against genomic instability: the canonical mutator genes
(particularly MMR and HR genes) are embedded in a network of
regulators and supporting genes required for optimal functioning
of the DNA repair systems.

In the future, larger sample sizes with WGS data and better
variant pathogenicity prediction tools will enable higher-powered
association studies, further elucidating the potentially very
numerous set of genes that determine human somatic mutation
rates. The identification of additional genes altering human
mutation processes may have important implications for under-
standing, preventing and treating cancer and other somatic
mutation-associated disorders.

Methods
Study design. In this study, the effects of rare putative loss-of-function (pLoF)
variants on different somatic mutational components from cancer genomes were
comprehensively analyzed. We utilized genomic sequencing data from three large-
scale projects: the Cancer Genome Atlas Program (TCGA)8, the Pan-Cancer
Analysis of Whole Genomes (PCAWG)9, and the Hartwig Medical Foundation
(Hartwig)10. Associations between rare pLoF variants and somatic features were
initially detected in the discovery cohort and hits reaching significance were re-
tested in the validation cohort. TCGA WES samples were used as the discovery

cohort due to the bigger sample size and WGS samples from PCAWG and Hartwig
were aggregated and utilized as the validation cohort.

Extraction of somatic mutational features and somatic components
Data sources in the discovery cohort. For the somatic features which were based on
SNVs, DNVs, and indels, the somatic calls from the MC3 Project112 were used
(mc3.v0.2.8.PUBLIC.maf.gz [https://gdc.cancer.gov/about-data/publications/mc3-
2017]). For the somatic features based on CNVs, TCGA exome data was down-
loaded from the TCGA repository at NCI Genomic Data Commons [https://portal.
gdc.cancer.gov/] (dbGaP accession ID phs000178) and processed as described in
ref. 113. Copy numbers were identified with the tool FACETS114. The tool used as
input data the BAM file of the tumor sample, the BAM file of the sample-matched
normal sample, and a vcf file of common human SNPs. Furthermore, 93 indivi-
duals, which were reported to be positive for human papillomaviruses in head and
neck cancer samples115, were excluded from the analysis. In total, this yielded
somatic calls from 10,033 individuals.

Data sources in the validation cohort. Mutation calls for PCAWG were obtained
from the ICGC data portal [https://dcc.icgc.org/repositories]. Somatic mutation
calls and copy number calls were obtained from the DKFZ/EMBL variant call
pipeline. All samples were downloaded except for ESAD-UK, MELA-AU and all
project id’s ending with—US in order to prevent an overlap with the discovery
cohort. In total, samples from 1662 donors were downloaded. In short, single
nucleotide variants were called via samtools116 and bcftools 0.1.19117, and indels
were called via Platypus 0.7.4118. Copy number alterations were estimated with
ACEseq v1.0.189119 (Supplementary information in PCAWG flagship paper9).
Data access to the estimated somatic nucleotide variants and copy number variants
from the Hartwig Medical Foundation were acquired as well under request number
DR-069 [https://www.hartwigmedicalfoundation.nl/en/], making up 3613 samples
in total. In Hartwig nucleotide variants were called with Strelka120 1.0.14 and copy
number alteration with the Purple tool10. BAM files for the melanoma dataset
MELA-AU (dataset ID: EGAD00001003388; 183 individuals) and the esophagus
dataset ESAD-UK (dataset ID: EGAD00001003580; 303 individuals) were down-
loaded from the European Genome–Phenome Archive (EGA) [https://ega-archive.
org]. Somatic mutations were called via Strelka121 2.9.10 and copy number
alterations were extracted as described above with the tool FACETS114.

Further processing of somatic calls. For all datasets, regions which are known to be
difficult to be aligned were excluded as well as regions which have been blacklisted
by the UCSC Genome Browser122. As described previously22,24 blacklisted regions
by Duke and DAC were removed and the CRG75 alignability track was applied
[https://genome.ucsc.edu/cgi-bin/hgTables] to only keep regions, where 75-mers in
the genome can be uniquely aligned in the human reference genome hg19. Pro-
cessing was performed with bedtools 2.27 [https://bedtools.readthedocs.io/en/
latest/].

Single nucleotide variants—total mutation counts. Based on the number of SNVs in
the nuclear genome, eight different somatic mutational somatic features were
estimated: the total number of SNVs, the number of C>A substitutions, the number
of C>G substitutions, the number C>T substitutions in regions where the 3’
flanking site was not a G (non-CpGs), the number of C>T substitutions in regions
where the 3’ flanking site was a G (CpGs), the number of T>A substitutions, the
number of T>C substitutions and the number of T>G substitutions. The number of
C>T substitutions was divided into two groups (at CpG sites vs. non-CpGs sites)
due to the effect of CpG sites on mutation rates (due to DNA methylation)123. A
pseudocount of 1 was added to each somatic mutational feature and all features
were log transformed to the base 2.

Single nucleotide variants in mitochondrial DNA—total mutation counts. As other
studies have pointed out, WES data can be used to extract mutations occurring in
the mitochondrial DNA, due to the large amount of off-target reads32,124. The
coverage file of each sample was used to estimate to which extent the mitochondrial
genome in each sample was sequenced. Only samples in which at least 50% of the
mitochondrial genome were covered by at least 4 reads were kept for further
analysis. Furthermore, following a previous study32, only variants were kept which
had an allele frequency of at least 3% to remove potential false-positive calls. For
the cancer cohorts Hartwig, ESAD-UK and MELA-AU, which were all based on
WGS data, somatic variants in the mtDNA with a frequency of <3% were filtered
out as well. After filtering, the total number of SNVs in the mtDNA in each sample
was calculated. For PCAWG, mutation calls on the mitochondrial genome were
downloaded from the respective study [https://ibl.mdanderson.org/tcma/mutation.
html]32,33. At last, a pseudocount of 1 was added to each individual and the feature
was log transformed to the base 2.

Single nucleotide variants—NMF-derived organ-specific signatures. First of all, the
python tool (python version 3.8) SigProfilerMatrixGenerator125 [https://github.
com/AlexandrovLab/SigProfilerMatrixGenerator] version 1.1.26 was used to gen-
erate for each dataset a matrix counting all mutations in the 96 possible trinu-
cleotide contexts by considering the adjacent 5’ and 3’ base of the somatic variant
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(16 trinucleotides for each SNV). Next, the organ-specific signatures, which were
derived in the work of Degasperi et al. 54, were fit to each sample via the R package
signature.tools.lib [https://github.com/Nik-Zainal-Group/signature.tools.lib]. For
this step, organ-specific signature exposures were estimated by selecting for each
sample the respective organ-specific signature set based on the tissue it was derived
from. In cases in which no organ-specific signature set was existing due to its low
sample size (e.g. mesothelioma, thymoma, penile, and vulva), the reference
mutational signature set was used. In short, this aims to only fit signatures to a
sample which were also identified in the according tissue. The tool uses a
bootstrap-based method to only assign signatures to a sample when they reach a
specific threshold (p < 0.05), otherwise they are set to 0. The goal of this approach is
to decrease the probability of overfitting and miss-assignment of signatures54. In
the discovery cohort the median fraction of unassigned mutations was 47% and in
the validation cohort 15%, which is likely due to the low number of somatic
mutations in the discovery cohort. To have a common set of signatures, all sig-
nature exposures were then converted to the reference signature set via the con-
version matrix provided in ref. 54. For further analysis we only kept 17 signatures,
which had in the discovery and in the validation cohort an activity of >5% in at
least one matching cancer type or in the pan-cancer analysis: Ref.Sig.1, Ref.Sig.2,
Ref.Sig.3, Ref.Sig.4, Ref.Sig.5, Ref.Sig.7, Ref.Sig.8, Ref.Sig.11, Ref.Sig.13, Ref.Sig.17,
Ref.Sig.18, Ref.Sig.19, Ref.Sig.22, Ref.Sig.30, Ref.Sig.33, Ref.Sig.MMR1, and
Ref.Sig.MMR2. A pseudocount of 1 was added and each estimated signature count
was log transformed to the base 2.

Single nucleotide variants—transcriptive strand bias. To estimate the transcriptive
strand bias, the number of mutations occurring on the untranscribed strand and on
the transcribed strand were calculated. This was performed by the python tool
SigProfilerMatrixGenerator125. Based on the six possible base substitutions, six
different somatic features were generated (C>A, C>T, C>G, T>A, T>C, T>G). For
each one, the number of base substitutions occurring on the untranscribed strand
were divided by the number of mutations occurring on the transcribed strand. A
pseudocount of 1 was added to the numerator and denominator before division
and the resulting quotient was log transformed to the base 2.

Single nucleotide variants—replicative strand bias. To estimate the replicative
strand bias, replication timing data from lymphoblastoid cell lines was downloaded
[http://mccarrolllab.org/resources/]126. The fork polarity, which is a derivative of
the replication timing estimate, was estimated as described by Seplyarskiy et al. 127.
In brief, the slope/derivative at each coordinate of the replication timing landscape
was calculated by considering the region approximately ±5 kb of the coordinate.
The fork polarity value reflects whether the reference strand is more likely to be
replicated as the leading strand (fork polarity > 0) or as the lagging strand (fork
polarity < 0). Next, the genome was divided into equal sized bins of the length of
10 kb and the average fork polarity in each bin was calculated. Further, the whole
genome was split into 10 equal-sized bins based on the fork polarity estimate. To
calculate the replicative strand bias, we only considered the two lowest bins
(reference strand more frequently replicated as the lagging strand) and the two
highest bins (reference strand more frequently replicated as the leading strand).
From the perspective of the reference strand, we divided the total number of T>C,
T>G, G>A, and C>A mutations occurring on the leading strand by the total
number of T>C, T>G, G>A, and C>A mutations occurring on the lagging strand.
This would mean for instance that a A>G mutation occurring on the leading strand
was counted as a mutation occurring on the lagging strand (since T>C on the other
strand). We focused on these four mutation types since replicative strand biases
have been previously reported for these in connection with a deficiency in DNA
mismatch repair39. This feature was only calculated in samples, in which at least 20
of the 4 single substitutions types were counted within the covered region. The
estimated values were log transformed to the base 2.

Single nucleotide variants—X-chromosomal hypermutation. For generating a
somatic mutational feature for X-chromosomal hypermutation31, first of all the
total number of single-nucleotide variants per megabases (MB) on each chromo-
some was counted. Next, the number of mutations per MB occurring on the X
chromosome was divided by the average number of mutations per MB occurring
on the autosomes. A pseudocount of 0.1 was added to the numerator and
denominator before division and the resulting quotient was log transformed to the
base 2.

Single nucleotide variants—CTCF/cohesin-binding sites. CTCF/cohesin-binding
sites are often mutated in cancer29,30. To capture this somatic mutational feature,
we counted the number of single nucleotide variants occurring in CTCF/cohesin-
binding site and divided them by the number of mutations occurring in the
flanking site (±500 bp) of the binding site. CTCF/cohesin-binding sites were
obtained from Roadmap128 and averaged over 8 cell types. Genomic regions, that
were bound by CTCF in at least one cell type and by cohesin in at least two cell
types were set as CTCF/cohesin-binding sites. All sites ±500 bp of the sites that
were bound by CTCF in at least one cell type were set as the flanking site. Length of
covered genomic regions can be found in Supplementary Table 2. This somatic
feature was only estimated in samples which had at least 10 SNVs counted in total
within the CTCF/cohesin binding and/or flanking site. At last, we were able to

calculate the CTCF somatic feature for 38% of the samples in the discovery cohort
and 98% of the samples in the validation cohort. The ratio was log transformed to
the base 2.

Extraction of genomic region densities of expression, histone mark H3K36me3,
replication timing and DNase I hypersensitive sites. Features measuring mutation
rate variation with regards to expression, histone mark H3K36me3, replication
timing, and DNase I hypersensitive sites were calculated using negative binomial
regression to reduce the correlation of these features with each other and to control
for mutation substitution types. For this purpose, regional data from a previously
published study was used24. In brief, levels of histone mark H3K36me3 (averaged
over 8 cell types) and DNase I hypersensitive sites were downloaded from Road-
map Epigenomics128. Genomic regions with no signal for the corresponding fea-
ture were set as bin 0 and the remaining genomic regions were split into 5 equal-
sized bins with increasing signal. In this way, genomic regions with the highest
amount of histone mark H3K36me3 were put into bin 5, regions with the lowest
amount into bin 1 and regions with no signal into bin 0. Replication timing
information was derived from the ENCODE project using the average over 8 cell
lines. Genomic regions were split into 6 equal-sized bins, where bin 1 corresponded
to the latest replicating region and bin 6 to the earliest replicating region.
Expression levels were based on RNA-seq data, which was obtained from
Roadmap128 and averaged over 8 cell types as well. Bin 0 represented regions with
no expression (RPKM= 0) and the remaining 5 bins were split equally by
increasing expression levels. All these genomic masks from ref. 24 were further
processed by applying the CRG75 alignability track. For WES data specifically, the
masks were intersected with the coverage mask from the MC3 project112, since the
somatic WES mutation calls were derived from there. Furthermore, the four masks
(expression, histone mark H3K36me3, replication timing, and DNase I hyper-
sensitive sites) were intersected with each other for the subsequent regression.
Several bins extracted from the whole exome mask covered only a small region in
the genome (<5MB), which was expected since the exonic regions in the genome
are known to be enriched for early replicating regions and histone mark
H3K36me3. Since we observed that the regression often failed when bin sizes were
too small, some bins were merged: replicating timing bins 1 and 2, histone mark
H3K36me3 bins 1 and 2, expression bins 0 and 1, and DNaseI hypersensitive site
bins 1 and 2. This step was not performed for the whole-genome masks since the
covered regions for each bin were big enough. Length of covered genomic regions
can be found in Supplementary Table 2.

Single nucleotide variants—mutation enrichment calculations with regards to
expression, histone mark H3K36me3, replication timing and DNase I hypersensitive
sites. The individual features corresponding to the enrichment of mutations in a
particular genomic region were calculated via negative binomial regression using
the function glm.nb from the R package MASS (version 7.3_53.1) in R 3.5.0. The
regression was performed for the different features in each tumor sample as
follows:

(1) mutation count∼ replication timing+mutation type+ offset
(2) mutation count∼ replication timing+DNase+mutation type+ offset
(3) mutation count∼ replication timing+ expression+mutation type+ offset
(4) mutation count∼ replication timing+H3K36me3+mutation type+ offset

In the discovery cohort (WES only) the mutation type variable had 7 possible
encodings (C>A, C>T at CpG sites, C>T at non-CpG sites, C>G, T>A, T>C, and
T>G), and in the validation cohort (WGS only) the mutation type variable
encompassed all 96 possible substitutions within the trinucleotide context (e.g.
C>A mutation within ACA context). The offset represents the nucleotide-at-risk
and is the natural log of the number of nucleotides covering the respective region.
As described previously24, the coefficients obtained from the regression for the
different genomic regions represent the log enrichment of mutations in each bin in
comparison to a reference bin. For replication timing, the latest replicating bin was
set as the reference, for expression the lowest expressing bin was set as the reference
and for histone mark H3K36me3 and DNase I hypersensitive sites the bins with no
signal were set as the reference. This would mean that for instance the coefficient
obtained from regression (4) for bin 5 from the histone mark H3K36me3 variable
describes the log enrichment of mutations in regions with a high signal of this
histone mark in comparison to regions with no histone mark signal, while
controlling for replication timing and the mutational context. In this way, we
aimed to control for the correlation of expression levels, histone mark H3K36me3
and DNase I hypersensitive sites with replication timing and the mutational
context. Especially, for WES data this approach was limited by the reduced covered
genomic region and the decreased number of mutations in comparison to WGS
data. The regression was only performed in samples, which had at least 30 SNVs
counted. The coefficient obtained in regression (1) for the earliest replicating bin
was extracted for the replication timing feature, the coefficient obtained in
regression (2) for the bin with the highest amount of signal in DNase I
hypersensitive sites was extracted for the DNase I hypersensitive site (DNase)
feature, the coefficient obtained in regression (3) for the bin with the highest
expressing regions was extracted for the expression (Expression) feature, and the
coefficient obtained in regression (4) for the bin with highest amount of signal in
histone mark H3K36me3 was extracted for the H3K36me3 (H3K36me3) feature.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31483-1 ARTICLE

NATURE COMMUNICATIONS | (2022)13:3724 | https://doi.org/10.1038/s41467-022-31483-1 | www.nature.com/naturecommunications 13

https://github.com/Nik-Zainal-Group/signature.tools.lib
http://mccarrolllab.org/resources/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


High errors in the regression coefficients (standard error > 100) indicated that the
regression failed to converge for the corresponding coefficient and thus, were
removed. In the discovery cohort, 7650 replication timing coefficients, 7684
H3K36me3 coefficients, 7471 DNase coefficients and, 7664 Expression coefficients
were extracted in total. In the validation cohort, 5759 RT coefficients, 5749
H3K36me3 coefficients, 5752 DNase coefficients and, 5759 Expression coefficients
were extracted in total.

Double nucleotide variants—NMF-derived signatures and fitting. Double nucleotide
variants were extracted with the python tool SigProfilerMatrixGenerator125. The
tool counted the occurrence of 78 double nucleotide variants (AC, AT, CC, CG,
CT, GC, TA, TC, TG, or TT to NN). The matrix was used as an input to extract
double base substitution (DBS) signatures using the python tool
SigProfilerExtractor19 version 1.1.0 [https://github.com/AlexandrovLab/
SigProfilerExtractor]. In brief, the tool uses non-negative matrix factorization
(NMF) to extract mutation signatures. Since the exact number of mutation sig-
natures is not known, the tool extracted 1–25 signatures. For each signature
extraction 100 iterations were performed adding poisson noise to the samples
during each iteration. For the discovery cohort the optimal solution was 3 sig-
natures and for the validation cohort 11. Next, the tool fitted the established DBS
signatures from COSMIC13 v3.2 to the extracted de-novo signatures. Then, sig-
nature exposures were estimated by fitting the extracted COMISC signatures to
each sample. In the discovery cohort the COSMIC13 DBS signatures DBS1, DBS2,
DBS4, DBS9, and DBS10 were extracted and in the validation cohort the DBS
signatures DBS1, DBS2, DBS4, DBS5, DBS6, DBS7, and DBS9 were extracted. The
4 DBS signatures which were found in both cohorts were kept for association
testing: DBS1, DBS2, DBS4, and DBS9. Next, a pseudocount of 1 was added to each
estimated signature exposure and each estimated exposure was log transformed to
the base 2.

Insertions and deletions—total mutation counts. Different insertion and deletion
somatic mutational features were generated. First of all, the total number of indels
occurring in each sample was counted. Next, the number of indels in microsatellite
(MS) regions was counted due to its frequent occurrence in samples with
dMMR18,129. For this purpose, the number of indels with a length of 1 bp and the
number of indels with a length of 2–5 bp were counted within and outside MS
regions. MS locations were identified via the tandem repeat search tool Phobos
[https://www.ruhr-uni-bochum.de/ecoevo/cm/cm_phobos.htm]. Next, the total
number of indels with a length of 6–10 bp was counted. Due to the low number of
indels of this length, especially in WES data, this feature was not further split into
MS vs non-MS regions. Furthermore, since deletions have often been reported to
be predictive of dHR40, different deletion features were created. The total number
of deletions with a length of bigger than or equal to 10 bp was created. Also, the
number of deletions at flanking microhomology sites of either 1 bp or more than
1 bp was counted by using the output matrix from the python tool
SigProfilerMatrixGenerator125. A pseudocount of 1 was added to each feature and
each feature was log transformed to the base 2.

Insertions and deletions—NMF-derived signatures and fitting. Small insertion and
deletion (ID) signatures were extracted in the same way as described for the DBS
signatures. For the discovery cohort the optimal solution was 4 signatures and for
the validation cohort 10. The COSMIC13 ID signatures were fit to the de-novo
signatures and in the discovery cohort COSMIC13 ID signatures ID2, ID3, ID4,
ID7, ID8, and ID15 were extracted and in the validation cohort ID signatures ID1,
ID2, ID3, ID4, ID5, ID6, ID8, ID9, ID10, ID12, ID13, and ID14 were extracted. The
4 ID signatures which were found in both cohorts were kept for further association
testing: ID2, ID3, ID4, and ID8. Next, a pseudocount of 1 was added to each
estimated signature exposure and each estimated exposure was log transformed to
the base 2.

Copy number variants—total mutation counts, ploidy and whole genome duplica-
tions. Copy number-based features were generated by splitting amplification and
deletion events by different sizes. The number of amplifications with a size of 1–10,
10–100, 100–1000 kb, and >1000 kb were counted. Similarly, the number of dele-
tions with a size of 1–10, 10–100 kb, and >100 kb were counted. Next, a feature was
generated based on the estimated ploidy of the tumor sample from the corre-
sponding copy number detection tool. The number of whole genome duplication
events were calculated by dividing the ploidy by 2 via integer division. A pseu-
docount of 1 was added to the amplification and deletion-based features, a pseu-
docount of 0.1 was added to the WGD feature and no pseudocount was added to
the ploidy feature since ploidy can never be 0. At last, each feature was log
transformed to the base 2.

Generation of the input matrix for ICA and VAE. For the ICA and VAE all somatic
features described above were used except for the following 9 somatic features: total
number of SNVs, total number of indels and total number of the 7 different single
mutation substitutions types (Supplementary Figs. 22 and 23). These were excluded
since they were already represented by the different NMF-derived signatures.
Further, all samples were removed in which >20% of the features were not esti-
mated due to low mutation counts. Thus, 9235/9425 samples were left in the

discovery cohort and 5597/5613 samples were left in the validation cohort. Next,
missing values were replaced by the median value of the respective columns and
each feature was centered and standardized to a mean of 0 and standard deviation
of 1. This step was performed for the somatic features, which were extracted from
three different cohorts (TCGA, Hartwig, PCAWG) separately to control for
potential biases. Then, the three matrices were merged (samples as rows, features as
columns).

Independent component analysis. The ICA was run on the 56 somatic features using
the input matrix as described above. Similarly, as for the NMF, the number of ICs
needs to be set before running the ICA. The methodology to extract the optimal
number of components was adapted from the methodology applied previously24 to
extract the optimal number of NMF-derived components. For the extraction of ICs
the R package fastICA (version 1.2.1) in R 3.5.0 was used. The ICA was run by
varying the number of extracted components from 2 to 30. For each component
extraction the ICA was run 200 times and the seed for the random number gen-
erator was changed before every iteration. In each iteration the ICA decomposes the
input matrix into a loadings matrix (corresponding to the components and their
attributed weight from each somatic feature) and a scoring matrix (also called
source matrix; samples projected to component axes). After 200 iterations, the 200
loadings matrices were combined and clustered using k-medoids clustering with
varying k from 2 to 50. Clustering was performed with the function pam from the R
package cluster (version 2.0.6). For each clustering the average of the mean sil-
houette indexes of each cluster were saved as well as the lowest and second lowest
mean silhouette index of a cluster extraction. Later, extracted summary silhouette
indexes for different extracted IC numbers were plotted against the different
number of extracted clusters (Supplementary Fig. 24). The optimal number of
components was decided visually based on the broken-stick approach (Supple-
mentary Fig. 25). For a given extracted number of ICs, the optimal number of
clusters was always times 2 since during each iteration, signs flipped randomly and
thus, each component always had a correlated counterpart with opposite signs
(Supplementary Fig. 26). In the end, always one component of the mirrored pair
was kept. For the ICA, 15 unique ICs (using 30 clusters) were extracted. Correla-
tions were estimated by calculating the Pearson correlation of each input somatic
feature with each estimated score of each IC. Contributions were calculated by
squaring the estimated loading matrix and dividing the squared loading by the sum
of the loadings for the respective IC. Thus, the sum of the contributions (56 somatic
input features for each IC) for each IC equals 1 (100%) (Supplementary Fig. 27).

Our rationale to apply ICA to mutational spectra to extract independent
mutational components is as follows: ICA is a methodology that seeks to maximize
the statistical independence of the components. Independence is considered in a
general sense in the ICA methods, and is not limited to e.g. linear Pearson
correlation/covariance that is minimized by PCA. Ideally, also other forms of
dependency between variables would be minimized including nonlinear
correlations. The implementation of ICA that we (and many others) use, the
fastICA, aims to maximize the non-Gaussianity of components (as a proxy for their
statistical independence). This tends to work very well for blind source separation
problems, such as unmixing of sound from multiple sources, or unmixing of
overlaid images, where data is expected to be non-normally distributed in each
channel. Our analysis is based on the intuition that mutation process data will also
similarly fit this general type of distributions, being non-Gaussian across
individuals, e.g. a bimodal distribution of microhomology-flanked deletion burden
resulting from individuals with active HR versus individuals with disabled HR.

Extraction of components via a variational autoencoder. The architecture of the
VAE was adapted from studies from Way et al. 108,130. [https://github.com/
greenelab/tybalt/blob/master/tybalt_vae.ipynb], where they applied a VAE to
compress gene expression data to extract biologically relevant representations. The
script was modified for our purposes. In short, it is a simple ladder-VAE archi-
tecture consisting of one encoding and one decoding layer to generate a general-
izable representation of the input and to use this representation to reconstruct the
input. Batch normalization was performed in the encoding layer before applying
the activation function ReLu. In the encoding layer the VAE learned a distribution
of means and standard deviations to generate the latent space. This latent repre-
sentation was then decoded in the decoding layer by applying the tanh function as
the final activation function. Weights were initialized via the Glorot uniform
initializer. We also tested adding an additional layer between the input and the
encoding layer and between the latent space and the decoding layer. The extra layer
always had 2 times more dimensions than the latent space and involved a batch
normalization step before applying the ReLu activation function. The reconstruc-
tion loss was the sum of the mean squared error and the KL-divergence loss. To
encourage learning, the ladder-VAE makes use of a so called warm start, meaning
that it starts training without the KL divergence loss and linearly increases the
contribution of the KL divergence loss after each cycle via the parameter beta
(mean squared error+ beta*KL divergence loss). The linear increase of the con-
tribution of the KL divergence loss was controlled via the parameter kappa.

In contrast to a previous VAE architecture108,130, we applied the tanh function
in the final decoding layer and used the mean-squared error as part of the
reconstruction loss since our input was not binary. To reconstruct the input via the
tanh function, all the somatic features were transformed to a range of −1 to 1 prior
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to running the VAE. The data was split into 90% training data and 10% validation
data and stratified by gender and cancer type. Performance was evaluated by
checking the mean correlation of the reconstructed validation set with the
validation input set and by calculating the correlation with selected ICs, which were
shown to represent biologically relevant components. For this purpose, we
calculated the maximum correlation of the components from the latent space of the
VAE to the ICs dMMRICA, dHRICA, SmokingICA, and UVICA and then calculated
the average. To find the optimal hyperparameters we performed a grid search
testing over 4300 hyperparameter combinations (Supplementary Fig. 29). After
finding the optimal hyperparameters, the VAE was run for different latent space
dimensionalities 5 times with different random initializations (Supplementary
Fig. 30). In the end, the results from using a latent space with 14 dimensions was
extracted for further downstream analysis using the architecture with no extra layer
between input and encoder and with no extra layer between decoder and output
(Supplementary Figs. 31–33).

The VAE was run in a singularity container. A docker file was generated based
on the docker image tensorflow/tensorflow:1.15.5-gpu-py3-jupyter and the python
modules scipy, scikit-learn, and seaborn were added. The resulting docker image
was then uploaded into Docker Hub and run in a singularity container. Python
version 3.6.9, keras version 2.2.4 and tensorflow version 1.15.5 were used in this
environment.

We note that by applying ICA and VAE to extract components we introduced
some redundancy in the dataset (e.g. see Fig. 1c for dMMRVAE1 and dMMRICA or
for dHRVAE2 and dHRICA). We do not think that an association with both
dMMR_VAE1 and dMMR_ICA—or other such pairs of ICA and VAE
components—would necessarily be considered more reliable than an association
with just one member of the pair

Estimation of tissue enrichments of components. Tissue enrichments of individual
components (Supplementary Figs. 28 and 34) were calculated as follows. For each
component it was tested whether the component scores from one cancer type were
significantly different to the scores of the remaining cancer types via a two-sided
Welch’s t-test. In addition, Cohen’s d statistic was calculated between the two
groups. This test was performed for each cancer type and separately for the two
cohorts (TCGA and PCAWG+Hartwig). Cancer types were then grouped into
their corresponding tissue of origin and the average Cohen’s d statistic was
calculated.

Identification of rare damaging germline variants
Extraction of rare germline variants in the discovery cohort. TCGA bam files were
downloaded from the TCGA repository at NCI Genomic Data Commons [https://
portal.gdc.cancer.gov/] (dbGaP accession ID phs000178). Strelka121 2.9.7 was run
on TCGA WES normal and tumor samples to extract germline variants. Germline
variants called in the tumor samples (will be a mix of germline and somatic
mutations) were used later in a downstream step to only keep germline variants
which were identified in the normal and tumor tissue. In this way, we aimed to
remove potential false-positive germline calls in the normal sample and to remove
variants which were selected out in the tumor and thus, irrelevant for our asso-
ciation analysis. Germline variants which were called in the normal sample with the
filter PASS were kept as well as variants which were called with the filter LowGQX
but had a GQX of at least 10. Variants which were found inside gnomAD104 v2
[https://gnomad.broadinstitute.org/downloads] with the filter PASS and had a
GQX of at least 10 were kept as well as variants which were not found inside
gnomAD104, but had a GQX of at least 20. Next, variants were annotated via
ANNOVAR131 (version 2019-10-24), CADD v.1.6 scoring was added, and only
exonic and splicing variants were kept. Furthermore, only variants which had allele
frequency of <0.1% in gnomAD104 (overall and in each sub-population) were kept
as well as variants which were not found inside gnomAD104. Variants with a
frequency equal to or higher than 1% within the cohort were removed. Addi-
tionally, rare germline variants were only kept when they were also found in the
matching tumor sample.

Generation of a coverage file for TCGA. We used the same methodology as
described in previous work58 to only extract genomic regions with sufficient cov-
erage to be sure that regions in which no damaging germline variant was called was
not due to lacking coverage. In brief, within each sequencing center (BI, WU, and
BCM) 100 coverage files were randomly selected. Genomic regions which were
covered by at least 8 reads in 90 % of the samples within each sequencing center
were kept. Next, the coverage masks of the 3 sequencing centers were intersected,
making up in total a genomic mask of 60MB in length. Only genomic regions
within these sites were kept for further analysis.

Extraction of germline variants in the validation cohort. Germline variants from
PCAWG, Hartwig, ESAD-UK, and MELA-AU were all processed in the same way
if not indicated otherwise. Each cohort was processed at the beginning separately
due to the different formats. The files were combined in the end. While germline
calls from PCAWG and Hartwig were obtained as described above, germline
variants in ESAD-UK and MELA-AU were called via Strelka121 2.9.10 (same
approach as in TCGA), and derived from the same datasets from which the
somatic calls were obtained as well. Thus, for ESAD-UK and MELA-AU the same

approach as for TCGA was applied. For PCAWG and Hartwig, germline calls with
the filter PASS by the respective germline detection tool were kept. Next, variants
which were found inside gnomAD104 and had the filter PASS were kept as well as
variants which were not found inside gnomAD104 (rare singletons). Variants were
annotated via ANNOVAR131 (2019-10-24). All variants which were found inside
gnomAD104 were required to have an allele frequency of <0.1% (overall and in each
subpopulation). Exonic and splicing variants were extracted. Furthermore, variants
outside the CRG75 alignability mask were filtered out and variants with a fre-
quency equal to or higher than 1% within each cohort were discarded as well. The
rare germline calls from the different cohorts were combined. Further, in all cases
in which germline calls were also available for the matching tumor sample, variants
were filtered out if they were not found in the matching tumor sample. Germline
calls for matching tumor samples were available for PCAWG, ∼80% of Hartwig,
and not available for ESAD-UK and MELA-AU.

Definition of rare damaging germline variants. In this study 5 definitions of rare
putative loss-of-function (pLoF) variants were applied in addition to requiring an
allele frequency of <0.1% (described above):

(5) pLoF= protein truncating variants (PTVs)
(6) pLoF= PTVs+Missense variants with a CADD55 ≥ 25
(7) pLoF= PTVs+Missense variants with a CADD55 ≥ 15
(8) pLoF=Missense variants with a missense tolerance ratio56 ≤ 25th

percentile
(9) pLoF=Missense variants with a constrained coding region57 value ≥ 90th

percentile

For case (5) only PTVs were considered. PTVs comprised in this study
frameshift deletions, frameshift insertions, stoploss variants, stopgain variants,
startloss variants and splicing variants. Splicing variants comprise the canonical
splice variants annotated by ANNOVAR131 (version 2019-10-24) and variants with
a predicted donor loss or acceptor loss >0.8 by SpliceAI132. Pre-computed SpliceAI
score files were downloaded from Illumina Basespace [https://basespace.illumina.
com/s/otSPW8hnhaZR] and annotations were added to each variant (hg38 for the
discovery cohort and hg19 for the validation cohort). For cases (6) and (7)
potentially damaging missense SNVs were added on top of PTVs. Deleteriousness
was assigned via the phred-scaled CADD55 scores. For case (8) we only considered
missense SNVs with a missense tolerance ratio (MTR)56 [http://biosig.unimelb.edu.
au/mtr-viewer/downloads] lower or equal to the 25th percentile and for case (9) we
only considered missense SNVs with a constrained coding region (CCR)57 value
[http://quinlanlab.org/blog/2018/12/20/constrained-coding-regions.html] equal or
bigger than the 90th percentile. On top of these variant filtering steps, two
additional filtering steps were applied to all five rare pLoF variant sets in order to
discard potential false-positive pLoF variants: the proportion expressed across
transcripts (PEXT) metric133 and the terminal truncating exon rule104.

Filtering out non-expressed variants via the PEXT metric. The PEXT133 score was
introduced in one of the gnomAD articles and in brief, estimates to which extent a
variant is expressed in a tissue based on isoform transcription levels from RNA-seq
data. PEXT scores were estimated using over 11,000 tissue samples from GTEx.
Thus, PEXT scores were downloaded [https://gnomad.broadinstitute.org/
downloads] and added to the variant annotations. Since hg38 was used for the
germline calls in the discovery cohort, PEXT annotations were first converted from
hg19 to hg38 via the liftover tool from UCSC122 (version021620). This step was not
necessary for the validation cohort. Variants were only kept when they had a PEXT
value >0.1 in the matching GTEx tissue. Matching a cancer type with the most
appropriate GTEx tissue was mostly guided by a previous study (see Fig. 4 in Zeng
et al.)134. For cases in which no matching GTEx tissue was available for a cancer
type, the mean PEXT value was used. Exact matching of cancer types with GTEx
tissues is shown in Supplementary Tables 8–10.This filter was applied to all variants
not affecting splicing since many splicing variants are close to exon borders and
thus, do not have a PEXT score.

Exclusion of terminal truncating exon variants (with exceptions). Terminal trun-
cating variants might not have a deleterious loss-of-function effect since they can
escape nonsense-mediated decay and still be functional. For these reasons, they
have been also removed in the loss-of-function transcript effect estimator (LOF-
TEE) of gnomAD104. Hence, variants occurring in the terminal exon were
removed. This filter was not applied in cases in which the variant was predicted to
have a deleterious effect by CADD55 ≥ 15 or in cases in which the variant was
predicted to have a splicing effect. In this way, we aimed to reduce the risk of losing
potentially harmful variants, which as described in the gnomAD flagship paper104,
can be the case when the C-terminal domain of a protein exerts a crucial function.
To identify variants occurring in the last exon, gene coordinates were downloaded
from UCSC122 using the NCBI RefSeq track135. Exon coordinates of the last exon
of the longest transcript were kept. These coordinates were then intersected with
the variant coordinates to detect variants occurring in terminal exons.

Detecting and assigning putative loss of heterozygosity (LOH)
Detecting and assigning putative LOH in the discovery cohort TCGA. To detect
LOH, we considered the copy number calls from FACETS114. FACETS calls were
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available for 9814 samples. We extracted all LOH and DUP-LOH calls and
assigned them to genes by intersecting the extracted coordinates with gene coor-
dinates from NCBI Refseq135 hg38. We assigned LOH to a gene in samples in
which LOH was called via FACETS+ the variant allele frequency of the rare pLoF
variant was not higher in the normal sample than in the tumor sample and the
variant allele frequency of the rare pLoF variant was not >0.8 in the tumor and
sample-matched normal sample. In this way, we aimed to only consider LOH
events, when the putative rare pLoF variant of interest got enriched in the tumor
via LOH since this was the tested hypothesis for the recessive and additive model.
For 441 samples for which we did not have any FACETS calls, we assigned LOH to
a gene in a sample when the difference in the variant allele frequency of the
putative rare pLoF variant between tumor and normal sample was >0.25 and when
the variant allele frequency of the rare pLoF variant was >0.8 in the tumor and
sample-matched normal sample.

Detecting and assigning putative LOH in the validation cohort. For PCAWG
(excluding ESAD-UK and MELA-AU), CNV calls from ACEseq119 v1.0.189 were
further processed. All passed calls with the assignments LOH, LOHgain, or cnLOH
were extracted and genes were assigned to the LOH events as before (using NCBI
Refseq135 hg37). We excluded LOH calls when the corresponding rare pLoF variant
in the respective gene had a lower allele frequency in the tumor than in the sample-
matched normal sample and the allele frequency was not >0.8 in both tissues.

For ESAD-UK and MELA-AU, CNV calls were available via FACETS114 and
LOH was called as described for TCGA. In contrast to the steps performed for
TCGA, germline calls from the tumor tissue were not available for ESAD-UK and
MELA-AU. Thus, LOH calls were not further filtered.

For Hartwig, CNV calls were provided via the tool Purple10. LOH was assigned
to locations in which the minor allele ploidy was <0.4. LOH calls were excluded in
cases in which the allele frequency of the rare pLoF variant was lower in the tumor
than in the sample-matched normal tissue and the allele frequency of the rare pLoF
variant was not >0.8 in the normal and tumor tissue. This was only applicable to
the samples in which germline calls from the tumor genome were available
(678 samples with germline calls from tumor genomes not available).

Gene-based rare variant association testing
Extraction of common germline variants and sample-level quality control. Common
variants were extracted from the normal samples to apply some sample-level
quality control as well as to prepare the data to perform a PCA for extracting
population ancestry. The following steps were performed for the dis- covery cohort
(TCGA) and the validation cohort (PCAWG and Hartwig) separately. Germline
variants which were called with the filter PASS were kept. Also, in accordance with
the extraction of rare germline variants, variants with the filter LowGQX but a
GQX ≥ 10 were kept in the respective cohorts (TCGA, ESAD-UK and MELA-AU).
Common variants were extracted by only keeping variants which were identified
inside gnomAD104 with the filter PASS and with an allele frequency >5% within the
overall population. In TCGA all variants within the generated genomic mask were
retained and in the other cohorts all variants within the CRG75 alignability mask
were retained. Loci, in which more than 2 alleles existed, were removed. The total
number of common variants inside each sample was calculated and within each
cohort (TCGA, Hartwig, PCAWG) samples with an altered number of variants
1.5 standard deviations away from the mean were discarded (214 samples in
TCGA, 212 samples in Hartwig, 204 samples in PCAWG) (Supplementary
Figs. 38a, 39a and 39b). Next, common variants for each cohort were uploaded into
PLINKv1.90b6.1 and further processed there. Missing genotypes were set as
homozygous for the reference allele. Only variants with a MAF > 5% were retained
and samples with a heterozygosity rate ±3 standard deviations away from the mean
were removed (127 samples in TCGA, 54 samples in Hartwig, 39 samples in
PCAWG) (Supplementary Figs. 38b, 39c and 39d). For the following steps, variants
on the sex chromosomes, on the mitochondrial chromosome and within regions
with high amount of linkage disequilibrium [https://github.com/meyer-lab-cshl/
plinkQC/tree/master/inst/extdata] were removed. Also, variants extensively
deviating from the Hardy–Weinberg-equilibrium with p < 10−6 were excluded.

Identification of duplicated or related individuals. The dataset was pruned on the
discovery cohort (TCGA) and on the merged validation cohort (PCAWG and
Hartwig) separately, applying a window size of 50 bp, a step size of 5 and a r2

threshold of 0.2. The identity-by-state (IBS) matrix was calculated for all pairs of
individuals within each cohort. Within all pairs of individuals with identity-by-
descent (IBD) > 0.185 (0.185 would be the expected value for individuals between
third- and second-degree relatives) one individual was removed (542 samples in
TCGA, and 479 samples in PCAWG and Hartwig) (Supplementary Figs. 38c
and 39e).

Extraction of European individuals. To extract individuals of European ancestry the
pruned dataset was used and a principal component analysis (PCA) was per-
formed. The PCA was run on the discovery cohort and on the merged validation
cohort (Supplementary Figs. 40 and 41). The first ten principal components were
used for clustering using the R package tclust (version 1.4.2), which trimmed 1% of
the outlying samples as described previously58. Individuals were grouped into
k= 10 clusters and European groups were selected based on the reported TCGA/

PCAWG annotations. In total 7864 individuals were retained in the discovery
cohort and 4691 individuals were retained in the validation cohort. The PCA was
repeated on the pruned dataset for the individuals of European ancestry in the
respective cohorts to extract the PCs, which were used as covariates in the asso-
ciation testing (Supplementary Figs. 42 and 43).

Gene-based rare variant burden testing. As described above 29 somatic mutational
components were extracted from the discovery and validation cohort from the
tumor genomes. rare pLoF variants were extracted from the sample-matched
normal samples. Gene-based rare variant burden testing was only performed on
samples which survived the quality control filters (as described above). We limited
the analysis to individuals with European ancestry due to the bigger sample size. In
addition, only samples were kept, in which at least 10 SNVs were counted. In total
6799 samples were left in the discovery cohort for testing and 4683 samples were
left in the validation cohort for testing.

Gene set. For testing, RGDVs occurring in 891 different genes were extracted. The
gene set covered DNA damage response genes136 [https://doi.org/10.1038/
nrc3891], known cancer predisposition genes36 [https://doi.org/10.1038/
nature12981], genes involved in chromatin organization [https://pathcards.
genecards.org), genes involved in DNA double-strand repair [https://pathcards.
genecards.org), genes which were reported to regulate MSH2 stability85 [https://
doi.org/10.1038/nm.2430], and human homologs of genes, in which heterozygous
mutations were reported to cause genetic instability in Saccharomyces cerevisiae52

[https://doi.org/10.1038/s41586-019-0887-y]. Effectively, out of the 891 individual
genes 746 genes were tested in the most permissive rare pLoF variant set (7) in pan-
cancer. The remaining genes were not tested in the discovery cohort since not
enough rare pLoF variants were identified in these genes to test them.

Association testing via SKAT-O. Association testing was performed in each cancer
type separately and with all cancer types together (pan-cancer). The effect of a gene
on a somatic component was only tested when a rare pLoF variant in that gene was
identified in at least two individuals (Supplementary Fig. 16). Testing was per-
formed across 12 cancer types as shown in Supplementary Table 6. Accordingly,
depending on the cancer type different numbers of genes were tested in total.

Association testing was conducted via the unified testing approach of SKAT-
O59. While in burden testing the variants are aggregated first and then jointly
regressed against a phenotype, in SKAT the individual variants in a gene are
regressed against the phenotype (Supplementary Figs. 35 and 36), and then the
variance of the distribution of the individual variant score statistics is tested. SKAT-
O combines the tests SKAT61 and burden via a weighted mean:

(10) Qρ= ρ*QB+ (1−ρ)QS.
Here, Qρ is the final statistic from the weighted mean of the burden statistic
QB and SKAT statistic QS. The parameter ρ influences how strongly each test
is weighted. SKAT-O testing was performed via the R package SKAT59 2.0.1.
For testing, the covariates were firstly regressed against the somatic
components with the function SKAT_Null_Model. When applicable, age at
diagnosis, sex, ancestry (first 6 PCs) and cancer type were used as covariates.
Categorical variables were encoded as dummy variables with the R package
fastDummies 1.6.3. Missing age information was imputed by taking the
median value in the respective cohort. After initializing the null model,
SKAT-O was run by using the function SKAT and setting the method to
SKATO. The function ran SKAT-O with 10 different values of ρ (from 0 to
1) and reported the ρ value which led to the lowest p-value.
Three models of inheritance were tested in total and individual variants were
encoded as follows:

(11) Dominant: no rare pLoF= 0; rare pLoF= 1
(12) Additive: no rare pLoF= 0; rare pLoF= 1; rare pLoF+ somatic LOH or

biallelic rare pLoF= 2
(13) Recessive: no rare pLoF= 0; rare pLoF+ somatic LOH or biallelic rare

pLoF= 1: rare pLoF without somatic LOH= excluded sample.

Significance of a gene with a specific model would not necessarily imply that the
gene follows that model of inheritance. Taken together, 3 models of inheritance
were tested with 5 different rare pLoF variant sets, making up in total 15 models to
test across 12 different cancer types and pan-cancer. In total, 15*12*29= 5655
model scenarios could have been tested at most. Ultimately, 4693/5655 scenarios
were tested in the discovery phase.

Estimation of effect sizes via burden testing. Since no effect sizes were reported in
SKAT-O, we also performed gene-based burden testing (aggregating variants
occurring in the same gene) applying the same models as above. Association testing
was performed via linear regression with the lm function of the R base package
stats in R 3.5.0 as follows:

(14) Somatic Component ∼Gene+ Covariates

The somatic components were coded as quantitative variables as described
above. The gene variable was encoded as a binary categorical variable depending on
the model of inheritance (additive, recessive, dominant). When applicable, we
controlled for age at diagnosis, sex, cancer type and ancestry (first 6 PCs) as
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covariates. In total, burden testing was performed for each scenario which was also
tested via SKAT-O.

Quantile–quantile plots for quality control. To check for potential biases in testing,
we plotted quantile–quantile plots (QQ- plots) for each somatic component tested
for each scenario (model of inheritance, rare pLoF variant set) in the respective
cancer type and calculated the corresponding inflation factor λ. For the QQ-plots,
the expected p-value was calculated by ranking all tested genes and dividing the rank
of a gene by the total number of genes tested. The idea behind the QQ-plots was
that most genes were expected to not have an effect on a somatic component and
thus, most p-values would be distributed randomly and fall on a linear line when
ordered. The inflation factor λ was calculated to check for inflation, which would be
indicated by λ > 1. The inflation factor λ was estimated by dividing the median of
the chi-squared test statistic of the p-values by the expected median of the chi-
squared distribution, which would be a chi-squared distribution with one degree of
freedom. QQ-plots with no inflation would have an inflation factor of λ ≈ 1 and
deflated QQ-plots would have an inflation factor of λ < 1. Ultimately, we excluded
model scenarios in which at least 100 genes were tested and the inflation factor was
≥1.5 (19 out of 1909) (Supplementary Note 1.3 and (Supplementary Fig. 1).

Estimation of false discovery rates. We calculated false discovery rates (FDRs) via
two approaches: empirical FDR and via a randomized set of genes. To estimate the
empirical FDR, the somatic component matrix (somatic components as columns
and sample IDs as rows) was randomly shuffled within each cancer type. Impor-
tantly, the link between individuals and somatic components was broken down, but
the correlation structure between components was conserved. Then, with the
randomized somatic component matrix, testing was performed in the same way as
it was performed before. We calculated empirical FDR thresholds for each cancer
type (or pan-cancer) separately. For instance, the p-value at which 1% of the
associations from the randomized run would have been called as a hit (false dis-
covery) corresponds to a FDR of 1%.

For our second approach, we repeated the whole analysis using 1000 random
genes. We generated a list of genes, which were not in our pre-selected gene list of
891 genes and in which rare pLoF variants according to rare pLoF variant set III.
were identified in at least two samples. In addition, we discarded all genes which
were reported to have a physical interaction with any gene from our pre-selected
gene list according to the reported physical interactions from STRING v11.599

[https://string-db.org/cgi/download?sessionId=bPz0GBvgDw3p] with a combined
score of at least 50%. Out of 11,408 remaining genes, 1000 genes were randomly
selected and used for testing. Next, we performed the same steps as it was
performed for the pre-selected list of genes, including the calculation of empirical
FDRs via randomization and the exclusion of model scenarios with high inflation
factors (31 out of 1885). Based on the conservative hypothesis that there would be
no real associations from the random list of genes, we calculated FDRs at different
empirical FDR thresholds by dividing the number of hits, which were detected via
the random list of genes by the number of genes detected at the same empirical
FDR with our pre-selected list of genes. For instance, at an empirical FDR of 1% we
identified 44 hits with our random list of genes and 207 hits with our pre-selected
list of genes. Thus, we estimated a FDR of 44/207 ≈ 21% at our empirical
FDR of 1%.

Identification of associations in the discovery cohort and re-testing in the validation
cohort. Hits were identified in the discovery cohort when they were significant
either at a FDR of 1% or 2% based on the estimation of the empirical FDR. These
were then re-tested in the matching cancer type based on the tissue of origin
(Supplementary Table 6). In total, for 12 individual cancer types a matching cancer
type based on the tissue of origin was available in the validation cohort with a
sample size of at least 50 samples: bladder cancer, brain glioma multiforme, low-
grade glioma, breast cancer colorectal cancer, kidney cancer, lung adenocarcinoma,
lung squamous carcinoma, ovary cancer, prostate cancer, skin cancer, stomach and
esophagus cancer. Hits which were identified with all cancer types together (pan-
cancer) were re-tested in the validation cohort in the same way. We called a hit as
replicated when it reached the empirical FDR of either 1% or 2% and had the same
estimate effect direction as in the discovery cohort. Effect size directions were
extracted from the performed burden tests.

Network analysis. For the network analysis, we downloaded protein network data
from STRING v11.599 involving only physical links, and from HumanNet103 v3 the
functional gene network (HumanNet-FN) [https://www.inetbio.org/humannet/
download.php]. From STRING we only kept interactions which had a combined
confidence score (based on experimental, database, and text mining) of at least
80%. The following steps were performed for each protein network separately.

Firstly, we extracted all interactions which involved interactions between genes
from our pre-selected gene list of 891 genes. We calculated the total number of
interactions our replicated genes had at an empirical FDR of 1% with each other. It
was tested via randomization whether this number was higher than one would
expect at random. For this purpose, we selected randomly the same number of
genes and calculated the total number of interactions these genes had with each
other. We controlled for the total number of interactions each gene had, since some
genes (e.g. BRCA1) have in general a lot of physical interactions, which would

confound our results. To control for this, we counted the total number of
interactions our replicated genes had, split them into 10 equal-sized bins, assigned
all our pre-selected genes a bin, and then randomly selected the same number of
genes from each bin. Randomization was performed 1000 times.

Next, we counted how many genes, which only replicated at an FDR of 2%, had
at least one interaction with a gene which replicated at an FDR of 1%. Here, we
applied the same approach. We counted the total number of interactions each gene,
which only replicated at an FDR of 2%, had in total and split the number of
interactions into 10 equal-sized bins. Each gene from our list of genes was assigned
a bin and then we randomly selected 1000 times the same number of genes from
each bin and performed the same calculation.

Gene prioritization via network analysis. Gene prioritization was performed via two
approaches. Firstly, within each network (STRING and HumanNet) based on the
genes replicating at a FDR of 2%, it was estimated how strongly each protein
interacted with a known dHR (BRCA1, BRCA2, PALB2, RAD51C) or dMMR
(MLH1, MSH2, MSH6, PMS2) protein. For this purpose, for each protein, the
strongest interaction score with a known dHR or dMMR protein was extracted.
Next this score was compared against the highest interaction scores of all other
non-dHR/dMMR proteins with dHR/dMMR proteins from our list of 891 genes,
which had a similar node connectivity. Thereby, a p-value was calculated and an
effect size was estimated by subtracting the highest interaction score of the protein
of interest from the median of the interaction scores of the other genes. Proteins
more likely interacting directly with dHR/dMMR proteins got prioritized. For this
analysis, the same HumanNet network as described above was used and the same
STRING network as above, but without any pre-filtering (based on scores). Sec-
ondly, genes were prioritized by considering how strongly a protein interacted with
a neighbor in the network (network with the genes replicating at a FDR of 2%) in
comparison to a random network with a similar node connectivity and the same
number of genes out of the gene list of 891 genes. For each protein, the interaction
scores with its direct neighbors were considered the highest one was saved. Next, a
random network was generated with the same number of proteins from the list of
891 genes with a similar node connectivity and only the tested protein was kept.
Then, again the highest interaction of the tested protein with its neighbors was
extracted (set to 0 if no interaction). This randomization was repeated 10,000
times. A p-value and effect sizes was then estimated by comparing the observed
interaction score against the distribution of 10,000 interaction scores from the
randomization. The same HumanNet network and STRING network as described
above in the Network analysis section were utilized.

Calculation of frequency of rare pLoF variants in length matched randomly selected
genes. To calculate the number of rare pLoF variants occurring in a control set of
genes, we matched each replicated gene randomly with a gene covering the same
length. For this purpose, we intersected the TCGA coverage file with the reported
exonic coordinates provided by NCBI RefSeq135 track hg38. We only considered
protein-coding genes. The covered length of each gene was calculated in kilobases
and each replicated gene was randomly matched 10 times with a gene, which
covered the same length in our data. Subsequently, RDVGs based on different sets
were counted in the replicated gene sets as well as in the length matched control
genes. For the validation cohort PCAWG_Hartwig-WGS, the same approach was
applied. Here, the coordinates from the CRG75 alignability track were intersected
with the exonic coordinates provided by NCBI RefSeq135 track hg19 to determine
the length of the coding region for a gene.

Calculation of frequency of rare pLoF variants in GnomAD. To compare variant
frequencies between cancer datasets (discovery and validation cohort) (Supple-
mentary Fig. 17) and gnomAD, all variants which were detected in the cancer
datasets and in gnomAD v2.1.1 were retained. Rare pLoF variants in the cancer
datasets which were previously not detected in gnomAD (potentially ultra rare
variants) were removed in order to remove potential biases due to technical rea-
sons. Variant frequencies between cancer dataset were compared with gnomAD by
summing the variant frequencies of the same rare pLoF variants which were
identified in the respected cancer dataset in gnomAD using the reported variant
frequencies in gnomAD control samples (all ancestries) and in gnomAD control
samples of Non-Finnish European ancestry. Variant frequencies were summed up
since no individual level data is available in gnomAD and we applied the
assumption that a rare pLoF variant in the respective gene would only occur once
per individual. For the cancer datasets the number of rare pLoF variants were
divided by the size of the cohort to estimate the variant frequency in the respective
cohort (Fig. 5 and Supplementary Fig. 18).

Power analysis. Power analysis was performed using the tool PAGEANT62 [https://
andrewhaoyu.shinyapps.io/PAGEANT/] with code on github [https://github.com/
andrewhaoyu/PAGEANT]. Power analysis was performed for each cancer type
(and pan-cancer) in each cohort (discovery and validation) separately by running
PAGEANT with the respective sample size. Further, the respective thresholds for a
FDR of 1% and 2% were utilized. PAGEANT was run with the SKAT simulation by
varying the percentage of total variance explained (TVE) by the variants in a gene,
since this number (related to the effect size of the gene) is not known a priori
(Supplementary Figs. 3 and 5).
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Estimation of total variance explained for known high-effect size genes. To have a
reference point in the power analysis for the parameter percentage of phenotypic
variance explained by the variants in a gene (total variance explained, TVE), we
estimated the lower-bound of the percentage of the variance explained by the
variants in a gene for different gene–phenotype–variant set combinations. We
focussed on known genes with high effect sizes, namely dHR genes (BRCA1,
BRCA2, PALB2, and RAD51C) and dMMR genes (MLH1, MSH2, MSH6, and
PMS2) with the matching mutational phenotypes. The analysis was performed in
the discovery cohort on pan-cancer to have the highest possible sample size. To
estimate the total variance explained for a gene, first the respective phenotype was
regressed in a multiple linear regression against age at diagnosis, gender, cancer
type and ancestry (first 6 PCs). Next, the residuals from this regression were
regressed against all rare pLoF variants (depending on the variant set: PTVs only or
PTVs+Missense with different CADD thresholds) in a multiple linear regression.
The total variance explained (R2) from this regression can be interpreted as the
lower-bound of the total variance explained by variants in a known (positive
control) mutator gene, and utilized as a reference point in the power analysis. It
would be expected that this number would increase with a higher sample size since
more potentially rare pLoF variants could be detected.

Subsampling analysis. Subsampling was performed by randomly retaining 95%,
90%, and 80% of the data of the validation cohort (PCAWG+Hartwig). For each
scenario, subsampling was performed three times, generating in total nine datasets.
Association testing was performed in the same was described above. Empirical
FDRs were estimated in the same way in order to determine which hits, that were
previously identified in the discovery cohort with the complete dataset of the
discovery cohort, replicated in the validation cohort.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
In this study published datasets were reanalyzed. TCGA WES bam files of primary tumors
and matched normal samples (dbGaP accession ID phs000178, restricted access that can be
applied to following instructions on dbGaP) were downloaded from the TCGA repository at
NCI Genomic Data Commons [https://portal.gdc.cancer.gov/]. Somatic mutation calls for
TCGA were downloaded from the MC3 project (mc3.v0.2.8.PUBLIC.maf.gz in [https://gdc.
cancer.gov/about-data/publications/mc3-2017]). Germline and somatic calls from PCAWG
excluding ESAD-UK and MELA-AU were downloaded from the ICGC data portal [https://
dcc.icgc.org/repositories]; these were available under restricted access, which can be applied
for via the ICGC DACO [https://daco.icgc-argo.org/]. Bam files for tumor and normal
samples from MELA-AU (dataset ID: EGAD00001003388) and ESAD-AU (dataset ID:
EGAD00001003580) were from the European Genome–Phenome Archive ([https://ega-
archive.org]); they are available under restricted access, which can be applied for via the
ICGC DACO [https://daco.icgc-argo.org/]. Mitochondrial somatic mutation calls in
PCAWG were downloaded from [https://ibl.mdanderson.org/tcma/mutation.html].
Hartwig somatic and germline variant calls were downloaded after acquiring restricted data
access from the Hartwig Medical Foundation [https://www.hartwigmedicalfoundation.nl/
en/], request number DR-069; requests can be submitted at [https://www.
hartwigmedicalfoundation.nl/en/data/data-acces-request/]. Replication timing data from
lymphoblastoid cell lines to calculate the replicative strand bias was downloaded from
[http://mccarrolllab.org/resources/]. Processed genomic region densities of expression,
histone mark H3K36me3, replication timing, CTCF/cohesin-binding sites, and DNase I
hypersensitive sites were obtained by contacting authors of original publication [https://doi.
org/10.1016/j.cell.2017.07.003]. Genomic regions for the CRG75 alignability track and
blacklisted regions by Duke and DAC were obtained from the UCSC Genome Browser
[https://genome.ucsc.edu/cgi-bin/hgTables]. GnomAD v2 allele frequencies and pext scores
were obtained from the gnomAD browser [https://gnomad.broadinstitute.org/downloads].
Gene coordinates were obtained from the UCSC genome browser [https://genome.ucsc.edu/
cgi-bin/hgTables]. Regions with high amount of linkage disequilibrium were downloaded
from [https://github.com/meyer-lab-cshl/plinkQC/tree/master/inst/extdata]. Pre-computed
SpliceAI scores were downloaded from Illumina Basespace [https://basespace.illumina.com/
projects/66029966]. Download of SpliceAI scores are free, but require generation of a free
account at Illumina Basespace. Complete list of tested 891 genes in Supplementary
Dataset 1. Missense tolerance score annotations were obtained from [http://biosig.unimelb.
edu.au/mtr-viewer/downloads] and constrained coding region annotations from [http://
quinlanlab.org/blog/2018/12/20/constrained-coding-regions.html]. Interaction scores from
STRING v11.5 were downloaded from [https://string-db.org/cgi/download?sessionId=
bPz0GBvgDw3p] and scores from HumanNet v3 (HumanNet-FN) from [https://www.
inetbio.org/humannet/download.php]. Source data are provided with this paper.

Code availability
Code can be obtained from https://github.com/lehner-lab/RDGVassociation and data is
visualized at https://mischanvp.shinyapps.io/rare_association_shiny/.
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