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A B S T R A C T   

Background: Phenolic compounds have been associated with protective effects against type-2 diabetes (T2D). We 
used a metabolomics approach to determine urinary phenolic metabolites associated with T2D and fasting 
plasma glucose. 
Methods: This case-control study within the PREDIMED trial included 200 participants at high cardiovascular 
risk, 102 of whom were diagnosed with T2D. A panel of urinary phenolic compounds were analysed using a novel 
method based on liquid chromatography coupled to mass spectrometry. Multivariate statistics and adjusted 
logistic regressions were applied to determine the most discriminant compounds and their association with T2D. 
The relationship between the discriminant phenolic compounds and plasma glucose was assessed using multi-
variable linear regressions. 
Results: A total of 41 phenolic compounds were modeled in the orthogonal projection to latent structures 
discriminant analysis, and after applying adjusted logistic regressions two were selected as discriminant: dihy-
drocaffeic acid (OR = 0.22 (CI 95 %: 0.09; 0.52) per 1-SD, p-value = 0.021) and genistein diglucuronide (OR =
0.72 (CI 95%: 0.59; 0.88) per 1-SD, p-value = 0.021). Both metabolites were associated with a lower risk of 
suffering from T2D, but only dihydrocaffeic acid was inversely associated with plasma glucose (β = − 17.12 (95 
% CI: − 29.92; − 4.32) mg/dL per 1-SD, p-value = 0.009). 
Conclusions: A novel method using a metabolomics approach was developed to analyse a panel of urinary 
phenolic compounds for potential associations with T2D, and two metabolites, dihydrocaffeic acid and genistein 
diglucuronide, were found to be associated with a lower risk of this condition.   
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1. Introduction 

Polyphenols are secondary metabolites with a wide diversity of 
chemical structures. The intake of polyphenols can be estimated through 
dietary questionnaires and food-composition tables [1]. Despite recent 
improvements, these methods have limitations due to the variability of 
the phenolic content in foods, which can be modified by processing, 
cooking, plant variety, or season of harvest [2–4]. In addition, the 
bioavailability of polyphenols varies depending on the food with which 
they are ingested [5]. Thus, the most reliable way to measure exposure 
to dietary polyphenols is by analysing biological samples, especially 
urine, as polyphenols and their metabolites are largely excreted in urine 
24–48 h after ingestion [6,7]. Individual polyphenols measured through 
food frequency questionnaires and analysis of biological samples have 
been linked with a lower risk of type-2 diabetes (T2D) [8]. The Medi-
terranean Diet, which is rich in plant-based foods and characterized by a 
high phenolic intake, has also been associated with a lower T2D inci-
dence [9,10]. In recent years, research on T2D prevention and control 
has grown in response to the increasing global prevalence of the disease 
and associated mortality rate, with 700 million people predicted to be 
affected by 2045 [11]. 

Metabolomics has emerged as a tool for the identification of disease 
biomarkers, allowing earlier detection and improved monitoring, which 
will enable the development of personalized treatment plans for patients 
[12]. For example, in 2022, Larkin et al. detected biomarkers of cancer 
in blood samples of patients with nonspecific symptoms [13]. However, 
metabolomics-based research still faces challenges, such as the stan-
dardization of methods across laboratories, finding a consensus on data 
interpretation, and the promotion of data-sharing [14]. 

Metabolomics has also been applied to identify biomarkers related to 
T2D and its risk factors. Most of this research has focused on different 
lipid classes, such as ceramides or sphingolipids, bile acids, and amino 
acids, especially branched-chain and aromatic amino acids [15,16]. 
However, the relationship of polyphenols and their metabolites with 
T2D has been minimally explored using metabolomics. The application 
of this approach could shed light on polyphenols involved in the path-
ways leading to T2D, as well as their effect on the molecular mechanisms 
underlying the development of the disease. Ultimately, a greater un-
derstanding of the pathogenesis of T2D will facilitate the implementa-
tion of new prevention strategies. 

Therefore, the aim of the present work was to develop a 
metabolomics-based method to analyse a panel of urinary phenolic 
compounds for potential associations with T2D in participants of the 
PREDIMED (PREvención con DIeta MEDiterránea) trial with and 
without T2D at baseline. To this end, we employed high precision 
analytical techniques based on linear ion trap quadrupole-Orbitrap- 
high-resolution mass spectrometry (LTQ-Orbitrap-HRMS), which 
allowed us to identify a great variety of unknown phenolic compounds. 
The most discriminant compounds related to T2D were then identified 
with multivariate statistics, which enabled us to simultaneously assess a 
large number of phenolic compounds. Finally, we investigated the as-
sociations of the selected individual compounds with T2D and fasting 
plasma glucose levels using multivariable-adjusted regressions. 

2. Materials and methods 

2.1. Study design 

The present work is a case-control sub-study using baseline data of 
the PREDIMED trial, a multicentre, parallel-group, randomized, 
controlled trial conducted in Spain from 2003 to 2010. The methods and 
design of this study have been described in detail elsewhere [17,18]. Its 
main aim was to assess the effect of a Mediterranean diet enriched with 
olive oil or nuts on the primary prevention of cardiovascular disease. It 
included 7447 participants aged 55–80 years at high cardiovascular risk 
who had T2D or at least three of the following major risk factors: current 

smoking, hypertension, dyslipidaemia, overweight/obesity or a family 
history of premature cardiovascular disease. To carry out the study, 200 
participants from the PREDIMED-Hospital Clinic recruitment center 
(Barcelona) were randomly selected, 102 of whom were diagnosed with 
T2D. Participants who reported extreme total energy intakes (>3500 or 
<500 kcal/day in women or >4000 or <800 kcal/day in men) were 
excluded from the analysis. 

The Institutional Review Board (IRB) of the Hospital Clinic (Barce-
lona, Spain) accredited by the US Department of Health and Human 
Services (DHHS) update for Federal-wide Assurance for the Protection of 
Human Subjects for International (Non-US) Institutions #00000738 
approved the study protocol on July 16, 2002. All participants provided 
informed consent and signed a written consent form. 

2.2. Covariate assessment 

Trained dietitians completed a semi-quantitative 137-item food fre-
quency questionnaire in interviews with participants, as well as a 14- 
item questionnaire to assess their adherence to the Mediterranean diet 
[19]. Participants were considered to suffer from hypercholesterolemia 
or hypertension if they had a previous diagnosis and/or were under 
cholesterol-lowering or antihypertensive medication, respectively. 
Trained personnel measured body weight, height, waist circumference, 
and blood pressure. Body mass index (BMI) was calculated as weight in 
kg divided by height in m2. Physical activity (metabolic equivalent tasks 
per minutes per day, METs min/day) was assessed with a validated 
Spanish version of the Minnesota physical activity questionnaire [20]. 
Plasma glucose, total cholesterol, triglycerides, and HDL cholesterol 
were determined by standard enzymatic methods, and LDL cholesterol 
was calculated by the Friedewald equation [18]. 

2.3. Ascertainment of type-2 diabetes 

For the present analysis, the main endpoint was the prevalence of 
T2D, which was defined as previous clinical diagnosis of T2D, or gly-
cated hemoglobin (HbA1c) ≥ 6.5%, or use of antidiabetic medication at 
baseline, or fasting plasma glucose > 126 mg/dl in both the screening 
visit and baseline visit. 

2.4. Phenolic metabolic profiling 

Biological samples were collected after an overnight fast, coded, and 
stored at − 80 ºC until analysis. Phenolic compounds were isolated using 
a method previously validated by our group with minor modifications 
[21]. Briefly, 50 µL urine samples were diluted 1:20 (v:v) with Milli-Q 
Water (Bedford, MA, USA), and 100 µL of the internal standard absci-
sic acid-d6 (Santa Cruz Biotechnology, Santa Cruz, CA) was added. The 
sample dilution was acidified with 2 µL of formic acid (Panreac Química 
S.A., Barcelona, Spain) and centrifuged at 15,000 g at 4 ◦C for 4 min. The 
acidified urines underwent a solid-phase extraction (SPE) in Water Oasis 
HLB 96-well plates 30 µm (30 mg) (Water Oasis, Milford, MA, USA). 
First, the 96-well plate was activated with methanol (Sigma-Aldrich, St. 
Louis, MO, USA) and 1.5 M formic acid, and after loading the samples, a 
clean-up step was performed with 1.5 M formic acid and methanol (0.5 
%). The phenolic compounds were then eluted with methanol acidified 
with 1.5 M formic acid, evaporated to dryness with nitrogen gas and 
reconstituted with 100 µL formic acid (0.05 %). After 20 min of vortex 
mixing, the samples were filtered through 0.22 µm polytetrafluoro-
ethylene 96-well plate filters (Millipore, Massachusetts, USA). 

The analysis was performed on an Accela chromatograph (Thermo 
Scientific, Hemel Hempstead, UK) coupled to an LTQ Orbitrap Velos 
mass spectrometer (Thermo Scientific, Hemel Hempstead, UK) equipped 
with an H-ESI source working in negative mode as described elsewhere 
[21]. Chromatographic separation was performed on a Kinetex F5 100 Å 
Column (50 × 4.6 mm, 2.6 µm) from Phenomenex (Torrance, CA, USA). 
Mobile phases A and B were, respectively, 0.05 % formic acid in water 
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and 0.05 % formic acid in acetonitrile. The following linear gradient was 
used: held at 98%A for 1.7 min, decreased to 92%A for 3 min, decreased 
to 80%A for 1.3 min, decreased to 70%A for 1.3 min, decreased to 50 % 
for 0.1 min, decreased to 0 % for 1.3 min, then returned to initial con-
ditions for 1.7 min and re-equilibrated for 3 min. The flow rate was set at 
0.750 µL/min and the injection volume was 5 µL. 

The collected UHPLC-HRMS data (. RAW file) were converted into. 
abf files using the Reifycs Abf Converter and then further processed 
using the software MS-DIAL (version 4.24) [22]. In this regard, auto-
matic peak finding and LOWESS normalization were performed. The 
mass range 100–1500 m/z was searched for peaks with a minimum peak 
height of 10,000 cps. The MS tolerance for peak centroiding was set to 
0.01 Da. Retention time information was excluded from the calculation 
of the total score. For identification, accurate mass tolerance was 0.01 
Da. The identification step was based on mass accuracy and isotopic 
patterns, and the annotation was carried out by manually comparing the 
peaks with the theoretical phenolic compounds. 

Then, for annotation confirmation, a pool of representative samples 
was injected in the UHPLC-Orbitrap-HRMS equipment and a data- 
dependent scan was carried out with the use of a parent ion list, using 
the ions tentatively annotated previously. The data were analysed using 
Xcalibur software v2.0.7 (Thermo Fisher Scientific, San Jose, CA, USA) 
and the fragments were manually checked. 

2.5. Creatinine determination 

Creatinine was measured by an adapted Jaffé alkaline picrate 
method for 96-well plates, as described by Medina-Remón et al. [23]. As 
phenolic compounds were expressed as peak areas, without quantita-
tion, it was not possible to normalize their values by creatinine con-
centration. Therefore, we introduced creatinine in the adjustment 
models to account for differences in urinary excretion. 

2.6. Statistical analyses 

Supervised analysis of multivariate data was carried out using SIMCA 
software (Umetrics) and orthogonal projection to latent structures 
discriminant analysis (OPLS-DA). This model was selected over a partial 
least squares discriminant analysis, as the orthogonal projection allows a 
better separation between groups when the intra-group variability is 
high [24]. To investigate the presence of outliers, Hotelling’s T2 was 
applied, using a 95% limit for suspicious outliers and 99 % for strong 
outliers. Goodness-of-prediction (Q2 Y) and goodness-of-fit (R2 Y) were 
used as validation parameters, adopting a Q2 Y prediction ability of >
0.5 as the acceptability threshold. ANOVA applied to cross-validated 
residuals (CV-ANOVA) was used for the cross-validation of the model, 
with a p-value < 0.05 as a threshold. The p-value of the CV-ANOVA 
indicates the probability for an OPLS-DA model, with this F-value 
being the result only of chance [25]. Finally, a permutation test (200 
permutations) was done to exclude overfitting. The variable importance 
in projection (VIP) was used to extrapolate the possible marker com-
pounds, i.e., those with a VIP score > 1. For each phenolic metabolite 
with a VIP score > 1, the fold change comparing T2D versus T2D-free 
participants was calculated. 

Logistic regression models were applied to assess the association of 
each phenolic compound (1-SD increment in transformed concentration 
of metabolites) with T2D, adjusting for covariates and confounders that 
could alter this relationship. Thus, we adjusted for age, sex, BMI, 
smoking habit, educational level, physical activity, total energy intake 
and hypercholesterolemia. Individual phenolic compounds and creati-
nine were natural logarithmically transformed to normalize their dis-
tributions, as were confounders that did not follow normal distribution 
(physical activity and total energy intake). The p-values of the logistic- 
adjusted associations were adjusted using the false discovery rate 
(FDR)-adjusted procedure to account for multiple testing [26]. There-
fore, those metabolites with a VIP score > 1 and a statistically significant 

p-value (<0.05) were considered as discriminant for T2D status and 
were used as independent variables in the following regression models. 
Receiver operating characteristic (ROC) curve analysis was used to 
assess the accuracy of the discriminant phenolic compounds. 

To further explore the relationship between the discriminant 
phenolic compounds and T2D, multivariable regression models were 
used to assess their association with plasma glucose levels (mg/dL). 
Three adjustment models of increasing complexity were used. Model 1 
was minimally adjusted for age, sex, and creatinine. Model 2 was further 
adjusted for smoking habit, educational level, BMI, physical activity, 
total energy intake, and hypercholesterolemia. As antidiabetic drugs 
were only used by diabetic participants with higher levels of glucose, 
their inclusion in the model might be an overadjustment. We therefore 
also applied model 3, which was additionally adjusted for antidiabetic 
drug usage. 

Logistic and multivariable adjusted regression models were gener-
ated using Stata 16.0. P-value < 0.05 was considered statistically 
significant. 

3. Results 

3.1. General characteristics 

The descriptive characteristics of the 200 participants are listed in  
Table 1. Their mean + SD age was 66.1 + 5.3 years and approximately 
half were women (54.5 %). 102 participants were diagnosed with T2D 
and 98 were free of T2D. The two groups were well-balanced in terms of 
BMI, physical activity, and total energy intake. A higher percentage of 
participants with hypercholesterolemia was observed in the non-T2D 
group (93.9 %). 15 % of the total participants were current smokers, 
the percentage being similar in both groups. Regarding education, a 
higher percentage of participants with T2D had received a high or me-
dium level of education (40.2 %) compared to those without T2D (26.5 
%). 

3.2. Phenolic compound identification 

The HRMS-based metabolomics analysis permitted the tentative 
identification of 79 phenolic compounds according to their exact mass 
and isotopic ratio. Among the 41 marker compounds selected using the 
VIP method (VIP score > 1), 17 were identified by their exact mass, 
isotopic ratio, and fragmentation pattern. The results are presented in 

Table 1 
Baseline characteristics of all the participants according to T2D status.  

Characteristics All 
(n=200) 

Participants 
without T2D 
(n=102) 

Participants 
with T2D 
(n=98) 

p-value 

Women, n(%) 109 
(54.5) 

56 (57.1) 53 (52.0)  0.462 

Age, years 66.1 +
5.3 

65.7 + 5.02 66.5 + 5.6  0.326 

BMI, kg/m2 29.5 +
3.4 

29.3 + 3.3 29.7 + 3.5  0.363 

Hypercholesterolemia 158 
(79.0) 

92 (93.9) 66 (64.7)  < 0.001 

Current smokers 30 
(15.0) 

15 (15.31) 15 (14.71)  0.958 

High or medium 
education 

67 
(33.5) 

26 (26.5) 41 (40.2)  0.041 

Physical activity, 
METS-min/day 

291.0 +
266.9 

286.2 + 263.4 295.6 +
271.4  

0.805 

Total energy intake, 
kcal/day 

2394.1 
+ 500.8 

2419.9 +
471.3 

2369.2 +
528.7  

0.475 

T2D, type-2 diabetes; METS, metabolic equivalents. 
Continuous variables are shown as means + SDs, and categorical variables are 
shown as percentages. 
T-test or chi-square test as appropriate. 
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the Appendix (Table A1). Due to the low concentrations of the urine 
samples and the difficulty in obtaining MS fragments, some compounds 
were tentatively identified according to the mass accurate measure-
ments and the isotopic pattern, with a level 4 identification [27]. 

3.3. Determination of discriminant compounds 

The OPLS-DA was built to model the raw data in a supervised manner 
and extrapolate the VIP marker discriminant compounds. The OPLS-DA 
analysis resulted in a model with R2 Y = 0.43 and Q2 Y = 0.101. VIP 
values were obtained for each variable in the OPLS-DA model and the 41 
selected compounds (VIP > 1.0) were consecutively identified by 
product ion scan analysis (MS2) (Table A1). The multivariate supervised 
statistical method allowed the identification of the discriminant com-
pounds and provided a good separation between participants with and 
without T2D in the score plot (Fig. 1). 

Table 2 shows the 41 phenolic compounds with a VIP score > 1 
grouped according to their polyphenol class. The average fold change 
(FC) was calculated to compare the samples of participants with and 
without T2D. Among all the compounds, 27 had a negative logFC, 
indicating their levels were higher in participants free of T2D. 

In the logistic-adjusted regression analysis, two phenolic compounds 
were associated with T2D after the FDR correction: dihydrocaffeic acid 
and genistein diglucuronide. Dihydrocaffeic acid is a colonic metabolite 
of caffeic and ferulic acid, although it can also be found in olives [28, 
29]. The aglycone of genistein diglucuronide can be found in vivo after 
the intake of soy, and in smaller proportions after consumption of nuts, 
vegetables, and fruits [30]. Both dihydrocaffeic acid and genistein 
diglucuronide showed an inverse association with T2D (OR = 0.22 (CI 
95 %: 0.09; 0.52) per 1-SD, p-value = 0.021 and OR = 0.72 (CI 95 %: 
0.59; 0.88) per 1-SD, p-value = 0.021, respectively), although the logFC 
of dihydrocaffeic acid was lower compared to genistein diglucuronide 
(− 0.27 and − 1.92, respectively). Dihydrocaffeic acid and genistein 
diglucuronide were both identified by product ion scan analysis (MS2), 
comparing the fragments to those in the literature [31,32]. 

Fig. 2 illustrates the ROC curve of urinary dihydrocaffeic acid and 
genistein diglucuronide in relation to T2D adjusted by the potential 
confounders. The area under the curve was 0.779 and 0.783 for dihy-
drocaffeic acid and genistein diglucuronide, respectively, indicating that 
both compounds were discriminant for T2D. Dihydrocaffeic acid pre-
dicted a non-diabetic status with 70.97 % of sensitivity and 65.66 % of 

specificity, whereas for genistein diglucuronide, the sensitivity was 
75.61 % and specificity 65.22 %. 

3.4. Discriminant compounds and fasting plasma glucose 

The associations between plasma glucose and the discriminant 
phenolic compounds according to the three adjustment models are 
presented in Table 3. Dihydrocaffeic acid showed a significant inverse 
association with plasma glucose in model 2 (β = − 17.12 (95 % CI: 
− 29.92; − 4.32) mg/dL per 1-SD, p-value = 0.009), but in model 3, 
which included the use of antidiabetic drugs, the relationship was no 
longer significant and the β coefficient decreased. However, a strong 
positive correlation was found between antidiabetic drug usage and 
plasma glucose (data not shown), so its inclusion as a confounder could 
be an overadjustment. A comparison of the associations of dihy-
drocaffeic acid with plasma glucose using adjustment models 2 and 3 is 
presented in Fig. 3. Genistein diglucuronide did not show any significant 
association in any adjustment model. 

4. Discussion 

In the present case-control substudy of the PREDIMED trial, we 
identified urinary phenolic compounds associated with the risk of T2D 
in participants at high CVD risk using a metabolomics approach based 
on UHPLC-Orbitrap-HRMS. The metabolites dihydrocaffeic acid and 
genistein diglucuronide were associated with lower T2D risk, and 
dihydrocaffeic acid was also inversely associated with plasma glucose 
levels. 

There is extensive evidence from epidemiological studies that dietary 
polyphenols reduce T2D risk [9]. This relationship could be explained 
by the anti-inflammatory properties of phenolic compounds, as cellular 
inflammation plays a key role in the development of T2D. Polyphenols 
can modulate the transcription of genes involved in inflammatory 
pathways, such as PPARy (peroxisome proliferator-activated receptor 
y), SIRT1 (Sirtuin 1), or AMPK1 (adenosine monophosphate-activated 
protein kinase) [33,34]. In addition, they can reduce glucose absorp-
tion by inhibiting the sodium-dependent glucose transporter 1 (SGLT1) 
and increase its uptake in tissues through activation of glucose trans-
porter 4 (GLUT4) [35]. Through prebiotic effects, polyphenols can 
stimulate the growth of microbial species in the gut with a beneficial 
impact on metabolic diseases [36]. 

Fig. 1. OPLS-DA score plot built considering the urinary phenolic profile of the participants with and without T2D.  

I. Domínguez-López et al.                                                                                                                                                                                                                     



Biomedicine & Pharmacotherapy 162 (2023) 114703

5

Most of the studies that report a negative association between 
polyphenols and T2D in humans are based on estimations of phenolic 
intake through dietary recall and food-composition tables rather than 
analysis of biological samples[37,38]. However, these methodologies 
are subject to errors due to systematic bias and subjectivity, and they do 
not consider other aspects such as bioavailability and the formation of 
new compounds through endogenous metabolism [7]. Thus, the 
resulting data may not reflect real exposure to biologically active com-
pounds. In the present study, we employed liquid chromatography and 
HRMS, which provide highly accurate mass determinations and frag-
mentation patterns from multi-stage mass fragmentation and allow the 
structural elucidation of known and unknown compounds [39,40]. 
Therefore, we were able to identify a great variety of phenolic com-
pounds in urine samples and to measure exposure to bioactive com-
pounds objectively and accurately. 

In our study, dihydrocaffeic acid was associated with a lower risk of 
T2D. This compound is thought to be a metabolite originated by the gut 
microbiota in the colon from the cinnamic acids caffeic, ferulic and 
chlorogenic acids [28,41,42]. These phenolic compounds can be found 
in different foods and beverages that form an essential part of the 
Mediterranean diet, such as coffee, vegetables, and fruits [29]. Previous 
research has reported that the beneficial effects of dihydrocaffeic acid 
are related to oxidative and the insulin/IGF-1 pathway [43]. However, 
to our knowledge, no studies until now have analysed the association of 
dihydrocaffeic acid with T2D or plasma glucose levels in humans. 

Dihydrocaffeic acid precursors have shown that they can provide 
benefits against T2D through different molecular pathways, as described 
in Fig. 4. A study performed in rats reported that caffeic acid has a 
protective effect against hyperglycemia and insulin resistance, with 
several possible mechanisms involved. It has been suggested that caffeic 
acid modulates the purinergic and cholinergic pathways, thus reducing 
oxidative stress and inflammation [44]. It is also thought to decrease the 
production of proinflammatory factors, such as cytokines or leptin [45, 
46]. Furthermore, Un et al. found that glucokinase was down-regulated 
by caffeic acid, leading to an attenuation of hepatic glucose output [47]. 
Regarding ferulic acid, it has been shown that it reduces ß-cell 
dysfunction by increasing the activity of antioxidant enzymes and 
modulating others that are key to glucose production, as 
glucose-6-phosphatase and phosphoenolpyruvate carboxykinase [48]. 
There are numerous studies that demonstrate that chlorogenic acid can 
reduce blood glucose in humans. In a clinical trial, it was shown that it 
can enhance insulin sensibility and ameliorate insulin resistance [49]. 
Chlorogenic acid, a precursor of dihydrocaffeic acid through its cleavage 

Table 2 
Average logFC of the marker compounds (VIP > 1) of T2D and their polyphenol 
class. The OR (CI 95%) and p-value obtained for each compound in the logistic 
regression analysis are also shown.  

Polyphenol 
class 

Tentative metabolite 
identification 

LogFC OR (CI 
95%) per 
1-SD 

p- 
value 

Flavonoids Epicatechin diglucuronide  -4.3481 0.74 (0.46; 
1.17)  

0.244  

Hesperetin  -2.2667 0.89 (0.76; 
1.04)  

0.214  

Daidzein sulfate  -2.1385 0.74 (0.60; 
0.92)  

0.068  

Genistein diglucuronide  -1.9158 0.72 (0.59; 
0.88)  

0.021  

Hesperetin diglucuronide  -1.6719 0.95 (0.84; 
1.07)  

0.419  

Genistein  -1.2496 0.73 (0.52; 
1.03)  

0.148  

Daidzein glucuronide  -1.2200 0.87 (0.71; 
1.07)  

0.244  

Hesperetin glucuronide  -1.0218 0.89 (0.77; 
1.04)  

0.214  

Daidzein  -0.4381 0.85 (0.73; 
1.00)  

0.128  

Naringenin diglucuronide  -0.3238 0.78 (0.62; 
0.99)  

0.117  

Naringenin disulfate  -0.0045 0.91 (0.68; 
1.23)  

0.595  

Epicatechin glucuronide  0.0821 0.94 (0.75; 
1.18)  

0.628  

Equol sulfate  1.1369 0.94 (0.65; 
1.35)  

0.740  

Hesperetin sulfate  1.7829 0.89 (0.75; 
1.06)  

0.244  

Equol glucuronide  2.6864 1.31 (1.07; 
1.61)  

0.068 

Lignans Enterolactone glucuronide  -0.5135 0.79 (0.62; 
1.03)  

0.148 

Phenolic 
acids 

Gallic acid diglucuronide  -4.4063 0.88 (0.72; 
1.07)  

0.244  

Benzoic acid diglucuronide  -2.7038 1.01 (0.78; 
1.30)  

0.961  

Hydroxybenzoic acid 
diglucuronide  

-2.5572 0.71 (0.55; 
0.92)  

0.068  

3-Hydroxyphenylacetic acid  -1.6165 0.71 (0.56; 
0.91)  

0.068  

Caffeic acid diglucuronide  -0.8731 0.77 (0.61; 
0.99)  

0.117  

Vanillic acid disulfate  -0.7186 0.82 (0.60; 
1.11)  

0.244  

Vanillic acid sulfate  -0.5185 0.72 (0.48; 
1.08)  

0.186  

Benzoic acid glucuronide  -0.4855 0.75 (0.54; 
1.03)  

0.148  

Protocatechuic glucuronide  -0.3934 0.74 (0.48; 
1.14)  

0.244  

Protocatechuic acid  -0.3314 0.74 (0.47; 
1.18)  

0.244  

Dihydrocaffeic acid  -0.2748 0.22 (0.09; 
0.52)  

0.021  

Hippuric acid glucuronide  -0.0289 0.67 (0.47; 
0.93)  

0.082  

Hydroxyphenylpropionic acid 
sulfate  

0.1788 1.19 (0.94; 
1.51)  

0.214  

Hydroxyphenylpropionic acid 
glucuronide  

0.2362 1.14 (0.89; 
1.46)  

0.337  

Chlorogenic acid sulfate  0.2885 1.15 (0.98; 
1.35)  

0.148  

3-Hydroxyphenylacetic acid 
disulfate  

0.3268 1.19 (0.91; 
1.56)  

0.244  

Caffeic acid sulfate  0.3724 1.31 (0.99; 
1.72  

0.145  

Ferulic acid sulfate  0.4121 1.41 (1.06; 
1.87)  

0.077  

Coumaric acid glucuronide  0.4505 1.32 (1.01; 
1.73)  

0.123  

Table 2 (continued ) 

Polyphenol 
class 

Tentative metabolite 
identification 

LogFC OR (CI 
95%) per 
1-SD 

p- 
value  

Chlorogenic acid glucuronide  0.7417 1.22 (1.01; 
1.47)  

0.117  

Chlorogenic acid  1.0310 1.49 (1.08; 
2.05)  

0.077 

Stilbenes Dihydroresveratrol disulfate  0.2885 1.15 (0.98; 
1.35)  

0.148 

Other Urolithin A glucuronide  -0.3752 0.86 (0.77; 
0.97)  

0.077  

Urolithin C  -0.3273 0.80 (0.65; 
0.99)  

0.117  

Urolithin B diglucuronide  -0.3259 0.79 (0.61; 
1.03)  

0.148 

FC, fold change; orthogonal projection to latent structures discriminant analysis, 
OPLS-DA; variable importance in projection, VIP; type-2 diabetes, T2D; OR, 
odds ratio; CI, confidence interval. 
Log-transformation was applied to raw values of phenolic compounds. 
Logistic regressions were adjusted for sex, age, smoking habit, educational level, 
BMI, physical activity, total energy intake, and hypercholesterolemia. 
P-value was FDR-adjusted. 
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into caffeic and quinic acids, can modulate the activity of enzymes 
involved in glucose metabolism, such as α-amylase, or 
glucose-6-phosphatase [50,51]. It also reduces the decrease in the 
expression of IRS-1 and GLUT-4 typically observed after high glucose 
exposure [52]. In addition, chlorogenic acid can reduce the production 
of reactive oxygen species and protect against oxidative stress [53]. 

In the present study, we found that dihydrocaffeic acid was associ-
ated with lower concentrations of plasma glucose, suggesting that it 
exerts the same beneficial effects on glucose metabolism as its pre-
cursors, probably due to chemical structural similarity. Interestingly, 
when the use of antidiabetics drugs was included in the analysis this 
association was no longer significant. Nevertheless, this could be due to 
an overadjustment, as the participants using antidiabetic drugs were 
diabetics with high levels of plasma glucose. Overall, these findings 
suggest that this microbial caffeic acid metabolite has beneficial bio-
logical activity against T2D. 

We found that higher levels of genistein diglucuronide were associ-
ated with a lower risk of suffering from T2D. Genistein diglucuronide is 
the major phase-II metabolite first to appear in plasma after genistein 
consumption, followed by single-conjugated metabolites [54]. The 

Fig. 2. Receiver operator characteristic curves for the predictive value of dihydrocaffeic acid (A) and genistein diglucuronide (B) regarding absence of type- 
2 diabetes. 

Table 3 
Multivariable linear regression between the discriminant phenolic compounds 
and plasma glucose.    

Dihydrocaffeic acid Genistein diglucuronide   

β (95% CI) per 
1-SD 

p- 
value 

β (95% CI) 
per 1-SD 

p- 
value 

Plasma glucose 
(mg/dL) 

Model 
1 

-12.87 (− 26.61; 
0.87)  

0.066 -0.90 (− 4.38; 
2.57)  

0.608 

Model 
2 

-17.12 (− 29.92; 
− 4.32)  

0.009 -2.10 (− 5.42; 
1.23)  

0.216 

Model 
3 

-10.15 (− 22.46; 
2.17)  

0.106 0.42 (− 3.48; 
2.63)  

0.785 

ß, difference between groups; CI, confidence interval. 
Log-transformation was applied to raw values of phenolic compounds. 
Model 1: age and sex. 
Model 2: age, sex, smoking habit, educational level, BMI, physical activity, total 
energy intake, and hypercholesterolemia. 
Model 3: age, sex, smoking habit, educational level, BMI, physical activity, total 
energy intake, hypercholesterolemia, and use of antidiabetic drugs. 

Fig. 3. Comparison of the multivariable linear regression between dihydrocaffeic acid and plasma glucose adjusted for (A): age, sex, smoking habit, educational 
level, BMI, physical activity, total energy intake, and hypercholesterolemia; and (B) further adjusted for the use of antidiabetic drugs. 
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relationship between genistein aglycone and T2D has been widely 
investigated, and several studies have associated this isoflavone with a 
reduced risk of developing the disease, lower glucose levels, and 
improved insulin sensitivity [55,56]. Most of these studies were clinical 
trials that assessed the effects of daily genistein supplementation [57, 
58]. Genistein is a phytoestrogen naturally found in soy in high con-
centrations, with small amounts present in other products consumed in 
the Mediterranean diet, such as nuts, vegetables, and fruits, [30]. 
Several mechanisms have been proposed to explain the protective effect 
of genistein against T2D. A study performed in mice suggested that it 
improves insulin release by inducing pancreatic β cells proliferation 
[59]. Mezei et al. observed a reduction of triglycerides and cholesterol 
through the activation of PPARy, which is involved in glucose and lipid 
metabolism [60]. Therefore, genistein diglucuronide could exert a pro-
tective effect against T2D through similar mechanisms, as genistein may 
be released from the diglucuronide during its transport through blood or 
upon reaching an organ [54]. 

The present study has both strengths and limitations. Limitations 
include the relatively small sample size and the high cardiovascular risk 
status of the participants, which restricts the extrapolation of the results 
to other populations. In addition, the nature of the study precludes 
determination of causality. On the other hand, the main strength of our 
study is the use of metabolomics based on HRMS to evaluate a wide 
variety of phenolic compounds in biological samples. In addition, this 
study involved a free-living population, and the results reflect real-life 
conditions. Finally, the methodology here developed could be applied 
in other human studies to find new metabolite biomarkers of foods or 
disease. 

5. Conclusions 

A novel method using a metabolomics approach was developed to 
determine the association of urinary phenolic compounds with T2D 
revealed that two metabolites, dihydrocaffeic acid and genistein diglu-
curonide, were associated with a lower risk of T2D in a Mediterranean 
population at high cardiovascular risk. Further research is needed to 
explore the effects of these metabolites on the pathogenesis of T2D and 
their usefulness as tentative biomarker for T2D prediction. 
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A. Tur, M. del Puy Portillo, R. Estruch, Cohort profile: design and methods of the 
PREDIMED study, Int. J. Epidemiol. 41 (2012) 377–385, https://doi.org/10.1093/ 
ije/dyq250. 
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