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Abstract

The aim of this project is to study a theorem of Ribet stating that the images of the
Galois representations attached to modular forms without Complex Multiplication are
large for almost every prime. Firstly, the needed background is introduced in the form
of some definitions and basic properties of modular forms and Galois representations.
Later, the subgroup classification of general linear groups over finite fields is presented,
as well as other useful results from group theory. Finally, Ribet’s theorem is stated and
proved using all the tools from algebraic number theory and group theory developed in
the previous chapters.
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Chapter 1

Introduction

1.1 A bridge between number theory & complex analysis

Number theory can be defined as the branch of mathematics that studies integer num-
bers, arithmetic functions, and any problem that arise from them. As happens with all
mathematical fields, in number theory there are still lots of open problems, questions for
which there is no concrete answer yet. Among them, some of the most popular ones are
the twin prime conjecture, the Riemann hypothesis, or the study of absolute Galois group.

Each of these problems is interesting in its own right, and the effort that many math-
ematicians have put into them has led to the development of several new and valuable
mathematical constructions. Therefore, it makes sense to take a closer look at at least one
of these problems. We opt for the study of the absolute Galois group.

We start by discussing a common question in number theory.

Question 1. To find all roots of a given polynomial p(x) ∈ Q[x].

To answer Question 1 it suffices to decompose p(x) into linear factors. However, this
decomposition can not always be done in Q since not all rational polynomials have rational
roots. For example, p(x) = x2 + 1 ∈ Q[x] factors as (x + i)(x− i) and ±i ̸∈ Q. Precisely
this phenomena motivates the definition of the splitting field of a rational polynomial.

Definition 2. The splitting field of a polynomial p(x) ∈ Q[x] is a field extension L of Q over
which p(x) factors as

p(x) = c
deg(p)

∏
i=1

(x− ai),

where c ∈ Q, and the roots ai generate L over Q.

In general, splitting fields of rational polynomials are well understood and have nice
properties, such as being unique and finite extensions. However, we can go a step further
and generalize Question 1 as follows.

Question 3. To determine the smallest field extension of Q in which the roots of all rational
polynomial belong.

1



2 Introduction

Now, instead of looking for the splitting field of a particular rational polynomial, Ques-
tion 3 requires to look at all rational polynomials at once and to consider the field exten-
sion generated by all the roots. This construction is known as the algebraic closure of Q

and its definition can be synthesised in the following way.

Definition 4. The algebraic closure of Q, denoted by Q, is the field consisting of those complex
numbers which are roots of some non-zero rational polynomial, i.e.

Q = {α ∈ C : p(α) = 0 for some p(x) ∈ Q}.

Each of the roots α is defined as an algebraic number over Q.

Contrary to the case of the splitting fields, the algebraic closure of Q is a mathematical
object of which we do not have that much knowledge, and one of the reasons is because
it does not have as good properties. For example, the field extension Q/Q is infinite.
Therefore, an strategy consists in using other mathematical constructions to study the
infinite extension Q/Q. In particular, since we are dealing with field extensions, it make
sense to use Galois theory. This leads to the definition of the absolute Galois group.

Definition 5. The absolute Galois group corresponds to Gal(Q/Q).

Notice that thanks to Galois theory we have switched from studying the infinite field
extension Q/Q to studying Gal(Q/Q). These are good news for our interests, since now
we can use all the machinery from group theory. In this regard, a common and useful
technique when dealing with complicated groups is to study them via its actions on finite
vector spaces. This is what is known as group representations.

The theory of group representations is studied in detail in Chapter 2, but for the
moment it suffices to know that when we restrict group representations to the case of
Gal(Q/Q), they are called Galois representations.1 From here, we could simply limit
ourselves to studying generic Galois representations, with the disadvantage that they are
objects about which we do not have too much information. Therefore, we can mimic
the previous strategy and try to combine these representations with some mathematical
techniques from other fields to obtain more manageable structures.

It turns out that the additional mathematical tool that we require comes from complex
analysis, a branch that is, apparently, far from number theory. In particular, it corre-
sponds to the notion of modular forms, which are holomorphic functions from the upper
half plane that satisfy some symmetry conditions with respect to particular subgroups of
SL(2, Z).2

The choice of modular forms is by no means accidental and is due to a result known
as the Eichler-Shimura relation. Broadly speaking, the Eichler-Shimura relation allows to
associate an abelian variety to a particular case of modular form known as an eigenform.
Then, by means of another construction known as the Tate module, we can attach a Galois
representation to the abelian variety. Hence, since starting from a modular form we end
up obtaining a Galois representation, the Eichler-Shimura relation can be seen as a bridge
between complex analysis and number theory. Indeed, it is simply the tip of a much

1This is a simplification of the actual definition, see Section 2.2.2 for the precise definition.
2Again, this is a simplification of the actual definition, see Section 3.1 for the precise definition.
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deeper framework of conjectures and results about the connection between these areas
known as the Langlands program.

For the case we are interested in, it turns out that Galois representation arising from
this construction are endowed with some additional properties that we can take advantage
of to study them. From there, one of the most natural questions when dealing with this
type of Galois representations is what their image is like. This is precisely what Ribet
studied in [Rib85], where he stated and proved a version of the following theorem, which
is the main result of study throughout this thesis.

Theorem 6 (Ribet). The images of Galois representations attached to modular forms without
Complex Multiplication are as large as possible for almost every prime.

1.2 Contents of the thesis

The aim of this thesis is to study the images of Galois representations attached to
modular forms without Complex Multiplication, focusing on Theorem 6, which sates that
these images are as large as possible for almost every prime. This will involve the un-
derstanding of several topics from a priori unrelated mathematical areas. From one side,
the notion of Galois representations belongs to the core of this work, both for stating and
proving Ribet’s theorem. From another side, the theory of modular forms is crucial not
only for the theorem itself but also for the construction of all the previous machinery. In
addition, several important results arising from group theory also play an important role
during the proof of the theorem.

Often, at this mathematical level, topics such as the one treated in this thesis are simply
covered in papers in a succinct manner, omitting most of the steps, and providing neither
motivation on the ideas nor the necessary mathematical background. Therefore, this work
intends to give a self-contained overview of all the notions needed to understand both
the statement and the proof of Ribet’s theorem, while attempting to give intuition behind
all the constructions that appear in it. In that sense, For the sake of simplicity, most of
the needed background on related topics is simply introduced by stating their definitions
and useful results, motivating their construction, and giving precise references on the
proofs. The main theorem is stated and proved with all detail following the work of Ribet
in [Rib85], but extending in detail most of his arguments.

To summarize, all the chapters of this thesis are listed below, as well as a brief descrip-
tion of their contents.

First of all, the following chapter introduces the notion of Galois representations, cov-
ering from some basic notions of group representations to other advanced topics such as
infinite Galois extensions. In addition, it also discusses other related topics from alge-
braic number theory including the l-adic numbers, ramification of extensions, and group
characters.

Chapter 3 is dedicated to the theory of modular forms. It starts by motivating the topic
and giving the first definitions and gradually introduces more advanced notions until
reaching the construction of newforms, essential for the statement of Ribet’s theorem. It
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also presents other important concepts of this theory, such as modular forms with complex
mutiplication and with inner twists.

Chapter 4 refers to some useful results in group theory. In particular, it is mainly
focused on the subgroup classification of GL(2, Fq) given by Dickson, including not only
the statement of the theorem but also the definitions and some properties of all the groups
listed there.

Chapter 5 contains the main goal of the thesis, the statement and proof of Ribet’s theo-
rem on the images of Galois representations attached to modular forms without Complex
Multiplication. Both the statement and the proof are treated in detail, explaining the intu-
ition behind each step. All the theory developed in the previous chapters is used, as well
as some additional results that are introduced in the chapter itself.

Chapter 6 contains all the work done during the thesis in the form of conclusions.



Chapter 2

Galois representations

The history of the origins of Galois theory is as well known as dramatic. It started
with the work of Galois in the 19th century, who related the resolubility by radicals of
polynomials to the study of the group of permutations of its roots before dying in a duel at
the age of 20. Thereafter, the field kept evolving due to the work of several mathematicians
such Dedekind and Artin, who popularized it during the last century. In particular, its
obvious connections with group theory lead to what is known as Galois representation
theory, which consists in the study of Galois groups in terms of its actions over finite
vector spaces.

These days, Galois theory, and consequently Galois representations, are present in
several research areas inside mathematics, being number theory and algebraic geometry
the main ones.

2.1 First notions

The aim of this section is to provide a brief introduction to the field of Galois represen-
tations by presenting the main definitions and results needed in the following chapters.
We begin by covering the notion of group representations.

2.1.1 Group representations

Definition 7. Let G be a group, K a field, and V a vector space of dimension n over K. A
representation of G on V is a group homomorphism from G to GL(V). It is denoted by

ρ : G → GL(V).

Remark 8. Since there is an isomorphism between GL(V) and GL(n, K), often group
representations are expressed as ρ : G → GL(n, K).

One of the most straightforward examples of group representations are the ones where
G is a finite permutation group.

5
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Example 9. Let G = S5 and consider V = C5. It is clear that given σ ∈ G, it acts on V via
the permutation matrix A = (ai,j) given by

ai,j =

{
1 if σ−1(i) = j

0 if σ−1(i) ̸= j
.

Therefore, setting σ = (2, 3, 5) we have that

ρ(σ) =


1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0


As happens with most mathematical constructions, the notion of irreducibility is also

present in the context of group representations.

Definition 10. Let G be a group, V a finite vector space over a field K, and ρ a representation of
G on V. A subrepresentation of V is a subspace W ⊂ V such that for all w ∈ W and g ∈ G,
ρ(g)w ∈W. In that context, ρ is irreducible if its only subrepresentations are V and {0}.

Remark 11. Notice that we can interpret Definition 10 in matricial terms. In particular, a
representation ρ of a group G is reducible if and only if for all g ∈ G the matrices ρ(g) can
be expressed as upper triangular matrices up to conjugate by the same invertible matrix.

The following Theorem due to Maschke answers the question of whether group rep-
resentations can be expressed in terms of irreducible group representations.

Theorem 12. Let G be a finite group and K a field with characteristic not dividing the size of G.
Then any representation ρ : G → GL(n, K) can be decomposed into the direct sum of irreducible
representations.

Proof. See [Mas98].

2.1.2 l-adic numbers

When working with Galois theory, the main object of interest is Gal(Q/Q) because
of the reasons mentioned in Chapter 1. However, often it is useful to also consider other
advanced algebraic constructions. In particular, in further sections the l-adic numbers will
play a key role for our purposes.

Roughly speaking, the l-adic numbers simply correspond to an extension of the field
of rational numbers Q different from the one leading to the real numbers R. In particular,
this construction is based on the idea of establishing the closeness of two given numbers
in terms of congruences modulo a prime l. Thus, two numbers will be close if they are
congruent modulo a high power of l.

In order to be precise, we first need to introduce the notion of inverse limit.
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Definition 13. Consider a sequence of sets (Xn)n∈N and maps fn : Xn+1 → Xn. The inverse
limit, denoted by lim←−Xn, corresponds to the subset of ∏n∈N Xn given by

lim←−Xn := {(an)n∈N ∈ ∏
n∈N

Xn : fn(an+1) = an for all n ∈N}.

Once the notion of inverse limit is introduced, the l-adic integers simply correspond
to a particular case of this construction by considering sequences of integers congruent
modulo powers of a prime l.

Definition 14. Let l be a prime, Xn = Z/pnZ, and πn : Z/pn+1Z → Z/pnZ the natural
projection for all n ∈ N. Then, the l-adic integers, denoted by Zl , correspond to the inverse limit
of (Z/pnZ)n∈N, i.e.

Zl := lim←−Z/pnZ = {(an)n∈N ∈ ∏
n∈N

Z/pnZ : πn(an+1) = an for all n ∈N}.

Remark 15. Since Z/pnZ is a ring and πn : Z/pn+1Z→ Z/pnZ is a ring homomorphism
for all n ∈N, we can endow Zl with a ring structure simply by defining the addition and
the product component-wise. Moreover, it can be easily checked that Zl is indeed an
integral domain.

Remark 16. From Definition 14 one can check that Z×l = Zl \ lZl .

Remark 17. Notice that the map

Z→ Zl

a 7→ (a + lZ, a + l2Z, ...)

is a ring injection. Thus, we can view Z as a subring of Zl .

According to Remark 15, Zl is an integral domain. Thus, it makes sense to construct
its fraction field, i.e. the smallest field in which it can be embedded. This is precisely the
notion of the l-adic rational numbers.

Definition 18. Let l be a prime. The field of l-adic rational numbers, denoted by Ql , corresponds
to the fraction field of the l-adic integers, i.e.

Ql = Frac(Zl).

Remark 19. There are some alternative ways of constructing both the l-adic rational num-
bers and the l-adic integers that obviously do not change any of their properties. In
particular, Ql can be defined as the completion of Q with respect to a non-Archimedean
norm known as the l-adic absolute value. Then, the construction of Zl follows as the
closed ball centered at the origin with radius 1 with respect to that norm. See [KKS95],
Section 2.4. for details on this construction.
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2.1.3 Arithmetic in extensions

Apart from the l-adic numbers, the other important ingredient to take into account
when dealing with Galois representations is the theory of arithmetic in extensions, being
ramification and the decomposition group its main concepts.

In order to discuss about ramification, we first need to introduce the concept of ring of
integers.

Definition 20. Let K/Q a finite field extension. Its ring of integers, denoted by OK, corresponds
to the ring of all algebraic integers contained in K, where an algebraic integer corresponds to a root
of a monic polynomial with integer coefficients.

Remark 21. It is easy to check that OK is a ring.

In a general sense, the idea of ramification consists in studying how the ideal generated
by a prime number decompose in the ring of integers of a given extension. As we will see
in the next section, the behaviour of primes in this context is crucial and provides useful
information to study Galois representations.

Definition 22. Let K/Q a finite extension of degree n and OK its ring of integers. A prime p
generates a prime ideal of Z that factors in OK as

pOK = p
e1
1 ...per

r ,

where pi are distinct prime ideals of OK and ei are positive integers. This factorization is unique
up to reordering and p is ramified in K/Q if there is some ei > 1.

Remark 23. In the set up of Definition 22, we can define positive integers f1, ..., fr such
that OK/pi

∼= Fp fi . Then, by construction we get e1 f1 + ... + er fr = n.

Remark 24. Due to a construction known as the discriminant of a number field it can be
easily proven that the set of ramified primes in a given finite extension is always finite.

In the case of quadratic extensions over Q, the definition of the discriminant notion
referred in the previous remark is straightforward to define and allows us to state a result
that will be useful in later sections.

Definition 25. Let d be a square-free integer different from 0 and 1, and K = Q(
√

d) the quadratic
field associated to d. The discriminant of K, denoted by ∆K, is given by

∆K :=

{
d if d ≡ 1 (mod 4)

4d if d ≡ 2, 3 (mod 4)
.

We can characterize the primes ramifying in a finite rational extension in terms of the
discriminant by means of the following result due to Dedekind.

Theorem 26 (Dedekind). Let K be a quadratic extension over Q. Then a prime p ∈ Z ramifies
in K if and only if p divides ∆K.

Proof. See [Ded82].
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Remark 27. It turns out that Theorem 26 is simply a particular case of a much more
general result for finite extensions over any field. However, for our purposes it is enough
with the version stated above.

In addition, ramification is closely related to the construction of the Frobenius auto-
moprhism, which in turn is linked to the decomposition and inertia groups. We define all
this concepts next.

Definition 28. Let L/Q a finite Galois extension of degree n, OL its ring of integers, and G :=
Gal(L/Q). Given a prime p, we take a prime ideal p in L lying on the factorization of p. The
decomposition group of p, denoted by Dp, corresponds to the subgroup of G formed by the elements
that fix p, i.e.

Dp := {σ ∈ G : σ(p) = p}.

Remark 29. From the set up of Definition 28, we denote kp := OL/p and k := Z/pZ to
both residue fields. Then, there exists a natural reduction morphism

ϕp : Dp → Gal(kp/k),

which is always surjective.

Combining Definition 28 and Remark 29 we can define both the inertia group and the
Frobenius automorphism.

Definition 30. The inertia group of p, denoted by Ip, corresponds to the kernel of ϕp, i.e.

Ip := {σ ∈ G : σ(x) ≡ x (mod p) for all x ∈ OL}.

The following proposition illustrates the connection between the inertia group and the
ramification of primes. In particular, it states that ramification can be controlled by the
structure of the inertia group.

Proposition 31. Let L/Q a finite Galois extension, OL its ring of integers, and p a prime number.
Then p is unramified in K if and only if for any prime ideal p in OL lying on the factorization of p
the inertia group Ip is trivial.

Proof. See [AM18], Theorem 28.

Remark 32. According to Proposition 31, the ramification of primes characterizes when
ϕp is an isomorphism. In particular, when p is unramified we get that Dp

∼= Gal(kp/k).

Remark 33. Recall that a classical result in Galois theory states that Gal(kp/k) is cyclic
generated by

σp : kp → kp
x 7→ xp

The union of remarks 32 and 33 is precisely the motivation behind the definition of the
Frobenius automorphism.
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Definition 34. Let L/Q a finite Galois extension, a prime number, p a prime ideal in OL lying
on the factorization of p, and ϕp the morphism of Remark 29. A Frobenius automorphism of
Gal(L/Q), denoted by Frobp, corresponds to any g ∈ Dp such that ϕp(g) = σp, where σp is the
generator of Gal(kp/k) pointed in Remark 33.

Remark 35. Notice that Proposition 31 implies that when p is unramified there is a unique
Frobenius automorphism for any prime ideal p in OL lying on the factorization of p.

Remark 35 answers the question of whether the Frobenius automorphism is unique
given a prime ideal p. However, another natural question to ask is what happens if instead
of p we choose another prime ideal p′ lying on the factorization of p. This is what the
following proposition is about.

Proposition 36. Let L/Q a finite Galois extension, p an unramified prime, and p and p′ two
prime ideals lying on the factorization of p. Then there exists σ ∈ Gal(L/Q) such that

Frobp′ = σ−1Frobpσ.

Proof. See [Die10], p. 13.

Until now, the Frobenius automorphism seems to be far away from our field of interest.
However, it turns out to be important while studying the images of Galois representations
derived from modular forms due to the work of Eichler-Shimura. See [Shi71]

2.2 Infinite Galois theory

All Galois theory we have seen so far simply consider finite field extensions. Never-
theless, for our study we need to go a step further and generalize these constructions to
also allow infinite extensions. In particular, we are interested in studying Galois represen-
tations.

2.2.1 Infinite field extensions

We start this section by recalling an important result in finite field extensions taught at
the undergraduate level, the Galois correspondence.

Theorem 37 (Galois correspondence for finite field extensions). Let L/K be a finite Galois
extension. Then there is a bijection between the following sets:

{Subextensions K ⊂ N ⊂ L} 1:1←→ {Subgroups H ⊂ Gal(L/K)}
N 7→ Gal(L/N)

LH ← [ H
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Theorem 37 is the core of the Galois theory for finite extensions. However, the exten-
sion in which we are interested is Q/Q, which is infinite. Therefore, a natural question to
ask is whether this correspondence is still valid for infinite extensions, or at least for the
particular case of the extension Q/Q.

It turns out that the answer is no, i.e. the correspondence as stated in Theorem 37 is
no longer true for the extension Q/Q. Nevertheless, we can sort this out by endowing
infinite Galois groups with a topological structure. Broadly speaking, the main idea is to
view the Galois group of infinite extensions as a topological groups and from there derive
most of the properties that hold on the finite case.

In this regard, we first need to properly define the notion of topological group.

Definition 38. Let G be a topological space and · : G × G → G a binary operation, denoted by
product, such that (G, ·) is a group. Then, (G, ·) is a topological group if the following properties
hold:

1. The product is continuous.

2. The inverse function

ι : G → G

g 7→ g−1

is continuous.

An important property of topological groups is that all open subgroups are also closed.

Proposition 39. Let G be a topological group and H ⊆ G an open subgroup. Then H is a closed
subgroup.

Proof. Let g ∈ G and consider the translation map

mg : G → G

h 7→ gh

It is straightforward to check that mg is a homeomorphism. Thus, all cosets gH = mg(H)

are also open. Hence, we get that

G = H ∪
⋃

g∈G/H
g ̸∈H

gH,

which implies that H is closed as desired.

After defining the concept of topological groups, we need to state the particular topol-
ogy with which Galois groups are endowed. It is known as the Krull topology and it
comes from the following construction.

First, notice that given a field L ⊂ Q such that L/K is a finite Galois extension we can
consider the restriction map

Gal(Q/Q)→ Gal(L/Q)

σ 7→ σ|L
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Therefore, by taking an infinite product over all these finite Galois extension we obtain
the following map:

Gal(Q/Q) ↪−→ ∏
L/Q

finite Galois
extension

Gal(L/Q).

From there, we define as the Krull topology on Gal(Q/Q) to the topology given by
considering the discrete topology on each Gal(L/Q), the product topology on the product,
and the subspace topology on Gal(Q/Q).

This construction for the case of the algebraic closure of Q can be generalized to other
field extensions by the following definition of the Krull topology.

Definition 40. Let L/K be a Galois extension, consider the family of finite Galois extensions given
by

N = {N : N is a subfield of L sucht that N/K is a finite Galois extension},

and consider the family of subgroups given by

H = {Gal(L/N) : N ∈ N}.

Then a subset X ⊆ Gal(L/K) is open in the Krull topology if it is empty or

X =
⋃

i
gi Ni for some gi ∈ Gal(L/K) and Ni ∈ N .

Remark 41. There are some equivalent definitions to Definition 40 for the notion in Krull
topology. For example, one in terms of the open neighborhood of the identity. See [Die10]
for further discussion on this topic.

Once we have endowed Galois groups with the Krull topology, we are able to state the
Galois correspondence for infinite Galois extensions.

Theorem 42. Let L/K be a Galois extension. Then there is a bijection between the following sets:

{Subextensions K ⊂ N ⊂ L} 1:1←→ {Closed subgroups H ⊂ Gal(L/K)}
N 7→ Gal(L/N)

LH ← [ H

Proof. See [Mil22], Theorem 7.13.

Having said that, our main interest along this subsection is to mimic the constructions
done in Subsection 2.1.3 to the infinite extension Q/Q. We start by defining its ring of
integers.

Definition 43. The ring of integers of Q/Q, denoted by Z, corresponds to the ring formed by the
algebraic integers of Q, i.e.

Z = {α ∈ Q : α is an algebraic integer}.
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Remark 44. Notice that by construction, for any p prime and p ⊂ Z a maximal ideal
containing p it holds that Z/p ∼= Fp.

As expected, the definition of the decomposition group is analogue to the one stated
in Definition 28 for finite extensions.

Definition 45. Let p be a prime and p ⊂ Z a maximal ideal containing p. The decomposition
group of p, denoted by Dp, corresponds to the subgroup of G formed by the elements that fix p, i.e.

Dp := {σ ∈ Gal(Q/Q) : σ(p) = p}.

Remark 46. Despite that the decomposition group depends on the election of p over p,
for any other prime ideal p′ lying over p the decomposition groups are conjugated, i.e. we
have that

Dp′ = σ−1Dpσ

for some σ ∈ Gal(Q/Q).

In this case, combining the idea of Remark 29 with Remark 44 we obtain a morphism

φp : Dp → Gal(Fp/Fp).

Remark 47. Considering the Krull topology, one can check that φ is indeed a surjective
and continuous morphism.

As happened with the decomposition group, the construction of the inertia group
follows the same structure to the one from Definition 30 for finite extensions.

Definition 48. The inertia group of p, denoted by Ip, corresponds to the kernel of φp, i.e.

Ip := {σ ∈ Gal(Q/Q) : σ(x) ≡ x (mod p) for all x ∈ Z}.

Remark 49. As stated in Remark46 for the decomposition group, given two prime ideals
p and p′ lying over p the inertia groups are conjugated, i.e. we have that

Ip′ = σ−1 Ipσ

for some σ ∈ Gal(Q/Q).

At this point, it will not be surprising that the definition of the Frobenius automor-
phism also sticks to the one presented in Definition 34 for finite extensions. However, in
this case we call it the absolute Frobenius over p instead of the Frobenius automorphism
in order to underline its importance.

Definition 50. An absolute Frobenius over p, denoted by Frobp, corresponds to any g ∈ Dp such
that φp(g) = σp, where σp is given by

σp : Fp → Fp

x 7→ xp
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Remark 51. By definition, the absolute Frobenius is defined only up to the inertia group.
So in this set up is also important to keep track of the structure of the inertia group given
a prime p. Indeed, this idea will com up later in Subsection 2.2.2 in the definition of the
ramification of a Galois extension.

At first sight, it may seem that all the constructions done so far are analogue to the
ones done in Subsection 2.1.3 for finite extensions. However, we must take into account
that now the Krull topology also plays a role and can be used to prove new results. This
is precisely the case for the following theorem due to Chebotarev.

Theorem 52 (Chebotarev density theorem). For any but a finite set of primes p, and for each
maximal ideal p ⊂ Z lying over p, we take an absolute Frobenius Frobp. Then the set {Frobp}p|p
is dense on Gal(Q/Q).

Proof. See [LS94], Appendix.

Theorem 52 gives us some intuition about the significance of the absolute Frobenius
elements. The fact that they form a dense subset will be useful later for our purposes on
studying the image of Galois representations.

2.2.2 Galois representations

As mentioned in Chapter 1, there is one Galois group that stands out above all the
others: the absolute Galois group. For this reason, when speaking about Galois repre-
sentations we always restrict ourselves to simply consider representations of Gal(Q/Q).
Going into details, we move to state its definition.

Definition 53. Let K be a field and V a K-vector space of finite dimension. A Galois representation
of Gal(Q/Q) is a continuous morphism

ρ : Gal(Q/Q)→ AutK(V).

Remark 54. Notice that contrary to the statement from Definition 7, in Definition 53 we
require the morphism to be continuous because we are working with Gal(Q/Q) as a
topological group.

Remark 55. Despite dealing an infinite Galois extension, the argument used in Remark 8
is still valid. Thus, a galois representation also can be viewed as

ρ : Gal(Q/Q)→ GL(n, K).

Example 56. Let K = Q(i), and V a K-vector space of dimension 1. By definition, for any
σ ∈ Gal(Q/Q) we have that σ(i) = ±i and AutK(V) ∼= K×. Therefore, we can define a
representation

ρ : Gal(Q/Q)→ K×

σ 7→ σ(i)
i
∈ {±1}
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Before presenting some new concepts, we are already in a position to see one of the
consequences of Theorem 52 and the importance of the absolute Frobenius.

Proposition 57. Let ρ1 and ρ2 two Galois representations. If for all but finitely many primes p,
and for each prime ideal p ⊂ Z containing p, we have that ρ1(Frobp) = ρ2(Frobp), then ρ1 = ρ2.

Proof. By Theorem 52, we have that the set {Frobp} is dense on Gal(Q/Q). Then, using
that both representations are continuous by definition, we conclude that if they are equal
on a dense subset they must be equal on the whole set.

When studying Galois representations, it may be helpful to be able to split them
into smaller representations. The representations that allow this phenomena are called
semisimple.

Definition 58. Let ρ : Gal(Q/Q) → AutK(V) be a Galois representation. ρ is defined as
semisimple if V can be decomposed as

V =
⊕

i
Vi

where each Vi is a subrepresentation of V and the representations ρ : Gal(Q/Q)→ AutK(Vi) are
irreducible for all i.

Therefore, it makes sense to try to characterize the conditions for a Galois represen-
tation is semisimple, since it will simplify our task. In that sense, the following theorem
states that all Galois representations over the complex numbers are semisimple.

Theorem 59. Let ρ : Gal(Q/Q)→ AutC(V) be a Galois representation. Then ρ is semisimple.

Proof. The idea of the proof is to reduce the statement of the theorem to a representation
from a finite Galois extension via a factorization and then treat it as a particular case of
Theorem 12. See [Die10], Theorem 6.8. for further details.

Remark 60. In general it is not true that any Galois representation is semisimple, since in
the previous proof the argument precisely uses the hypotesis of K = C.

Due to Remark 60, we could be tempted to only focus our study to Galois representa-
tions with over the complex numbers because they are all semisimple. However, it turns
out that complex Galois representations always factor through finite extensions, i.e. by
studying them we can only recover information from finite extensions of Q.1 For this
reason, we must also consider the Galois representations on vector spaces over Ql , called
the l-adic Galois representations.

In Subsection 2.2.1 we have generalized the notion of ramification to the absolute Ga-
lois group. Thus, another topic that requires our attention is to relate this construction
with Galois representations.

Definition 61. Let ρ : Gal(Q/Q) → AutK(V) be a Galois representation. Given a prime p, we
say that ρ is unramified at p if ρ(Ip) = Id for any prime ideal p ⊂ Z containing p.

1See [Die10], Theorem 6.5. for further details on this discussion.
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Remark 62. It must be checked that Definition 61 does not depend on on the prime ideal
p. In order to do so, we rely on the fact that Remark 49 states that two different inertia
groups of the same prime p are conjugated. Therefore, if ρ is trivial in one of them, it
must be trivial in the other as well.

At first sight, it may not be clear where this definition of ramification comes from.
Recall that Proposition 31 relates the ramification of field extensions with the inertia group
not being trivial. With this in mind, the following proposition establishes the link between
ramification of a representation and of a field extension.

Proposition 63. Let p be a prime and ρ : Gal(Q/Q) → AutK(V) be a Galois representation.
Then ρ is unramified at p if and only if it factors through Gal(L/Q), where L/Q is some algebraic
extension unramified at p.

Proof. First, we prove the left to right implication. If ρ factors through some representation
ρ̃ : Gal(L/Q)→ AutK(V) with L/Q unramified at p, it is clear that

ρ(Ip) = ρ̃ ◦ π(Ip) = ρ̃(Ip(L/Q)) = ρ̃(1) = Id.

On the other hand, if Ip is trivial the statement follows directly. Moreover, if Ip is not
trivial then ρ factors through Gal(L/Q), where L ⊂ Q is the maximal extension in which
p is ramified.

Hence, it makes sense to define a representation as unramified precisely when the
image of inertia group is the trivial one. Moreover, as stated in Remark 51, the absolute
Frobenius is defined up to the inertia group. Therefore, the fact that ρ is unramified
implies that ρ(Ip) = Id, and consequently, ρ(Frobp) only depends on p.

Moreover, we can go a step further and try to find a relation between ρ(Frobp) and
ρ(Frobp′) for two different prime ideals p and p′ over an unramified prime p. In that
sense, notice that since p and p′ are conjugated, ρ(Frobp) and ρ(Frobp′) are conjugated
matrices, which implies that their characteristic polynomials are the same. This leads to
the following definition.

Definition 64. Let ρ be a Galois representation unramified at p. We define the characteristic
polynomial at p as

char(ρ(Frobp)) := char(ρ(Frobp)).

Due to the previous construction, we have obtained a value on the image of a Galois
representation that simply depends on the unramified prime p. Moreover, since for any
A ∈ GL(2, K) we have that char(A) = x2−trace(A)+det(A), for any 2-dimensional Galois
representation unramified at p we can define

trace(ρ(Frobp)) := trace(ρ(Frobp)) and det(ρ(Frobp)) := det(ρ(Frobp)).

In addition, the following theorem due to Brauer and Nesbitt shows how the charac-
teristic polynomial is a powerful tool to understand the image of a Galois representation.
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Theorem 65. Let ρi : Gal(Q/Q) → AutK(V), i = 1, 2, two semisimple Galois representations
ramified only in a finite set of primes S. If

char(ρ1(Frobp)) = char(ρ2(Frobp))

for all p ̸∈ S, then ρ1 and ρ2 are isomorphic. Moreover, if K has characteristic 0 it is enough to
check that

trace(ρ1(Frobp)) = trace(ρ2(Frobp))

for all p ̸∈ S.

Proof. See [WCR06], Theorem 30.16.

Notice that the hypothesis of Theorem 65 requires that both Galois representations are
unramified at all but finitely many primes p. Therefore, a natural question to ask is when
a Galois representation satisfies this requirement. In that line, there is a strong result for
the case of K = C.

Theorem 66. Let ρ : Gal(Q/Q) → AutC(V) be a Galois representation. Then ρ is ramified in a
finite set of primes.

Proof. See [Die10], Proposition 6.15.

Unfortunately, this result does not hold in general. However, the set of ramified primes
always has 0 density. See [KR01] for further details.

2.3 Character theory

Character theory is the area of mathematics that deals with the study of certain func-
tions on groups known as characters. One of the key features of character theory is that
it provides a powerful tool for studying groups and their properties, without requiring a
detailed understanding of the underlying structure of the group itself. Instead, characters
allow us to study groups in terms of their algebraic behavior, such as their multiplication
and inversion properties, which can often reveal important insights about the group and
its properties.

In that sense, character theory is closely related to representation theory and, in par-
ticular, with Galois representations. Therefore, in this section we introduce the notions of
character theory needed later for our purposes.

2.3.1 Group characters

We start by defining the notion of multiplicative group character.

Definition 67. Let G be a group and K a field. A multiplicative group character on G is a group
homomorphism from G to the multiplicative group of a field, i.e.

χ : G → K×
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Remark 68. The set of multiplicative characters on G is denoted by Ch(G) and is an
abelian group under pointwise multiplication.

It turns out that in group theory there is a different but related notion in terms of group
representations that it is also referred as group character. It corresponds to the following
definition.

Definition 69. Let G be a group, V a finite vector space over a field K, and ρ a representation of
G on V. The character of ρ is defined as

χρ : G → K

g 7→ Trace(ρ(g))

Remark 70. Notice that the character of a group representation is not necessarily a group
homomorphism since the trace may not be one.

Once both notions are defined, it is natural to ask how they relate to each other. In that
sense, notice that for 1-dimensional representations the trace coincides with the represen-
tation itself. Thus, the concept of multiplicative character of a group can be seen as a kind
of particular case of higher-dimensional representation characters.

For our purposes, when dealing with characters we will simply consider 1-dimensional
group representations, i.e. the case where both definitions coincide.

2.3.2 Dirichlet characters

Definition 71. Let N be a positive integer. A Dirichlet character modulo N is a multiplicative
character from (Z/NZ)× to C×, i.e.

χ : (Z/NZ)× → C×

Despite being a simple construction, Dirichlet characters show up often in the context
of Galois representation due to the existing isomorphism between the Galois group of
cyclotomic extensions and (Z/NZ)×.

Moreover, for any d positive divisor of N, the existence of the natural projection

πN, d : (Z/NZ)× → (Z/dZ)×

allows to lift every Dirichlet character modulo d χd to a Dirichlet character modulo N χN
via the composition

χN = χd ◦ πN, d.

From this construction, we define what is known as the conductor of a Dirichlet char-
acter.

Definition 72. Let χ be a Dirichlet character modulo N. The conductor of χ is the smallest
positive divisor d of N such that χ = χd ◦ πN, d.

In a similar way, each Dirichlet character can be extended to a function χ : Z/NZ→ C

by setting χ(n) = 0 for all noninvertible elements n in Z/NZ. Furthermore, this can be
also extended to a function χ : Z → C simply by defining χ(n) = χ(n (mod N)) for all
n ∈ Z. However, this extension is not a group homomorphism.
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Remark 73. Beyond their applications in representation theory, which we will see in Sec-
tion 5.3, Dirichlet characters also appear in the context of modular forms. In particular,
they are closely linked to the notion of L-functions. See [Dia05], Chapter 4.3. for a further
discussion on this topic.

2.3.3 Cyclotomic characters

Another type of characters that are interesting on their own is the set of cyclotomic
characters. Broadly speaking, they consist in characters of a given Galois group based on
its action on a multiplicative group of roots of unity.

Going into details, let l be a prime and ζln be a primitive ln-th root of unity. By the
Galois theory of cyclotomic extensions, for any σ ∈ Gal(Q/Q) we have that

σ(ζln) = ζ
kln (σ)
ln with kln(σ) ∈ (Z/lnZ)×.

From this construction arises a character known as the mod ln cyclotomic character.

Definition 74. Let l be a prime and ζln be a primitive ln-th root of unity. The mod ln cyclotomic
character is given by

χl, n : Gal(Q/Q)→ (Z/lnZ)×

σ 7→ kln(σ)

Remark 75. As stated in Subsection 2.3.1, the mod ln cyclotomic character can be viewed
both as a character and as a Galois representation.

Remark 76. From the construction of the mod ln cyclotomic character it is clear that it is
surjective.

Starting from Definition 74, if we fix l and σ and we vary the value of n what we get
is that the images kln(σ) for a compatible system. Thus, the combination of this fact with
the construction of the l-adic integers as an inverse limit leads us to the definition of the
l-adic cyclotomic character.

Definition 77. Let l be a prime. The l-adic cyclotomic character is given by

χl : Gal(Q/Q)→ Z×l
σ 7→ lim←− kln(σ)

Remark 78. Combining the construction of the l-adic cyclotomic character as the inverse
limit of the mod ln cyclotomic characters together with Remark 76 we conclude that the
l-adic cyclotomic character is surjective.

2.3.4 Fundamental characters

The last set of characters that we need to introduce are the known as fundamental
characters, which are defined by means of the l-adic cyclotomic character and the inertia
group. In general terms, the idea behind these characters is to define maps from an inertia
group Il to the finite fields Fln for all n ≥ 1.

We start by defining the fundamental character of level 1.
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Definition 79. Let l be a prime, χl the l-adic cyclotomic character, and χl its reduction modulo l.
The fundamental character of level 1 Ψ1 is the restriction of l-adic cyclotomic character χl to the
inertia group Il composed with reduction modulo l, i.e.

Ψ1 = χl |Il
.

Remark 80. From this definition, one can easily check that the order of Ψ1 is l − 1.

Definition 79 can be generalized to higher levels by the following construction.
Let l be a prime, Kn/Ql be the unique unramified field extension of degree n, whose

uniqueness is given by local field theory, and consider Fln the residue field of Kn. Then,
by Hensel’s lemma we can assure that Kn contains all (ln − 1)-th roots of unity, so defin-

ing K′n = Kn((−l)
1

ln−1 ) we get that the extension K
′
n/Kn is Galois and Gal(K

′
n/Kn) = F×ln .

Moreover, since Kn/Ql is an unramified extension, we can inject the inertia group Il into
Gal(Ql/Kn). Then, the fundamental character of level n simply corresponds to the com-
position of this injection with the restriction of Gal(Ql/Kn) to Gal(K

′
n/Kn) = F×ln .

Definition 81. Let l be a prime. The fundamental character of level n ≥ 1 corresponds to the map
Ψn : Il → F×ln described above.

Remark 82. By looking at the construction of the fundamental character in detail, it can be
observed that by taking the l + 1-th power of fundamental character of level 2 we obtain
the fundamental character of level 1, i.e. Ψl+1

2 = Ψ1. More details about this results as
well as other properties of the fundamental character can be found in [Ser72].



Chapter 3

Modular forms

The first appearance of modular forms in mathematics dates back to the beginning of
the 19th century in connection with elliptic functions, which were present in the works of
Gauss, Abel and Jacobi. Their work on elliptic functions lead Eisenstein to study modular
forms arising from the expansions of these functions. However, it was not until the end
of the century that the term modular form appeared in Klein’s work. Since then, lots of
mathematicians, such as Zagier and Langland, contributed to their study. In that sense, in
the first half of the 20th century Hecke introduced the modern approach to study modular
forms based on SL(2, Z) and its congruence subgroups.

Nowadays, modular forms are considered a powerful tool from complex analysis with
lots of applications not only in number theory but also in other fields such as combina-
torics and string theory.

3.1 First notions

Throughout this section, a series of definitions and basic properties of modular forms
are presented in order to be used in next sections. We start by defining two fundamental
concepts in the theory of modular forms: the modular group and the complex upper half
plane.

3.1.1 The modular group

Definition 83. The modular group is the group of 2-by-2 matrices with integer entries and deter-
minant equal to 1. It is denoted by

SL(2, Z) :=

{[
a b
c d

]
: a, b, c, d ∈ Z, ad− bc = 1

}
.

Proposition 84. The modular group is generated by the matrices

S =

[
0 1
−1 0

]
and T =

[
1 1
0 1

]
.

21
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Proof. See [Ser73], Theorem I.7.2.

Definition 85. The complex upper half plane is given by

H = {τ ∈ C : Im(τ) > 0}.

The relation between both concepts is given by the following action of SL(2, Z) on H.

Proposition 86. SL(2, Z) acts on H by the fractional linear transformation

SL(2, Z)×H → H

(γ, τ) 7→ γτ :=
aτ + b
cτ + d

Proof. It is well-defined since cτ + d ̸= 0 for all c, d ∈ Z, τ ∈ H and Im(γτ) = Im(τ)
|cτ+d|2 > 0.

It is also straightforward to check that it is indeed a group action because Idτ = τ and
γ1(γ2τ) = (γ1γ2)τ.

3.1.2 Modular & Cusp forms

A natural question to ask is which complex functions are invariant under the fractional
linear transformation. However, this requirement may seem to strict to be satisfied by any
interesting set of functions, so it makes sense to replace the invariance requirement for
another slightly less demanding. It is precisely from the relaxation in this condition that
modular forms arise.

Definition 87. Let k ∈ Z. A function f : H → C is a modular form of weight k if

1. f is holomorphic on H.

2. f is holomorphic at ∞, i.e. f is bounded as Im(τ)→ ∞.

3. f (γτ) = (cτ + d)k f (τ) for all γ ∈ SL(2, Z), τ ∈ H.

Mk(SL(2, Z)) denotes the set of modular forms of weight k andM∗(SL(2, Z)) :=
⊕

k∈Z

Mk(SL(2, Z)).

Remark 88. In literature, Condition 3 of Definition 87 is usually referred as the weakly
modularity condition.

Remark 89. It is straightforward to check that Mk(SL(2, Z)) is a C-vector space and
M∗(SL(2, Z)) is a graded-ring.

Example 90. The most common example corresponds to the Eisenstein series. Given an
integer k > 2, Gk(τ) = ∑

(0,0) ̸=(m,n)∈Z

1
(m+nτ)k is a modular form of weight k.

Among all modular forms, there is particular subset of them which play an important
role for our purposes. They are called cusp forms.
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Definition 91. A modular form f of weight k such that limIm(τ)→∞ f (τ) = 0 is called a cusp
form. Sk(SL(2, Z)) denotes the set of cusp forms of weight k and S∗(SL(2, Z)) :=

⊕
k∈Z

Sk(SL(2, Z)).

Remark 92. The condition limIm(τ)→∞ f (τ) = 0 is equivalent to impose that the leading
coefficient of its Fourier expansion is equal to 0.

Remark 93. Again it is straightforward to check that Sk(SL(2, Z)) is a subspace ofMk(SL(2, Z))

and S∗(SL(2, Z)) is an ideal inM∗(SL(2, Z)).

3.1.3 Congruence subgroups

Once we have defined with detail the notion of modular forms, the next step is to try
to generalize it. In order to do so, the idea is to replace the modular group SL(2, Z) by
some subgroups of it to obtain more functions satisfying Condition 3 from Definition 87.
We start by presenting the principal congruence subgroup.

Definition 94. Let N be a positive integer. The principal congruence subgroup of level N is given
by

Γ(N) :=

{[
a b
c d

]
∈ SL(2, Z) :

[
a b
c d

]
≡

[
1 0
0 1

]
(mod N)

}
.

Remark 95. The index of the principal congruence subgroup is finite for all N. See [Dia05],
p. 13 for further details.

The importance of Definition 94 is that it allows to define several different congruence
subgroups simply by imposing that they must include Γ(N).

Definition 96. Let N be a positive integer. A subgroup Γ of SL(2, Z) is a congruence subgroup
of level N if Γ(N) ⊂ Γ.

Remark 97. From Remark 95 is is immediate that all congruence subgroups have finite
index.

Above all congruence subgroups there are two that stand out from the rest in terms of
our goals. In particular, they correspond to

Γ0(N) :=

{[
a b
c d

]
∈ SL(2, Z) :

[
a b
c d

]
≡

[
∗ ∗
0 ∗

]
(mod N)

}
,

Γ1(N) :=

{[
a b
c d

]
∈ SL(2, Z) :

[
a b
c d

]
≡

[
1 ∗
0 1

]
(mod N)

}
.

Remark 98. Notice that Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL(2, Z).

Given Definition 96, what follows is precisely to define the notion of modular forms
with respect congruence subgroups. However, we first need to present two additional
concepts that are closely related to the desired definition: the factor of automorphy and
the weight k operator.
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Definition 99. Let γ =
[

a b
c d

]
∈ SL(2, Z). The factor of automorphy of γ is given by

j(·, ·) : SL(2, Z)×H → C

(γ, τ) 7→ j(γ, τ) := cτ + d

Definition 100. Let γ =
[

a b
c d

]
∈ SL(2, Z). The weight k operator [γ]k on functions f : H → C

is given by

( f [γ]k)(τ) = j(γ, τ)−k f (γτ).

Remark 101. Notice that now we can restate Condition 3 from Definition 87 as f [γ]k = f
for all γ ∈ SL(2, Z).

With definitions 99 and 100 stated, we are ready to fully define the notion of modular
forms with respect to congruence subgroups.

Definition 102. Let k ∈ Z and Γ a congruence subgroup of SL(2, Z). A function f : H → C is
a modular form of weight k with respect to Γ if

1. f is holomorphic on H.

2. f [γ]k is holomorphic at ∞, i.e. f [γ]k is bounded as Im(τ)→ ∞ for all γ ∈ SL(2, Z).

3. f (γτ) = (cz + d)k f (τ) for all γ =∈ Γ0(N), τ ∈ H.

Mk(Γ) denotes the set of modular forms of weight k with respect to Γ andM∗(Γ) :=
⊕

k∈Z

Mk(Γ).

Remark 103. As in Remark 89,Mk(Γ) is a C-vector space andM∗(Γ) is a graded-ring.

Remark 104. Combining Remark 98 and Definition 87 we get thatMk(Γ0(N)) ⊂Mk(Γ1(N)).

At first sight, Condition 2 from Definition 102 may seem counterintuitive. Broadly
speaking, the reason behind the appearance of the weight k operator is to ensure that
the function is holomorphic at all cusp points. In particular, when dealing with SL(2, Z),
all cusp points are SL(2, Z)-equivalent to ∞; but when working with some congruence
subgroup Γ fewer points are Γ-equivalent, so we must check all other cusps. A fully
detailed explanation of this fact can be found in [Dia05], p. 16.

As in the case of SL(2, Z), when taking any congruence subgroup Γ the cusp forms
with respect to Γ are also an important subset to consider.

Definition 105. Let k ∈ Z and Γ a congruence subgroup of SL(2, Z). A modular form of weight
k with respect to Γ whose Fourier expansion has leading coefficient a0 is called a cusp form with
respect to Γ. Sk(Γ) denotes the set of cusp forms of weight k and S∗(Γ) :=

⊕
k∈Z

Sk(Γ).

Remark 106. As in Remark 93, Sk(Γ) is a subspace of Mk(Γ) and S∗(Γ) is an ideal in
M∗(Γ).
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3.2 Hecke theory

This section introduces the notion of Hecke operators and discusses some of its prop-
erties and results. In particular, we will show that the space of cusp forms of weight k
Sk(Γ) has an orthogonal basis of modular forms which are simultaneously eigenfunctions
for almost all the Hecke operators. We start by defining the core of the construction of the
Hecke operators: the double coset operators.

3.2.1 Diamond & Hecke operators

Definition 107. Let Γ1 and Γ2 be congruence subgroups of SL(2, Z) and α ∈ GL+(2, Q). A
double coset of GL+(2, Q) is given by

Γ1αΓ2 := {γ1αγ2 | γ1 ∈ Γ1, γ2 ∈ Γ2}.

Remark 108. Since Γ1 acts on the double coset Γ1αΓ2 by left multiplication, we can express
it as a disjoint union of orbit spaces of this group action, i.e.

Γ1αΓ2 = ∪Γ1β j,

where β j are the orbit representatives.

Our intention is to define the double coset operator as the sum of the weight k operator
for each right coset representative β j. Therefore, in order to be well-defined, we first need
to ensure that the set of right coset representatives β j is finite.

Proposition 109. Let Γ1 and Γ2 be congruence subgroups of SL(2, Z), α ∈ GL+(2, Q) and
Γ1αΓ2 = ∪Γ1β j, where β j are the orbit representatives. The set of right coset representatives β j is
finite.

Proof. See [Dia05], Lemma 5.1.1 & Lemma 5.1.2.

Thanks to Proposition 109 we are ready to define the double coset operator.

Definition 110. Let Γ1 and Γ2 be congruence subgroups of SL(2, Z), α ∈ GL+(2, Q), Γ1αΓ2 = ∪Γ1β j,
where β j are the orbit representatives, and f ∈ Mk(Γ1). The weight k double coset operator
[Γ1αΓ2]k is given by

f [Γ1αΓ2]k := ∑
j

f [β j]k.

Remark 111. Notice that given two orbit representatives β1, β2, we have that β1β−1
2 ∈ Γ1.

Therefore, f [β1]k = f [β1β−1
2 ]k f [β2]k = f [β2]k. So combining this with Proposition 109 it is

clear that the double coset operator is well-defined.

Remark 112. The weight k double coset operator [Γ1αΓ2]k sendsMk(Γ1(N)) toMk(Γ2(N)),
and Sk(Γ1(N)) to Sk(Γ2(N)).

Remark 113. When Γ1 = Γ2 we have that f [Γ1αΓ1]k = f [α]k for all α ∈ GL+(2, Q).
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The importance of the double coset operator lies in the fact that the definitions of the
Hecke operators arise from it. However, it must be combined with another operator: the
diamond operator.

Definition 114. The diamond operator is given by

⟨d⟩ :Mk(Γ1(N))→Mk(Γ1(N))

f 7→ ⟨d⟩ f := f [α]k

for any α =
[

a b
c δ

]
∈ Γ0(N) with δ ≡ d (mod N).

Remark 115. At first sight it may not be clear that the diamond operator is well-defined.
However, combining Remark 113 and the fact that Γ1(N) is a normal subgroup of Γ0(N)

one can easily verify this. See [Dia05], p. 168 for further details.

Once we have defined the double coset and the diamond operators, we are ready to
properly define the Hecke operators.

Definition 116. Let p be a prime. The Hecke operator is given by

Tp :Mk(Γ1(N))→Mk(Γ1(N))

f 7→ Tp f := f [Γ1(N)
[ 1 0

0 p
]
Γ1(N)]k

Since the weight k double coset operator is defined in terms of the weight k operators
of the right coset representatives β j, it makes sense to try to find an explicit representation
of the Hecke operators by means of the β j. This is precisely what the following proposition
is about.

Proposition 117. Let p be a prime. The Hecke operator Tp is given by

Tp =



p−1
∑

j=0
f [
[ 1 0

0 p
]
]k if p | N

p−1
∑

j=0
f [
[ 1 0

0 p
]
]k + f [

[ m n
N p

][ p 0
0 1

]
]k if p ∤ N, where mp− nM = 1.

Proof. See [Dia05], Proposition 5.2.1.

Although Proposition 117 gives an explicit representation for the Hecke operators,
we could still complain about the fact that they are not defined in full generality, since
in the statement we restricted to the case of p prime. In the same way, until now the
diamond operator is only defined for values in (Z/NZ)×. Thus, the next step is precisely
to generalize the current definitions of the diamond and the Hecke operators.

The generalization fo the diamond operator is straightforward, we simply need to set
⟨n⟩ to zero if gcd(n, N) ≥ 1.
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Definition 118. Let n ∈ Z. The diamond operator is given by

⟨n⟩ :=


f [α]k for any α =

[
a b
c n

]
∈ Γ0(N) if gcd(n, N) = 1

0 if gcd(n, N) ≥ 1.

In the case of the Heche operators, we generalize them by combining Definition 116
and Definition 118 with the fundamental theorem of arithmetic.

Definition 119. Let n ∈ Z. The Hecke operator is given by

Tn :=



f [Γ1(N)
[

1 0
0 n

]
Γ1(N)]k if n prime

TpTpr−1 − pk−1⟨p⟩Tpr−2 if n = pr with p prime

∏ Tpei if n = ∏ pei .

3.2.2 The Petersson inner product

As briefly mentioned earlier, the key aspect of the Hecke operators is that they charac-
terize an orthogonal basis of the space of cusp forms of weight k. However, we first need
to check that Sk(Γ1(N)) is a inner product space. To do so, we must develop the known
as Petersson inner product.

We start by defining the measure we consider on the upper half plane.

Definition 120. Let τ = x + iy ∈ H. The hyperbolic measure on the upper half plane is given by

dµ(τ) =
dxdy

y2 .

Remark 121. The hyperbolic measure is SL(2, Z)-invariant, i.e. dµ(γτ) = dµ(τ) for any
γ ∈ SL(2, Z), τ ∈ H.

The Petersson inner product is defined by means of the hyperbolic measure and inte-
grating as follows.

Definition 122. Let Γ be a congruence subgroup, X(Γ) its associated modular curve, and VΓ =∫
X(Γ) dµ(τ) the volume of X(Γ). The Petersson inner product is given by

⟨ , ⟩Γ : Sk(Γ)× Sk(Γ)→ Sk(Γ)

( f , g) 7→ 1
VΓ

∫
X(Γ)

f (τ)g(τ)(Im(τ))kdµ(τ)

Remark 123. The integral from Definition 122 is well-defined, convergent, and it satisfies
all the requirements for being an inner product on Sk(Γ), i.e. it is linear in f , conjugate
linear in g. Hermitian-symmetric, and positive definite. See [Dia05], pp. 181-183.
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The following theorem links the notions of the Hecke operators and the Petersson
inner product and is the key point for giving an orthogonal basis of the space of the cusp
forms of weight k.

Theorem 124. Let p be an integer such that p ∤ N, and consider the inner product space
Sk(Γ1(N)). Then the Hecke operators ⟨p⟩ and Tp have adjoints

⟨p⟩∗ = ⟨p⟩−1 and T∗p = ⟨p⟩−1Tp.

Therefore, for any n ∈ Z such that gcd(n, N) = 1 the Hecke operators ⟨n⟩ and Tn are normal.

Proof. See [Dia05], Theorem 5.5.3.

Now, the idea is to combine all the development done so far with some linear algebra.
In particular, recall that the Spectral Theorem states that given a family of normal op-
erators from a finite-dimensional inner product space, there always exists an orthogonal
basis of simultaneous eigenvectors for these operators. Therefore, combining this with
Theorem 124 we obtain the following result.

Theorem 125. There is a set of modular forms that form an orthogonal basis of Sk(Γ1(N) and are
simultaneously eigenvectors for the Hecke operators {⟨n⟩, Tn : gcd(n, N) = 1}. These modular
forms are called eigenforms.

Proof. See [Dia05], Theorem 5.5.4.

3.2.3 Oldforms & Newforms

Theorem 125 gives us an orthogonal basis of Sk(Γ1(N) formed by eigenforms. How-
ever, these modular forms are not eigenvectors for all Hecke operators, but only for the
ones coprime with N. So a natural question to ask is whether there is a way to get rid of
this restriction. To anwser this question we need to develop the theory of the oldforms
and newforms.

Definition 126. Let αd =
[ 1 0

0 d
]
∈ GL+(2, Q), d a divisor of N, and

id : Sk(Γ1(Nd−1))× Sk(Γ1(Nd−1))→ Sk(Γ1(N))

( f , g) 7→ f + g[αd]k

The subspace of oldforms at level N is given by

Sk(Γ1(N))old := ∑
p | N
prime

ip(Sk(Γ1(Np−1))× Sk(Γ1(Np−1))).

Remark 127. Sk(Γ1(N))old can be interpreted as the subspace of Sk(Γ1(N)) that comes
from lower levels, i.e. from any Sk(Γ1(M)) with M | N.
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Definition 128. The subspace of newforms corresponds to the orthogonal complement of the sub-
space of oldforms with respect to the Petersson inner product, i.e.

Sk(Γ1(N))new := (Sk(Γ1(N))old)⊥.

As we could expect, there is an analogue of Theorem 125 for both the subspaces of
oldforms and newforms. In particular, we have the following result.

Theorem 129. The spaces Sk(Γ1(N))old and Sk(Γ1(N))new have orthogonal basis of eigenforms
for the Hecke operators {⟨n⟩, Tn : gcd(n, N) = 1}.

Proof. See [Dia05], Corollary 5.6.3.

As we mentioned before, we are interested in removing the restriction regarding the
coprimality between the Hecke operators and the level, which is a condition still required
in Theorem 129. The reason behind that is that this is not true for the case of the space of
oldforms. However, if we restrict ourselves to Sk(Γ1(N))new we obtain the desired result.

In order to properly state the theorem, we need to introduce one last notion: the
concept of newform.

Definition 130. Let f ∈ Sk(Γ1(N))new be an eigenform for the Hecke operators {⟨n⟩, Tn : n ∈N}
with Fourier expansion f (τ) =

∞
∑

n=0
anqn. f is a newform if a1( f ) = 1.

At first sight, it may seem that newforms are simply a particular and rare case of
modular forms. However, they have a number of properties that make them an interesting
object of study. In particular, the following theorem is an example of them.

Theorem 131. Let f ∈ Sk(Γ1(N))new be an eigenform for the Hecke operators {⟨n⟩, Tn : gcd(n, N) = 1}.
Then f is a eigenform for the Hecke operators {⟨n⟩, Tn : n ∈N} and a suitable scalar multiple of
f is a newform. Moreover, the set of newforms is an orthogonal basis of f ∈ Sk(Γ1(N))new and
satisfies Tn f = an f , i.e. the Fourier coefficients coincide with the eigenvalues.

Proof. See [Dia05], Theorem 5.8.2.

Another interesting fact about newforms is that there exists a bound for its Fourier
coefficients of prime order, which is known as the Petersson conjecture (despite being
proved by Deligne in [Del71]). Indeed, this result will be useful later when proving the
main theorem of this work.

Theorem 132. Let f ∈ Sk(Γ1(N))new be an newform with Fourier expansion f = ∑n≥0 anqn.
Then we have that |ap| ≤ 2

√
p for all prime p.

Proof. See [Del71].

Remark 133. The bound from Theorem 132 reminds to the Hasse bound for the number
of points on an elliptic curve over a finite field. In fact, it turns out that this similarity
is not only a coincidence but a consequence of a deep result known as the modularity
Theorem. See [Dia05], Chapters 7, 8 & 9 for further details on this topic.
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Finally, there is still another interesting property regarding the coefficients of new-
forms, which can be seen as kind of first connection between modular forms and algebraic
number theory.

Proposition 134. Let f ∈ Sk(Γ1(N))new be an newform with Fourier expansion f = ∑n≥0 anqn.
Then we have that {an}≥1 are algebraic numbers and K f = Q({an}≥1) is a number field.

Proof. See [Dia05], Theorem 6.5.1.

3.3 Twisting on modular forms

As has been seen throughout this chapter, the theory of modular forms is very broad
and has many constructions with interesting properties in their own. However, there are
a couple of cases with special relevance for our study: those with complex multiplication
and inner twists. Thus, the aim of this section is to introduce these notions and some of
their properties for use in the next chapter.

3.3.1 Modular forms with complex multiplication

At first, it is important to point out that there are several equivalent definitions of
modular forms with complex multiplication (from now on denoted by CM modular forms)
in literature. Each of them arises from a different perspective and usually one or another
is chosen depending on which suits better in that specific context. In our case, we follow
the construction proposed by Ribet in [Rib77]. In order to do so, we first need to introduce
a slightly generalization of the notion of modular forms.

Recall that, apart from the holomorphic conditions, modular forms must satisfy the
weakly modularity condition. Thus, an option to generalize them is to replace this con-
dition for a more flexible one. This is precisely the idea behind modular forms with
nebentypus.

Definition 135. Let χ be a Dirichlet character mod N. A function f : H → C is a modular form
of weight k and Nebentypus χ if

1. f is holomorphic on H.

2. f [γ]k is holomorphic at ∞, i.e. f [γ]k is bounded as Im(τ)→ ∞ for all γ ∈ SL(2, Z).

3. f (γτ) = χ(d)(cz + d)k f (τ) for all γ ∈ Γ, τ ∈ H.

Mk(N, χ) denotes the set of modular forms of weight k and Nebentypus χ.

Remark 136. Notice that when χ is the trivial character, we get thatMk(N, χ) =Mk(Γ0(N)).

Almost all the theory we have been developed so far for modular forms also holds for
modular forms with Nebentypus. However, our interest behind them lies in the following
construction.
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Definition 137. Let f ∈ S2(Γ0(N)) be a newform with Fourier expansion f = ∑n≥0 anqn, and
let χ be a Dirichlet character mod D. The twisting of f by χ, denoted by f ⊗ χ, is given by

f ⊗ χ = ∑
n≥0

χ(n)anqn.

At first sight, it may not seem clear if the twisting of a newform by a Dirichlet character
is again a modular form. It turns out that it is not necessarily the case, but this can be
corrected if we consider the notion of modular forms with Nebentypus.

Proposition 138. Let f ∈ S2(Γ0(N)) be a newform, and let χ be a Dirichlet character mod D.
Then the twisting of f by χ belongs toMk(ND2, χ2).

Proof. See [Shi71], Proposition 3.64.

With this in mind, we are ready to define the notion of CM modular forms.

Definition 139. Let f ∈ S2(Γ0(N)) be a newform with Fourier expansion f = ∑n≥0 anqn, and
let χ be a non-trivial Dirichlet character. The modular form f is a CM modular form by χ if

χ(p)ap = ap

for all primes p in a set of primes of density 1.

Remark 140. As previously mentioned, there are several equivalent definitions for CM
modular forms. In that sense, one of the most natural ones is defining them as the modular
forms arising from abelian varieties with complex multiplication. See [Shi97], Chapter VI
for a detailed treatment of this topic.

3.3.2 Modular forms with inner twists

Apart from CM modular forms, there is another particular case of modular forms that
can be characterized in terms of the twisting by a Dirichlet character. These are known
as modular forms with inner twists. Again, despite existing several alternatives that lead
to equivalent definitions of modular forms with inner twists, we follow the construction
proposed by Ribet in [Rib77].

Definition 141. Let f ∈ S2(Γ0(N)) be a newform without CM, and let Q f be the number field
generated by its Fourier coefficients an. The modular form f has an inner twist if there exist
τ ∈ Aut(Q) not pointwise fixing Q f , and a Dirichlet character χ unramified outside N such that

ap = χ(p)τ(ap)

for all primes p in a set of primes of density 1.

Based on Definition 141, it makes sense to give a name to the set of automorphisms of
the field Q f giving an inner twist.

Definition 142. We define by Γ to be the set of automorphisms of the field Q f giving an inner
twist together with the identity, i.e.

Γ = {τ ∈ Aut(Q) : there exists a character χ such that ap = χ(p)τ(ap) for almost all p}.
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The set Γ has some nice properties. In particular, it has an abelian group structure.

Proposition 143. Γ is an abelian group.

Proof. See [Rib80], Proposition 3.3.

The theory of modular forms with inner twists is considerably broad, with several
interesting results based on definitions 141 and 142 and in Proposition 143. However, it
turns out that among all of them there is one that is really useful for our later purposes.
It corresponds to the following proposition.

Proposition 144. Let f ∈ S2(Γ0(N)) be a newform without CM, let Q f be the number field
generated by its Fourier coefficients an, and let Ff = QΓ

f be the fixed field of Γ. Then, Ff is the field
generated by {a2

p}, with p ∤ N ranging over a set of primes of density 1.

Proof. See [Rib80], p. 49.

Moreover, there are some particular cases in which the statement of Proposition 143
can be even refined assuring that Ff is not only generated by {a2

p} with p ∤ N ranging over
a set of primes of density 1, but also just by one of these values. Precisely this is what
states the corollary that follows.

Corollary 145. Let f ∈ S2(Γ0(N)) be a newform without CM, let Q f be the number field
generated by its Fourier coefficients an, and let Ff = QΓ

f be the fixed field of Γ. If |Γ| ≤ 2, then
there exists a prime v not dividing N such that a2

v generates Ff over Q.

Proof. See [Die01], p. 397.



Chapter 4

Subgroup classification of
GL(2, Fq)

In chapters 2 and 3 we have introduced the notions of Galois representations and
modular forms, which are the essential objects needed to understand the statement of
Ribet’s theorem. However, as mathematicians we are not only interested in the statement
but also in the proof. In this regard, it turns out that this proof is mainly based in another
interesting result: the subgroup classification of GL(2, Fq).

The subgroup classification of GL(2, Fq) can be seen as a particular case of a much
more broader program for describing the finite sugbroups of GL(2, K) for an arbitrary
field K. The first steps in this direction were made by Klein, who did this classification for
the case of the complex numbers at the end of the 19th century. A couple of decades later,
at the beginning of the 20th century, Dickson extended this result to deal with the case over
finite fields, which is the one in which we are interested. Thereafter, many mathematicians,
among which Serre, Beauville or Suzuki, have worked in this classification over other
particular fields using advanced mathematical techniques such as Galois cohomology.

The aim of this section is to introduce the subgroup classification of GL(2, Fq) as well
as all the notions needed to understand its statement. Moreover, some particular group
properties needed for the proof of the Ribet’s theorem are also presented and proved.

4.1 Groups appearing in Dickson’s theorem

The first thing to point out is that despite being a subgroup classification of GL(2, Fq),
Dickson’s result also relies on the projective general linear group over finite fields. Thus,
we start by defining it.

Definition 146. Let q be a power of a prime, Fq the finite field of q elements and Z(2, Fq) ⊂
GL(2, Fq) the subgroup of non-zero scalar matrices. Then the projective general linear group over
Fq, denoted by PGL(2, Fq), is defined as

PGL(2, Fq) := GL(2, Fq)/Z(2, Fq).

33
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Remark 147. Definition 146 states that the projective general linear group simply cor-
responds to the general linear group except that it also identifies all matrices that are
equal up to a scalar constant. The analogy with the construction of the projective space is
therefore clear and hence the name.

There is a subgroup of PGL(2, Fq) that will appear later when discussing the applica-
tions of the Ribet’s theorem, which is known as the projective special linear group.

Definition 148. Let q be a power of a prime, Fq the finite field of q elements and SZ(2, Fq) ⊂
SL(2, Fq) the subgroup of non-zero scalar matrices with unit determinant. Then the projective
special linear group over Fq, denoted by PSL(2, Fq), is defined as

PSL(2, Fq) := SL(2, Fq)/SZ(2, Fq).

An important property of PSL(2, Fq) is that it corresponds to a maximal subgroup
of PGL(2, Fq) whenever q is odd. This is an immediate consequence of the following
proposition.

Proposition 149. Let q be a power of an odd prime. Then [PGL(2, Fq) : PSL(2, Fq)] = 2.

Proof. We start by computing the order of GL(2, Fq). For the first column, we have q2 − 1
different possibilities that correspond to all combinations except the zero column. Then,
since the determinant must be different from 0, for the second column we have q2 − q
possibilities, which correspond to all combinations except to the zero column and the q− 1
multiples of the first column. Hence, |GL(2, Fq)| = (q2 − 1)(q2 − q) = q(q + 1)(q− 1)2.

Next, it is clear that |Z(2, Fq)| = q− 1, so combining this with the previous computa-
tion we get that we get that |PGL(2, Fq)| = q(q + 1)(q− 1).

To compute the order of SL(2, Fq) we consider the exact sequence

1→ SL(2, Fq)→ GL(2, Fq)
det−→ F×q → 1.

From there, we get that |GL(2, Fq)/SL(2, Fq)| = q− 1, which together with the previous
computation implies that |SL(2, Fq)| = q(q + 1)(q− 1).

Then, since q is odd, we have that SZ(2, Fq) = {±Id}. Therefore, using the previous

result we get that |PSL(2, Fq)| = q(q+1)(q−1)
2 .

From all this computations is immediate to conclude that [PGL(2, Fq) : PSL(2, Fq)] = 2
as desired.

4.1.1 Cyclic, dihedral, symmetric, and alternate groups

Once we have introduced the projective linear group, we move to define all group
classes appearing in Dickson’s classification. Some of them are familiar for almost all
mathematicians, but for the sake of completeness we also list them. In fact, we start by
the best known ones.
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Definition 150. Let G be a group. G is a cyclic group if it is generated by a single element, i.e.
there exists g ∈ G such that

G = ⟨g⟩ = {gk : k ∈ Z}.

Definition 151. Let n ∈ N. The dihedral group of order 2n, denoted by Dn, is the group of
symmetries of the regular n-gon. In particular,

Dn = {α, β : αn = β2 = e, βαβ = α−1}.

α is known as a rotation and β as a reflection.

Definition 152. Let n ∈ N. The n-th symmetric group, denoted by Sn corresponds to the permu-
tations that can be performed on n elements.

Definition 153. Let n ∈ N. The n-th alternating group, denoted by An corresponds to the even
permutations that can be performed on n elements.

4.1.2 Classical subgroups of GL(2, Fq)

So far, the classes of groups we have defined are generic in the sense that they def-
inition does not depend on the general linear group GL(2, Fq). This is not the case for
the remaining groups that we must introduce, which are known as classical subgroups of
GL(2, Fq).

The first in this list correspond to the known as Borel subgroups.

Definition 154. A Borel subgroup of GL(2, Fq) is any subgroup conjugate to the subgroup of
upper triangular matrices in GL(2, Fq).

Remark 155. From Definition 154 it is clear that any Borel subgroup has order q(q− 1)2.

Next, we move to define the Cartan subgroups, in which is necessary to distinguish
between the split and non-split cases.

Definition 156. A split Cartan subgroup of GL(2, Fq) is any subgroup conjugate to the subgroup
of diagonal matrices in GL(2, Fq).

Remark 157. From Definition 156 it is straightforward to notice that any split Cartan
subgroup is isomorphic to (F×q )

2.

Definition 158. A non-split Cartan subgroup of GL(2, Fq) is any subgroup conjugate to the
following subgroup:

Nsp :=
{[

a δb
b a

]}
⊂ GL(2, Fq),

where δ is any fixed quadratic non-residue modulo q.

Remark 159. There are several equivalent definitions for Cartan subgroups, both split and
non-split. For example, they can be defined in terms of the centralizer of a maximal torus
or as a particular subalgebra of End((Fq)2) for the non-split case. A further discussion on
this subject can be found in [Bor91], Chapter IV, Section 11.
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Finally, the last type of groups in the list are the normalizers of Cartan subgroups.
Again, we must distinguish between the split and non-split cases. In this regard, we could
leave it like that and define them as being the normalizers of Cartan subgroups, but we
have opted to give an explicit description of them.

Definition 160. A normalizer of a split Cartan subgroup of GL(2, Fq) is any subgroup conjugate
to the following subgroup:

Nsp :=
{[

a 0
0 d

]
,
[

0 c
d 0

]}
⊂ GL(2, Fq).

Definition 161. A normalizer of a non-split Cartan subgroup of GL(2, Fq) is any subgroup
conjugate to the following subgroup:

Nns :=
{[

a δb
b a

]
,
[

a −δb
b −a

]}
⊂ GL(2, Fq),

where δ is any fixed quadratic non-residue modulo q.

Remark 162. From definitions 160 and 161 it is straightforward to notice that the nor-
malizer of a split (resp. non-split) Cartan subgroup contains the split (resp. non-split)
Cartan subgroup as a subgroup with index 2. Hence, a Cartan subgroup is normal in its
normalizer.

4.2 Dickson’s theorem & other group results

Once we have defined all groups appearing in Dickson’s classification of subgroups of
GL(2, Fq), we are ready to present Dickson’s theorem as well as other group theoretical
results that will be useful for proving Ribet’s theorem.

4.2.1 Dickson’s theorem

We start by stating Dickson’s classification of subgroups of GL(2, Fq).

Theorem 163 (Dickson). Let G be a subgroup of GL(2, Fq) and let H be its image in PGL(2, Fq).
If the order of G is divisible by q, one of the following holds:

1. G is contained in a Borel subgroup.

2. G contains SL(2, Fq).

If the order of G is not divisible by q, one of the following holds

1. H is cyclic and G is contained in a Cartan subgroup.

2. H is dihedral and G is contained in the normalizer of a Cartan subgroup but not in a Cartan
subgroup.

3. H is isomorphic to one of the following special groups: A4, S4, A5.
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Proof. Despite being out of the scope of this work, we give a brief summary of the tech-
niques used to prove this theorem, since they correspond to classical results in group
theory. In that sense, in his proof Dickson mainly uses the Sylow theorems together with
some theory of group actions. In particular, it deals with the action of PGL(2, Fq) on
P1(Fq).

See [Dic58], Chapter XII, Section 260 for a detailed proof.

4.2.2 Other group results

As previously mentioned, apart from Dickson’s result on the classification of sub-
groups of GL(2, Fq) we also need to use some other properties of the groups listed above
for the proof of Ribet’s theorem.

First, we must recall the order of some particular groups.

Proposition 164. Let G be a group. Then the following hold:

1. If G is a cyclic group generated by g, then |G| = ord(g).

2. If G ∼= Dn, then |G| = 2n.

3. If G ∼= Sn, then |G| = n!.

4. If G ∼= An, then |G| = n!
2 .

Proof. We prove each of the statements separately.

1. If G is a cyclic group generated by g, then it is clear that |G| = ord(g) simply by
looking at Definition 150.

2. If G ∼= Dn, we consider G as the group of symmetries of the regular n-gon. Then,
it is clear that |G| ≥ 2n since we have n rotations and also the same n rotations
reflected, which are clearly pairwise distinct. Then, since these symmetries are dis-
tance preserving and map vertices to vertices, given two adjacent vertices A and B
we get that we have n possibilities for the first vertex A (any of the n vertices), while
for the second there are only 2 possibilities (the 2 adjacent vertices). Hence, it is clear
that |G| = 2n.

3. If G ∼= Sn, we have that G corresponds to the set of permutations of n elements.
Then, since there are exactly n! different permutations of this type, we get that
|G| = n!.

4. If G ∼= An, we have that G corresponds to the set of even permutations of n elements.
Then, since there are exactly n!

2 different permutations of this type, we get that
|G| = n!

2 .

Next, we present some results regarding the structure of cyclic subgroups of the dihe-
dral groups.
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Proposition 165. Let n ≥ 3 and Dn a dihedral group. Then there exists a unique cyclic subgroup
of Dn of order n.

Proof. Let Dn = {α, β : αn = β2 = e, βαβ = α−1}. By definition, it is clear that ⟨α⟩ is a
cyclic subgroup of order n of Dn. Hence, the existence is proved.

Let’s move to check its uniqueness. By construction, any other cyclic subgroup of
order n of Dn must be generated by an element either of the form βαi or αi for 0 ≤ i ≤ n.
Therefore, it suffices to check that ord(βαi) < n for 0 ≤ i ≤ n. In that sense, since
αβ = βα−1 we have that

(βαi) = βαiβαi = βαi−1βα−1αi = βαi−1βαi−1 = ... = s2 = e.

Thus, ord(βαi) = 2 < 3 ≤ n and uniqueness is proved as desired.

Proposition 165 motivates the following definition, which is crucial for the next result.

Definition 166. Let n ≥ 3 and Dn a dihedral group. The cyclic subgroup of Dn of order n is
defined as the core of Dn.

Remark 167. Often in literature, the notion of core introduced in Definition 166 is referred
as center. However, this leads to ambiguity with the usual notion of the center of a group,
Therefore, we have opted to denoted as core.

Once the core of a dihedral group is defined, we state and proof the following propo-
sition, that will be key later during the proof of Ribet’s theorem.

Proposition 168. Let n, k ≥ 3, Dn a dihedral group, and G ⊂ Dn a cyclic subgroup of order k.
Then G is contained in the core C of Dn.

Proof. Let g be the generator of G and α the generator of the core C. Notice that to prove
the proposition it is enough to prove that g = αi for some 0 ≤ i ≤ n. In that sense, by
Proposition 165 we know that for any h ∈ Dn \ C the order of h is equal to 2. Therefore,
since ord(g) = k ≥ 3, we conclude that g ∈ C and G ⊂ C as desired.

After studying in detail the cyclic subgroups of the dihedral group, we must also take
a look at the cyclic subgroups of the particular cases of the symmetric and alternating
groups appearing in Theorem 163.

Proposition 169. Neither of the groups A4, S4, and A5 have a cyclic subgroup of order ≥ 6.

Proof. First, notice that since A4 ⊂ S4, it suffices to prove the statement only for S4 and
A5. In order to do so, we simply check that there is not an element of order ≥ 6 in none
of both groups.

On one hand, S4 consists by definition in the group of permutations that can be per-
formed on 4 elements. Thus, taking into account that each permutation can be decom-
posed as a product of disjoint cycles and that its order corresponds to the least common
multiple of the orders of these cycles, we conclude that the maximum order for an element
of S4 is precisely 4. Hence, neither A4 nor S4 have a cyclic subgroup of order ≥ 6.
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On the other hand, A5 corresponds by definition to the group of even permutations
that can be performed on 5 elements. Therefore, using again the previous reasoning in
the order of these permutations we conclude that the maximum order for an element of
A5 is 5. So A5 does not have a cyclic subgroup of order ≥ 6.

Finally, the last results we need to introduce are related to Cartan subgroups and their
normalizers. In particular, they are about the eigenvalues of the elements in a non-split
Cartan subgroup and the traces of the normalizers.

Proposition 170. Any non-split Cartan subgroup does not have any element with distinct rational
eigenvalues.

Proof. Let G be a non-split Cartan subgroup. From Definition158 we know that any g ∈ G

is of the form g =

[
a δb
b a

]
, with a, b, δ ∈ Fq, δ a non-residue module q, and det(g) ̸= 0.

Now, in order to obtain the eigenvalues of g, we compute its characteristic polynomial. In
particular, it corresponds to

f (x) = x2 − 2ax + a2 − δb2.

From here, notice that a2 − δb2 ̸= 0. This is because if b = 0, then a ̸= 0 due to the fact
that det(g) ̸= 0; and if b ̸= 0, then a2 − δb2 can not equal to 0 since this would imply that
δ is a residue modulo q.

Once we have done this observation, in order to compute eigenvalues, i.e. the roots of
f (x), we split by cases depending on the characteristic of Fq.

If char(Fq) ̸= 2, by the formula of the quadratic equation we get that x = a ±
√

δb,
and since δ a non-residue module q we get that either both eigenvalues are non-rational
or they are both equal to a.

If char(Fq) = 2, we get that f (x) = x2 + a2 − δb2, which implies that x = a−
√

δb is
a double root. Again, we see that since δ a non-residue module q g can not have distinct
rational eigenvalues.

Proposition 171. Let C be a Cartan subgroup and N its normalizer. Then any element n ∈ N \C
has trace 0.

Proof. It suffices to take a look at the definitions of Cartan subgroups and their normaliz-
ers.

In particular, if C is a split Cartan subgroup then

N \ C =

{[
0 b
c 0

]}
⊂ GL(2, Fq),

while if C is a non-split Cartan subgroup then

N \ C =

{[
a −δb
b −a

]}
⊂ GL(2, Fq).
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Hence, in both cases it is clear that for any n ∈ N \ C we have that trace(n) = 0 as
desired.



Chapter 5

Images of Galois representations
attached to newforms

The image of Galois representations attached to newforms without Complex Multipli-
cation of weight 2 are well-understood due to the work of Ribet [Rib85]. In this paper,
Ribet states that for almost all prime numbers l, the image of the Galois representation
associated to a modular form of weight 2 and level N is as large as possible, the meaning of
which we will precise later on this Chapter.

This theorem was a major step in understanding the relationship between modular
forms and Galois representations. In particular, it helped to realize projective linear groups
over finite fields as Galois groups over Q. Moreover, this theorem is also part of the
framework that lead to Andrew Wiles’ proof of Fermat’s Last Theorem.

The aim of this Chapter is to state and prove Ribet’s theorem, using a combination of
all the theory developed in previous chapters together with other advanced algebraic and
geometric techniques.

5.1 The statement of Ribet’s theorem

Along this section we will develop all the framework needed for stating Ribet’s theo-
rem as well as a brief outline of the strategy we will follow to prove it.

5.1.1 The Eichler-Shimura relation

Before stating Ribet’s theorem about the images of the Galois representations attached
to modular forms, it is worth spending a few lines explaining how to obtain Galois rep-
resentations from modular forms since it corresponds to a deep result in number theory
known as the Eichler-Shimura relation.

As one may expect, try to summarize it in a couple of paragraphs is an unfeasible
task due to the huge amount of theory, constructions, and subtleties hidden behind its
statements. Thus, we simply outline the main results that are useful for our purposes and
give references where the subject is dealt with in greater depth.

41
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Broadly speaking, the Eichler-Shimura construction provides a way of obtaining a
Galois representation from a modular form of weight 2. This connection is made precise
through the language of abelian varieties and the theory of Hecke operators that we have
seen so far. It starts by constructing the Jacobian J0(N) of the modular curve X0(N), which
decomposes as a product of abelian varieties A f arising from newforms f of weight 2. In
particular, the dimension of each abelian variety A f is equal to [K f : Q], where K f is
the field extension generated by the Fourier coefficients of f . Then, a two dimensional
Galois representation is attached to each of these abelian varieties A f by means of their
Tate modules. Therefore, through the construction of the abelian varieties A f we are
able to obtain Galois representations from modular forms. A complete treatment of this
construction can be found in [Dia05], Chapter 8 & 9.

In our case, the interesting result derived from the Eichler-Shimura theory is the fol-
lowing.

Theorem 172. Let f ∈ S2(Γ0(N)) be a newform without inner twists nor CM. Let Q f be the
number field generated by its Fourier coefficients an and O its ring of integers. For every prime l,
let Ol = O ⊗Z Zl and Q f , l = Q f ⊗Q Ql . Then there exists a Galois representation

ρl : Gal(Q/Q)→ GL(2,Ol) ⊂ GL(2, Q f , l)

unramified outside lN such that for every prime p ∤ lN

trace(ρl(Frobp)) = ap and det(ρl(Frobp)) = p.

Remark 173. Theorem 172 can be seen a particular case of a much more general statement
due to Deligne. In that sense, in [Del71] Deligne proved a version of this theorem for
newforms of any weight.

Remark 174. Being precise, the condition of requiring that the newform does not have
inner twists is not necessary for Theorem 172 to hold. However, as we will see later,
adding this assumption simplifies our work.

The Galois representations that we will study correspond precisely to those stated in
Theorem 172. The reason for this restriction lies in the fact that this theorem not only
allows us to construct a Galois representation attached to a newform of weight 2, but also
gives us additional information of the representation by establishing its images on the
absolute Frobenius. Therefore, it offers an interesting set up for studying the images of
Galois representations by combining both the tools from Galois representation theory and
the ones from modular forms.

5.1.2 The statement

Once enclosed the framework in which we will work, we are ready to state Ribet’s
theorem about the images of the Galois representations attached to modular forms.



5.2. Outline of the proof of Ribet’s theorem 43

Theorem 175 (Ribet’s theorem). Let ρl be a Galois representation as in Theorem 172, GQ =

Gal(Q/Q), and Gl = ρl(GQ). Let Al = {x ∈ GL(2,Ol) : det(x) ∈ Z×l }. Then the equality
Gl = Al holds for almost every prime.

At first sight, it is not clear at all why the statement of Theorem 175 implies that the
image of the Galois representations attached to newforms of weight 2 is as large as possible.
Indeed, we have still not defined rigorously what does this notion mean.

In that sense, by as large as possible we mean that the image is the biggest group it
can be taking into account the restrictions imposed by the Galois representation given
by Theorem 172. Therefore, since ρ goes from GQ to GL(2,Ol) it is obvious that Gl ⊂
GL(2,Ol). Moreover, Theorem 172 also states that the determinant map coincides on
the image of the absolute Frobenius with the image of the l-adic cyclotomic character.
Then, since ρl is continuous and the set of absolute Frobenius is dense by Theorem 52, we
conclude that the determinant map coincides with the l-adic cyclotomic character in Gl .
Thus, since the output of the l-adic cyclotomic character takes values in Z×l , we get that
det(x) ∈ Z×l for all x ∈ Gl . Hence, for any l it holds that Gl ⊂ Al , and it makes sense to
say that the image is as large as possible when Gl = Al .

5.2 Outline of the proof of Ribet’s theorem

In order to prove Ribet’s theorem, we combine the strategy followed by Ribet in [Rib85]
and the one appearing in [Die01], Chapter 2. In particular, we develop some of their
arguments with the aim of stating the proof as self-contained as possible.

Having said that, the first step to be taken refers to the decomposition of the Galois
representation ρl .

Using the decompositions

Q f , l = ∏
λ|l

Q f , λ and Ol = ∏
λ|l
Oλ

we can decompose ρl as a direct sum of Galois representations

ρλ : Gal(Q/Q)→ GL(2,Oλ) ⊂ GL(2, Q f , λ),

where λ refers to the primes of O over l.
Then, let Fλ be the residue field of λ and consider the reduction ρλ of ρλ consisting in

composing ρλ with the reduction map GL(2,Oλ)→ GL(2, Fλ). We define Gλ as ρλ(GQ).
At first sight, it may not seem clear why do we care about this decomposition of the

Galois representation. However, it turns out that in his previous work [Rib75], Ribet
proved the following theorem, which is strongly related with our purposes and where
this decomposition plays an important role.

Theorem 176. The equality Gl = Al holds whenever all the following conditions are satisfied:

1. l ≥ 5.

2. l does not ramify in Q f /Q.



44 Images of Galois representations attached to newforms without inner twists

3. The determinant map Gl → Z×l is surjective.

4. Gl contains an element xl such that (trace(xl))
2 generates Ol as a Zl-algebra.

5. For each λ|l, the group Gλ is an irreducible subgroup of GL(2, Fλ) whose order is divisible
by l.

Remark 177. Notice that condition 5 of Theorem 176 refers explicitly to the decomposi-
tions previously mentioned.

The importance of Theorem 176 relies in the fact that it enables us to turn the proof of
Ribet’s theorem into a matter of verifying these 5 conditions. Thus, after proving it, this is
precisely the strategy we will follow in order to complete the Ribet’s theorem.

5.2.1 Proof of Theorem 176

The proof of Theorem 176 is not trivial at all and it requires several steps. Indeed, to
present it in full detail is out of the scope of this work since it would require to many
auxiliary results. Hence, we have opted to outline the general strategy followed by Ribet,
to prove the main results, and to give some comments on the remaining steps. The fully
detailed proof can be found in [Rib75].

Having said that, the main idea of the proof consists in using condition 5 to show that

∏
λ|l

SL(2,Oλ) ⊂ Gl .

To do so, notice that condition 5 together with Theorem 163 assures that SL(2, Fλ) ⊂
Gλ. In particular, the order of Gλ being multiple of l discards the cyclic, the dihedral,
and the special groups cases; while the irreducibility discards the possibility of the Borel
subgroup case. With this in mind, the following theorem theorem allows us to pass from
the image on the residue field to the ring of integers.

Theorem 178. Let l ≥ 5 be a prime, K1, ..., Kt finite extensions of Ql , and O1, ...,Ot their rings
of integers. If H is a closed subgroup of

GL(2,O1)× ...×GL(2,Ot)

such that its image mod l contains

GL(2,O1/lO1)× ...×GL(2,Ot/lOt),

then H contains
SL(2,O1)× ...× SL(2,Ot).

The proof of Theorem 178 mainly relies on adapting a famous lemma by Serre, which
is the one that follows.

Lemma 179. Let l ≥ 5 be a prime and X be a closed subgroup of SL(2, Zl) whose image in
SL(2, Fl) is SL(2, Fl). Then X = SL(2, Zl).
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Proof. We argue by induction on n that X maps onto SL(2, Z/lnZ).
The base case n = 1 is clear, so we assume that it holds for n and we prove it for

n + 1. In this regard, it suffices to show that for any s =
[

a b
c d

]
∈ SL(2, Zl) congruent to

Id (mod ln) there exists x ∈ X such that x ≡ s (mod ln+1).
At this point, we write s as S = Id+ lnu, and since det(s) = 1 we get that trace(u) = 0.

From there, it can be seen that u is congruent mod l to a sum of matrices ui with u2
i = 0,

so we can also assume that u2 = 0.
Then, by induction hypothesis there exists y ∈ X such that y = Id+ ln−1u + lnv, where

v has coefficients in Zl . Therefore, by setting x = yl we get that

x = Id + l(ln−1u + lnv) +
(

l
2

)
(ln−1u + lnv)2 + ... + (ln−1u + lnv)l .

Now, if n ≥ 2 it is clear that x ≡ Id + lnu (mod ln+1). Moreover, if n = 1 we can use
that u2 = 0 and u + lv ≡ u (mod l) to get that x ≡ Id + lu + (u + lv)l (mod l2). Then,
since (u + lv)2 ≡ l(uv + vu) (mod l2), we get that

(u + lv)l ≡ l(uv + vu)ul−2 ≡ 0 (mod l2)

because l ≥ 5. Hence, we conclude that x ≡ 1+ lnu (mod ln+1) in all cases as desired.

From there, by means of an argument regarding the closure of the commutator sub-
group of GL(2,O1)× ...×GL(2,Ot), Lemma 179 is applied to prove Theorem 178. See [Rib75],
Theorem 2.1 for the details on this argument.

After that, the next step consists precisely in using Theorem 178 to prove the following
corollary.

Corollary 180. Let G be a closed subgroup of

A = {(x1, ..., xt) ∈
t

∏
i=1

GL(2,Oi) : det(x1) = ... = det(xt) ∈ Z×l }.

The equality G = A holds whenever all the following conditions are satisfied:

1. l ≥ 5.

2. The determinant map G→ Z×l is surjective.

3. The image mod l contains
t

∏
i=1

SL(2,Oi/lOi).

Proof. By all the previous development we have that conditions 1 and 3 assure that
t

∏
i=1

SL(2,Oi) ⊂

G. Then, using condition 2 we get the following exact sequence.

1→
t

∏
i=1

SL(2,Oi)→ G det−→ Z×l → 1.
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However, by definition of the group A we also have the exact sequence that follows.

1→
t

∏
i=1

SL(2,Oi)→ A det−→ Z×l → 1.

Thus, from here we can conclude that A = G as desired.

We can view Corollary 180 as a kind of halfway result since it almost assures the
desired equality between groups. In that sense, the only remaining step is to solve the dif-
ference between the original representation and the λ-adic representations. In particular,
one must prove that if each of the ρλ has large image, then their product also has large
image. Despite not seeming difficult, it turns out that one must be careful when proving
this because there could be some overlapping and intersection between components. In
this regard, in order to do so the main idea is to combine condition 4 of Theorem 176
together with some technical results in group theory, such as for example the Goursat’s
lemma. As before, all these details can be found in [Rib75], Theorem 3.1.

5.2.2 Verification of the conditions

Once the proof of Theorem 176 is outlined, we move to verify that all the 5 required
conditions are satisfied in the framework we are working in.

First of all, notice not all conditions require the same amount of effort to be proven,
since some of them are almost trivial while others involve much more mathematical de-
velopment. In particular, conditions 1 and 2 are straightforward to check.

Conditions 1 & 2

Recall that the statement of Theorem 175 refers to all but a finite set of primes. Thus,
condition 1 is for free simply by not considering the primes l = 2, 3. Moreover, Remark 24
assures that the amount of primes not satisfying condition 2 is also finite, so condition 2
also holds for almost every prime as desired.

Condition 3

Condition 3 is also quite straightforward. However, it requires to combine the theory
of characters seen in Section 2.3 together with Theorem 172. In particular, following the
reasoning of Subsection 5.1.2, we get that the determinant map coincides with the l-adic
cyclotomic character in Gl . Thus, using Remark 78 we automatically get condition 3.

Condition 4

In the checking of condition 4 is where the hypothesis on the newform not having
inner twists is applied. In particular, by Corollary 145 we have that there exists a prime v
not dividing N such that a2

v generates Ff over Q. In this case, notice that

Ff = QΓ
f = QId

f = Q f ,
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so combining this together with the equality on the trace of the representation from The-
orem 172 we get that (trace(ρλ(Frobv)))2 = a2

v generates Q f over Q. From there, since
Proposition 134 guarantees that av is an algebraic integer, it is clear that av ∈ Ol and a2

v
generates Ol as a Zl-algebra.

Condition 5

In order to prove Theorem 175 we are left to simply verify condition 5. However, it
turns out that the proof of this condition requires much more machinery, so we rephrase
it as a theorem on its own.

Before stating the theorem, we must point out that from now on we slightly switch the
approach used so far. In particular, instead of picking a rational prime l and then consider
all primes λ ∈ O over l, we consider all primes λ ∈ O and then we set l = l(λ) to be the
rational prime such that λ is over l.

In this set up, we can state condition 5 as follows.

Theorem 181. For all but finitely many λ the following conditions are satisfied:

(a) The representation ρλ is an irreducible 2-dimensional representation over Fλ.

(b) The order of the group Gλ is divisible by l.

As already mentioned, the proof of Theorem 181 is highly nontrivial and requires some
other results such as Dickson’s classification of all subgroups of the general linear group.
In that sense, the next section is fully devoted to the proof of Theorem 181.

5.3 Proof of Theorem 181

The aim of this section is to prove the statement of Theorem 181. In order to do so,
we split the proof in several steps. First, we introduce a couple of results from Raynaud
about the characterization of 2-dimensional representations coming from a newform f ∈
Sk(Γ0(N)) that play a key role in proving the theorem. Later, we prove part (a) by using
one of these statements. Finally, the proof of part (b) is based on the Dickson’s result
about the classification of subgroups of GL(Fλ) stated in Theorem 163, as well as on the
use of Raynaud’s other result.

5.3.1 On the characterization of 2-dimensional representations

Since our final goal is to prove that the image of given Galois representations attached
to a newform is as large as possible, it makes sense to try to study how this kind of
representations look like under some particular assumptions.

In this regard, it turns out that this was one of the approaches that Serre considered
when trying to answer the same question for the case of Galois representations attached to
elliptic curves in [Ser72]. A couple of years later, Raynaud extended this work in [Ray74]
by giving some results on the characterization of 2-dimensional Galois representations.
Among all of them, we state the one that is useful for the proof of Theorem 181.
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The result of our interest is about the characterization of these Galois representations
when restricted to the inertia group. As commented in Chapter 2, the inertia group is
closely related to the notion of ramification of field extensions, which in turn has some
finiteness properties. Hence, since Theorem 181 is stated for almost every prime, knowing
the structure of the representation restricted to the inertia groups can be useful informa-
tion.

Theorem 182. Let l be a prime, λ ∈ O be a prime over l, and Iλ the inertia group. If l ≥ 3, and
l ∤ N, then the semisimplification of ρλ in Iλ, denoted by ρλ|Iλ

, is one of the following:

ρλ|Iλ
=

[
Ψ1 0
0 1

]
or ρλ|Iλ

=

[
Ψ2 0
0 Ψl

2

]
,

where Ψ1 and Ψ2 are the fundamental characters of level 1 and 2 respectively.

From there, there is an interesting result that can be derived from Theorem 182 simply
by assuming that the λ-adic representation is reducible.

Theorem 183. Let l be a prime and λ ∈ O be a prime over l. If ρλ is reducible, l ≥ 3, and l ∤ N,
then

ρλ = ϵ1 ⊕ ϵ−1
1 χl ,

where ϵ1 is a Dirichlet character unramified outside N and χl is the mod l cyclotomic character.

Remark 184. Despite not providing the proof of these statements, which are a conse-
quence of the works from Serre in [Ser72] and Raynaud in [Ray74], it is interesting at
least to give some intuition on the results. Mainly, these characterizations are based on
the constraint that the determinant map coincides with the mod l cyclotomic character. In
that sense, it is clear that

ϵ1ϵ−1
1 χl = χl ,

and by Remark 82 we get that

Ψ2Ψl
2 = Ψl+1

2 = Ψ1 = χl |Iλ
.

Remark 185. Both theorems 183 and 182 are particular cases of much more general results.
Indeed, in [FJ95] Faltings and Jordan stated these results for newforms of any weight.
However, we have restricted ourselves to newforms of weight 2 because is the set up in
which we are working.

A useful consequence derived from Theorem 182 is the following proposition.

Proposition 186. Let l be a prime, λ ∈ O be a prime over l, and Iλ the inertia group. If l ≥ 3,
and l ∤ N, then the projective image of the semisimplification of ρλ in Iλ is cyclic of order l ± 1.
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Proof. First, by Theorem 182 we have that the semisimplification of ρλ in Iλ is given by

ρλ|Iλ
=

[
Ψ1 0
0 1

]
or ρλ|Iλ

=

[
Ψ2 0
0 Ψl

2

]
.

From there, to prove the statement we simply need to check the two cases indepen-
dently taking into account that its projective image simply corresponds to identifying all
matrices that are equal up to a scalar constant.

In the first case, by Remark 80 we immediately have that the projective image is cyclic
of order l − 1.

On the second case, by Remark 82 we get that Ψl+1
2 = Ψ1, so combining this with the

first case we get that the projective image is cyclic of order dividing (l + 1)(l− 1) = l2− 1.
Moreover, again by Remark 80 we get that (Ψl

2)
l+1 = (Ψl+1

2 )l = (Ψ1)
l = Ψ1. Thus, when

taking the l + 1-th power in the second case we obtain the diagonal matrix given by[
Ψ1 0
0 Ψ1

]
,

which is identified with the identity matrix in PGL(2, Fλ). Hence, we get that in this case
the projective image is cyclic of order l + 1.

Therefore, we conclude that he projective image of the semisimplification of ρλ in Iλ is
cyclic of order l ± 1 as desired.

5.3.2 On the reducibility of representations

In order to prove part (a), our strategy consists in verifying that there are only finitely
many primes λ ∈ O over l for which ρλ is reducible. In other words, our goal is to show
that

Λ = {λ ∈ O : λ is a prime and ρλ is reducible}

is finite.
First, notice that we can apply Theorem 183 to characterize the representation because

by hypothesis ρλ is reducible. In particular, combining it with the additional information
we have about ρλ due to Theorem 172 we get that

ap = trace(ρλ(Frobp)) ≡ ϵ1(p) + ϵ−1
1 (p)p (mod λ)

p = det(ρλ(Frobp)) ≡ ϵ1(p)ϵ−1
1 (p)p (mod λ).

(5.1)

Thus, merging congruences 5.1 with the results on the bounds for the conductors done
by Carayol in [Car89] and Livné in [Liv89], we obtain the following statement.

Proposition 187. Let l be a prime such that l ≥ 3 and l ∤ N, and let λ ∈ Λ. For any prime
p ∤ lN, we have that

ap ≡ ϵ(p) + ϵ−1(p)p (mod λ),

where ϵ is a Dirichlet character unramified outside N whose conductor c satisfies c2|N.
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From there, if Λ is infinite, using the bound on the conductors we can pick an infinite
subset Λc of Λ such that c is the conductor for all λ ∈ Λc. Then, we consider a prime p
such that

p ≡ 1 (mod c),

which automatically gives us the relation

ap ≡ 1 + p (mod λ)

for all λ ∈ Λc.
Hence, since Λc is infinite, the congruences 5.3.2 hold for infinitely many values of λ,

so they become equalities. However, this contradicts the bounds on the absolute values of
the ap from Theorem 132.

Therefore, Λ must be finite, which automatically proves part (a) as desired.

5.3.3 On the groups of order not divisible by l

To prove part (b) we follow the same philosophy as in part (a), i.e. we simply check
that there are only finitely many primes λ ∈ O for which the order of Gλ is not divisible by
l. In that sense, since part (a) is already proven, we can also assume that ρλ is irreducible.
In other words, our goal is to prove that

Λ′ = {λ ∈ O : λ is a prime, ρλ is irreducible, and the order of Gλ is not divisible by l}

is finite.
In this set up, as mentioned earlier, the strategy of the proof mainly relies in applying

Dickson’s result from Theorem 163. In particular, combining it with our current hypothe-
sis we obtain the following theorem:

Theorem 188. Let G ∈ GL(2, Fλ) be an irreducible subgroup whose order is not divisible by l,
and H its image in ∈ PGL(2, Fλ). Then, one of the following holds:

1. H is cyclic and G is contained in a Cartan subgroup.

2. H is dihedral and G is contained in the normalizer of a Cartan subgroup but not in a Cartan
subgroup.

3. H is isomorphic to one of the following special groups: A4, S4, A5.

In this framework, we first denote Pλ to be the projective image of Gλ, i.e. its image in
PGL(2, Fλ). Then, to prove that Λ′ is finite it suffices to check that Gλ and Pλ satisfy each
of the cases from Theorem 188 only for finitely many λ.
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The cyclic case

We start by treating the case where Pλ is cyclic and Gλ is contained in a Cartan sub-
group denoted by Cλ.

Let c ∈ GQ be a complex conjugation. By definition, c has order 2 and we recall that
det(ρλ) is the mod l cyclotomic character. This implies that det(ρλ(c)) = −1 because the
complex conjugate of any root of unity is its reciprocal. From there, we get that ρλ(c) has
±1 as eigenvalues, i.e. it has different rational eigenvalues. Then, Proposition 170 tells us
that Cλ can not be a non-split Cartan subgroup, so it must be a split Cartan. However, split
Cartan groups correspond, up to conjugacy, to diagonal matrices. Hence, by Remark 11
we get that ρλ is a reducible representation contradicting the initial hypothesis.

Therefore, we conclude that the cyclic case does not hold for any λ ∈ Λ′.

The dihedral case

In this case, we suppose that there is an infinite subset Λ′D ⊆ Λ′ such that for all
λ ∈ Λ′D we have that Pλ is a dihedral group and Gλ is contained in the normalizer Nλ of
a Cartan subgroup Cλ but not in Cλ.

First, by Remark 162 we can construct the character

αλ : GQ → {±1},

which consists in the composition

αλ : GQ

ρλ−→ Gλ ⊂ Nλ → Nλ/Cλ
∼= {±1}. (5.2)

From there, notice that kernel of αλ is an open subgroup of GQ of order 2, so by the
Galois correspondence from Theorem 42 we can construct the associated fixed quadratic
field Kλ. In addition, Kλ is unramified at lN because ρλ is by hypothesis.

At this point, the next step is to prove the following theorem.

Theorem 189. There exists an infinite subset Λ′K ⊆ Λ′D such that the quadratic field Kλ is the
same for all λ ∈ Λ′K.

Proof. First, notice that to prove this statement it suffices to prove that for almost any
λ ∈ Λ′D the subextension Kλ does not ramify at l. This is because by construction Kλ must
ramify only in a subset of the finite set of primes in which the original representation
ramifies. Hence, if l is not in this subset, the subset of candidate primes in which Kλ may
ramify is finite and does not depend on λ, so by Theorem 26 there are only finitely many
possible Kλ and since Λ′D is infinite by hypothesis there must exist Λ′K ⊆ Λ′D such that Kλ

is the same for all λ ∈ Λ′K.
Due to the previous argument, we are left to prove that Kλ does not ramify at l. To

do so, we must take a look at the image of ρλ in Iλ. In that sense, notice that since by
hypothesis we are assuming that the order of Gλ is not divisible by l, the image of the
inertia does not have elements of order l, which implies that it cannot contain matrices of
the form [

1 ∗
0 1

]
with ∗ different from 0.
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Thus, this means that it corresponds to a semisimple representation and by Proposi-
tion 186 we have that the projective image of ρλ in Iλ, which we denote by Iλ, is cyclic of
order l ± 1. Then, by taking l ≥ 5 we get that the order is strictly larger than 2, so we can
apply Proposition 168 to get that Iλ is contained in the core of the dihedral group.

Finally, this implies that the inertia is trivial in Kλ for almost every λ ∈ Λ′D, i.e. Kλ

does not ramify at l if l ≥ 5, which completes the proof.

Now, for all λ ∈ Λ′K we denote K to the fixed quadratic field Kλ, and α to the quadratic
character αλ associated to K defined in (5.2).

Having said that, we simply need to combine the definition of α in (5.2) with Proposi-
tion 171 to get that for all λ ∈ Λ′K we have that given any g ∈ GQ

1. If ρλ(g) ∈ Cλ, then α(g) = 0.

2. If ρλ(g) ∈ Nλ \ Cλ, then α(g) = −1 and trace(ρλ(g)) = 0.

Then, notice that these two conditions together with the description of the initial rep-
resentation from Theorem 172 imply the following statement.

Theorem 190. For every λ ∈ Λ′K and every prime p ∤ lN we have that

α(Frobp)ap ≡ ap (mod λ).

Finally, the infinity of Λ′K in Theorem 190 implies that the congruence of the theorem
becomes an equality. However, according to Definition 139 this means that the original
newform has complex multiplication, which contradicts our initial hypothesis.

Hence, Λ′D must be finite as desired.

The special groups case

We now suppose that Pλ is isomorphic to either A4, S4, or A5.
As in the previous case, the key point to prove that this situation can only happen

for finitely many values of λ is to use the characterization of the projective image of the
semisimplification of ρλ in Iλ, which we denote again by Iλ.

In particular, Proposition 186 tells us that Iλ corresponds to a cyclic subgroup of order
l ± 1. Hence, arguing on the order of the groups A4, S4, and A5 we can apply Propo-
sition 164 to conclude that the maximum order among them corresponds to |A5| = 60,
which implies that for l ≥ 67 the group Iλ can not be included in neither of these groups
contradicting the initial hypothesis.

However, we can go a step further to lower even more the bound on l. To do so, we
simply need to apply Proposition 169 to conclude that neither A4, S4, nor A5 have cyclic
subgroups of order ≥ 6. Hence, this case can not hold for any l ≥ 7.

Grouping the cases

By taking a detailed look at each of the three cases, we have concluded that each of
them hold at most for a finite number of λ. Thus, the set Λ′ for which Theorem 188 holds
is finite, which immediately proves part (b) of Theorem 181 as desired.
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5.4 Applications & consequences of Ribet’s theorem

Once we have proved Ribet’s theorem, a natural question to ask is what consequences
follow from its statement. In this regard, it turns out that we can use it to realize projective
linear groups over finite fields as Galois groups over Q. Hence, the aim of this section is
to outline this application of Ribet’s theorem.

Recall that we denote by Pλ the image if Gλ in PGL(2, Fλ). With this in mind, the
following theorem directly realises PGL(2, Fqn) and PSL(2, Fqn) as Galois groups over Q.

Theorem 191. Let l be a prime satisfying Ribet’s theorem and λ ∈ O be a prime over l. Then

Pλ =

{
PGL(2, Fλ) if [Fλ : Fl ] is odd

PSL(2, Fλ) if [Fλ : Fl ] is even
.

Proof. First of all, notice that the equality Gl = Al from Theorem 175 implies that

Gλ = {x ∈ GL(2, Fλ) : det(x) ∈ F×λ },

so it is clear that PSL(2, Fλ) ⊂ Pλ. In addition, since l is odd, by Proposition 149 we get
that [PGL(2, Fλ) : PSL(2, Fλ)] = 2. Hence, Pλ is either PGL(2, Fλ) or PSL(2, Fλ).

Now, we simply need to take a look at the determinant in order to distinguish between
both cases. In this regard, by construction the determinant of PGL(2, Fλ) corresponds to
F∗λ/(F∗λ)

2, so the projective image of any x ∈ GL(2, Fλ) lies in PSL(2, Fλ) if and only if
det(x) is a square in Fλ.

With this in mind, we move to split between cases depending on the parity of the
extension.

On the one hand, if [Fλ : Fl ] is even the quadratic extension of Fl is indeed a subex-
tension of Fλ/Fl . Then by the uniqueness of this quadratic extension we can assure that
all elements in Fl are squares on it, so they are also squares in Fλ. Hence, by the previous
argument on the determinant we are done in this case.

On the other hand, if [Fλ : Fl ] is odd the quadratic extensions Fl can not be a subex-
tension of Fλ/Fl . Therefore, not all the elements of Fl are squares in Fλ, so in this case it
is clear that Pλ = PSL(2, Fλ).

Once Theorem 191 is proved, simply by applying it we are able to realize multiple
projective linear groups over finite fields as Galois groups over Q. Nevertheless, we could
argue that this result only holds for the primes l satisfying Ribet’s theorem, the statement
of which does not explicitly specify them.

In this regard, there are two main considerations to be taken into account. First, notice
that Ribet’s theorem holds for almost every prime, so the chances of picking a prime
for which it does not hold are low. Moreover, by looking at the conditions required in
Theorem 176 we can give a criteria for determining the desired primes. Indeed, in [Die10],
Section 2.2. Dieulefait presented an algorithm for computing the exceptional primes in
Ribet’s theorem. Broadly speaking, the algorithm simply consists in mimicking the steps
during the proof of Theorem 181 in order to detect these primes.
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Chapter 6

Conclusions

Throughout this thesis we have studied the images of Galois representations attached
to modular forms without Complex Multiplication. In particular, we have focused our
attention into develop all the theory needed to understand Theorem 175 from Ribet, which
sates that the images of this kind of representations are as large as possible for almost
every prime.

Going into details, we have devoted chapters 2 and 3 to introduce the topics of Galois
representations and modular forms respectively, which are the main characters of Ribet’s
theorem. From one hand, when studying Galois representations we have seen several
notions as well as some important results such as the Chebotarev density theorem. In
addition, we have treated other notions from algebraic number theory such as the l-adic
numbers, ramification of extensions, and group characters. On the other hand, in the
modular forms chapter we have presented and motivated multiple concepts as cusp forms
and congruence subgroups. Moreover, we have introduced all the theory and intuition
behind Hecke operators and also the notions of newforms, complex multiplication, and
inner twists.

Once the needed background has been introduced, we have targeted Ribet’s theorem
about the images of Galois representations attached to newforms without complex mul-
tiplication. To do so, we first have discussed about multiple results on group theory,
specially regarding general linear groups. In that sense, we have put emphasis on Dick-
son’s classification of subgroups of GL(2, Fq), which is an essential tool for the proof of
Ribet’s theorem. After that, we have focused on the main theorem on its own by explain-
ing the Eichler-Shimura relation, the statement itself, a detailed proof developing all steps
left by Ribet in [Rib85], and commenting some of its main applications.

To conclude, we propose a series of research lines to continue this work. The first one
corresponds to generalize the argument from Ribet to newforms of any weight instead of
simply assuming weight 2. This is something that could be done using similar strategies
based on results as the one in [FJ95]. Moreover, the generalization can also be done in
another direction, which corresponds to take a look at the case where inner twists are
considered. In particular, this leads to a slightly more complex characterization of Gl that
can be found in [Die01]. Finally, the other alternative is to study in detail the algorithm for
computing the exceptional primes in Ribet’s theorem mentioned at the end of Chapter 5.
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