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6Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), 08034 Barcelona, Spain

(Received 20 June 2022; revised 4 May 2023; accepted 2 June 2023; published 4 August 2023)

Inspired by massive intermediate filament (IF) reorganization in superstretched epithelia, we examine
computationally the principles controlling the mechanics of a set of entangled filaments whose ends slide
on the cell boundary. We identify an entanglement metric and threshold beyond which random loose
networks respond nonaffinely and nonlinearly to stretch by self-organizing into structurally optimal star-
shaped configurations. A simple model connecting cellular and filament strains links emergent mechanics
to cell geometry, network topology, and filament mechanics. We identify a safety net mechanism in IF
networks and provide a framework to harness entanglement in soft fibrous materials.
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Epithelial tissues are cohesive cellular sheets lining free
surfaces in multicellular eukaryotes. They are involved in
crucial physiological processes such as morphogenesis,
protection, secretion, and absorption [1–4]. Being biologi-
cal barriers, they need to preserve integrity within active
and challenging mechanical environments. Depending on
the temporal scales and system, epithelial mechanics may
depend on cellular rearrangements or on deformation of
individual cells, which in turn depends on intracellular
cytoskeletal networks that are mechanically integrated at
the tissue scale through cell-cell junctions [5–8]. These
cytoskeletal networks are composite systems combining
widely diverse biopolymers, which interact chemically,
physically, and through biological regulation [9–12].
Cytoskeletal actin filaments are short (< 1 μm [13]), stiff

both to stretch and bending [9,14,15], bind to a variety of
specific cross-linkers including myosin motors, and turn
over within minutes [9]. Microtubules are long, stiff,
dynamic, and also bind to specific motors. Conversely,
intermediate filaments (IFs) organize into long (several
micrometers [16]), bendable [9,15], and highly stretchable
bundles, with a highly nonlinear force-stretch behavior
enabling extensions of up to 3–4.5-fold [17–22]. IF turn-
over is much slower [9,23], in the order of hours, and
unlike other cytoskeletal filaments, they lack stable and
specific linkers, although unspecific cytolinkers such as

plectin bind IFs to other IFs including nuclear lamins, to
actin, or to microtubules [24]. IFs form supracellular
networks thanks to adhesion complexes known as desmo-
somes [6]. Together, these features support the view that
IFs form a relatively passive network providing a “safety
belt” against fast and large deformations [19,21,25–27],
although how load is transferred from the tissue scale to
individual IFs remains poorly understood.
Recent stretching experiments on epithelial monolayers

suggest synergistic interactions between the actin cyto-
skeleton, controlling epithelial mechanics at moderate
stretches, and IFs, providing load bearing under very large
cell deformations [4,7,23,28]. Under extreme cellular
stretches and over long times, the IF network rearranges

FIG. 1. (a) Superstretched cells in an epithelial dome [4] with
radial IF bundles (white arrowheads; green, keratin 18 IFs;
magenta, actin; cyan, nuclei; scale bar, 40 μm), where yellow
polygons mark selected cell outlines. (b) Sketch of a discrete
network model of IFs in a cell with elastic, bendable filaments
whose ends slide on the cell boundary. (c) Illustration of the
pairwise Gaussian linking number for the filaments in (b).
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into a characteristic “star-shaped” structure where thick
bundles radiate from a central tight tangle, Fig. 1(a) [4].
Laser ablation shows that such IF bundles provide struc-
tural integrity to superstretched cells as the actin network
becomes progressively diluted. Since IFs appear wavy
and cortically arranged in unloaded cells, we wondered
about the physical mechanisms underlying this slack-taut
transition and the corresponding effects on network-scale
mechanics.
To address these questions, we focused on the mechanics

of IF networks alone. Although actin or nuclear lamins may
limit the reconfigurations of the IF network by entangle-
ments and cross-links, the separation of turnover timescales
mentioned earlier justifies a slow loading regime in which
these constraints have time to relax, but entanglements
between IFs and their binding to desmosomes remain
intact. Given the extreme extensibility of IFs [17–22,29],
we ignore filament damage. We thus idealize the IF
cytoskeleton within a cell as a loose and entangled network
of un-cross-linked, bendable, and extensible filaments,
whose ends are attached to the lateral boundaries of a
prismatic domain, Fig. 1(b). These idealized desmosomes
prevent unraveling of the network by filament reptation.
Since the IF network is corralled into cellular compart-
ments, we regard this cell as a minimal mechanical unit
[yellow hexagons in Fig. 1(a)].
We modeled such networks using the cytoskeletal

simulation suite CYTOSIM [30,31] for the Brownian dynam-
ics of inextensible and bendable filaments, which we
customized to model extensible filaments with general
constitutive relations [32]. We prepared computational
models comprising Nf cylindrical filaments of persistence
length lp, reference length l0 ≫ lp, and diameter ϕ ≪ l0,
according to the procedure described in Sec. S1 in the
Supplemental Material [33]. We initially considered lin-
early elastic filaments with modulus E. All filament points
are confined inside the cell volume, interact sterically
to avoid mutual crossing, and are subjected to a drag
force with coefficient ν, Sec. S7 in [33]. We modeled the
cell as a right regular prism whose base has Ne edges,
apothem length a0, surface area A0, and side length
s0 ¼ 2a0 tanðπ=NeÞ; the prism height is h0 ¼ a0=4. The
model parameters and their rationale are provided in
Table S2 and Sec. S2 in [33], although our main results
are rather insensitive to material parameters.
To simulate the extreme equibiaxial stretching reached

by individual cells in pressurized lumens in vitro [4] and in
developing embryos [41], we gradually increased the cell
area A by 11-fold at a slow strain rate, much smaller than
the inverse intrinsic time constant of the system E=ν.
During stretching, filament ends remain attached to the
lateral boundaries such that the attachment locations may
move laterally within a face but not to neighboring faces, in
agreement with the notion that desmosomes can move
laterally in adhered pairs of plasma membranes but cannot

cross tricellular junctions. As we change A, and hence the
areal strain, εc ¼ A=A0 − 1, we quantify the forces acting
on the side walls. If Fþ

i and F−
i are the forces on the ith fila-

ment ends, and n̂þi and n̂−i are the normals to the walls that

constrain those ends, the total force is Fc¼
PNf

i¼1ðFþ
i · n̂

þ
i þ

F−
i · n̂

−
i Þ, from which we define the nominal cellular

tension, Tc ¼ Fc=Nes0, and its dimensionless equivalent
T�
c ¼ Fca0=EAfNes0.
Lacking cross-linkers, entanglement is the only mecha-

nism for our idealized networks to develop mechanical
resistance. Thus, we established a system preparation
protocol allowing us to control network entanglement by
modifying the fraction of time during which filaments grow
unconstrained or with their ends fixed to cell walls, Sec. S1
and Video S1 in [33]. In agreement with our rationale, a
loose and randomly organized network with default para-
meters and strong entanglement undergoes a dramatic
spontaneous reorganization when stretched, Video S2, lead-
ing to a central tight tangle from which filament bundles
radiate perpendicularly to the lateral cell boundaries. The
formation of such star-shaped configuration, reminiscent of
IFs in superstretched epithelial cells, involves significant
lateral motion of the attachment points and results in all
filaments carrying load. Conversely, an equivalent system
with low entanglement develops less predictable and
directed network reorganizations, where only a small
fraction of filaments become taut under stretch, Video S3.
The study of how entanglements restrict configurational

entropy and hence the elastic properties of bulk polymeric
materials has a long history [42–45]. Here instead, we
sought to characterize the topological conditions for the
self-organization of corralled entangled networks into star-
shaped states under finite stretch. To define a predictive
entanglement metric, we resorted to topological invariants,
which mathematically characterize knots (embeddings of
the unit circle in R3) and links (collection of knots) [46,47]
and have been used to describe the topology of proteins and
DNA [48–50]. The pairwise Gaussian linking number Lki;j
characterizes the number of times that a closed and oriented
spatial curve δi winds around another oriented curve δj and
can be computed as [46,51]

Lki;j ¼
1

4π

Z
2π

0

Z
2π

0

riðtiÞ− rjðtjÞ
jriðtiÞ− rjðtjÞj3

· ½r0iðtiÞ× r0jðtjÞ�dtidtj;

ð1Þ

where riðtÞ and rjðtÞ with t ∈ ½0; 2πÞ are parametrizations
of δi and δj, and the prime denotes differentiation with
respect to t. For links, Lki;j is an integer and is invariant
with respect to deformations respecting mutual filament
avoidance. For pairs of open curves with fixed ends, called
tangles [46,47], Lki;j is not a strict invariant, but it is still
suitable to characterize pairwise linking [49], see Fig. 1(c)
and Supplemental Material, Sec. S3 [33].
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To fully characterize topology in networks containing
many filaments, one should resort to multibody invariants
beyond the pairwise Gaussian linking number. Classical
work in polymer physics avoids this full enumeration and
instead simplifies the topological description using two-
body invariants only [42–44]. Accordingly, we considered
the total pairwise Gaussian linking number of the network,
Lks ¼ P

j>i jLki;jj, previously adopted for textiles [52].
However, neither this entanglement metric nor the average
pairwise Gaussian linking number per number of filaments,
Lks=Nf, predict whether a network is sufficiently entan-
gled to self-organize into a star-shaped organization under
stretch independent of the number of filaments Nf, Sec. S4
in [33]. Instead, we found that the average pairwise
Gaussian linking number per number of filament pairs,

E ¼ Lks
Np

¼ 2

NfðNf − 1Þ
X
j>i

jLki;jj; ð2Þ

systematically discerns between the two network behaviors
illustrated in Videos S2 and S3, Sec. S4 in [33]. While E is
not a strict topological invariant, we verified that it is
essentially independent of network deformation, Sec. S5
in [33].
We then systematically examined the role of entangle-

ment on the network mechanics by considering filament
ensembles with varying degree of entanglement E and
otherwise identical model parameters. For insufficiently
entangled systems (E ≲ 0.3), the networks do not exhibit
coherent reorganization (Videos S3 and S4 [33]), and
concomitantly, the buildup of tension is insignificant [cyan
and green curves in Fig. 2(a)] in line with previous findings
on nonwoven textiles [53]. Since modest levels of E
correspond to limited mutual winding, IFs not directly
bridging opposite sides can accommodate cellular defor-
mations without elongating [green curves in Fig. 2(b)]. By
remaining slack [green arrowheads in Figs. 2(b) and 2(c)],
these filaments do not contribute to the emergent mechani-
cal response.
For E ≈ 0.4, the networks develop several tight tangles

connecting taut filaments, Video S5 [33]. This topological
reorganization enables sustained cellular stiffening, blue
curve in Fig. 2(a). However, the filament strain distribution
is extremely broad, indicating that some are strongly
elongated while others remain slack, blue arrowheads in
Figs. 2(b) and 2(c).
For E ≳ 0.5, the networks robustly reorganize into star-

shaped configurations (Videos S2 and S6 [33]), mobilizing
all filaments with similar elongation, Fig. 2(b), and stiff-
ening beyond an activation strain εAc , Fig. 2(a). We infer that
entanglement enables self-organization of the networks
into structurally optimal filament arrangements, akin to
IF reorganization in superstretched epithelial cells [4],
Fig. 1(a). The transition of system behavior beyond a
critical degree of entanglement can be interpreted as a

topological threshold for mechanical self-organization.
Importantly, thanks to their strong nonaffinity, these struc-
turally optimal networks offer mechanical resistance to
extreme cell deformations with moderate individual fila-
ment strains, defined as εf ¼ l=l0 − 1 with l the current
filament length, Fig. 2(b). For instance, for E ≈ 0.5, cell
areal strains of εc ¼ 1000% are accommodated by filament
strains of about εf ¼ 40%, much lower than the filament
strains around 230% of an equally stretched affine network.
To understand the parameters controlling εAc and the

subsequent tension-strain relation, we developed an ana-
lytical model assuming network entanglement above the
topological threshold, Sec. S6 in the Supplemental Material
[33]. Considering the star-shaped geometry of the stretched
network and accounting for the filament length stored in the
central tight tangle, this model links cell- and filament-scale
deformations to estimate the cellular activation strain,

εAc ≈
1

4a20

�
l0 −

π

4
ϕγðEÞEðNf − 1Þ

�
2

− 1; ð3Þ

where γðEÞ is a phenomenological scalar quantifying the
average complexity of individual windings within the
central tight tangle. γ ¼ 1 models a situation in which
windings involve filament pairs. With increasing entangle-
ment, we expect windings to involve more filaments and

FIG. 2. Influence of filament entanglement on cellular
mechanical response. (a) Relation between normalized cellular
tension T�

c and cell areal strain εc (solid lines and shadings, mean
� standard deviation of eight model realizations; dashed lines,
1D analytical model with γ ¼ 1.0, 2.2, 2.9 for E ≈ 0.5, 0.7, 1.0).
(b) Evolution of individual filament strain εf as a function of cell
areal strain for representative realizations of different levels of
entanglement and corresponding distributions of filament strain
at εc ¼ 1000% (right shaded curves). The dashed line is the
prediction εf ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

εc þ 1
p

− 1 under the assumption of affinity.
(c) Representative network reorganizations for εc ¼ 1000%.
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hence require more length, leading to larger γ. Neglecting
filament bending, our model also provides an approximate
expression for the dimensionless nominal cellular tension,

T�
c ≈

2Nfa0
l0Ne tanðπ=NeÞ

D ffiffiffiffiffiffiffiffiffiffiffiffiffi
εc þ 1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
εAc þ 1

q E
; ð4Þ

where the angle brackets of a real number a are defined by
hai ¼ 0 if a < 0 and hai ¼ a otherwise. Thus, the only
fitting parameter is γðEÞ, which should be close to 1 for
networks barely above the topological threshold and
increase with E, Sec. S6 in [33].
We found a nearly quantitative match between the

analytical model with γ ¼ 1 and simulations at the thresh-
old E ≈ 0.5. For higher entanglement, we found very good
agreement by increasing γ to 2.2 and 2.9 for E ≈ 0.7 and
E ≈ 1.0, Fig. 2(a), consistent with the idea that networks
with larger E involve windings of increasing complexity. In
agreement with our analytical model, the mechanical
response of the system above the topological threshold,
particularly the emergent stiffness ∂T�

c=∂εc, is essentially
independent of entanglement except for the shift in εAc .
Accordingly, we considered a default entanglement E ≈ 0.5
in subsequent simulations and set γ ¼ 1 for the theoreti-
cal fits.
According to our theory, as more filament length is

stored in the central tight tangle, less length is available for
the bundles to bridge cell boundaries. As a result, increas-
ing entanglement should not only increase εAc , but also
individual filament strain εf for a given cellular strain, in
agreement with our simulations [black and red curves in
Fig. 2(b)]. Additional simulations show that the mechanical
response and network mechanisms described here are not
modified by thermal vibrations, Sec. S8 in [33], or changes
in filament bending rigidity, Sec. S9 in [33], and that the
emergent stiffness scales proportionally to the filament
elastic modulus, Sec. S10 in [33].
To further test our theory, we examined the role of

filament length, which according to Eqs. (3) and (4), should

modify the activation strain εAc and the emergent tension T�
c.

In agreement with the analytical predictions, simulations
with shorter (longer) filaments lead to smaller (larger)
activation strains and stiffer (softer) networks, Fig. 3(a),
with a marked downward shift in filament strain distribu-
tions for longer filaments as more filament length is
available to accommodate cellular strain. Per Eq. (4), the
tension-strain curves of networks with different filament
lengths collapse when representing l0T�

c as a function offfiffiffiffiffiffiffiffiffiffiffiffiffi
εc þ 1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
εAc þ 1

p
, Fig. 3(a) inset, reflecting the in-

creased compliance of longer filaments. Varying the
number of filaments Nf linearly affects the slope of the
cellular response, Fig. 3(b), in agreement with Eq. (4).
Instead, the number of filaments mildly impacts the
activation strain, Fig. 3(b). Thus, filament loading in our
entangled networks is determined primarily by E and l0,
and only weakly by Nf, whereas emergent tension and
stiffness are directly controlled by Nf and l0.
Since IFs exhibit a highly nonlinear force-stretch rela-

tion, we then wondered whether the filament constitutive
behavior affected the slack-taut transition and the emergent
mechanics. We considered filaments that soften to E=5 for
εf in the range between 10% and 40% and eventually
restiffen to reach 10E, mimicking their typical superelastic
response [17–22]. The emergent stiffness of the taut net-
work mirrors the individual IF constitutive relations,
Fig. 3(c), consistent with the narrow filament strain dis-
tributions observed for E ≳ 0.5, Fig. 2(b). To examine the
influence of filament length variability, we sampled l0

from a normal distribution with mean 5a0 and standard
deviation 0.5a0. For linearly elastic filaments, this reduces
the activation strain, as shorter filaments are mobilized
earlier. For nonlinear filaments, the plateau in the filament
response is lost at the cellular scale, as the emergent
behavior now results from convolving the nonlinear con-
stitutive laws of unequally strained filaments. Cell-scale
stiffening is also reached earlier when including shorter
filaments. However, the slack-taut transition corresponding
to the formation of radial IF bundles remains unchanged,

FIG. 3. Cellular mechanical response (solid lines and shadings, mean � standard deviation of eight model realizations; dashed lines,
1D analytical model with γ ¼ 1; insets, Δεc ¼ h ffiffiffiffiffiffiffiffiffiffiffiffiffi

εc þ 1
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
εAc þ 1

p
i) and filament strain distribution at εc ¼ 1000% when varying

l0 (a), Nf (b), the distribution of filament lengths l0, and the filament strain-force relation (c). In all cases, E ≈ 0.5.
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Sec. S11 in the Supplemental Material [33]. Thus, while the
shape of the emergent mechanical response past the
activation strain depends on the constitutive behavior,
the number, and the length distribution of the filaments,
their nonaffine self-organization into a star-shaped con-
figuration is solely determined by network entanglement.
Following this rationale, the slack-taut transition should

also be preserved when varying the cell shape. To test
this, we prepared networks with default parameters and
enclosed them in cells with the same a0, but different Ne.
According to the three regular tessellations of the
plane [54], we compared triangular, square, and hexagonal
cells (Ne ¼ 3; 4; 6). Remarkably, the nonaffine and non-
linear mechanical response above the topological threshold
is independent of cell shape and well described by Eqs. (3)
and (4), Fig. 4 and Sec. S12 in [33].
In summary, inspired by the phenomenology of IF

networks in epithelial monolayers under stretch [4], we
have studied the physical principles supporting the non-
linear and nonaffine mechanical response of an ensemble of
entangled extensible filaments confined to a cell with
laterally moving boundary attachments. We identify a
metric of entanglement E, which robustly predicts a thresh-
old for mechanical activation of all filaments, E ≳ 0.5,
leading to self-organization of random filament networks
into structurally optimal configurations beyond an activa-
tion strain. The occurrence of the transition is purely
topological, whereas the emergent mechanics depend on
length, number, and constitutive response of the filaments,
enabling independent control of activation strain and
stiffness.
Our work suggests that, through entanglement and self-

organization, IF networks provide a safety net for cells
against extreme strains. Being rooted in network topology,
this emergent material property is complementary to the
role of IFs as a safety belt against fast strain rates, which
hinges on rate-dependent mechanics of filaments and
bundles [21]. Beyond the biological context, network
entanglement has been leveraged to enhance the mechani-
cal properties of hydrogels [55,56] and is at the core of
textile materials [57–59]. Here, we identify “corralled

entanglement” as a scale-free principle for extremely
deformable bioinspired materials whose organization lies
between random networks and woven materials. By relying
on self-organization, this principle is devoid of the syn-
thesis challenges of weaving or knitting at a molecular
scale [60].
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