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Simple Summary: Colorectal cancer (CRC) is one of the most prevalent cancers, and approximately
a quarter of patients diagnosed at stage II exhibit a significant risk of recurrence. In this study, we
successfully identified a microRNA (miRNA) signature allowing the recognition of patients at high
recurrence risk. The validity of these findings has been confirmed through an entirely separate group
of patients diagnosed with stage II microsatellite stability (MSS) colon adenocarcinoma (COAD).
Most of the miRNAs present in the signature have demonstrated prognostic relevance in various
other cancer types. Upon examining their gene targets, we discovered that some of these miRNAs
are intricately involved in pivotal pathways of cancer progression.

Abstract: We aimed to identify and validate a set of miRNAs that could serve as a prognostic signature
useful to determine the recurrence risk for patients with COAD. Small RNAs from tumors of 100 stage
II, untreated, MSS colon cancer patients were sequenced for the discovery step. For this purpose, we
built an miRNA score using an elastic net Cox regression model based on the disease-free survival
status. Patients were grouped into high or low recurrence risk categories based on the median value
of the score. We then validated these results in an independent sample of stage II microsatellite stable
tumor tissues, with a hazard ratio of 3.24, (CI95% = 1.05–10.0) and a 10-year area under the receiver
operating characteristic curve of 0.67. Functional analysis of the miRNAs present in the signature
identified key pathways in cancer progression. In conclusion, the proposed signature of 12 miRNAs
can contribute to improving the prediction of disease relapse in patients with stage II MSS colorectal
cancer, and might be useful in deciding which patients may benefit from adjuvant chemotherapy.
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1. Introduction

CRC is the third most newly diagnosed cancer type worldwide. Although systematic
screening programs have reduced the incidence of CRC in Western countries [1], it is still the
second leading cause of cancer-related deaths worldwide for both men and women [2], with
millions of cases being reported each year. Currently, stage at diagnosis is the most relevant
predictor of prognosis. It is known that about a quarter of patients with CRC are diagnosed
in stage II, with localized disease and no evidence of regional lymph node invasion [3].
Nevertheless, disease will recur or progress to distant metastasis in about 20–25% of these
patients. Clinical and pathological risk factors, such as the size and location of the tumor,
are used to identify patients at high risk of recurrence, but they are not always reliable. As
a result, there has been growing interest in the use of biomarkers to improve the accuracy
of prognostic and predictive testing for CRC patients [4–8]. However, these approaches
are limited by small populations or accuracy [9,10]. Molecular biomarkers could be used
to identify patients who are at high risk of disease recurrence or improve stratification of
patients who could benefit from adjuvant chemotherapy or immunotherapy.

miRNAs are short, double-stranded, non-coding RNA molecules, typically between
19 and 24 nucleotides in length, which play a critical role in the regulation of gene expression.
MiRNAs are involved in post-transcriptional regulation of multiple protein coding genes,
mainly by binding to the 3’ untranslated regions (UTRs) of target genes, leading to inhibition
of messenger RNA (mRNA) transcription [11]. Changes in miRNA expression affect target
genes regulation, and consequently, their deregulation can lead to irregular cell processes
related to tumor development and progression [12]. To date, several miRNAs have been
proposed to be either oncogenic or tumor suppressors [13–15], and there have been some
miRNA signatures proposed as molecular biomarkers in CRC for both diagnosis and
prognosis, as well as treatment decisions [16–19].

In this study, we aimed to identify and validate a signature of miRNAs with prognostic
value in stage II COAD patients. We used next-generation sequencing (NGS) techniques to
obtain miRNA expression values for a set of tumor samples, and we tried to validate the
findings in an independent sample series.

2. Materials and Methods
2.1. Subjects and Samples

In the discovery series, we included Colonomics (CLX): 98 tumor tissue samples, MSS
stage II patients with a new diagnosis of COAD at the University Hospital of Bellvitge
in Barcelona (Spain) between January 1996 and December 2000. Patients were selected
from those that had donated fresh tissue to the biobank and had undergone a complete
surgical resection of the tumor, but had not received adjuvant chemotherapy. In addition, a
minimum of 3 years of follow-up was required.

The validation series included public independent samples of 130 COAD patients
(stage II) from The Cancer Genome Atlas (TCGA) study.

The study was performed in accordance with relevant ethics guidelines and regula-
tions. The Clinical Research Ethics Committee of the Bellvitge Hospital approved the study
protocol (PR178/11). Individuals provided written informed consent to participate and
for genetic analysis to be carried out on their samples. Additional information about the
study can be found at www.colonomics.org (accessed on 15 May 2023). This study carefully
follows the recommendations for reporting proposed by the REMARK guidelines [20].

2.2. Sample Processing

Tumor samples were cut by the pathologist from the surgical specimen during the first
hour after removal and kept frozen at −80 ◦C in the hospital’s tumor bank. Total RNA was
isolated from tissue samples using the miRCURYTM RNA isolation kit (Exiqon, Vedbaek,
Denmark) according to the manufacturer’s protocol, quantified using a NanoDrop® ND-
1000 Spectrophotometer (Nanodrop technologies, Wilmington, DE, USA) and stored at
−80 ◦C. The quality of these RNA samples was assessed with the RNA 6000 Nano Assay

www.colonomics.org
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(Agilent Technologies, Santa Clara, CA, USA) following the manufacturer’s recommenda-
tions. The RNA integrity number (RIN) showed high quality values for all the samples
(mean = 7.89, sd = 0.86). The RNA purity was measured with the ratio of absorbance
at 260 nm and 280 nm (mean = 1.96, sd = 0.04). The quality control for the small RNA
fraction was assessed with the Small RNA Assay in the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) following the manufacturer’s recommendations.

2.3. Small RNA-Seq Analysis of the Discovery Series

The small RNA-seq was performed through the SOLiD platform. The PureLink
miRNA isolation kit was used to construct the libraries of compatible fragments with
SOLiD from an enriched fraction of small RNA. Sequencing microspheres were obtained
by applying an emulsion PCR into an equimolar mixture of 48 libraries followed by an
enrichment process before charging in the reaction chamber. Finally, the reaction to obtain
the sequences (35 nucleotides + 10 nucleotides barcode) from the small RNA fraction
was performed with the Applied Biosystems SOLiD 4 System. Samples were randomly
distributed among the different sequencing slides to minimize batch effects. The data
quality was estimated using the SOLiD Experimental Tracking System (SETS) software.

2.4. Expression Data of the Discovery Series

CLX is a multiomics experiment design with different high-throughput sequencing
data. In addition to small RNA-seq, it has microarray expression data for the same subjects.
Sample processing, quality control and normalization are described elsewhere [21].

2.5. Bioinformatics Analysis

Quality control of sequenced reads was ensured using specially designed bioinformat-
ics framework for the SOLiD system [22]. Total number of reads, proportion of miscalled
reads and low-average-quality-score proportion reads were evaluated. All samples passed
the quality control criteria and were selected for further analysis. Next, quantification of
specific miRNAs was performed by mapping reads to the reference of mature miRNA
sequences annotated in miRBase release 22 [23], containing 2641 human mature miRNA
sequences. The FASTX-toolkit [24] was used to preprocess miRNA data and provide com-
patible sequences for mapping with Bowtie aligner. Read adapters were trimmed with
cutadapt [25], and finally, a table of counts was generated with SAMtools [26]. A principal
component analysis (PCA) was computed to detect possible outliers. A filter based on low
variability of miRNAs across all samples was performed to remove unwanted noisy data
(standard deviation < 0.1). Data normalization was performed using DESeq2 package [27],
after which it was transformed with a logarithmic function to reduce positive skewness.
MiRNAs with normalized expression values not detected in more than 90% of samples
were filtered out due to low expression. This criterion was mandatory for both discovery
and validation datasets.

2.6. Statistical Analysis of Prognosis

For this study, disease-free survival (DFS) was assessed, and disease progression, de-
fined as local tumor recurrence, metastasis or cancer-related death, was the event of interest.
First, we wanted to inspect miRNA profiles based on possible sources of confounding
variables. For this purpose, differential miRNA expression analysis (DEA) was carried
out with the DESeq2 package for sex and tumor site. In addition, a proportional hazards
assumption test was performed to assess possible sources of analysis bias from common
covariates: age, sex and tumor site (left or right colon). Univariate Cox proportional hazard
models were computed for each miRNA and adjusted for age, sex, tumor site and sub-stage.
Kaplan–Meier survival curves were used to graph the results, which were split by median
normalized expression values. Next, in order to identify an miRNA signature that could
capture disease progression, a regularized Cox regression model was performed with an
alpha parameter (α = 0.5) and leave-one-out cross-validation. Adjustment variables were
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included in all models, and we selected the model that minimized the cross-validation
error. The coefficients for the miRNAs that were not shrunk in the optimal model were
used to compute an miRNA prognosis risk score (RS) as follows:

∑n
i=1 = βi ∗ expri

where n is the total number of active miRNAs in the model, βi is the coefficient for each
active miRNA, and expri is the expression value of each active miRNA. The score obtained
was ranked and split into two equal groups by the median value. The performance of
the model was assessed with Cox proportional hazard models (selecting miRNA (RS) and
adjustment variables, as mentioned before) and Kaplan–Meier survival curves. Univariate
Cox proportional hazard models and Kaplan–Meier estimates were obtained with the
survival R package [28]. Regularized Cox regression models were computed with the glmnet
R package [29]. All statistical analysis was performed in R version 3.5 [30].

2.7. Validation Analysis

For the validation dataset, TCGA COAD samples were filtered in order to obtain
similar clinical characteristics and reproducible analysis. Sample exclusion criteria included
no clinical information for disease-free survival status or microsatellite instability (MSI)
subtype, the latter of which was assessed in cBioPortal [31,32]. Normalization of miRNA ex-
pression values and filtering was identical in discovery and validation series. Independent
prognosis analysis for stage II was assessed. The same coefficients and cutoffs obtained in
the training dataset were used for the validation.

2.8. Functional Characterization

We conducted two separate approaches to characterize the resulting miRNA signature
and score. On the one hand, for the signature study, two different miRNA–mRNA interac-
tion resources were interrogated to extract high-confidence gene targets for each miRNA
present in our signature. Only common interactions present in mirDB (release 6.0) [33,34]
and miRTarBase (release 9.0) [35] were included to define the functional role of miRNAs
associated with prognosis. mirDB annotates predicted miRNA–target interactions (MTI)
while miRTarBase captures experimentally validated MTIs from research articles. Network
analysis was carried out with igraph [36] to identify hub miRNAs; next, we performed
an enrichment analysis with the ReactomePA [37] R package based on the REACTOME
pathway database, including direct targets for each selected miRNA. On the other hand,
we wanted to study the relationship between miRNA prognosis RS and the abundance of
tissue-infiltrating immune cell populations that could potentially play different roles in the
tumor microenvironment. For this purpose, a deconvolution method [38] was used to esti-
mate cell population proportions (immune and non-immune stromal) from average gene
expression signals. Non-parametric Spearman’s rank-order correlations were computed
to evaluate correlation patterns between each of the ten different cell types and miRNA
prognosis RS.

3. Results
3.1. Study Population Characteristics and Quality Control of Samples

The CLX small-RNA sequencing dataset comprised 100 tumor tissues, stage II MSS,
and 2641 different miRNAs were initially identified. The first filter removed 153 miRNAs
due to low variability. The second filter was applied to remove low-expression features.
A total of 928 miRNAs passed the filtering criteria. Two samples were filtered out after
PCA analysis (see Supplementary Figure S1). The same procedure was performed for
the validation dataset, which lowered the number of different miRNAs from 2117 to 796.
Finally, 605 miRNAs were determined to be present in both datasets and were selected
for the next analysis. Table 1 summarizes the main characteristics of the patients included
in both datasets. DEA comparing tumor location resulted in only 10 significant miRNAs
with different profiles between the left and right sides (seven overexpressed on the right
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side, three overexpressed on the left side). All of them had an absolute log2-fold change
greater than 0.5. When comparing expression profiles between sex, only two significant
miRNAs were observed (Supplementary Table S1 and Figure S2). None of the inspected
covariates violated the proportional hazards assumption of the Cox model (p-values > 0.05,
Supplementary Table S2). Univariate Cox proportional hazard models, adjusted by sex, age,
site and stage, identified 55 miRNAs associated with disease-free survival (p-value < 0.05).
However, none of them passed the false discovery rate (Benjamini–Hochberg-adjusted
p-value < 0.05) (Supplementary Table S3).

Table 1. Summary of characteristics of the patients included in the study.

Colonomics n (%) TCGA n (%)

Number of Patients 98 130
Gender

Male 70 (71.43%) 69 (53.08%)
Female 28 (28.57%) 61 (46.92%)

Median Age (Years) 71 69
Tumor Site

Right 38 (38.78%) 75 (57.69%)
Left 60 (61.22%) 50 (38.46%)

Stage
II-A 90 (91.84%) 99 (76.15%)
II-B 8 (8.16%) 6 (4.62%)

Disease-Free Survival
No Event 76 (77.55%) 104 (80.00%)

Event 22 (22.45%) 26 (20.00%)
Microsatellite Instability

MSS 98 (100%) 101 (77.69%)
MSI 0 (0%) 20 (15.38%)

Median Metastatic Lymph
Nodes 0 (100%) 0 (100%)

Median Isolated Lymph
Nodes 18.5 20.0

Lymphatic Invasion
Yes 7 (0.07%) 26 (20.00%)
No 86 (87.76%) 92 (70.77%)

Perineural Invasion
Yes 2 (2.04%) 13 (10.00%)
No 83 (84.69%) 38 (29.23%)

3.2. miRNA Signature and Score

The regularized Cox regression model resulted in a 12-miRNA signature computed
in the discovery dataset (Table 2). Of note, all miRNAs present in the signature were
statistically significant according to the univariate models (p < 0.05), and all of them showed
the same trend at the individual coefficient signs, suggesting low collinearity between all of
them (Supplementary Table S4), which was confirmed with a Spearman’s correlation matrix
(absolute Spearman’s r ≤ 0.43 for all pairwise comparisons (Supplementary Figure S3).

The RS formula obtained was:
miRNA RS = hsa-miR-1185-5p × (−0.185) + hsa-miR-16-5p × (−0.111) + hsa-miR-181a-

2-3p × 0.181 + hsa-miR-204-5p × 0.003 + hsa-miR-2355-3p × 0.242 + hsa-miR-29b-2-5p ×
(−0.306) + hsa-miR-331-3p × 0.153 + hsa-miR-423-3p × (−0.355) + hsa-miR-432-5p × (−0.187)
+ hsa-miR-497-5p × (−0.183) + hsa-miR-656-3p × (−0.526) + hsa-miR-935 × (−0.136)

Kaplan–Meier curves demonstrated a good performance of the model, clearly differen-
tiating low- and high-risk patient log-rank p-values = 1.62 × 10−6. Patients in the high-risk
group were found to have higher recurrence rates (HR = 33.59, 4.34–244.8, p < 0.001)
(Figure 1a,c). Three-, five- and ten-year disease-free survival (DFS) were selected to com-
pute the area under the ROC curve (AUC). AUCs of 0.89, 0.92 and 0.94 were obtained for
three-, five- and ten-year DFS, respectively (Figure 2a).
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Table 2. List of miRNAs present in the signature and the coefficient extracted from the elastic net Cox
regression model.

miRNA Coefficient

hsa-miR-1185-5p −0.185
hsa-miR-16-5p −0.111

hsa-miR-181a-2-3p 0.181
hsa-miR-204-5p 0.003

hsa-miR-2355-3p 0.242
hsa-miR-29b-2-5p −0.306
hsa-miR-331-3p 0.153
hsa-miR-423-3p −0.355
hsa-miR-432-5p −0.187
hsa-miR-497-5p −0.183
hsa-miR-656-3p −0.526

hsa-miR-935 −0.136
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(b) Validation series (TCGA stage II MSS).

3.3. Validation

CLX miRNA signatures were tested on an independent COAD dataset from TCGA.
Overall, the miRNA predictive capacity was poor, which is mainly explained by the poor
performance on stage II MSI tumor samples. However, it improved substantially when
only stage II MSS samples were analyzed (n = 100). A similar trend to that in CLX was
observed; the miRNA risk group had an HR of 3.24, with a range of 1.05–10.0, and p = 0.041
(Figure 1d), and the low- versus high-risk patient log-rank p-value was 0.034, as assessed
using KM curves (Figure 1b). The AUCs were 0.60, 0.59 and 0.67 for three-, five- and
ten-year DFS, respectively (Figure 2b).

3.4. Functional Characterization

Gene target candidates for each miRNA present in our signature were retrieved
from mirDB and mirTarBase (10,352 and 3673, respectively). Overall, common MTIs
from both datasets revealed 1015 MTIs. Network analysis showed three hub miRNAs:
hsa-miR-16-5p (483 gene interactions), hsa-miR-497-5p (252 gene interactions) and hsa-
miR-204-5p (119 gene interactions). Of note, the first two miRNAs shared 242 common
gene interactions (Figure 3). Next, Reactome pathway analysis identified relevant cancer
pathways associated with both hsa-miR-16-5p and hsa-miR -497-5p, such as signaling by
the TGF-beta receptor complex (p = 1.84 × 10−7, p = 1.76 × 10−5, respectively), regulation
of RUNX1 expression and activity (p = 2.82 × 10−7, 1.47 × 10−7, respectively) and aberrant
regulation of the mitotic G1/S transition in cancer due to RB1 defects (p = 2.82 × 10−7,
1.46 × 10−7, respectively). The complete results of the enrichment analysis are available in
Supplementary Tables S5–S13.

MCP-counter was applied to gene expression data from the discovery series. Abun-
dances of reported immune-infiltrating cell populations, as well as other non-immune cell
types, are summarized in Supplementary Figure S4. B-cell infiltrates (Spearman’s r = −0.34,
p-value = 6.24 × 10−4), myeloid dendritic cell infiltrates (Spearman’s r = −0.32,
p-value = 1.51 × 10−3) and T-cell infiltrates (Spearman’s r = −0.29, p-value = 3.79 × 10−3)
appeared with a moderate inverse association with miRNA RS (Supplementary Figure S5).
It is worth mentioning that all tested cell population abundances were inversely correlated
with miRNA RS, suggesting an overall increase in immune infiltration in tumors with
lower values for the computed RS.
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Figure 3. mRNA–miRNA interaction network representation. Light-green nodes represent miRNAs
present in the signature, and orange nodes represent their direct target mRNAs. Gray lines represent
an interaction present between an miRNA and an mRNA (validated in miRTarBase and also predicted
by mirDB). Node size is proportional to its degree centrality measure (number of direct interactors).

4. Discussion

A comprehensive analysis has been conducted in order to identify an miRNA signature
with potential value for stratifying patients into different disease progression risk groups
in stage II MSS colon cancer.

Similar to other prognostic signatures previously published [16–18,39], our signature
demonstrated a significant association. However, its ability to accurately predict which
patients will experience recurrence was limited [40]. Nevertheless, this does not imply that
the signature is not valuable since it can be used to classify patients into distinct risk groups.

To the best of our knowledge, only 2 of the 12 miRNAs included in the proposed
signature have been previously included in other CRC miRNA signatures [41,42]. However,
several of them have been associated with CRC development and/or prognosis; some of
them have also been associated with tumoral progression in other tissues. Our findings
agree with current knowledge concerning the miRNAs present in our signature. Recently,
it has been found that overexpression of hsa-miR-16-5p can inhibit CRC cell proliferation,
migration, immune modulation and invasion [43,44]. Another recent publication pointed
out the relationship between the down-regulation of hsa-miR-16-5p and hsa-miR-497-5p
and the progression of endometrial cancer mediated by circular RNA hsa-circ-0011324 [45].
Both miRNAs appeared to have lower expression values in the CLX series high-risk group,
as reported in univariate Cox proportional hazard models. hsa-miR-656-3p was also in-
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cluded in one miRNA classifier for tumor recurrence in stage II CRC [42]. Interestingly,
it has also been identified as an inhibitor of CRC cell migration in vitro [46]. In contrast,
hsa-miR-204-5p has been identified to be negatively associated with CRC progression and
chemoresistance [47,48]. This specific miRNA goes in the opposite direction both in the
discovery and validation series. Another miRNA present in the signature, hsa-miR-935,
has been studied in different cancer types and seems to have different behaviors depending
on the targeted tissue, inhibiting or promoting tumor development in glioblastoma, liver
and gastric cancer [49–51]. Hsa-miR-423-3p was seen to be down-regulated in hepatocel-
lular carcinoma compared to healthy and liver cirrhosis samples [52]. In a recent study
conducted on bladder urothelial carcinoma patients, hsa-miR-432-5p was found to be a
good biomarker for diagnosis, being under-expressed in tumoral samples [53]. Regarding
the remnant miRNAs, one study suggested opposite effects from what we have reported
for hsa-miR-181a-2-3p in glioblastoma [54], and two studies found hsa-miR-331-3p to be
under-expressed in prostate cancers [55] and CRC [56] compared to healthy groups. Higher
levels of hsa-29b-2-5p expression were associated with the staging of esophageal and gastric
cancer [57] in TCGA. However, this association was not observed in TCGA COAD stage
II samples. No previous studies were found for hsa-miR-2355-3p and hsa-miR-1185-5p
related to cancer.

To assess the complex functional interrelationships between the miRNAs and their
putative target mRNAs, we analyzed a network of validated miRNA–target gene associa-
tions. Our results show a significant enrichment of genes involved in cellular processes
relevant for cancer progression, such as cell cycle regulation, interleukin signaling and
cell migration [58,59]. Since the information on validated target genes for miRNA is still
incomplete, these results might be biased because more well-known miRNAs share more
interactions with important cancer genes. However, this behavior is expected to be mini-
mized with the release of the latest updated versions. In addition, to further evaluate the
possible effects of the miRNA signature, the immune profile analysis of the miRNA risk
groups revealed an overall increased abundance of all types of immune cell populations
as measured through deconvolution analyses, suggesting a protective effect of immune
infiltration in tumors [60]. Although the role of immune cell infiltrates in cancer progression
is complex and context-dependent [61], it is thought that in early CRC stages, immune
cells could help to control the growth and spread of cancer cells. However, as the tumor
progresses, these immune cells can adapt a pro-tumorigenic role, promoting tumor growth
and metastasis [62,63].

Besides the considerable efforts to generate biomarkers for risk assessment based
on miRNA expression levels [16–18,42], other emerging tools are being investigated as
potential prognostic factors for stage II CRC. One such approach involves examining
molecular characteristics, including mutations or expression profile alterations in BRAF,
KRAS or PIK3CA. These molecular features can aid in determining more targeted treatment
strategies for patients [64–66]. Another emerging tool, circulating tumor DNA (ctDNA)
analysis, has shown promise in identifying minimal residual disease [67], which results in
a higher risk of recurrence for patients and may require closer surveillance or additional
treatment options. Furthermore, the study of the gut microbiome is also a recent topic
of interest for the assessment of both tumor onset and recurrent disease [68,69]. Lastly,
exploring the tumor microenvironment [40,70], such as TILs, tumor-associated fribroblasts
and stromal characteristics, and understanding the interactions between tumor cells and
their microenvironment might provide valuable prognostic information.

This study has several limitations. The most important is the low number of events in
both the discovery and the validation series, which is probably related to the good prognosis
for early COAD diagnosis. In addition, our results may have been underestimated due to
the lack of information regarding the administration of adjuvant chemotherapy or radiation
therapy in the validation series. The low number of events together with the limited sample
size reduces the statistical power for this kind of analysis; as a result, we saw a trend in the
validation cohort with borderline statistical significance. Another limitation of the study is
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the lack of microsatellite instability (MSI) patients. The proportion of MSI in our hospital
was low, around 8%; thus, the CLX series was only composed of MSS patients.

Overall, based on the reported results, this signature could be valuable to stratify MSS
stage II COAD patients and identify those that require adjuvant chemotherapy. Addition-
ally, the individual miRNA prognostic data provided in the discovery series contribute to
increasing the knowledge on these markers in CRC.

5. Conclusions

In summary, we have identified a panel of 12 miRNAs that can be used to stratify
prognosis in MSS stage II COAD. These miRNAs have been described to regulate a large list
of genes involved in relevant cancer pathways, which reinforces the validity of the panel.
Further studies with larger samples sizes are needed to improve our ability to classify
patients with recurrence risk in a more general way.
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