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Abstract

The usage of neural networks for classification tasks has gained significant at-
tention in recent years due to its potential in various domains, including medicine,
finances or even in social media. In this particular project, based on the previ-
ous study realised by Xènia in [11], we will take advantage of these computa-
tional models in order to investigate the utility of temporal dynamics in electroen-
cephalogram (EEG) signal classification. Also we aim to evaluate the influence of
different classifier methods when classifying those EEG signals.

The research employs Leaky Echo State Networks (ESNs), a type of recurrent
neural network, as the main tool for extracting temporal dynamics from EEG sig-
nals. As classifiers, two distinct methods will be used to evaluate their impact on
the classification task: Ridge Regression and Logistic Regression classifier.

The script starts with a theoretical introduction to neural networks, with a par-
ticular focus on Leaky Echo State Networks. Subsequently, a concise overview of
the two classification methods employed to construct our network architecture is
presented. The final chapter is dedicated to define the aforementioned architec-
ture and revealing the outcomes derived from the application of said network to
real EEG data.

Resum

L’ús de xarxes neuronals per a tasques de classificació ha guanyat força protag-
onisme durant els últims anys degut al seu gran potencial en àmbits com la medic-
ina, les finances o, fins i tot, les xarxes socials. En aquest treball, doncs, farem
ús d’aquests models computacionals per tal d’investigar l’utilitat de l’informació
temporal, proporcionada per senyals d’electroencefalogrames (EEG), en la classi-
ficació d’aquestes. Cal mencionar que el treball és una ampliació del previ estudi
realitzat per la Xènia en [11]. Altrament, també es pretén evaluar l’influència de
l’ús de diferents classificadors a l’hora de classificar les senyals d’EEG.

Durant el treball utilitzarem les Leaky Echo State Networks (LESNs), un tipus
de xarxes neronals, com a eina principal per extreure l’informació temporal de les
senyals d’EEG. Com a classificadors, compararem la precisió proporcionada pel
classificador de regressió en cresta enfront el de regressió logística.

El treball comença amb una introducció teòrica a les xarxes neuronals, fent es-
pecial èmfasi a les Leaky Echo State Networks. A continució es fa una breu pinzel-
lada sobre els classificadors que s’utilitzaran més endevant per a la construcció de
la xarxa neuronal, tema que es tractarà a l’últim capítol. En aquest, també es
discutiràn els resultats obtinguts d’aplicar la xarxa descrita a dades d’EEG reals.
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Chapter 1

Introduction to Neural Networks

The upcoming chapter provides a concise introduction to neural networks,
exploring their fundamental concepts and classifying them into main types. We
based it, mainly, on [9], pages 3-12 and [10].

1.1 History

A neural network is a type of machine learning model that is inspired by
the structure and operation of the human brain. It has a long history with the
first artificial neuron described in 1943 by the mathematician Walter Pitts and the
neurophysiologist Warren McCulloch. They wrote a paper, The Logical Calculus of
the Ideas Immanent in Nervous Activity, about how neurons might work, and also
developed a simple neural network using electrical circuits.

During next years, its popularity continued to grow reaching 1958, the year
when the psychologist Rosenblatt came up with the perceptron, one of the first
computational models of a neuron, mostly used for classification or regression
problems.

Definition 1.1. A perceptron is defined as follows:

y(x) = f (b +
n

∑
i=1

wixi) (1.1)

where b is the threshold (or bias), x ∈ Rn is a set of inputs, each of them associated with a
weight wi and y(x) ∈ {0, 1} is the output value. Finally, the function f is defined as:

f (x) =

{
1, x ≥ 0
0, x < 0

(1.2)

1
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Figure 1.1: Architecture of a perceptron

After an initial period of enthusiasm, progress in the field experienced a diffi-
cult phase until the end of the century. However, renewed interest emerged with
the celebration of the nowadays annual meeting of Neural Networks for Computing,
as well as the publication of new and rediscovered concepts, such as the back
propagation algorithm.

Nowadays, neural networks has become a very popular term due to its great
achievements in many domains such as computer vision, speech recognition or
natural language processing. However, all the progress would not have been pos-
sible without the appropriated computing power and, for that very reason, I would
venture to say that the future of neural networks lies in the development of hard-
ware.

Despite all the success of neural networks, there are still a lot of challenges to
face as explainability of models or large datasets processing.

1.2 Basics and notation

As previously mentioned, a neural network is a machine learning model which
is composed by one or multiple neurons organized into layers. Therefore, in order
to better understand what neural networks are and their functionality, we are go-
ing to invest some time into knowing about the fundamental concept of aneuron,
before jumping to the next topic.

Definition 1.2. A neuron is nothing more than an improvement of the definition of
perceptron we saw previously. We define it, given an n dimension input vector and using
the same notations used before as:

y(x) = f (b +
n

∑
i=1

wixi) (1.3)
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where the output y(x) ∈ R and the function f differs from the definition we had before for
the perceptron, as it can take more than two possible output values. It is called the acti-
vation function and it is the one in charge of representing convoluted random functional
mappings between input and output.

Figure 1.2: Architecture of a neuron

Remark 1.3. We are considering that every component of the input vector is con-
tributing additively to the neuron where it is connected, which is the most widely
used rule, but there are other approaches such as the Sigma-Pi-Sigma rule which
may also be useful in some specific cases such as for function approximation.

Remark 1.4. It is interesting to see that a neuron without an activation function
will work as a linear model, which is just a polynomial of degree one. A very
similar thing happens when using linear activation functions, which make the
network to behave as a linear regression model.

Regarding the previous remark, when considering only linear activation func-
tions the possible applications of neural networks remain quite limited. Conse-
quently, most neural networks end up using non-linear activation functions. From
[10] we know that some of the most widely used are:

• Sigmoid: it transforms the values it gets into values within the range (0,1).
This helps the user to understand the output values as they can be inter-
preted as probabilities.

f (x) =
1

1 + e−x

• Hyperbolic Tangent: the main advantage of using tanh to sigmoid is that
its gradient around 0 it is almost four times bigger than the gradient of the
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sigmoid function also around 0. This property might be useful if we want to
make big learning steps when training the network, i.e, when learning the
best weights for the network.

f (x) =
ex − e−x

ex + e−x

• ReLU: it is more efficient than other functions because it allows us to do not
activate all the neurons at the same time. This is a consequence of the gra-
dient function that, in some cases, its value is zero, which leads the weights
and biases to not be updated during the learning processes when training
the network.

f (x) = max(0, x)

Having established an understanding of the nature of a neuron and some of
the most used activation functions, we may now proceed to formally define what
is a neural network.

Definition 1.5. A Neural Network (NN) consists of one input and one output layer
with any or some hidden layers in between. When there is no hidden layers, we call them
single-layer NN. Otherwise, we call them multi-layer NN. Each of those hidden layers
contains one or more neurons connected to other neurons, not necessarily from the same
layer.

Depending on how this connections are made, we have different types of neu-
ral networks. Actually regarding how neurons connect to each other, we can split
them in two big categories: Feed Forward Neural Networks (FFNN) and Re-
current Neural Networks (RNN). Let’s see in the next section which is its main
difference and also what similarities they have.

1.3 Types of neural networks

When talking about neural networks, there is one big feature they all share
indifferently of its type. This particular feature is the capability to learn from its
environment, which at the same time is the characteristic that distinguishes them
from conventional computers. Some different learning algorithms exist such as
Back Propagation or the Hebbian learning rule.

The key difference between Feed Forward Neural Networks (FFNN) and Re-
current Neural Networks (RNN) lies in how neurons from different layers are
connected to each other. For FFNN we have neurons from different layers which
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connects to neurons from other layers without creating cycles, thus restricting the
connection to go forward to the following layers. As neuron activation spreads
through the network starting from input layer and reaching the output layer go-
ing through the hidden layers, if the input layer is inactive, subsequent layers will
also be inactive. We can see in the figure 1.3 an example of the basic architecture
of a FFNN with two hidden layers.

Figure 1.3: Architecture of a FFNN with two hidden layers

Oppositely to FFNN, RNN require to have at least one cycle, either with itself
or with neurons from other layers. This feature allows the output of some neurons
to affect, directly or not, the input of the same neuron. Mathematically, we can see
RNN as dynamical systems while FFNN can be thought of as functions.

A significant advantage of RNN is that they preserve in its internal state a
nonlinear transformation of the input history (in case the activation function used
is non-linear). In other words, they have a dynamical memory and are able to
process temporal information. For that very reason, later on the practical applica-
tion, we are going to use a RNN as we will be dealing with time series data. In
particular, we will use an RNN based on Reservoir computing.

1.4 Reservoir Computing

In the following chapter we used as a reference chapters 2 from [6] and [8]. We
also used the results from [5] and based our section Echo State Poperty in [7].

Reservoir computing (RC) is a family of RNN models which achieved excellent
performance in time series forecasting and process modelling in the last few years.
In machine learning, RC techniques were originally introduced under the name
Echo State Networks (ESNs). Those networks were designed to efficiently process
and model temporal data. The key characteristic that differentiates them from the
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others is that the reservoir layer will not be updated during training. In other
words, the weights defining the connections between the neurons in the reservoir
layer will remain the same during all the training process. The reservoir layer
serves as a dynamic memory thus allowing the network to be able to process
temporal context information in the following layer. Therefore, the model can be
summarized in three main steps:

• Firstly, a recurrent neural network is created and remains unchanged during
training. This layer is called the reservoir. It is passively excited by the
input signal and maintains in its state a nonlinear transformation of the input
history.

• Secondly, the weights obtained from the reservoir layer are trained, usually
by direct methods, in order to map them to the desired output. This layer is
called the readout layer and it is, usually, composed by linear units.

• Finally, the output weights acquired in step two are used together with new
input data in order to predict new final outputs.

In this project, we will be focusing in one particular Reservoir Computing
model, named Echo State Network. This will, actually, be the model used later
in the practical part since it has been shown in [5] to have clear superiority over
standard RC models in problems requiring effective propagation of input infor-
mation over multiple time-steps, which is the particular case of the data we will
be dealing with.

1.4.1 Echo State Networks

All over this chapter we will be assuming our network to have:

• K input values

• N neurons in the reservoir layer

• L output values

• T the size of each input value

We will be focusing on the Echo State Network (ESN) model and in particular,
to the general ESN formulation with leaky integrator neurons.

Definition 1.6. A Leaky Echo State Network (LESN) is modeled with the following
ODE:

ẋ(n) = −x(n) + f (W inu(n) + Wx(n)) (1.4)
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where x and u, respectively, denote the state and the driving input for each time step n, W
is the recurrent weights matrix, W in is the input weights matrix and f is the activation
function defined previously.

From this ODE, let’s approximate its solution by discretizing the continuous
domain into small time intervals using the forward Euler method. Taking

∆x
∆t

=
x(n + 1)− x(n)

∆t
≈ ẋ (1.5)

where ∆t is the step size and replacing it in (1.4), we get the following equation:

x(n + 1)− x(n)
∆t

= −x(n) + f (W inu(n) + Wx(n))

⇐⇒ x(n + 1)− x(n) = ∆t · (−x(n) + f (W inu(n) + Wx(n)))

⇐⇒ x(n + 1)− x(n) = −∆t · x(n) + ∆t · f (W inu(n) + Wx(n))

⇐⇒ x(n + 1) = (1 − ∆t) · x(n) + ∆t · f (W inu(n) + Wx(n))

Definition 1.7. Using the same notation as in the previous definition, the state transi-
tion equation for each time step n is defined as:

x(n) = F(u(n), x(n − 1)) = (1 − α)x(n − 1) + α f (W inu(n) + Wx(n − 1)) (1.6)

where x(n) ∈ RN , u(n) ∈ RK, W ∈ M(RN×N), W in ∈ M(RN×K) and α ∈ (0, 1] is the
leaking rate.

Remark 1.8. Although the most common activation function is the hyperbolic
tangent, other functions can be applied. Even so, in our future work in chapter 3
and from now on, when talking about activation function we will be referring to
the hyperbolic tangent.

Also it is worth noticing than the model can be used without the leaking rate
if setting α = 1 thus turning it into an "ordinary" ESN model.

Definition 1.9. The (commonly linear) readout layer is defined as:

y(n) = f (Wout[1 : x(n)] (1.7)

where Wout ∈ M(RL×(N+1)) being N the number of neurons and L the number of output
units. [a; b] corresponds to the concatenation of vectors a and b and f , which is the
activation function, may not be used in some cases. The column of ones added to the state
input matrix x, refers to the bias of the model.

Remark 1.10. Some variants of the output equation exists. For instance,

y(n) = f (Woutx(n)) or y(n) = f (Wout[1 : u(n) : x(n)]).

However, in the later application of the network, we will be using equation (1.7)
to compute the predicted output of the network.
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1.4.2 Echo State Property

As we just saw, in a LESN, the network dynamics are divided into two main
components: the input weights and the reservoir dynamics. The input weights
are responsible for transforming the input signals, while the reservoir dynamics
capture the temporal dependencies in the data. That’s why each state x(n) from
the reservoir dynamics can be understood as an "echo" from the input history. It
is also worth remembering that the only values that are going to be trained are
the ones on the readout layer while the ones from the reservoir remain untrained
from their initialization. As a consequence, Echo State Property play a very im-
portant role in this type of networks as it holds that the reservoir state should
asymptotically depend only on the driving input signal while the influence of ini-
tial conditions should progressively vanish over time. Next, we will see a formal
definition of such property as well as some sufficient and necessary conditions for
the Echo State Property to hold.

Definition 1.11. Assume a LESN whose global dynamics are ruled by a equation as the
one seen in 1.6. The network satisfies the Echo State Property (ESP) if ∀x, x′ ∈ RN

states and ∀sT(u) = (u(1), . . . , u(T)) ∈ RK×T input,

||F̃(sT(u), x)− F̃(sT(u), x′)|| −→ 0 when T → ∞

In other words, ESP holds that the distance between the states in which the
LESN is driven after being fed by the same input sequence, but starting from
different initial conditions, approaches 0 as the length of the input sequence goes
to infinity for all every initial condition.

Now, let’s go ahead and provide a theorem that will gives us a necessary
condition for LESN to have echo states. Before that, though, let’s see one previous
result regarding the stability of the system that will help us when proving the just
mentioned theorem. To do so, it will be useful to start by linearizing our system as
it will help to capture the local behavior of the system around a specific operating
point. Using Taylor series expansion for x(n) = F(u(n), x(n − 1)) around state
x0 ∈ RN we get:

x(n) ≈ F(u(n), x0) + JF,x(u(n), x0)[x(n − 1)− x0] (1.8)

where JF,x(u(n), x0) denotes the Jacobian matrix of x(n) evaluated in x0.

Lemma 1.12. Consider the linearized system in equation (1.8) and assume null input
sequence as an admissible input. Then, a necessary condition for the stability of the system
dynamics around zero state is given by

ρ(JF,x(0̄u, 0̄)) < 1 (1.9)
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where 0̄u and 0̄ are the null vectors of dimensions K and N, respectively.

Proof. Assuming a constant zero input 0̄u for the equation (1.8), the first-order
approximation of the LESN dynamics around the zero state 0̄ ∈ RN is:

x(n) = JF,x(0̄u, 0̄)x(n − 1) (1.10)

from which it is easy to see that the zero state is a fixed point of the linearized
system. Moreover, the stability of the zero state as a fixed point of equation (1.10)
determines the asymptotic behavior of the trajectories starting from a state in a
small neighborhood of 0. We also know that the spectral radius determine the
rate of growth or decay of perturbations from the equilibrium states, in our case,
the zero state. Therefore, if ρ(JF,x(0̄u, 0̄)) ≥ 1 then we cannot guarantee that the
zero state is stable. Hence, a necessary condition for the stability of the linearized
system around the zero state is given by ρ(JF,x(0̄u, 0̄)) < 1.

Theorem 1.13. Consider a LESN whose dynamics are defined by equation (1.6) where the
activation function is f (x) = tanh(x), and assume a null sequence as admissible input
for the system. Then, a necessary condition for the ESP of the LESN dynamics around the
zero state is given by:

ρ((1 − α)Id + αW) < 1 (1.11)

where α is the leakying rate.

Proof. Using the previous lemma, we just need to prove that

JF,x(0̄u, 0̄) = (1 − α)Id + αW. (1.12)

Therefore,

JF,x(0̄u, 0̄) =
∂F(u(n), x(n − 1))

∂x(n − 1)
(u(n), x0)

=
∂[(1 − α)x(n − 1) + α f (W inu(n) + Wx(n − 1))]

∂x(n − 1)

= (1 + α)Id + α
∂ f (W inu(n) + Wx(n − 1))

∂x(n − 1)
W

Considering zero input and state, and being 1− tanh(x)2 the derivative of tanh(x),
we finally reach the (1.12) expected expression.

To conclude this section, we will see one last theorem which gives us a suffi-
cient condition for Echo States Property, which depends on a Lipschitz property
of the reservoir weights matrix.
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Theorem 1.14. Assume we have a LESN whose dynamics are defined by equation (1.6)
and where the activation function is f (x) = tanh(x). Let the reservoir weights matrix W
satisfy σ(W) = ||W||2 < 1 where σ(W) denoted the largest singular value of W. Then,

||F̃(sT(u), x)− F̃(sT(u), x′)||2 < C||x − x′||2

for all inputs sT(u) = (u(1), . . . , u(T)) ∈ RK×T, for all states x, x′ ∈ [−1, 1]N and for
some C < 1. This implies ESP for all inputs sT(u) and for all states x, x′ ∈ [−1, 1]N .

Proof. We need to prove that ∃C < 1 such that

||F̃(sT(u), x)− F̃(sT(u), x′)||2 < C||x − x′||2.

From (1.6) we have:

||F̃(sT(u), x)− F̃(sT(u), x′)||2 = ||(1 − α)x(n − 1) + α f (W inu(n) + Wx(n − 1))

− (1 − α)x′(n − 1)− α f (W inu(n) + Wx′(n − 1))||2
≤ ||(1 − α)(x(n − 1)− x′(n − 1))||2
+ ||α f (W inu(n) + Wx(n − 1))− α f (W inu(n) + Wx′(n − 1))||2
= (1 − α)|||x − x′||2 + α|| f (W inu(n) + Wx(n − 1))

− f (W inu(n) + Wx′(n − 1))||2.

Taking the second term of the previous expression and remembering that f (x) =
tanh(x) we get:

||tanh(W inu(n) + Wx(n − 1))− tanh(W inu(n) + Wx′(n − 1))||2
≤ max(|tanh′|)||W(x − x′)||2 ≤ ||W||2||x − x′||2.

Hence, we finally obtain:

||F̃(sT(u), x)− F̃(sT(u), x′)||2 ≤ (1 − α)||x − x′||2 + α||W||2||x − x′||2
≤ (1 − α + ασ(W))||x − x′||2

and since, from hypothesis, we have:

1 − α + ασ(W) = 1 + α(σ(W)− 1) < 1
⇐⇒ α(σ(W)− 1) < 0

⇐⇒ σ(W) < 1

from what we can state that ∃C < 1 that satisfies the initial equation.

Remark 1.15. Note that the previous argumentation is valid for any norm in which
the states transition equation is a contraction, hence contractivity of such equation,
in any norm, is a sufficient condition for the ESP.

We can make a quick resume of the chapter in two points:
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• When using a LESN with the ESP we do not have to worry about the initial
values of the input and reservoir matrices

• When using a LESN, if ρ(W) < 1 we can ensure that the ESP holds



Chapter 2

Classification algorithms

In the field of machine learning, classification algorithms plays a vital role
in solving problems where the objective is to assign input data points to prede-
fined categories or classes. These algorithms analyze patterns and relationships
within the data to make accurate predictions or decisions about unseen or future
instances.

For the later application we will be using the Ridge Regression and Logisitic
Regression models. The first one is particularly handy in the mitigation of prob-
lems with multicollinearity, which occasionally occurs in models with a large num-
ber of features as the one we will be working with. On the other hand, Logistic
model, it is less sensitive to outliers compared to some other algorithms and also
has the advantage that can be trained relatively quickly. Let’s see in more detail
what these classifiers consists on. We will start introducing the ordinary least
squares model in order to have a better understanding of the other models.

This section is based on [2], pages 19-22 for the Ordinary Least Squares classi-
fier, on [4] for the Logistic classifier. Moreover, we will use some results that can
be found in [12], [13] and in Lesson 5.1 from [3].

2.1 Ordinary Least Squares Classifier

Definition 2.1. Being the residual the difference between an observed value and the fitted
value provided by a model, the ordinary least squares method (OLS) is a standard
approach in regression analysis to approximate the solution of over determined systems
(sets of equations in which there are more equations than unknowns) by minimizing the
sum of the squares of the residuals (SSR) made in the results of each individual equation.

Definition 2.2. Being n the amount of independent variables and m the size of those

12
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variables, a multivariate linear regression model is defined by

Yi = β0 +
m

∑
j=1

xjβ j + ϵi (2.1)

for 1 ≤ i ≤ n where ϵi ∼ N(0, σ2), β = (β0, . . . , βm)T ∈ Rm+1, Yi ∈ R is the ith

component of Y ∈ Rn and xj denotes the jth row of the independent variables matrix
X ∈ Rn×m.

Denoting xj = (1, x1, . . . , xm) for 1 ≤ j ≤ n, we observe the following properties
from the model:

• E(Y) = Xβ

• Cov(Yi, Yj) = 0 if i ̸= j since we suppose the variables to be independent

• Var(Yi) = σ2 since the variance of each ϵi is the same

We also observe from the second and third property that Cov(Y) = σ2 Id.
From definition 2.1 and being Y, Ŷ ∈ Rn the expected and predicted values

respectively, using a multivariate linear regression model, we have:

SSR =
n

∑
i=1

(Yi − Ŷi)
2 =

n

∑
i=1

(Yi − β̂0 −
m

∑
j=1

xi,j β̂ j)
2 (2.2)

which is the error we want to minimize in order to reach the best prediction for Ŷ.

Proposition 2.3. The value of β̂ = (β̂0, . . . , β̂m)T that minimizes the value of SSR in
(2.2) is given by the equation:

β̂ = (XTX)−1XTY (2.3)

assuming XTX is nonsingular.

Proof. We will start by seeing that, effectively, β̂ = (XTX)−1XTY minimizes equa-
tion (2.2) and later we will see that there is not any other alternative estimate who
minimizes SEE with a smallest value than β̂.

Denoting as xi = (1, x1, . . . , xm) ∈ Rm+1 the ith independent variable, we can
write equation (2.2) as:

SSR =
n

∑
i=1

(Yi − xi β̂) = ||Y − Xβ||2 = (Y − Xβ)T(Y − Xβ)

= YTY − YTXβ − βTXTY + βTXTXβ.

Now, we will find the minimum of SSR by setting the gradient to zero. Therefore,
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∂SSR
∂β

=
∂YTY − YTXβ − βTXTY + βTXTXβ

∂β
= −2XTY + 2XTXβ = 0

⇒ XTY = XTXβ

⇒ β = (XTX)−1XTY

Next, let’s suppose b = (b0, . . . , bm)T to be an alternative estimate of β, different
from β̂, which minimizes SSR with a smallest value than β̂, i.e:

SSR(b) = (Y − Xb)T(Y − Xb) < (Y − Xβ̂)T(Y − Xβ̂) = SSR(β̂)

but expanding SSR(b) we get:

SSR(b) = (Y − Xb)T(Y − Xb) = (Y − Xβ̂ + Xβ̂ − Xb)T(Y − Xβ̂ + Xβ̂ − Xb)

= ((Y − Xβ̂) + X(β̂ − b))T((Y − Xβ̂) + X(β̂ − b))

= (Y − Xβ̂)T(Y − β̂) + [X(β̂ − b)]T(Y − Xβ̂)

+ (Y − Xβ̂)TX(β̂ − b) + [X(β̂ − b)]TX(β̂ − b)

= (Y − Xβ̂)T(Y − β̂) + [X(β̂ − b)]TX(β̂ − b) + 2[X(β̂ − b)]T(Y − Xβ̂)

= (Y − Xβ̂)T(Y − β̂) + (β̂ − b)TXTX(β̂ − b) + 2(β̂ − b)TXT(Y − Xβ̂).

Now, taking the third term of the last expression and using β̂ = (XTX)−1XTY we
see that:

2(β̂ − b)TXT(Y − Xβ̂) = 2[X(β̂ − b)]T(XTY − XTXβ̂)

= 2[X(β̂ − b)]T(XTY − XTX(XTX)−1XTY) = 0.

Therefore, as the second term holds β̂ ̸= b, (β̂ − b)TXTX(β̂ − b) = ||(β̂ − b)X||2 >

0, we get the following:

SSR(b) = (Y − Xb)T(Y − Xb) > (Y − Xβ̂)T(Y − Xβ̂) = SSR(β̂)

which refutes our initial hypothesis thus proving that β̂ = (XTX)−1XTY is a global
minimum.

Theorem 2.4. (Gauss-Markov Theorem) Using a linear regression model defined by
Y = Xβ + ϵ which holds that:

• the matrix of independent variables X has full-rank

• E(ϵ) = 0

• Var(ϵ) = σ2 Id
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the ordinary least squares estimator β̂ = (XTX)−1XTY is the best linear unbiased esti-
mator (BLUE), that is, the estimator that has the smallest variance among those that are
unbiased and linear in the observed output variables.

Getting back to the model defined by equation (2.1), we already saw that
E(Y) = Xβ and Cov(Y) = σ2 Id. Therefore, we can say that the least squares
estimator β̂ verify the following properties:

• β̂ is an unbiased estimator of β

E(β) = (XTX)−1XTE(Y) = (XTX)−1(XTX)β = β

• Cov(β̂) = (XTX)−1XTCov(Y)((XTX)−1XT)T = σ2(XTX)−1XT(XXT)−1X =

σ2(XTX)−1

• From Gauss-Markov theorem, β̂ is a best linear unbiased estimator (BLUE)

Although most of the times we can use β̂ as an estimator of β, there are some
cases, when X is a singular matrix, where β̂ cannot be computed. Consequently,
another estimator exists, called Ridge estimator which allows to compute an esti-
mator of β even if X is a singular matrix. Moreover, this new estimator controls the
amount of regularization applied to the model, a technique used to control overfit-
ting and underfitting. It is also a good option when dealing with multicollinearity
(high correlation) among input variables. However, one of the requirements the
estimator will have to abandon is to be unbiased. We will see, though, that Ridge
estimator is a good alternative even being biased.

2.2 Ridge Regression Classifier

Using the same definition of the model as in definition 2.2, ridge regression
estimator solves a slightly modified minimization problem since we look for a β̃

which minimizes the sum of squared residuals plus the squared norm of of the
vector of coefficients, β̃, i.e:

SSR =
n

∑
i=1

(Yi − xi β̃) + λ
m

∑
j=1

β2
j = ||Y − Xβ||2 + λ||β||2 (2.4)

where λ > 0 is a positive constant, named penalty. In order to find the best value
for λ, what is done most times is to try a large amount of values for it and keep
the best one.
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Proposition 2.5. The value of β̃ = (β̃0, . . . , β̃m)T that minimizes the value of SSR in
(2.4) is given by the equation:

β̃ = (XTX − λId)−1XTY (2.5)

for some penalty λ > 0.

Proof. We will follow the same idea as before. Firstly, we will see that β̃ = (XTX −
λId)−1XTY solves the minimization problem

SSR = YTY − YTXβ − βTXTY + βTXTXβ + λβT β.

Now, setting the gradient to 0, we find that, effectively, β̃ minimizes the value
of SSR.

∂SSR
∂β

= −2XTY − 2XTXβ + 2λβ = 0

⇒ XTY = XTXβ − λβ

⇒ β = (XTX − λId)−1XTY

Next, let’s see that β̃ is indeed a global minimum. If we compute the Hessian
matrix of SSR, we get:

∂2SSR
∂β2 = 2(XTX + λId) > 0

since XTX + λId is a positive definite matrix for any λ > 0. Hence, we can state
that β̃ is a global minimum.

We need to prove that XTX + λId is positive definite. Being a vector v ∈ Rn+1

not null,

vt(XTX + λId)v = (Xv)t(Xv) + λvtv = ∑m
i=0(xiv)2 + λ ∑m

j=0 v2
j > 0

since there must exist at least one j such that vj ̸= 0 in order to be β̃ ̸= 0.

As before, using properties defined for the multivariate linear regression model,
we get the following:

• E(β̃) = (XTX − λId)−1XTXβ

• Bias(β̃) = E(β̃)− β = [(XTX + λId)−1 − (XTX)−1]XTXβ

• Cov(β̃) = σ2(XTX + λId)−1XTX(XTX + λId)−1

The following result proves that the covariance matrix of ridge estimator is
lower than the covariance matrix of the OLS estimator. It does not contradict the
Gauss-Markov theorem since the ridge estimador is biased.
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Corollary 2.6. Being β̂ the estimator obtained using OLS method and β̃ the ridge estima-
tor, then

Cov(β̃) < Cov(β̂)

Proof. Firstly, let’s see that two covariance matrices can be compared by checking
whether their difference is positive definite.

Cov(β̃) < Cov(β̂) ⇐⇒ Cov(aβ̃) < Cov(aβ̂), ∀ constant vector a

⇐⇒ aCov(β̃)at < aCov(β̂)aT

⇐⇒ a(Cov(β̃)− Cov(β̂))aT > 0

⇐⇒ Cov(β̃) < Cov(β̂)

is positive definite.
Denoting W = XTX(XTX − λId)−1 we have:

Cov(β̂)− Cov(β̃) = σ2(XTX)−1 − σ2WT(XTX)−1W

= σ2[WT(WT)−1(XTX)−1W−1W − WT(XTX)−1W]

= σ2WT[(WT)−1(XTX)−1W−1 − (XTX)−1)]W

= σ2WT[(XTX)−1(XTX + λId)(XTX)−1(XTX + λId)(XTX)−1

− (XTX)−1]W

= σ2WT[(Id + λ(XTX)−1)(XTX)−1(Id + λ(XTX)−1)− (XTX)−1]W

= σ2WT[((XTX)−1 + λ(XTX)−2)(Id + λ(XTX)−1)− (XTX)−1]W

= σ2WT[((XTX)−1 + λ(XTX)−2 + λ(XTX)−2 + λ2(XTX)−3

− (XTX)−1]W

= σ2WT[2λ(XTX)−2 + λ2(XTX)−3]W

= σ2(XTX + λId)−1XTX(2λ(XTX)−2 + λ2(XTX)−3)XTX(XTX + λId)−1

= σ2(XTX + λId)−1[2λId + λ2(XTX)−1](XTX + λId)−1 = M

If λ > 0, then M = Cov(β̂)− Cov(β̃) is positive definite since for any v ̸= 0 we
have:

z = (XTX − λId)−1v ̸= 0

and

vT Mv = σ2xT(2λId + λ2(XTX)−1)z = σ2λzTz + σ2λ2zT(XTX)−1z > 0

because XtX and its inverse are both definite positive.

All the previous results may lead us to discuss how different β̃ and β̂ are in
terms of the MSE.
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Proposition 2.7. The mean squared error (MSE) of an estimator β is written as:

MSE(β) = trace[Cov(β)] + ||Bias(β)||2

Therefore, we have MSE(β̃) = trace[Cov(β̃)] + ||Bias( ˜beta)||2 and MSE(β̂) =

trace[Cov( ˆbeta)].
Then,

MSE(β̂)− MSE(β̃) = trace[Cov( ˆbeta)− Cov(β̃)]− ||Bias( ˜beta)||2

= trace(N)− ||Bias( ˜beta)||2

where N = Cov( ˆbeta)− Cov(β̃)

Since we already proved that N is strictly positive definite in the proof of the
last Corollary, its trace will also be strictly positive and the square of the bias will
also be positive. This means that the difference can be positive or negative. It is
possible to prove that whether the difference is positive or negative depends on
the penalty parameter λ, and it is always possible to find a value for λ such that
the difference is positive.

Thus, there always exists a value of the penalty parameter such that the ridge
estimator has lower mean squared error than the OLS estimator.

This result is very important because even having the OLS estimator the lowest
variance (and the lowest MSE) among the estimators that are unbiased, there exists
a biased estimator (ridge estimator) whose MSE and variance is lower than the one
of the OLS estimator.

2.3 Logistic Regression Classifier

Definition 2.8. Being n the amount of independent variables, m the size of those variables
and given X ∈ Rn×(m+1) the input matrix with an added column of ones, the Logistic
regression model is defined as:

P(Yi|β) =
1

1 + e−Yi(βT Xi)
(2.6)

where β ∈ Rm+1 are the weights of the model.

As it can be seen, the model is no more than a linear model to which it has
been applied the non-linear sigmoid function.

Definition 2.9. In statistics, maximum likelihood estimation (MLE) is a method of
estimating the parameters of an assumed probability distribution, given some observed
data. This is achieved by maximizing a likelihood function so that, under the assumed
statistical model, the observed data is most probable.
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Remark 2.10. Because the logarithmic function is monotonic, maximizing the like-
lihood is the same as maximizing the log of the likelihood (i.e., log-likelihood).
That is exactly the same to take the negative of the log-likelihood and minimize
that, resulting in the well known Negative Log-Likelihood Loss.

From the definitions above, we can define our loss function as:

L(β) =
n

∑
i=1

log(
1

1 + e−Yi βT Xi
). (2.7)

Moreover, to obtain good generalization abilities, one adds a regularization
term to the loss function. In our case, we will be adding the term λ ∑m+1

i=1 β2
i for

λ > 0.
Therefore, the loss function can be rewrote as:

L(β) =
1
2

m+1

∑
i=1

β2
i + C

n

∑
i=1

log(
1

1 + e−Yi βT Xi
) (2.8)

where C =
1

2λ
> 0 is a parameter to be determined by the user.

In order to find the value, β̄, that minimizes the equation (2.8) there are differ-
ent optimization methods we can use. Among all of them, we will use the simplest
Newton method, which uses the following expression to update the weights at ev-
ery iteration:

βk+1 = βk + sk (2.9)

where k is the iteration which we are computing and sk, the search direction val-
ues, is the solution of the following linear system:

∇2L(βk)sk = −∇L(βk). (2.10)

However, when using the previous equation, there is no guarantee that the
values of β̄ converge. To avoid this problem, there are some techniques that can
be applied such as the line search. This consists on calculating, at each iteration, a
suitable steplength ak > 0 so that L(β + aksk) < L(βk).

Another problem we might face is due to the computations needed when try-
ing to solve the system defined in (2.10). For instance, we know that:

∇L(β) = β + C ∑n
i=1

YiXi

1 + e−Yi βT Xi

and
∇2L(β) = Id + CXTDX

where D ∈ Rn×n is a diagonal matrix the components of which are defined as:
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Dii =
1

1 + e−Yi βT Xi
(1 − 1

1 + eYi βT Xi
).

When computing the Hessian matrix, we can find a dense matrix for the value
of XTDX which might be too large to store it. One possible solution for this
problem, and also to make the computations faster, is not to calculate the Hessian
matrix but to compute the left side of equation (2.10) as follows:

∇2L(βk)sk = (Id + CXTDX)sk = sk + CXT(D(Xsk)).



Chapter 3

Application of a leaky echo state
network to EEG signal
classification

3.1 Experiment explanation and data provided

Following the results achieved in article [1], the aim of the project is to deter-
mine if temporal data can help us to determine if we, humans, are influenced by
social pressure by looking at some time series.

EEG signals are inherently temporal in nature, representing the electrical ac-
tivity of the brain over time. By incorporating Leaky Echo State networks as a fea-
ture extraction technique, we aim to leverage the temporal dynamics and memory
properties of the network to capture important temporal dependencies within the
EEG signals. By comparing the performance of the Ridge regression and Logistic
regression classifiers, we seek to determine the impact of temporal data on the
classification accuracy and assess whether capturing temporal dynamics improves
the classification of EEG signals into distinct brainstates.

In particular, we will be looking to the electroencephalogram signals human
brain generates when doing the same activity in three different sates of social
pressure. The complete sessions of the experiments are described in detail in the
mentioned article but for a lighter follow-up of the incoming section, I will start
by providing a quick resume of the those experiments and a description of the
data obtained from them.

Although several subjects participated on the study, we will only be focusing
on the data generated by one of them. Along it, each subject was exposed to
three different situations, therefore, three different states of social pressure, when

21
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carrying out the same activity. In each of them, the subject was asked to be as fast
and precise as possible at hitting the center of a provided target.

During the first situation, the subjects performed repeatedly the activity alone,
and were shown, at the end of each trial, their respective accuracy. From now on,
we will name this state as solo. For the two other states, two types of simulated
players were created: one who would perform the activity with less accuracy than
the subject did in the first state and one who would perform it much better than
the subject on its first state. In this project, we will be naming those states easy
and hard, respectively. It is also worth mentioning that the subjects were never
asked to compete with others but quite the contrary. However, after some trials,
their respective accuracy from each trial they carried out was shown to both of
them.

Being the study the one described right above, let’s jump into the data we got
from it for every subject. As we said, there were three different states in each of
which the subject was performing twice a total of 108 trials of the activity. Finally,
one more complete sequence as the one defined was repeated. This leaves us, for
each subject, a total of 12 block of 108 trials each. Those 12 blocks are counted as:
2 times per state * 3 different states * 2 times each sequence.

For every trial, an encephalogram (EEG) was recorded using a total of 60 elec-
trodes. From those, a Recursive Feature Elimination (RFE) was used to discard
some of the channels that might not be generating useful information thus reduc-
ing to 42 the 60 initial ones. Also an Independent Component Analysis (ICA) was
implemented in order to reduce eye movement artefacts that could bias the results
of the study. Finally, from every of the remaining channels, the 800 ms previous
to the movement and the 400 ms following it were kept, getting a final length of
1200 ms per channel.

Regarding the experiment explained above we can summarize our initial data
as a 4-dimension tensor of size R42xR1200xR108xR12 where:

• 42 is the number of channels

• 1200 is the length of each channel

• 108 is the number of trials realised in each block

• 12 is the number of blocks for each subject

In Figure 3.1 we see a picture that will help us understand the data we deal with.
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Figure 3.1: Data provided

3.2 Data preprocessing

In this chapter, we delve into the crucial step of data preprocessing and to be
more specific, of data transformation. If we took the data as it is provided to us,
we would need to train our network and to work with a 4D object. As you can
imagine, it is not practical nor easy to work with it. Firstly, it will trigger to a
much more complex code to train the network in terms of readability. Moreover,
it is much challenging for us to create a mental picture of the data we deal with.
Therefore, and only because our data allows it, we will try to join some data
together before giving it as the input of the reservoir.

Looking back to the definition of the experiment, for every subject we have: 2
repetitions of the activity per state and this sequence repeated twice. This means
that it is possible to join per state into three groups of four our initials 12 blocks
since they comprise repetitions of the same activity. To make it more understand-
able, looking at Figure 3.1, we took, for each of the states, the blocks from columns
2,3 and 4 and concatenated them with the ones on the first column. This leaded
us to have the data organised as it is shown in Figure 3.2.

However, we still had a 4D tensor, or what is the same, a total of three 3D
tensors. The way we decided to proceed was to join those three 3D tensors in one,
obtaining consequently, a 3D tensor of size R42xR1200xR1296. Finally, to make the
computations affordable for the computer in terms of memory, we sampled the
data by time, keeping one sample every 10 ms thus acquiring a 3D tensor of size
R42xR120xR1296.

It is well known that EEG signals reflect the electrical activity of the brain.
Moreover, every signal can be studied in different frequency bands which is quite
interesting since each of them is associated with a specific mental state and cog-
nitive processes. Therefore, some of them may provide us more accuracy than
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Figure 3.2: Data joined per states

others. In this project we decided to split our data in three different band frequen-
cies and study each of them separately. The band frequencies we used are:

• alpha : 8 Hz to 12 Hz

• beta : 15 Hz to 30 Hz

• gamma : 40 Hz to 80 Hz

3.3 Leaky echo state network application

In this section we will be explaining which is the architecture we used to clas-
sify our data into the three classes: solo, easy and hard, previously defined. It
consisted, along general lines, in two main steps. In the first one, we applied a
LESN using as input the data we obtained from the preproccessing stage. In the
second step, using the output the LESN generated readout layer), we used a Ridge
Regression classifier or a Logistic Regression classifier to determine to which class
each signal belonged to. We can see in the following image a visual representa-
tion of the network’s architecture and how the training data was being modified
through it until reaching the final output.



3.3 Leaky echo state network application 25

Figure 3.3: Architecture of our network

In order to train the network, we decided to split our initial dataset in two: train
set and test set. The first one, which comprises the 80% of the initial dataset, was
the one used to train the network. It contained a total of 1035 trials of each channel.
The second one, the test set, was used to determine how good our network was
doing it classifying the brainstates. It was created from the remaining 20% of the
initial data set and consisted of 261 trials of each channel.

3.3.1 Reservoir layer

This layer was in charge of processing the temporal information of the input
data. To do so, we used a Recurrent Neural Network called Leaky Echo State
which is based on reservoir computing. Hence, in order to update the values of
the reservoir weight’s matrix, we used the state transition equation from definition
1.7 where the activation function is f (x) = tanh(x).

Taking into consideration all the previous results and since LESN model holds
the Echo State Property, we can initialize our input weights matrix W in and reser-
voir weights matrix W with multiple values. Remember that the ESP states that
the initial input values will only influence the dynamics of the nodes on the first
time steps and, after some time, the trajectories will converge to the same one. In
our case, we decided to initialize the sparse inputs and reservoir weights matrices
with random values sampled from uniform distribution in [−1, 1] with connectiv-
ity to be determined.

The only values we needed to determine were the input probability parame-
ter, which defines the probability of connection between the input and reservoir
layer parameters and the reservoir probability parameter, that defines which is
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the probability of connection between the neurons inside the reservoir layer. We
made some tests, trying different possible values, to find the ones which provided
the best results. Finally, for Logistic Regression classifier we found that the best
values were input probability = reservoir probability = 0.5. On the other hand,
for Ridge Regression classifier we found that, for alpha frequency data we should
use input probability = 0.2 and reservoir probability = 0.3 whereas for alpha and
gamma frequency bands the values should be input probability = 0.05 and reser-
voir probability = 0.5.

Moreover, we also wanted to know which was the amount of neurons needed
in the reservoir to obtain the best performing of the network. After some tests we
obtained that the best amount of neurons when using the Logistic Regression clas-
sifier was 200 for any band frequency. However, when using the Ridge Regression
classifier, the ideal amount should be of 75 for any frequency band.

Additionally, when using the Ridge Regression classifier we fixed the penalty
to 1. Note that for penalty = 0, the classifier is, actually, the OLS classifier.

Lastly, we also needed to study the behaviour of the network regarding the
leaking rate value used in the state transition equation. We found that the value
which provided better results was when using α = 0.01 for both classifiers.

All the tests made in order to decide which values were the best for all the last
mentioned parameters are discussed in Chapter 4.

3.3.2 Classification layer

The classification layer was the one responsible for classifying the received
input data into its corresponding brain state. We decided to study the behaviour
of the network when using the Ridge Regression model and Logistic Regression
model. For the first one, we decided to use as penalty the value λ = 1 for all
frequency bands, as we saw it was the value which made the network perform
better. For the second one, we decided to use as the method of computing the
weights, the Newton algorithm since it gave us more accurate results than the
others.

To generate the labels, when using the Logistic Regression we labeled as 0
the trials from solo state, as 1 the trials from easy state and as 2 the trials from
hard state. On the other side, when using Ridge Regression classifier we applyied
the hot encoding strategy to the labels thus obtaining vectors of dimension n × 3
where n is the number of trials.
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3.4 Hyperparameters

Hyperparameters are values that are set before the learning process begins.
They must be predefined by the user and play a critical role in the training pro-
cess since they have a significant impact on the performance and behavior of the
model. As a consequence, in this section we will be discussing, for each of our
hyperparameters, which is the value that allows our model perform the best. Par-
ticularly, we will be studying the number of neurons of the reservoir layer, the
input and reservoir probability, the leaking rate, α, used in the states transition
equation and the penalty, λ, used in the Ridge Regression classifier.

Firstly, in order to determine the number of neurons we should use in our
reservoir, we took a set of possible values for it. We tested the accuracy of the
network for all of them with each frequency band, separately. During the tests, the
other hyperparameters were set to: input probability = 0.05, reservoir probability
= 0.05, leaking rate = 2 and penalty = 0.01.

We can see, in Figure 3.4, the results obtained using a box plot for Rhe Ridge
regression classifier. From the graphics we can observe that, for all frequencies,
as expected, the accuracy of the network improves as the number of neurons in-
creases until reaching the value of 75 neurons, where we see the maximum accu-
racy. For higher values of number of neurons the precision decreases, probably,
due to overfitting.
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Figure 3.4: Accuracy vs number of neurons for different frequency bands using
Ridge Regression classifier

Regarding the results using the Logistic Regression, we can see a very similar
tendency to improving as number of nodes increases. However, the accuracy this
classifier gives us is much better than the one provided by the Ridge Regression
classifier. For instance, it is possible to see in Figure 3.5 that for 200 nodes a mean
accuracy of 0.989 is reached when using beta frequency data while the highest pre-
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cision obtained using Ridge Regression classifier was 0.734 using alpha frequency
data. Another interesting fact to look at is that unlike with Ridge Regression, the
model seems it does not reach overfitting at any point even using much more
nodes.

Figure 3.5: Accuracy vs number of neurons for different frequency bands using
Logistic Regression classifier

From now on, when studying the other hypermarameters with Ridge Regres-
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sion, we will fix the number of nodes to 75 whereas when using the Logistic
classifier we will fix the number of nodes to 200. The other hypermarameters
remain the same unless otherwise specified .

Next step is the study of the penalty hyperparameter λ > 0 used in the Ridge
Regression classifier. Notice that, in particular, if λ = 0, the classifier is indeed the
Ordinary Least Squares instead of the Ridge Regression classifier. As we already
said, the penalty parameter controls the amount of regularization applied to the
model. The higher the penalty, it reduces the magnitude of coefficients. Therefore,
it is used to prevent multicollinearity, and it reduces the model complexity by
coefficient shrinkage. In Figure 3.6, we see that the Ordinary method does not
provide good results for any of the frequency bands. Furthermore, we can see
from the graphs that the value given to the penalty it is not relevant for the good
performance of the network as long as it is different from 0.

Figure 3.6: Accuracy vs penalty using data from different frequency bands

The next hyperparameter we are going to study is the leaking rate. It is used
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when computing the nodes weights in the reservoir layer and typically refers to the
rate at which the resting potential of a neuron decays over time. We understand
the resting potential as the baseline state from which the neuron can be activated to
transmit signals. For example, a leaking rate of 0.1 means that the resting potential
decreases by 10% of its current value per unit of time. Therefore, by adjusting the
leaking rate, you can control the temporal dynamics of your data. Higher leaking
rates tend to make the neuron more responsive to inputs characterized by their
brief duration or occurrence, while lower leaking rates make it more sensitive to
inputs which persist for an extended period of time. By looking at Figure 3.7
we can clearly see that, for Logistic Regression classifier, in order to achieve a
good performance, pretty low leaking rates are needed. For that very reason, we
can state that the temporal component of our data plays an important role in the
classification task, as we had already assumed at the beginning of the project.

Thanks to the results obtained and although it would seem that the best value
for α should be 0.001, we found that for such a small value, the optimization
method the classifier uses, Newton method, failed repeatedly to converge reaching
the maximum number of iterations fixed by the algorithm. Therefore, aiming
to make the model more efficient avoiding having to do so many iterations, we
decided to fix the best value for α to 0.01. It must be said that the decision was also
made as the improvement that α = 0.001 provides over α = 0.01 is not decisive.

Figure 3.7: Accuracy vs leaking rate when using Logistic Regression classifier

We obtained similar results when using the Ridge Regression classifier. How-
ever, with this classifier, we can see a little improvement when using leaking rate
= 0.01. For that reason and previous ones, we also decided to fix the leaking rate
to 0.01 when using Ridge classifier.
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Figure 3.8: Accuracy vs leaking rate when using Logistic Regression classifier

To conclude this section, let’s examine the impact of the input probability and
reservoir probability on achieving the highest possible accuracy. The input prob-
ability hyperparameter controls the sparsity of connection between input neurons
and reservoir neurons as it refers to the probability of each individual connection
between those neurons. By varying its value, we can control the amount of infor-
mation that is propagated to the reservoir layer being the more higher the value
the more information spread. In a very similar way, reservoir probability hyperpa-
rameter controls the sparsity of connection but this time between reservoir neurons
with themselves. Varying its value can lead to variations in the reservoir’s dynam-
ics which will have something to do with temporal information of our data. Let’s
also not that higher values of both hyperparameters lead to more dense weights
matrices thus more memory capacity and computational capabilities.

We tested the accuracy of the network for the following values of the input
and reservoir probabilities: 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1. Looking at the legends
of Figure 3.9 and Figure 3.10, we can see that there’s only a little difference be-
tween the best and the worse accuracy when using any of the classifiers. However,
for Ridge classifier we see that we get better results when using alpha frequency
data. Moreover, we see that the best values for the hyperparameters in this case
should be quite low, at least, for one of both. For instance, the best accuracy, 0.7383,
for Ridge classifier is achieved using input probability = 0.2 and reservoir prob-
ability = 1. However, for beta and gamma frequency data cases, it is pretty clear
that the best results are obtained for input value 0.05 and any value of reservoir
proababiliy.
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(a) Alpha

(b) Beta

(c) Gamma

Figure 3.9: Accuracy network for different values of input and reservoir probabil-
ity using Ridge classifier

For the Logistic classifier the best accuracy, 0.994, is reached when using beta
frequency data. Actually, from the mean values used to plot the graphs, we see
that it is reached in 4 different cases. Looking at all graphs, we see that alpha
and beta frequency data seem to have similar behaviours where we can say that
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good values for the input probability and reservoir probability would be 0.5 for
both. However, with gamma frequency data, we see that the best accuracy is
achieved using low values of input probability, such as 0.1 and values around 0.4
for reservoir probability.

(a) Alpha

(b) Beta

(c) Gamma

Figure 3.10: Accuracy network for different values of input and reservoir proba-
bility using Logistic classifier
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After seeing that the results are not very significant for different values of
input and reservoir probabilities and taking into account that higher probabilities
would mean more dense matrices thus computationally expensive, we decided
that the best values for those parameters are input probability = 0.2 and reservoir
probability = 0.1 for Ridge classifier. On the other hand, for Logistic classifier we
decided to use input probability = reservoir probability = 0.5.

3.5 Code

The code used to build the network consists of a main class and three com-
plementary classes: the data class, the network class, and the reservoir class. All
files can be found in the following github repository: leaky echo state network for
classifying.

• In the main class we define some of the parameters and the classifier we
want to use for the network. Is the one in charge of gathering all the others
and the one you need to run to get the output of the program.

• The data class is responsible for processing and dealing with the original
data.

• The network class contains the code for the state transition equation and for
each of the classifiers.

• The reservoir class serves as a container that brings together the functionality
of the data class and the network class. It manages, as well, the computation
of the accuracy of the network.

https://github.com/claudiaboixader/Leaky-echo-state-network-for-brainstates-classification
https://github.com/claudiaboixader/Leaky-echo-state-network-for-brainstates-classification


Chapter 4

Results and conclusions

In this project, we investigated the classification of EEG signals into three dis-
tinct brainstates using leaky echo state networks (ESN) in combination with two
different classifier algorithms: Ridge regression and Logistic regression. Follow-
ing the work made by Xènia Domènech in her final project, the primary aim of
this project was to investigate the utility of temporal data in classifying the signals
into their brainstates since the influence of temporal information was not tackled
in her study. Secondly, we also wanted to determine if the classifier we used was
decisive for the good performance of the network.

The results indicate that the Logistic regression classifier outperforms the Ridge
regression classifier in accurately classifying the signals. Specifically, we obtained
a maximum mean accuracy of 0.994 when using Logistic classifier while the best
results obtained for Ridge classifier rounded an accuracy of 0.7383. This finding
suggests that the Logistic regression algorithm is better suited for this particu-
lar classification task, showcasing its power and ability to capture the underlying
patterns in the EEG data. The superior performance of the Logistic regression clas-
sifier can be attributed to its ability to model nonlinear relationships and handle
multiclass classification tasks effectively.

We can also see, as mentioned when discussing Figure 3.7, that the tempo-
ral dynamics captured by the reservoir are very useful when classifying data in
brainstates. It’s also worth pointing out that looking at the results obtained in Xè-
nia’s work, although the difference between using distinct classifiers is really tiny,
there’s an improvement from using Logistic Regression to Linear Regression clas-
sifier. In our case, it is completely the opposite and this can make us realize that
temporal information in EEG signals is the characteristic that brings the nonlinear
relationships inside our data.

one more thing we extract from the results obtained is that there is no big
difference between using alpha, beta or gamma frequency band. However, if we
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needed to decide for one of them, we would choose alpha when combining it with
Ridge classifier and beta when using Logistic classifier.

One last thing that surprised me is the little improvement gained with the
study of the hyperparameters, especially when using Logistic classifier. This could
mean that we have came across with very robust architecture. In other words, that
it is capable of learning and generalizing well regardless of the specific hyper-
parameter values. This could indicate that the architecture is well-suited for the
given task and dataset, and that it can adapt to different settings without signifi-
cant changes in performance.

In conclusion, the project highlights the effectiveness of the Logistic regression
classifier combined with leaky echo state networks for accurate classification of
EEG signals into three brain states.
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