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Abstract

The paper analyzes the detection and estimation of multiple level shifts regard-

less of the order of integration of the time series. We show that it is possible

to extend the methodology of Bai and Perron (1998) to the I(1) and NI(1) non-

stationary cases so that a uni�ed framework to test for the presence of multiple level

shifts in a robust way is designed. The �nite sample performance of the proposed

statistics is carried out, establishing a comparison with other existing approaches

in the literature. The paper illustrates the implementation of the statistics focusing

on the real exchange rate with time series that either cover a long time period or

provide a worldwide analysis. Robust detection of multiple level shifts is of great

importance to de�ne the statistical approach that is used to test the purchasing

power parity hypothesis.
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1 Introduction

Time series modeling requires the characterization of shocks that a¤ect their evolution

so that proper estimation techniques and statistical inference are applied. The literature

has distinguished between recurrent and occasional shocks, and the characterization of

these shocks in terms of their persistence is of great importance for time series modeling.

In this regard, the order of integration analysis of stochastic processes requires the use of

test statistics that take into account features that can bias the persistence of recurrent

shocks. One of these features is the existence of structural breaks. Perron (1989, 1990)

note that the inference drawn from the Dickey-Fuller (DF) test statistic can be seriously

plagued if the presence of structural breaks is not accounted for. This situation is due to

the dependence of the unit root statistics limiting distribution on the type, number and

position of the structural breaks. As pointed out in Perron (1994, 2006), one can view

structural changes as infrequent events that have permanent e¤ects on the time series

level. Notwithstanding, some popular procedures that are applied to detect the presence

of structural breaks rely on particular assumptions about the persistence of recurrent

shocks � see Perron (2006) and Casini and Perron (2019) for an overview. As can be

seen, there exists an intrinsic relationship between the modeling of structural changes

and the degree of persistence of recurrent shocks.

There are di¤erent proposals in the literature to assess the presence of structural

breaks a¤ecting time series regardless of its order of integration. Perron and Yabu (2009)

consider one structural break for trending time series, with three di¤erent types of e¤ects

�change in the level (Model I), in the slope (Model II) or both (Model III). Saygindoy

and Vogelsang (2011) cover these three models, but also tackle the case of non-trending

variables. Kejriwal and Perron (2010) generalize the proposal in Perron and Yabu (2009)

to multiple structural breaks, but just focusing on Models II and III. Finally, Harvey,

Leybourne and Taylor (2010) is the only proposal in the literature that deals with the

case of just multiple level shifts.

In this paper, we focus on testing and estimation of multiple level shifts for non-

trending time series, regardless of the order of integration of the stochastic process. We
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follow Bai and Perron (1998) who design testing procedures for models for which recurrent

errors (shocks) have transitory e¤ects �i.e., the error term of the model is an integrated

of order zero, I(0), stationary stochastic process �but extending their methodology to the

case in which recurrent shocks have permanent e¤ects �i.e., the error term of the model

is an integrated of order one, I(1), non-stationary stochastic process; for completeness,

local-to-unit root stochastic processes are also considered. The �rst area of contribution

centres on the statistic suggested in Bai and Perron (1998) that tests the null hypothesis

of no structural break against the alternative hypothesis of a �xed number of structural

breaks. In addition, the paper focuses on the double max statistics that allow assessing

the presence of parameter instabilities considering up to a maximum number of struc-

tural breaks. In all cases, it is possible to de�ne union statistics to test the presence of

multiple level shifts regardless of the order of integration of the time series. To the best

of our knowledge, this type of robust statistics have not been previously designed in the

literature.

The second area of contribution concerns the use of sequential statistics to detect

the presence of multiple structural breaks when dealing with stochastic processes with

either a unit root or a local-to-unit root. The limiting distribution is shown to depend on

the number and positions of the structural breaks, which introduces two essential issues.

First, the computation of critical values for each step of the sequential testing depends on

the previously estimated break dates, something that prevents o¤ering a reasonable set of

tables with the asymptotic critical values. To overcome this limitation, response surfaces

are estimated to approximate asymptotic critical values so that the implementation of

the new statistic in empirical applications is straightforward. Second, Bai and Perron

(1998) proved that the limiting distribution of the sequential statistic applied to I(0)

stochastic processes can be written as a function of independent random variables. This

characteristic eases the computation of asymptotic critical values, since what is relevant is

the number of structural breaks under the null hypothesis, not their position. This paper

shows that it is possible to modify our initial proposal so that the limiting distribution

of the modi�ed statistics shares the same feature as the original sequential statistic in
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Bai and Perron (1998). Finally, the joint use of the modi�ed statistics for I(1) stochastic

processes and the original statistic in Bai and Perron (1998) for I(0) stochastic processes

allows us to propose union statistics that serve at testing the presence of multiple level

shifts regardless of the order of integration of the time series.

The estimation of the long-run variance deserves special attention if empirical size

and/or non-monotonic power problems of the statistics are to be prevented �see Perron

(2006) and Casini and Perron (2019) for further details. In this regard, Kejriwal and

Perron (2010) propose a hybrid estimation method of the long-run variance to reach a

compromise between the size and power trade-o¤of Bai-Perron (BP) type statistics. This

paper generalizes this approach and de�nes the so-called max-hybrid estimation method

that is also used for the computation of the original Bai and Perron (1998) statistics.

This estimation procedure is aimed at controlling the empirical size of the statistics when

the incorrect I(0) order of integration is assumed.

An extensive simulation experiment is conducted to assess the performance of the pro-

posed statistical inference under di¤erent scenarios. The simulation results evidence that

the robust analysis that relies on the sequential BP statistics outperforms other existing

proposals in the literature. In addition, the simulations allow us to study the performance

of two well-known strategies that can be implemented to estimate the structural break

date locations.

The paper is organized as follows. Section 2 presents the model and assumptions.

Section 3 summarizes the proposals in Harvey, Leybourne and Taylor (2010) and Bai

and Perron (1998), along with the new set of statistics that is designed in this paper.

Section 4 deals with the estimation of the long-run variance. Section 5 investigates the

�nite sample performance of the proposed statistics. An empirical illustration that is

based on real exchange rates using both historical and worldwide data sets is conducted

in Section 6. Finally, Section 7 concludes with some remarks. The on-line supplementary

material provides the proofs (Appendix A), tables of critical values and simulation results

(Appendix B) and the details of the computations that are carried out in the empirical

illustration (Appendix C).
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2 The model

Let fytgTt=1 be a stochastic process with the data-generating process (DGP) given by:

yt = �+
mX
i=1


iDUi;t + ut (1)

ut = �ut�1 + "t; (2)

with u0 = Op (1), DUi;t = 1 for t >
�
�0iT

�
, 0 otherwise, where b�c denotes the integer

value, �0i 2 � (�), i = 1; : : : ;m, are the break fraction parameters, �0B;m =
�
�01; : : : ; �

0
m

�
,

� (�) = [�; 1� �] 2 (0; 1) de�nes the admissible values of the break fractions, and � is the

amount of trimming �popular choices are � 2 f0:05, 0:15, 0:2g. Throughout the paper,

the �0�superscript indicates the true value of the corresponding parameter. We assume

that "t is a stochastic process that satis�es the following linear process assumptions.

Assumption LP. Let f"tg be a linear stochastic process such that "t = C (L) �t with

� (L) =
P1

j=0CjL
j, C (1)2 > 0 and

P1
j=0 j jCjj <1, where f�tg

T
t=1 is an iid sequence of

with mean zero, variance �2� and �nite fourth moment. The long-run variance (LRV) of

"t is given by !2" = limT!1 T
�1E

�PT
t=1 "t

�2
= �2�C (1)

2.

The paper deals with two main situations, depending on the order of integration of

yt. First, we specify the scenario in which the errors of the model in (1) follow a unit

root or nearly-unit root stochastic process �denoted as I(1) and NI(1) cases, respectively

�with the de�nition of � = �T := 1 � c=T , 0 � c < 1, in (2). When c = 0 we have a

stochastic process with a unit root �i.e., an I(1) stochastic process �whereas when c > 0

we have a stochastic process with a local-to-unit root �i.e., a NI(1) stochastic process.

Second, we also consider the framework in which the errors of the model in (1) have a

transitory e¤ect on yt, a situation that is covered imposing j�j < 1 in (2). Hereafter, this

second situation is denoted as the I(0) case.

The proposal embeds three popular setups that can be found in the literature to

specify the magnitude of the level shifts. First and following Bai and Perron (1998),

we deal with structural breaks of �xed magnitude 
i, i = 1; : : : ;m, in (1). Second and

following Harvey, Leybourne and Taylor (2010), we de�ne magnitudes of the level shifts

4



that depend on the sample size as:


i = �d

�
iT

d�1=2; (3)

where d 2 f0; 1g denotes the order of integration of ut (and yt), �20 = limT!1E[T
�1

(
PT

t=1 ut)
2] = �2�C (1)

2 = (1� �)2 when j�j < 1, and �21 = !2" when � = �T := 1 � c=T ,

0 � c < 1, j
�i j < 1, i = 1; : : : ;m, and T d�1=2 is the Pitman�s drift. Therefore, the

paper considers di¤erent scenarios depending on the order of integration of ut and the

structural break magnitudes, which can be summarized in the following assumptions.

Assumption I(1)-NI(1). Let Assumption LP hold, with � = �T := 1 � c=T ,

0 � c <1, in (2) and 
i = �1

�
iT

1=2.

Assumption I(0). Let Assumption LP hold, with j�j < 1 in (2), and 
i = �0

�
i (�xed

structural break magnitudes) or 
i = �0

�
iT

�1=2 (shrinking structural break magnitudes).

Under Assumption I(1)-NI(1) the magnitude of the level shifts increases at a T 1=2

rate that, �rst, prevents structural breaks to have negligible e¤ects in the limit and,

second, implies that a consistent estimation of the break dates can be obtained � see

Harvey, Leybourne and Taylor (2010). This setup has also been used in Leybourne and

Newbold (2000), Kim, Leybourne and Newbold (2000) and Harvey, Leybourne and New-

bold (2001), among others, and imposes that the e¤ect of the structural breaks is of the

same order of magnitude (in probability) as the stochastic trend, so that neither compo-

nent totally dominates the large sample behaviour of yt �see Leybourne and Newbold

(2000). Similarly, Carrion-i-Silvestre, Kim and Perron (2009) consider the case where the

magnitude of the level shifts increases at a T 1=2+� rate, with � > 0. Intuitively, this para-

metrization of the break magnitudes can be helpful to model the e¤ect of big structural

breaks �i.e., structural breaks which e¤ect is not dominated by the stochastic trend �

and provide a better characterization of the nature of the shocks a¤ecting the time se-

ries �recurrent shocks with permanent e¤ects (stochastic trend) and occasional shocks

(structural breaks) with permanent e¤ects. Finally, it is worth noting that structural

breaks of �xed magnitude are asymptotically negligible if yt � I (1) �see Perron (1990).

Under Assumption I(0) the magnitude of the level shifts given in (3) is local-to-zero
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and asymptotically negligible �see Harvey, Leybourne and Taylor (2012) �which de�nes

the so-called shrinking breaks case. This speci�cation is used to model the e¤ect of

small magnitudes of structural breaks, but also remains an adequate approximation for

moderate shifts �see Bai and Perron (1998). Unfortunately, in this case, it is not possible

to obtain a consistent estimation of the break fractions because the magnitude of the shifts

converges to zero at a fast rate (T�1=2). It is worth noting that Bai (1997), Bai and Perron

(1998), Bai, Lumsdaine and Stock (1998), Busetti and Harvey (2001), Kurozumi and Arai

(2006), Perron (2006) and Oka and Perron (2018) also deal with similar shrinking breaks

con�gurations, although considering that the break magnitudes decrease towards zero at

a rate slower than T�1=2 �i.e., the magnitude of the level shifts decreases at a T�1=2+�

rate, with 0 < � < 1=2 �which allows obtaining consistent break fraction estimates. In

this scenario, �xed break magnitudes can be approximated choosing � arbitrarily close

to 1/2 �see Bai and Perron (1998), Proposition 4.

3 Robust structural break test statistics

3.1 The Harvey, Leybourne and Taylor statistics

To assess the presence of multiple level shifts, Harvey, Leybourne and Taylor (2010)

suggest the (sequential) use of the following two generalized �uctuation statistics:

Sd = max
t2T�(�)

Sd;t;bwT c = ��1d T 1=2�d max
t2T�(�)

������
Pbw2 Tc

j=1 yt+j �
Pbw2 Tc

j=1 yt�j+1�
w
2
T
�

������ ; d 2 f0; 1g ;

(4)

where S0 denotes the statistic that is computed assuming that yt � I (0) and S1 is the

statistic that assumes that yt � I (1). The Sd statistics di¤er both on the scaling that

is required (T 1=2�d) and on the LRV estimator that is used (�2d), d 2 f0; 1g. These

�uctuation statistics � in what follows, HLT statistics � are based on the di¤erence

between the mean of the
�
w
2
T
�
observations yt+1, : : : ; yt+bw2 Tc and the mean of the�

w
2
T
�
observations yt, yt�1, : : : ; yt�bw2 Tc+1, where w is the bandwidth of the window of

observations that are used �Harvey, Leybourne and Taylor (2010) essayed di¤erent values
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of w and recommend w = 0:10 as a value that produces a good compromise between the

empirical size and power of the statistics. The consideration of both statistics when there

is no prior knowledge about the order of integration of time series leads to de�ne a union

statistic, which is based on the union of rejection of the null hypotheses that test the

Sd, d 2 f0; 1g, statistics. To be speci�c, the union of rejection decision rule rejects the

null hypothesis of no structural break if S1 > ��cv
1
� or S0 > ��cv

0
� , where cv

1
� and cv

0
�

denote the � signi�cance level asymptotic critical values of S1 and S0, respectively. The

factor �� is a positive scaling constant that warrants the union rejection decision rule

to be asymptotically conservative under the null hypothesis in the presence of a wrong

assumption of the order of integration that comes from one of the statistics. Note that

the union rejection decision rule is equivalent to de�ne the following union (U) statistic:

U = max

(
S1;

 
cv1�
cv0�

!
S0

)
; (5)

for which the null hypothesis of no structural break is rejected if U > ��cv
1
� .

The sequential implementation of the HLT statistics allows the estimation of both

the number and position of the structural breaks. To ease presentation on the practical

implementation of this strategy, let us focus on the S1 statistic. The �rst stage consists

of testing the null hypothesis of no structural break against the alternative hypothesis of

one level shift using all observations t = 1; : : : ; T . If evidence against the null hypothesis

is found, the �rst break date is estimated as ~T1 = argmaxt2�T S1;t;bwT c, �T = T� (�).

This break date estimate is used to de�ne the exclusion area given by �1;T = [ ~T1 �

bwT c + 1; ~T1 + bwT c + 1], in which no further structural breaks are searched. Then, in

the second stage the sequential testing procedure looks for an additional break in the

range of observations de�ned by t = 1; 2; 3; : : : ; ~T1 � bwT c ; ~T1 + bwT c + 2; : : : ; T �i.e.,

the eligible break dates that are inside the set t 2 �T � �1;T . Evidence against the null

hypothesis of an additional structural break is found when maxt2�T��1;T S1;t;bwT c > cv1�

and the second estimated break date is obtained as ~T2 = argmaxt2�T��1;T S1;t;bwT c. The

procedure continues until we �nd that maxt2�T��1;T��2;T������m;T S1;t;bwT c � cv1� , in which
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case the null hypothesis of no (additional) structural break is not rejected. The estimated

number of structural breaks from the use of the S1 statistic is denoted by ~m1.

The same approach can be applied using the S0 statistic and obtain ~m0 structural

breaks. In general, ~m1 has not to be equal to ~m0. If ~m1 � ~m0, the ~m0 breaks are simply a

subset of the ~m1 breaks. Similarly, if ~m0 � ~m1, the ~m1 breaks are simply a subset of the

~m0 breaks. If ~m1 = ~m0, both sets of break locations are identical. Note that the number

of breaks that is estimated with the SU statistic will simply be ~mU = max ( ~m1; ~m0).

Some remarks are in order. First, the estimation of both the number and location of the

structural breaks is based on the so-called one-at-a-time (OAAT) strategy rather than on

the simultaneous estimation of multiple structural breaks. Second, this procedure relies

on the argument that maximizes the sequence of Sd;t;bwT c statistics. In what follows, we

refer to this approach as the HLT detection strategy.

3.2 The Bai and Perron statistics

3.2.1 A test of no break versus some �xed number of breaks

This section proposes the use of a sup Wald-type statistic to test the null hypothesis

of no structural break against the alternative hypothesis that there are m structural

breaks. The speci�cation of di¤erent values of m 2 f1; 2; : : : ;mmaxg, with mmax a given

maximum number of structural breaks, under the alternative hypothesis allows us to gain

some insights about whether there is some evidence of structural breaks. Following Bai

and Perron (1998), we consider sup Wald-type statistics of the form:

Fd (mj 0) = m�1T�2d�̂�2d max
TB;m2T�(�)m

[SSR (T )� SSR (TB;m)] ; d 2 f0; 1g ; (6)

where �̂2d denotes a consistent estimator of the LRV of ut (when d = 0) or "t (when d = 1)

to be discussed below, SSR (T ) =
PT

t=1(yt � �y)2 is the sum of squared residuals (SSR)

under the null hypothesis of no structural break and SSR (TB;m) =
Pm+1

i=1 S(Ti�1; Ti);

S(Ti�1; Ti) =
PTi

t=Ti�1+1
(yt � �y(Ti�1;Ti))

2, �y(Ti�1;Ti) = (Ti � Ti�1)
�1PTi

t=Ti�1+1
yt, denotes

the SSR under the alternative hypothesis that is computed for all possible combinations
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of TB;m = (T1; T2; : : : ; Tm), m 2 f1; 2; : : : ;mmaxg, break locations using the dynamic

optimization algorithm in Bai and Perron (1998), with the convention that T0 = 0 and

Tm+1 = T . The F0 (mj 0) statistic was proposed in Bai and Perron (1998) for the I(0)

case. In this paper, we extend this sup Wald-type statistic to the I(1) case �denoted by

F1 (mj 0). Bai and Perron (1998) also propose double maximum statistics that consider

the possibility that the number of structural breaks is unknown up to some upper bound

mmax. The �rst double maximum statistic is the maximum of the equally weighted

sequence of statistics that can be computed for all values of m 2 f1; 2; : : : ;mmaxg:

UDmaxd = max
1�m�mmax

Fd (mj 0) ; (7)

and the second one is the maximum of the weighted sequence of statistics:

WDmaxd = max
1�m�mmax

amFd (mj 0) ; (8)

where the weights are used to warrant that the marginal p-values are equal across values

of m. The weights are de�ned as a1 = 1 and, for m > 1, as am = cv (�; 1) =cv (�;m)

where cv (�;m) is the asymptotic critical value of Fd (mj 0) for a signi�cance level �. Bai

and Perron (1998) derive the limiting distribution of F0 (mj 0), UDmax0 and WDmax0

statistics, whereas the corresponding limiting distribution of F1 (mj 0), UDmax1 and

WDmax1 is given in the following theorem.

Theorem 1 Let fytgTt=1 be a stochastic process with the DGP given by (1) and (2) with

� = 1 � c=T , 0 � c < 1. Under the null hypothesis that there are no structural breaks,

the F1 (mj 0), UDmax1 and WDmax1 statistics given in (6) to (8) converge as T !1
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to:

F1 (mj 0) ) sup
�B;m2�(�)m

m�1

"
m+1X
i=1

(�i � �i�1)

�Z �i

�i�1

Wc (s) ds

�2
�
�Z 1

0

Wc (s) ds

�2#
� sup

�B;m2�(�)m
Kc (�B;m)

UDmax1 ) max
1�m�mmax

sup
�B;m2�(�)m

Kc (�B;m)

WDmax1 ) max
1�m�mmax

cv (�; 1)

cv (�;m)
sup

�B;m2�(�)m
Kc (�B;m) ;

where ) denotes weak convergence to the associated measure of probability and Wc (s) is

a standard Ornstein-Uhlenbeck (OU) process.

The proof is given in Appendix A. Table B.1 collects asymptotic critical values for

F1 (mj 0), UDmax1 and WDmax1 statistics under I(1) errors with c = 0 for di¤erent

values of the trimming parameter �for completeness, it also reports the critical values

of F0 (mj 0), UDmax0 and WDmax0. The critical values have been obtained using

Monte Carlo simulations with 300 steps to approximate the Brownian motions of the

limiting distribution with c = 0 and 10,000 replications. In addition and following Harvey,

Leybourne and Taylor (2010), each pair of Fd (mj 0), UDmaxd andWDmaxd, d 2 f0; 1g,

statistics can be combined to design union statistics as de�ned in (18). This leads us to

propose three additional statistics, namely, FU (mj 0), UDmaxU and WDmaxU . Table

B.1 presents the �j� constants, j 2 fF (mj 0), UDmax, WDmaxg, that are required for

the implementation of the statistical rejection rule for these union statistics.

Bai and Perron (1998) suggest the application of the double max statistics in the �rst

place and, in the case in which some evidence of structural breaks is found, compute the

sequential statistics described in the next section to estimate the number of structural

breaks that are a¤ecting the time series.

3.2.2 The sequential test statistics

The second set of statistics designed in this paper builds upon the sequential approach

advocated by Bai and Perron (1998) that allows testing the null hypothesis ofm structural

breaks against the alternative hypothesis of m+ 1 structural breaks for I(0) time series.

10



The procedure starts testing the null hypothesis of no structural break (m = 0) against

the alternative hypothesis of one structural break (m = 1). If the null hypothesis is

rejected, we can proceed in a second stage to test the null hypothesis of m = 1 against

the alternative hypothesis of m = 2, and so on. The testing process ends when the

corresponding null hypothesis is not rejected. The sequential statistic in Bai and Perron

(1998) is based on the computation of the SSR under both the null and alternative

hypotheses. Let us consider the SSR computed using the vector of break points T 0B;m =

(T 01 ; T
0
2 ; : : : ; T

0
m):

SSR
�
T 0B;m

�
=

m+1X
i=1

S(T 0i�1; T
0
i ); (9)

where S(T 0i�1; T
0
i ) =

PT 0i
t=T 0i�1+1

(yt � �y(T 0i�1;T 0i ))
2, �y(T 0i�1;T 0i ) = (T 0i � T 0i�1)

�1PT 0i
t=T 0i�1+1

yt,

with the convention that T 0B;0 = T for the model with no structural break (m = 0).

Similarly, we can compute the SSR for which an additional break is considered inside the

i-th segment:

SSR
�
T 0B;m; �

�
=

i�1X
j=1

S(T 0j�1; T
0
j ) + S(T 0i�1; �) + S(� ; T 0i ) +

m+1X
j=i+1

S(T 0j�1; T
0
j ): (10)

Following Bai and Perron (1998), the sup Wald statistic to test the null hypothesis of m

structural breaks against the alternative hypothesis of m+ 1 structural breaks is:

Fd (m+ 1jm) = max
1�i�m+1

max
��2�i(�)

�
T�2d�̂�2d

�
S(T 0i�1; T

0
i )� (S(T 0i�1; �) + S(� ; T 0i ))

��
; (11)

with d 2 f0; 1g, �i (�) = f(�i�1; �� ; �i) ; j�� � �jj � �; j 2 fi� 1; igg, �� = �=T , and

where �̂2d denotes a consistent estimator of the LRV of ut (when d = 0) or "t (when

d = 1) to be discussed below. The original Bai and Perron (1998) sequential statistic is

obtained setting d = 0 in (11), whereas in this paper we extend its use to I(1) stochastic

processes. The limiting distribution of F1 (m+ 1jm) given in (11) when � = 1 � c=T ,

0 � c <1, in (2) is provided in the following theorem.

Theorem 2 Let fytgTt=1 be a stochastic process with the DGP given by (1) and (2) with

� = 1 � c=T , 0 � c < 1. Under the null hypothesis that there are m structural breaks
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with T 0B;m=T ! �0B;m as T ! 1, the F1 (m+ 1jm) statistic given in (11) converges as

T !1 to:

F1 (m+ 1jm) ) sup
1�i�m+1

sup
��2�i(�)

(�0i � �0i�1)
2

�Z 1

0

W �
c (a)

2 da

�
Z l

0

W �
c;1 (a)

2 da�
Z 1

l

W �
c;2 (a)

2 da

�
(12)

= sup
1�i�m+1

sup
��2�i(�)

264��0i
�R l

0
Wc (a) da� l

R 1
0
Wc (a) da

�2
l (1� l)

375 (13)

� sup
1�i�m+1

sup
��2�i(�)

Hc

�
�0i�1; �� ; �

0
i

�
;

whereW �
c (a), W

�
c;1 (a) andW

�
c;2 (a) are three demeaned OU processes, with l = (����0i�1)

=(�0i � �0i�1), and Wc (a) is a standard OU process.

The proof is given in Appendix A. As can be seen, the limiting distribution depends

both on the number (m) and position (�0B;m) of the structural breaks that are speci�ed

under the null hypothesis. For subsequent derivations, Theorem 2 provides two equivalent

representations of the limiting distribution of F1 (m+ 1jm). Table B.2 reports asymptotic

critical values for F1 (m+ 1jm) under I(1) errors (c = 0) for selected combinations of

�0B;m, m 2 f0; 1; 2g and � = 0:15. These critical values are computed using Monte

Carlo simulations with 1,000 steps to approximate the Brownian motions of the limiting

distributions with c = 0 and 10,000 replications.

The use of brute force algorithms to obtain critical values for all possible combinations

of m structural break locations generates a computational burden of order Tm, which

makes the implementation of the proposal almost unfeasible when m > 2. To address

this issue, we follow Bai and Perron (1998) and develop a dynamic optimization algorithm

that relies on the minimization of the SSR over all possible segments de�ned between t = 1

and t = T , which reduces the computation cost to a problem of order T 2. It is worth

mentioning that the dynamic optimization algorithm that is implemented in this paper

for the computation of F1 (m+ 1jm) is di¤erent and faster than the one in Bai and Perron

(1998), but serves the same purpose of reducing the number of calculations. Reporting
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a complete set of tables with critical values for all possible combinations of m structural

break locations makes no sense, especially for m > 2. In this regard, a Matlab code is

available from the authors upon request to compute the critical values with c = 0 for

whatever combination of m and � values that is desired. In addition, Table B.3 provides

estimated response surfaces to approximate asymptotic critical values for the I(1) case

(c = 0) for a given combination of m structural breaks with � 2 f0:15; 0:2g.

Bai and Perron (1998) derive the limiting distribution of F0 (m+ 1jm) assuming that

yt � I (0), a limiting distribution that involves the maximum of m + 1 independent

variables. The presence of �0i�1 and �
0
i in (12) and (13) prevents reaching a similar neat

result in the sense that, implicitly, the limiting distribution of F1 (m+ 1jm) depends on

the length of them+1 regimes. Besides, it complicates the computation of critical values,

although the use of the estimated response surfaces can solve this issue for the trimming

parameters that have been considered. Fortunately, we can think of designing modi�ed

statistics that get rid of the regime length in the limit. The �rst modi�ed statistic is

computed using the SSR in (9) and (10), but with the SSR of each segment weighted

(WSSR) by the inverse of the square of the regime length:

WSSR
�
T 0B;m

�
=

m+1X
i=1

�
T 0i � T 0i�1

��2
S(T 0i�1; T

0
i ); (14)

and

WSSR
�
T 0B;m; �

�
=

i�1X
j=1

�
T 0j � T 0j�1

��2
S(T 0j�1; T

0
j ) +

�
T 0i � T 0i�1

��2
(S(T 0i�1; �) + S(� ; T 0i ))

+
m+1X
j=i+1

�
T 0j � T 0j�1

��2
S(T 0j�1; T

0
j ); (15)

so that the �rst version of the modi�ed F1 (m+ 1jm) statistic that we propose is:

F a1 (m+ 1jm) = �̂�21

�
WSSR

�
T 0B;m

�
� min

1�i�m+1
min

�=T2�i(�)
WSSR

�
T 0B;m; �

��
= max

1�i�m+1
max

��2�i(�)

h�
T 0i � T 0i�1

��2
�̂�21

�
S(T 0i�1; T

0
i )� (S(T 0i�1; �) + S(� ; T 0i ))

�i
: (16)
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The use of the (T 0i � T 0i�1)
�2 rescaling term in the WSSR is suggested by the presence

of (�0i � �0i�1)2 in the limit distribution given by (12). This transformation is inspired by

Busetti and Harvey (2001) and Harvey (2005), who propose unit root and stationarity

statistics allowing for structural breaks. The second modi�ed statistic is designed from

the expression of the limit distribution of F1 (m+ 1jm) given in (13), which suggests that

the WSSR of each regime should be rescaled by T�1(T 0i � T 0i�1)
�1 and de�nes:

F b1 (m+ 1jm) = max
1�i�m+1

max
��2�i(�)

h
T�1

�
T 0i � T 0i�1

��1
�̂�21

�
S(T 0i�1; T

0
i )

�(S(T 0i�1; �) + S(� ; T 0i ))
��
: (17)

The limit distribution of the modi�ed statistics is given in the following theorem.

Theorem 3 Let fytgTt=1 be a stochastic process with the DGP given by (1) and (2) with

� = 1 � c=T , 0 � c < 1. Under the null hypothesis that there are m structural breaks

with T 0B;m=T ! �0B;m as T !1, the F a1 (m+ 1jm) and F b1 (m+ 1jm) statistics given in

(16) and (17), respectively, converge as T !1 to:

F a1 (m+ 1jm) ) sup
1�i�m+1

sup
��2�(�)

�Z 1

0

W �
c (a)

2 da�
Z l

0

W �
c;1 (a)

2 da�
Z 1

l

W �
c;2 (a)

2 da

�
� sup

1�i�m+1
Jac (x)

F b1 (m+ 1jm) ) sup
1�i�m+1

sup
��2�(�)

�R l
0
Wc (a) da� l

R 1
0
Wc (a) da

�2
l (1� l)

� sup
1�i�m+1

J bc (x) ;

whereW �
c (a), W

�
c;1 (a) andW

�
c;2 (a) are three demeaned OU processes, with l = (����0i�1)

=(�0i � �0i�1), and Wc (a) is a standard OU process.

The proof is given in Appendix A. An important feature shown by the limiting distri-

bution of F j1 (m+ 1jm), j 2 fa; bg, is that it involves the maximum of m+1 independent

variables, which simpli�es the computation of critical values. From a pure minimalism

point of view, this feature also equalizes both types of Bai-Perron sequential statistics

in the limit, since F0 (m+ 1jm) and F j1 (m+ 1jm), j 2 fa; bg, share this common fea-

ture of having an asymptotic distribution that involves m + 1 independent variables.
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Tables B.4 and B.5 report approximate asymptotic critical values for F0 (m+ 1jm) and

F j1 (m+ 1jm), j 2 fa; bg, under I(1) errors with c = 0 and considering up to m = 9

structural breaks for di¤erent values of �. As above, the critical values are computed

using Monte Carlo simulations with 1,000 steps to approximate the Brownian motions of

the limiting distribution and 10,000 replications.1

The joint use of F0 (m+ 1jm) and F j1 (m+ 1jm), j 2 fa; bg, statistics lead us to

de�ne union statistics similar to the one in Harvey, Leybourne and Taylor (2010), with

an expression that mimics (5):

F jU (m+ 1jm) = max

8<:F j1 (m+ 1jm) ;
0@cvF j1 (m+1jm)�

cv
F0(m+1jm)
�

1AF0 (m+ 1jm)

9=; ; j 2 fa; bg ;

(18)

where cvF
j
1 (m+1jm)
� and cvF0(m+1jm)� denote the � signi�cance level asymptotic critical values

of F j1 (m+ 1jm), j 2 fa; bg, and F0 (m+ 1jm), respectively, that are collected in Tables

B.4 and B.5. The statistical rejection rule decision for the F jU (m+ 1jm), j 2 fa; bg,

statistics is given by:

Reject H0 if F
j
U (m+ 1jm) > �

F j(m+1jm)
� cv

F j1 (m+1jm)
� ; (19)

where the positive constant �F
j(m+1jm)

� is computed as in Harvey, Leybourne and Tay-

lor (2010). Speci�cally, �F
j(m+1jm)

� is obtained by simulating the limit distribution of

maxfF j1 (m+ 1jm) ; (cv
F j1 (m+1jm)
� =cv

F0(m+1jm)
� )F0 (m+ 1jm)g, computing the critical value

of this distribution at a �-level of signi�cance �denoted by cv
F jU (m+1jm)
� �and, �nally, cal-

culating �F
j(m+1jm)

� = cv
F jU (m+1jm)
� =cv

F j1 (m+1jm)
� , j 2 fa; bg. Despite the constant used by

HLT statistics, here �F
j(m+1jm)

� , j 2 fa; bg, depend on the number of structural breaks

that are considered under the null hypothesis of each step of the sequential testing strat-

egy. Tables B.4 and B.5 provide the values of �F
j(m+1jm)

� , j 2 fa; bg.
1The critical values for the F0 (m+ 1jm) statistic are reported for completeness, although they are

comparable to the ones in Bai and Perron (1998, 2003b).
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Unknown structural breaks So far, the computation of the sequential statistics has

assumed known structural breaks under the null hypothesis of m structural breaks �i.e.,

T 0B;m is known a priori. This situation is rarely found in practice so that it is desirable to

design a procedure to estimate the break dates. Bai and Perron (1998) show that, under

the assumption that yt � I (0), it is possible to obtain consistent estimates of the break

fractions through the minimization of the SSR of the model given by (1). In the limit,

the use of the estimated break dates that are obtained from the minimization of the SSR

of the model given by (1) under the null hypothesis of m structural breaks is as good as

knowing T 0B;m �see proof of Proposition 7 in Bai and Perron (1998). For the yt � I (1)

case, Harvey, Leybourne and Taylor (2010) suggest the speci�cation of the model given

by (1) in �rst di¤erences:

�yt =
mX
i=1


iD (Ti)t + vt t = 2; : : : ; T; (20)

with D (Ti)t = 1 for t = Ti + 1 and 0 otherwise, i = 1; : : : ;m, and estimate the break

dates through the minimization of the SSR of the model in (20), SSRDIF , so that:

T̂B;m = argmin
TB;m2T�(�)m

SSRDIF (TB;m) ; (21)

which provides consistent estimates of the break fraction parameters i¤ 
i = 
�iT
1=2 �see

Harvey, Leybourne and Taylor (2010). Note that the use of T̂B;m also provides consistent

estimates of the break fraction parameters when yt � I (0). Since the approach that is

adopted in this paper aims at proposing structural break test statistics that are robust

to the order of integration of the time series, we suggest to use T̂B;m on each step of the

sequential testing procedure. The estimated break dates can be treated as if they were

the true ones and proceed to compute the di¤erent statistics de�ned above, which limiting

distribution is given in the previous theorems. This is the approach that is used in this

paper to compute the sequential F1 (m+ 1jm) and F j1 (m+ 1jm), j 2 fa; bg, statistics.

Consequently, the break dates that are speci�ed under the null hypothesis whenm > 0 are

obtained from the joint minimization of SSRDIF (TB;m) over all possible combinations of
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m break dates. It is worth noting that the implementation of this procedure has required

the design of a new dynamic programming algorithm to jointly estimate the break dates

associated to the m impulse dummies in (20) for each stage of the sequential testing

strategy. Finally, one might also think of implementing the sequential BP statistics using

the HLT-detection strategy discussed above, where the structural breaks are selected

OAAT on the basis of the maximization of the sequence of Wald statistics. This approach

is also essayed below.

4 Estimation of the long-run variance

The computation of all statistics discussed above requires a consistent estimation of the

long-run variance, an issue that turns out to be of special relevance. The implementation

of the Bai and Perron (1998) statistics could be carried out using the long-run variance

that is estimated under the null hypothesis of the corresponding statistic, although this

might imply non-monotonic empirical power problems �see Perron (2006). The estima-

tion of the long-run variance could be done under the alternative hypothesis, although

this might cause size distortions in case of persistent errors. As can be seen, these con-

siderations create a trade-o¤ between the empirical size and power that can be important

in empirical applications.

Harvey, Leybourne and Taylor (2010) recommend a parametric estimation method of

the long-run variance that relies on the use of the maximum number of potential structural

breaks that admits the speci�ed trimming parameter �i.e., mmax = 1+b((1� �)� �) =�c.

Consequently, the long-run variance is estimated under the alternative of mmax structural

breaks for both the S1 and S0 statistics. Allowing for the maximum number of structural

breaks when computing the long-run variance avoids obtaining a biased estimation due to

unaccounted structural breaks, a situation that might be found if we were using long-run

variance estimates for each stage of the sequential testing. This is relevant in the case

where there are more structural breaks than the ones considered under the null hypothesis

of each step of the (sequential) testing procedure. However, this might come at the price
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of losing power, if more structural breaks than exist are speci�ed in the estimation of (20).

Conditional on mmax, the break locations are estimated assuming that yt � I (1), which

implies computing the argument that minimizes the SSR of the model in (20) following

the OAAT strategy in Harvey, Leybourne and Taylor (2010).2 This determines the set

of estimates T̂B;mmax = (T̂1; T̂2; : : : ; T̂mmax) that, for coherence, is maintained regardless of

d.3 Then, the long-run variance is estimated following a two-step procedure with some

particularities that depend on d. For the S1 statistic, it �rst requires the Ordinary Least

Squares (OLS) estimation of the model:

�yt =
mmaxX
i=1


iD(T̂i)t + vt; (22)

t = 2; : : : ; T and, second, use the estimated residuals of (22) to estimate the augmented

Dickey-Fuller (ADF) type regression equation:

�v̂t = �v̂t�1 +
k�1X
j=1

 j�v̂t�j + et; (23)

t = k + 2; : : : ; T , with �̂2e = (T � 2k � 1)
�1PT

t=k+2 ê
2
t and k selected so that, as T !1,

1=k + k3=T ! 0 �Harvey, Leybourne and Taylor (2010) suggest using the Bayesian

information criterion (BIC) to choose k, although other criteria such as the modi�ed

information criteria in Ng and Perron (2001) and Perron and Qu (2007) might be applied.

The long-run variance is obtained as �̂21 = �̂2e=�̂
2, where the subscript indicates that it

has been assumed that yt � I (1). A similar strategy is implemented to estimate the

long-run variance for the S0 statistic. Conditional on T̂B;mmax , the following regression

2A shortcoming of the OAAT strategy is that the location of an additional break date depends on
the previously allocated break dates, so that it might be the case that the maximum number of breaks
cannot be reached if there is not enough space left for the inclusion of an additional structural break.
This limitation is not found when the breaks location is carried out using a joint estimation procedure,
as we suggest here for the implementation of the BP statistics.

3Note that proceeding in this way the implementation of the HLT statistics implies working with,
potentially, two di¤erent sets of estimated break dates: (i) the ~m1 (or ~m0) break dates ~TB; ~m1

= ( ~T1;
~T2; : : : ; ~T ~m1) (or ~TB; ~m0 = (

~T1; ~T2; : : : ; ~T ~m0)) that are obtained from the maximization of the sequence of
S1;t;bwTc (or S0;t;bwTc) statistics and (ii) T̂B;mmax

= (T̂1; T̂2; : : : ; T̂mmax
), the break dates that are obtained

using the OAAT strategy on the minimization of the SSR of (20).
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model is estimated by OLS:

yt = �+
mmaxX
i=1


iDUi;t + ut t = 1; : : : ; T; (24)

and the estimated residuals of (24) are in turn used to estimate a Perron�s ADF-type

regression equation:

�ût = �ût�1 +
k�1X
j=1

 j�ût�j +

mmaxX
i=1

k�1X
j=0

 i;jD(T̂i)t�j + et t = k + 1; : : : ; T: (25)

The parametric long-run variance estimator is then given by �̂20 = �̂2e=�̂
2 with �̂2e = (T

� (2 +mmax)k)
�1PT

t=k+1 ê
2
t . The computation of the long-run variance for the BP test

statistics that is suggested in this paper combines some features described so far. The

discussion that follows distinguishes between the yt � I (0) case covered in Bai and Perron

(1998) and the extension to the yt � I (1) case that is proposed in this paper.

4.1 The long-run variance for the BP statistics when yt � I (0)

To reach a compromise between the size and power trade-o¤ discussed above, we pro-

ceed following the spirit of the hybrid non-parametric estimation method of the long-run

variance proposed in Kejriwal and Perron (2010), which involves using the OLS esti-

mated residuals under both the null and alternative hypotheses. The hybrid method

implies selecting the bandwidth (h) of the (quadratic) spectral window required by the

non-parametric estimator of the long-run variance in Andrews (1991), but using the es-

timated residuals under the alternative hypothesis instead �henceforth, we denote the

estimated bandwidth as ĥa. Then, the long-run variance is computed using the estimated

residuals under the null hypothesis with ĥa as the bandwidth parameter.

However, the approach that is essayed in this paper relies on the so-called max-hybrid

method. The max-hybrid method modi�es the �rst stage of the hybrid method in Kejriwal

and Perron (2010) since the bandwidth parameter is selected applying Andrews (1991)

AR(1)-based automatic procedure using the estimated residuals of the model given by
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(24) �note that T̂B;mmax is obtained assuming that yt � I (1), as in Harvey, Leybourne and

Taylor (2010), and using either the OAAT or the joint break dates estimation strategies.

This de�nes the bandwidth parameter ĥmaxa . Then, the long-run variance is computed

as �̂20 = T�1
PT

t=1 ~u
2
t + 2T

�1PT�1
j=1 w(j=ĥ

max
a )

PT
t=j+1 ~ut~ut�j, where ~ut are the estimated

residuals under the null hypothesis and w(�) is the quadratic spectral kernel function.

Provided that �̂20
p! �20, where

p! denotes convergence in probability, the F0 (mj 0) and

F0 (m+ 1jm) statistics converge to the limiting distribution given in Propositions 6 and

7 of Bai and Perron (1998), respectively. It is also of interest to analyze the limiting dis-

tribution of the F0 (m+ 1jm) statistic when yt � I (1), which is provided in the following

theorem.

Theorem 4 Let fytgTt=1 be a stochastic process with the DGP given by (1) and (2) with

� = 1 � c=T , 0 � c < 1. Under the null hypothesis that there are m structural breaks

with T 0B;m=T ! �0B;m as T ! 1, the F0 (m+ 1jm) statistic given in (11) converges as

T !1 to:

F0 (m+ 1jm)) sup
1�i�m+1

sup
��2�i(�)

�
�

Z 1

0

W �
c (r; �

0
B;m)

2dr

��1
Hc

�
�0i�1; �� ; �

0
i

�
:

The proof is given in Appendix A. An interesting feature that derives from the lim-

iting distribution given in Theorem 4 is that it is independent of nuisance parameters

and, hence, approximate critical values can be computed. Further, if we compare the

limiting distributions given in Theorems 2 and 4, we will realize that they only di¤er on

�
R 1
0
W �
c (r; �

0
B)
2dr; a strictly positive term.

4.2 The long-run variance for the BP statistics when yt � I (1)

The procedure that is essayed in this paper basically mimics the one described above

for the S1 statistic, but instead of relying on an autoregressive parametric estimator of

the long-run variance, we restore on a non-parametric one. To be speci�c, the estimated

residuals from (22) �i.e., v̂t, which correspond to the alternative hypothesis of T̂B;mmax

structural breaks �are used to estimate the long-run variance as �̂21 = (T � 1)
�1PT

t=2 v̂
2
t+
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2 (T � 1)�1
PT�1

j=2 w(j=ĥ
max
a )

PT
t=j+1 v̂tv̂t�j, where the bandwidth of the (quadratic) spec-

tral window is selected with Andrews (1991) automatic procedure using v̂t as well. Pro-

vided that �̂21
p! �21, the F1 (mj 0), F1 (m+ 1jm) and F

j
1 (m+ 1jm), j 2 fa; bg, statistics

converge to the limiting distribution given in Theorems 1 to 3, respectively.

5 Monte Carlo simulations

The �nite sample performance of the statistics is analyzed using the DGP:

yt =
mX
i=1


iDUi;t + ut; ut = �ut�1 + "t; (26)

with u0 = 0, "t � iid N (0; 1), and � = 1� c=T , 0 � c � 30, for the I(1) and NI(1) cases,

and � 2 f0; 0:5; 0:8g for the I(0) case. The simulation experiment has dealt with up to

two structural breaks located at �0B;1 = 0:5, for m = 1, and �0B;2 = (0:2; 0:8), for m = 2,

with the sample size given by T 2 f100; 300; 1000g and considering up to mmax = 5

structural breaks. Following Harvey, Leybourne and Taylor (2010), the magnitude of the

level shifts is held constant across the I(1), NI(1) and I(0) cases that are used in this

section, rather than scaling it according to the order of integration, so as to provide some

coherence across di¤erent values of �.4 This has implied the de�nition of 
i = 
� 8i, with


� 2 f1; 5g. The nominal size is set at the 5% level of signi�cance and 1,000 replications

are conducted using Matlab.5 Throughout this section, the value of k in (23) and (25) is

selected using the BIC with a maximum of kmax =
�
4(T=100)1=4

�
lags.

5.1 No break versus some �xed number of breaks test statistics

5.1.1 Empirical size

Tables B.6 and B.8 present the empirical size �i.e., 
i = 0 8i in (26) �of the statistics

for the I(1) and NI(1) cases considering three selected values of c 2 f0; 15; 30g and where
4Simulation results for the increasing and shrinking break magnitudes are available upon request.
5The simulation experiment uses the asymptotic critical values in Bai and Perron (1998) for the BP

statistics when d = 0, and the ones computed in this paper when d = 1. The computation of the HLT
statistics is carried out setting w = 0:10 and using the asymptotic critical values in Harvey et al. (2010).
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the LRV is estimated using the OAAT and the joint break dates estimation procedures,

respectively, with mmax = 5. In general, results are similar for both LRV estimation

procedures. As can be seen, the empirical size of F1 (mj0) is close to the nominal one when

the assumed order of integration of the time series matches the true d, whereas the statistic

becomes conservative otherwise. For m = 1, the empirical size of F0 (mj0) tends to the

nominal one as c > 0 increases and, interestingly, it does not exceed the 5% when the

wrong d is assumed (i.e., when c = 0). For m > 1, F0 (mj0) becomes conservative. These

features de�ne the performance of the union statistic FU (mj0), which shows rejection

rates that are close to the nominal size when c = 0 and becomes conservative when

c > 0. The double maximum statistics perform similarly. The UDmaxd and WDmaxd,

d 2 f0; 1g, statistics have the right empirical size when the true d is assumed, and they

become conservative otherwise. This behavior translates to the double maximum union

statistics. UDmaxU and WDmaxU under-reject the null hypothesis when c = 0 and

become very conservative when c > 0.

Tables B.7 and B.9 contain the empirical size results for the I(0) case with the LRV

estimated using the OAAT and joint break dates estimation methods, respectively. As

above, similar conclusions are obtained regardless of the LRV estimate that is used. As

predicted by the theory, F1 (mj0) never rejects the null hypothesis, whereas the empirical

size of F0 (mj0) either attains the nominal one (m = 1) or takes a lower value (m > 1

with T = 100 and T = 300), regardless of �. These features imply that the empirical size

of FU (mj0) is smaller than 5% in all cases. The UDmax1 and WDmax1 statistics never

reject their null hypotheses, and UDmax0 and WDmax0 have an empirical size close to

the nominal one, regardless of �. Finally, UDmaxU presents mild under-size distortions,

whereas WDmaxU is very conservative. All these elements lead us to recommend the

use of the proposed union statistics in empirical analyses to conduct robust statistical

inference about the presence of level shifts a¤ecting the time series.
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5.1.2 Empirical power

Tables B.6 and B.8 summarize the empirical power for the I(1) and NI(1) cases for the

two LRV estimation strategies, respectively, when m = 1 and c 2 f0; 15; 30g. In general,

the picture is qualitatively similar for both LRV estimates, although the use of the joint

break dates estimation method produces higher power as 
 increases for given values of T

and c. Let us �rst analyze the results that are obtained for the I(1) case. As expected, the

rejection rates of F1 (mj0) approximate to the nominal size as T increases. Interestingly,

F1 (mj0) shows some ability to detect the presence of structural breaks in �nite samples

as 
 increases. F0 (mj0) also behaves as expected, with rejection rates that, in the limit,

are below the nominal size.

As for the NI(1) case, we observe that the rejection rates of F1 (mj0) tend to zero as T

increases, as predicted by the theory, regardless of 
 and the LRV estimate that is used.

It is worth noting that for small T , F1 (mj0) tends to detect the existence of parameter

instabilities for large break magnitudes. The empirical power of F0 (mj0) increases with 


for given c and T values, although, due to the near-to-unit set-up that has been de�ned, it

obviously reduces as T increases. The double maximum statistics show a similar pattern,

with the UDmax statistics outperforming the WDmax ones. As mentioned above, the

use of the LRV estimate that is based on the joint break dates estimation produces more

powerful statistics. Consequently, the statistics feature non-negligible empirical power

when the correct d is speci�ed. When this is not the case, the behavior of the statistics

either does not harm (the rejection rates are below the nominal size) or helps in the

detection of structural instabilities. This establishes the basis for the de�nition of a

union statistic that will allow performing statistical inference that is robust to d. The

simulation results con�rm the utility of these union statistics, either when considering a

�xed alternative or when computing the double maximum statistics. As expected, the

empirical power of the union statistics is lower than the one o¤ered by the corresponding

statistic that assumes the correct d. As above, UDmaxU outperformsWDmaxU in terms

of empirical power.

Tables B.7 and B.9 provide the empirical power for the I(0) case. As above, the LRV
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obtained with the use of the joint break dates estimation strategy produces empirical

power improvements, more evident as 
 increases, regardless of the given values of T and

�. The F1 (mj0) statistic never rejects the null hypothesis, whereas the empirical power

of F0 (mj0) approaches one as 
 and/or T increase, although it reduces in �nite samples

as � gets large. The empirical power of the union statistic is somewhat lower than the one

shown by F0 (mj0), but this is the price that needs to be paid to have a robust approach.

Finally, the UDmax1 statistic is very conservative, and the empirical power of UDmax0

and UDmaxU is marginally below the F0 (1j0) and FU (1j0) ones. In all cases, UDmax

outperforms WDmax.

The speci�cation that includes m = 2 structural breaks leads to similar conclusions

� see Tables B.13 and B.14. In all, the simulation evidence recommends the use of

the union statistics in empirical applications to test the presence of level shifts without

prior knowledge of the order of integration of time series. Although both LRV estimates

produce similar results, the one that is based on the joint estimation of the break dates

leads to empirical power improvements.

5.2 Sequential test statistics

5.2.1 Empirical size

Table B.10 reports the empirical size (
 = 0) of the BP and HLT statistics to test the null

hypothesis of m structural breaks against the alternative hypothesis of m+ 1 structural

breaks, 0 � m < mmax, on the I(1) and NI(1) frameworks. For simplicity and unless

required, Fd (m+ 1jm) is denoted by Fd, d 2 f0; 1g, and, similarly, F j1 (m+ 1jm) and

F jU (m+ 1jm) are designated as F
j
1 and F

j
U , j 2 fa; bg, respectively.

In general, the empirical size of the BP sequential statistics is close to the nominal one

when the correct d is assumed. As can be seen, the empirical size of F1 and F
j
1 , j 2 fa; bg,

tends to the nominal one as T increases, whereas F0 shows mild under-size distortions

for the NI(1) case. Interestingly, when the wrong d is imposed, F0 tends to be mildly

under-sized, and F1 and F
j
1 , j 2 fa; bg, never reject their null hypotheses. Consequently,

the empirical size remains under control when facing misspeci�cation errors concerning
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the order of integration of the stochastic process. This characteristic leads the union

statistics to retain a controlled empirical size regardless of d �F jU , j 2 fa; bg, are either

correctly sized (c = 0) or conservative (c > 0) statistics. Finally, it is worth noting

that these features are obtained for both the OAAT and joint break dates estimation

strategies.

Let us now focus on the performance of the HLT statistics. When the true d is

assumed, the empirical size of S1 approaches the 5% as T increases, although over-

size distortions are observed in �nite samples �this feature has to be considered when

conducting the empirical power analysis. The empirical size of S0 is close to the nominal

one for T = 100, although S0 becomes conservative for large T .6 When the wrong d is

assumed, the empirical size of Sd, d 2 f0; 1g, tends to zero as T increases. The union

statistic (U) inherits all these features: (i) it shows over-size distortions in �nite samples

when yt � I (1) �although the empirical size tends to the 5% as T gets large �and (ii)

it becomes conservative as c and/or T increase when yt � I (0).

Table B.11 collects the results for the I(0) case. Now the empirical size of F0 equals

the nominal one regardless of T and �, whereas F1 and F
j
1 , j 2 fa; bg, never reject their

null hypotheses. This implies conservative F jU , j 2 fa; bg, statistics. Note that these

characteristics are observed irrespective of the break dates estimation strategy that is

used. As above, the empirical size of S0 is close to the nominal one for T = 100, but

S0 becomes conservative in large samples. Further, S1 (almost) never rejects the null

hypothesis, which implies a conservative U statistic.

Although it is di¢ cult to establish a clear dominance of one set of statistics over the

other, we can conclude that the BP sequential statistics present better overall performance

in terms of empirical size. This statement is supported by the fact that the over-size

distortions in �nite samples featured by the HLT statistics are not present on the BP

statistics for the I(1) case. In both cases, the corresponding union statistics become

conservative under the NI(1) case, whereas for the I(0) case there is not a clear dominance

6Results available upon request show important size distortions for S1 (0.40) and S0 (0.26) when
T = 50, which is not the case for F1 (0.10), F a1 (0.06), F

b
1 (0.10) and F0 (0.04) �between parenthesis,

the empirical size under the respective null hypothesis.
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of one approach over the other � the HLT union statistic only shows less under-size

distortions than F jU , j 2 fa; bg, in three out of �fteen situations that have been analyzed,

whereas F jU , j 2 fa; bg, are superior to the HLT union statistic in four out of �fteen

situations; in the rest of situations the rejection rates are equivalent.

5.2.2 Empirical power

Table B.10 presents the empirical power for the one structural break case. When yt � I (1)

and regardless of 
, the rejection rates of F1, F
j
1 , F

j
U , j 2 fa; bg, S1 and U tend to the

nominal size as T increases. This is an expected result, since the �xed magnitude of

the structural break becomes negligible in the limit. As for the statistics that assume a

wrong d, the rejection rates of S0 tend in the limit towards zero, whereas the ones for F0

take values around the 5%, especially when the joint break dates estimation strategy is

implemented. Consequently and in the worst scenario, the signal sent by S0 might lead to

reduce the empirical power of the union statistic, a feature that should not be expected

for F0.

Let us now analyze the performance of the statistics under the NI(1) scenario. In

general, F0 encompasses S0, being the dominance more prominent when the joint break

dates estimation strategy is applied. The empirical power of S1 tends towards zero as T

increases, whereas F1 and F
j
1 , j 2 fa; bg, never reject their null hypotheses. The ability of

S1 to detect the presence of structural breaks in �nite samples �although it should bear

in mind the size distortions that have been found �leads U to outperform F jU , j 2 fa; bg,

when c = 15 and T = 100. The picture changes as c and 
 increase, since the empirical

power of F jU , j 2 fa; bg, based on the joint break date estimation, is superior to the U

one.

Table B.11 collects the empirical power for the one structural break case for the

I(0) case. As predicted by the theory, F1 and F j1 , j 2 fa; bg, never reject their null

hypotheses regardless of 
 and �. The empirical power of F0 is non-negligible �with

values that tend to one as 
 and T increase �although it decreases as � gets large for

given values of 
 and T . The good performance of F0 translates into the empirical power
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of F jU , j 2 fa; bg, with values that approach to one as 
 and T increase. The use of the

joint break dates estimation strategy produces marginal improvements. As for the HLT

statistics, the rejection rates of S1 tend to zero as T increases, although this statistic

shows some ability to detect the presence of structural breaks for small T . The empirical

power of S0 and U is non-negligible, with values that tend to one as 
 and T increase,

although it experiences a reduction as � increases for given values of 
 and T . Finally, in

general, we observe that F jU , j 2 fa; bg, outperform U �the exception is found for 
 = 5

with � = 0:8 and T = 100.

The results for m = 2 structural breaks are presented in Table B.15 and lead to

similar conclusions. All in all, the simulation evidence indicates that the empirical power

of F jU , j 2 fa; bg, especially based on the joint break date estimation, is superior to the

empirical power of the U statistic. Consequently, the robust BP-type sequential statistics

that have been proposed in the paper can be used in empirical analyses to address the

presence of multiple level shifts without prior knowledge about the order of integration

of the time series.

5.2.3 Estimation of the number and position of the structural breaks

Table B.12 reports the frequency of the estimated number of structural breaks for the

union statistics when m = 1 �results for the other statistics are available upon request.

Let us �rst focus on the I(1) and NI(1) cases. As can be seen, over-estimation of the

number of structural breaks is not an issue for any of the statistics, with values for the

frequency of the estimated number of structural breaks that mimic the empirical power

�gures that have been discussed above. The U statistic outperforms F jU , j 2 fa; bg, for

small values of 
 and �nite T �mainly due to the over-size distortions that experience

the former statistic �although the converse situation is found as 
, c and T increase. As

expected, the frequency of the estimated number of structural breaks tends towards the

5% nominal signi�cance level for large T . For the I(0) case, F jU , j 2 fa; bg, outperform U

in general �the exception is found for T = 100 and � = 0:8. The use of the joint break

dates estimation strategy leads to over-estimate the number of structural breaks, so that
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the statistics that are based on the OAAT strategy would be the preferred ones from this

point of view.

Figure B.1 collects the densities of the estimated break fraction when there is evidence

of structural breaks for m = 1 and 
 = 5. To ease comparison, we have excluded from

the analysis the few occasions in which the procedures have detected more than one

structural break. It would be possible to include those cases considering just one of the

estimated break points �for instance, the �rst one for the OAAT estimation strategy and

the earliest one for the joint estimation strategy �although this might introduce noise

and di¢ cult the interpretation of the results. For I(1) stochastic processes, the densities

of the estimated break fraction associated to the three sequential testing procedures are

centered around the true break fraction parameter. However, the estimation that is

derived from the BP sequential statistic that is based on the joint estimation procedure

outperforms the other ones �this is more evident as T increases. Similar conclusions are

found for the NI(1) case, with the only exception when T = 1000 and c = 30, in which

case the HLT-based estimate marginally outperforms the others. Finally, the simulation

results for the I(0) case show that the three estimation procedures are nearly identical in

terms of break date location �the densities are overlapped.

All in all, the BP sequential statistic that is proposed in this paper o¤ers the possi-

bility of conducting a robust analysis of the presence of structural breaks with desirable

features. Simulation evidence indicates that the empirical size of the statistic is close

to the nominal one, and the statistics have decent empirical power. Although the use

of the joint estimation strategy to estimate the break dates might lead to over-estimate

the number of structural breaks, the location of the structural breaks that is obtained is

preferred to the OAAT-strategy-based statistics one.
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6 Empirical illustration

The purchasing power parity hypothesis (PPP) has not ceased to arouse interest, both

academically and from the point of view of policymakers.7 For academics, PPP is a key

assumption on which rely most theoretical open economy macro-models and a reference

to assess the viability of currency unions and setting parities in monetary unions. For

policymaking and policy design is crucial in measuring exchange rate misalignments and,

furthermore, real exchange rate is a measure of competitiveness. The PPP hypothesis

postulates that the exchange rate between two currencies should equate the two prices

level if expressed in a common currency. If the nominal exchange rate is de�ned as the

domestic price of a foreign currency, then the real exchange rate (RER) is the nominal

exchange rate adjusted for national prices di¤erences. Consequently, if PPP holds, the

RER behavior should be constant over time and its movements represent deviations from

the PPP.8 The history of the empirical testing of the PPP has gone hand in hand with

the spectacular development of econometric techniques and, in fact, the PPP has been a

test bench for most econometric tools in the �eld of time series.

One of the most widespread ways in the literature to carry out the empirical validation

of the PPP is to assess the order of integration of the real exchange rate. However, this

approach soon faced the problem of the low power of unit root tests in �nite samples,

which was one of the causes of the loss of con�dence in PPP during the eighties. The

consideration of longer time periods might solve this drawback, although this increases

the probability of the presence of structural breaks, a feature that is relevant for the

implementation of popular unit root tests.9 Therefore, the correct detection of structural

7This hypothesis has a long history in Economics since its early formulation in the sixteenth century
in the school of Salamanca, later recovered by the English classical school in the nineteenth century and
formally coined and developed throughout the twentieth century.

8Con�dence in compliance of the PPP has undergone di¤erent stages over the years. In its early
stages, the PPP faced di¢ culties for its correct measurement, while in the Bretton-Woods period RER
was considered stable over long periods and real exchange rate constant. After the period of high
volatility that followed the bankruptcy of the Bretton-Woods system, con�dence in the PPP begins to
break apart, although it was still accepted short-run variation in RER, but long-run stability. However,
during eighties, there was strong evidence against PPP, and it will be in the nineties when long-run PPP
revived. See Sarno and Taylor (2003) for a summary of the literature.

9Froot et al. (1995), Lothian and Taylor (1996, 2000) and Taylor (2002) are some examples of testing
PPP with long historical databases.
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changes in the trajectory of the real exchange rate becomes a key issue for the PPP

analysis. Although there exists a �urry of methods for structural changes detection, the

problem is tangled given that RER are very persistent series whose dynamics are very

close to the unit root and that balance between the stationarity and the unit root region.10

Therefore, the proposal that has been designed in this paper is of great relevance for PPP

research. Following Bai and Perron (1998, 2003a), the empirical strategy �rst computes

the UDmax andWDmax statistics. If these statistics indicate the presence of structural

instabilities, the analysis proceeds to detect the number and location of structural changes

by applying the sequential statistics. However, to compare the results of the BP and HLT

sequential statistics, the second step will be carried out regardless of the results obtained

in the �rst step. Finally, Appendix C summarizes the results of the unit root hypothesis

testing and computes the degree of persistence of the di¤erent RER time series that have

been used.

6.1 Databases

The analysis is carried out using two di¤erent databases. The �rst one is provided by

Jordà, Schularick and Taylor (2018) � hereafter, JST database � and collects annual

data from 1870 to 2020 for Austria, Belgium, Canada, Denmark, Finland, France, Ger-

many, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United

Kingdom and United States of America �i.e., N = 17 countries.11 The RER (Qn;t) for

country n at time t has been computed as Qn;t = P �n;t=(PtEn;t), where P
�
n;t are the foreign

consumer price index (CPI), Pt the US CPI and En;t the nominal exchange rate against

the US dollar, n = 1; : : : ; 16. Taking logs we obtain the RER as qn;t = p�n;t � pt � en;t.

Figure C.1 shows the evolution of RER for all countries. Throughout the last century

and a half, important changes in the international-monetary system have occurred. The

�rst stage of the Gold standard era 1870-1914, characterized by stability and an increase

in globalization; the international monetary system during the interwar period 1918-

1939 distinguished by volatility and the failed attempt to recover the Gold standard; the

10This high persistence of the RER has been documented, for instance, by Rossi (2005).
11The original data end in 2016, but we have updated them until 2020 using the same sources.

30



Bretton-Woods system of �xed exchange rates (1944-1973) which led a long period of

stability until the decade of the seventies; the return to the �otation in 1973 after the

turbulences of the seventies and the end of the Bretton-Woods era; the emergence of local

monetary integration zones among which the creation of the euro in 1999 stands out. All

these events are potential sources of structural breaks.

The second database that is used is the Penn World Tables (PWT) extension by

Feenstra, Inklaar and Timmer (2015). They construct PPP exchange rates with di¤erent

prices with the purpose to convert gross domestic product (GDP) at national prices

to a common currency (US dollars) making them comparable across countries. The

database comprises a total of N = 182 countries and, in general, the time period goes

from 1950 to 2019.12 The revised PWT uses three de�nitions of PPP exchange rates

based on di¤erent concepts of prices: consumption of households and government (RER-

C), domestic absorption (real consumption plus investment, RER-A) and output-side

GDP de�ator (RER-O). Therefore, we de�ne the RER as qln;t = p�ln;t � plt, where p
�l
n;t

is the CPI of country n at time t, at PPP level of US GDP, and plt is the CPI of US,

n = 1; : : : ; N . Superscript l, l 2 fC;A;Og, refers to the di¤erent concepts that de�ne

the price series: Real consumption of households and government (C), Real domestic

absorption (A) and output-side real GDP (O). Figure C.2 presents the evolution of these

RER, which may also be a¤ected by the events mentioned above.

6.2 Testing the presence of multiple level shifts

We begin by applying the Fd(mj0), d 2 f0; 1g, statistics described in Section 3.2.1 that

test the null hypothesis of no structural break against the alternative that there are

m structural breaks. Results available upon request indicate that the UDmaxU and

WDmaxU statistics computed for the historical database only detect the presence of

structural changes for Japan, regardless of the estimation break dates strategy.13 The

evidence for the PWT database depends on the de�nition of RER that is used. For

12Countries with less than 30 observations have been discarded, so that N = 180 (for the OAAT break
dates estimation strategy) or N = 157 (for the joint break dates estimation strategy).
13The UDmax0 also �nds evidence of structural breaks in Belgium, the Netherlands and Switzerland

at the 10% level of signi�cance when the break dates are jointly estimated.

31



RER-C, the presence of structural breaks is found in 30 (UDmaxU) and 28 (WDmaxU)

countries when the OAAT break dates estimation strategy is used, and in 13 (UDmaxU)

and 8 (WDmaxU) countries when the joint break dates estimation strategy is applied.

With RER-A the �gures are 32 (UDmaxU) and 27 (WDmaxU), when the OAAT esti-

mation procedure is implemented, and 19 (UDmaxU) and 13 (WDmaxU), for the joint

break dates estimation procedure. Finally, for RER-O, we �nd evidence of structural

breaks in 37 (UDmaxU) and 27 (WDmaxU) countries (OAAT), and in 25 (UDmaxU)

and 15 (WDmaxU) countries (joint). Therefore, these results indicate scarce evidence of

structural breaks a¤ecting the RER time series that have been analyzed.

We have also computed the sequential statistics for all countries to compare the pic-

tures that are obtained by the HLT and BP statistics. The �rst interesting feature con-

cerns the di¤erence in the number of breaks detected by both methods. While the HLT

statistics �nd structural changes that are statistical signi�cant at the 5% signi�cance level

in seven out of the sixteen analyzed countries,14 the BP statistics only do so for Japan.

Regarding the location of the structural breaks, all breaks detected by the HLT statistics

are placed around the World War II, while the BP statistics only �nd a structural break

for Japan in 1970 when the OAAT strategy is used, and two breaks (1945, 1971) when

the joint break dates estimation method is applied. The striking di¤erence in results

might be due to the conservative feature that show the BP statistics, although a visual

inspection of Figure C.1 might suggest that the structural changes detected by the HLT

statistics might be due more to the presence of large outliers than to changes in the level

of RER.

The analysis that is based on the PWT database produces similar conclusions. Due

to the large number of countries, we present the results of the estimated break dates for

RER-C in Figure C.3 for both the OAAT and joint break dates estimation strategies.

Focusing on the results for the U and F bU statistics, we �nd 206 (U), 20 (F
b
U , OAAT) and

10 (F bU , joint) estimated break dates.
15 For the other RER de�nitions, the �gures are

14To be speci�c, the countries and break dates are: Denmark (1945), Italy (1941), the Netherlands
(1945), Norway (1945), Portugal (1919), Spain (1946) and UK (1945).
15The results for the U and F bU (OAAT) statistics are based on a sample of 180 countries, whereas the

F bU (joint) statistic is computed for 157 countries.
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222/19/14 (RER-A) and 226/21/19 (RER-O). The percentages of cases in which the break

dates that are estimated by the HLT and BP procedures coincide (totally or partially) are

97.23 (RER-C), 88.33 (RER-A) and 82.78 (RER-O) for the OAAT estimation strategy,

and 94.91 (RER-C), 86.63 (RER-A) and 81.53 (RER-O) for the joint estimation strategy.

For RER-C and according to the HLT method, most of the break dates are located

in the decade of the 80s followed by those of the 90s, �rst decade of the 21st century

and, lastly, during the 70s. With the BP method, the scarce number of breaks are

concentrated also on the decade of the 80s and in 1978, 1990, 1991 and 1996. Similar

results are obtained when using the second de�nition of RER � the estimated breaks

using HLT procedure resemble the ones obtained for RER-C; results for BP place the

estimated breaks in the decades of 80s and 90s. Finally, in the case of RER-O the

structural breaks are mainly found in the 80s with some breaks in the 60s and 90s by

BP statistic, whereas the breaks detected by HLT have a similar location than the ones

estimated with the previous price de�nitions. The highest number of breaks is mostly

concentrated in underdeveloped countries.16

We have also studied the coincidences among the three de�nitions of RER. Let us

�rst focus on HLT statistics. If we compare RER-C with RER-A based results, we can

observe that the two price de�nitions coincide in detecting no structural breaks in 30%

of cases, in 30% they coincide in the number and location of the breaks and in 36.11%

they partially do so. Therefore, only in 3.99% of cases both de�nitions produce di¤erent

results. Comparing RER-C and RER-O these �gures are, respectively, 22.78%, 27.78%

and 33.89% with a residual of 15.65%. Finally, comparing RER-A and RER-O provides

the following percentages: 22.78%, 27.78% and 31.11%, with a residual of 18.33%. As for

the BP statistics computed using the OAAT strategy, the results are 82.78%, 2.78% and

4.44% (RER-C vs. RER-A), 80.00%, 2.22% and 6.11% (RER-C vs. RER-O) and, �nally,

79.44%, 4.44% and 2.22% (RER-A vs. RER-O) � the residuals are, respectively, 10,

16Countries that account for 4 or even 5 breaks are Azerbaijan, Bulgaria, Haiti, Lithuania, Latvia,
Mongolia, New Zealand, Peru, Slovenia and Vietnam when using RER-C. For RER-A these countries
are Grenada, Lithuania, Latvia, North Macedonia, Nepal, Peru, Slovenia, Tajikistan and Vietnam.
Finally, for RER-O these countries are Azerbaijan, Croatia, Haiti, Israel, Latvia, North Macedonia,
Peru, Philippines, Slovakia, Slovenia, British Virgin Islands and Vietnam.
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11.67 and 14.9%. With the joint break dates estimation strategy we obtain the following

�gures: 87.9, 0.64 and 4.46% and a residual of 7% when comparing RER-C vs. RER-A,

84.08, 1.27 and 3.18% with a residual of 11.47% when comparing RER-C vs. RER-O

and, �nally, 82.17, 0.64 and 3.82% with a residual of 13.37% when comparing RER-A vs.

RER-O. Therefore, the results with the three RER de�nitions are very similar, although

RER-O is the one that yields the greatest di¤erences.17

The empirical evidence that has been obtained so far allows us to extract some stylized

facts. First, the most robust structural changes, detected in a large sample of countries

and with both methodologies occur during the eighties, nineties and seventies, when

the Bretton-Woods system goes bankrupt and the international monetary system enters

mostly in a �oating regime. Second, there is no signi�cant e¤ect of the inception of the

euro on the behavior of the real exchange rate, since only Ireland presents a break in 2002

with the RER-C. Finally, the rest of the structural breaks that have been detected with

the HLT method are found in underdeveloped countries, which suggests that they could

be associated with speci�c crises instead of changes in the equilibrium of the RER.

Summing up, the HLT method tends to �nd many more breaks than the BP one. This

might be due to the fact that the HLT method looks throughout the sample searching for

local breaks inside a window, while the BP considers it globally.18 The size distortions

that have been found in the simulation exercise above suggests this explanation. This

seems to indicate that the HLT method could interpret very local phenomena as true

changes in the long-term equilibrium of the RER and, therefore, its results should be

taken with caution. Otherwise, our con�dence in the use of long historical databases to

test the PPP would be adversely a¤ected. Finally, based on the robust conclusion about

the presence of multiple level shifts that has been obtained, the PPP hypothesis can be

tested using the ADF unit root statistic with or without the inclusion of level shifts. This

analysis is provided in Appendix C for completeness and shows that the PPP compliance

is broad (around 81%) with the JST database, whereas evidence in favor of the PPP is

17The results obtained with the sequential procedure are coherent with the Fd(mj0), d 2 f0; 1g, ones.
18Another feature to consider concerns the amplitude of the window for the HLT statistics, which being

smaller (0.1) than the one used for the BP statistics (0.15), generates more possibilities of structural
breaks detection.
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scarce (around 25%) for the PWT database.

7 Conclusions

The paper extends the methodology in Bai and Perron (1998) to the analysis of multiple

level shifts a¤ecting I(1) and NI(1) non-stationary stochastic processes. The proposal

de�nes a uni�ed framework where the same testing procedure can be used to detect the

presence of multiple level shifts regardless of the order of integration of the time series.

The paper derives the limiting distribution of the di¤erent statistics that have been

proposed and provides the corresponding asymptotic critical values. A side contribution

has involved the design of dynamic optimization algorithms that permit the feasible

implementation of the statistics in empirical applications.

An extensive simulation experiment has been conducted to compare our proposal with

other statistics available in the literature. We show that, in general, our approach o¤ers

better �nite sample performance provided that the empirical size is controlled, and the

empirical power is non-negligible. The use of the statistics is illustrated with the analysis

of real exchange rates, considering the presence of multiple level shifts. The empirical

application uses two di¤erent databases. The �rst one provides historical time series

that allow us to cover a long time period, whereas the second one permits a worldwide

perspective. Finally, we study the in�uence of the above analysis on the PPP test.
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A Mathematical appendix

A.1 Proof of Theorem 1

First, note that the SSR of the model under the null of no structural break is given by:

SSR (T ) =
TX
t=1

yt � T �y2;

whereas the SSR under the alternative hypothesis of some �xed structural breaks is

de�ned by:

SSR (TB;m) =
TX
t=1

yt �
m+1X
i=1

(Ti � Ti�1) �y
2
i ;

with the convention that T0 = 0 and Tm+1 = T . Provided that � = 1� c=T , 0 � c <1,

in (2), we have that T�1=2yt ) �1Wc (r), whereWc (r) =
R r
0
e�(r�s)dW (s) denotes a stan-

dard OU process and W (s) a standard Brownian motion. Then, by the Functional Cen-

tral Limit Theorem (FCLT), (Ti=T � Ti�1=T )
�1 T�3=2

PTi
t=Ti�1+1

yt ) �1 (�i � �i�1)
�1R �i

�i�1
Wc (s) ds. Given that �̂

2
1

p! �21, we have that the F1 (mj 0) statistic is given in (6)

converges towards:

F1 (mj 0) = m�1�̂�21 T�2 max
TB;m2T�(�)m

"
m+1X
i=1

(Ti � Ti�1) �y
2
i � T �y2

#

) sup
�B;m2�(�)m

m�1

"
m+1X
i=1

(�i � �i�1)

�Z �i

�i�1

Wc (s) ds

�2
�
�Z 1

0

Wc (s) ds

�2#
� sup

�B;m2�(�)m
Kc (�B;m) :

Finally, the derivation of the limit distribution for the double maximum statistics is

straightforward and only requires taking the maximum of the (weighted) sequence of the

limiting distribution of F1 (mj 0) for di¤erent values of m 2 f1; 2; : : : ;mmaxg.
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A.2 Proof of Theorem 2

Let us �rst focus on the limit of the expression:

A
�
T 0i�1; T

0
i

�
= T�2�̂�21

24 T 0iX
t=T 0i�1+1

(yt � �y(T 0i�1;T 0i ))
2 �

�X
t=T 0i�1+1

(yt � �y(T 0i�1;�))
2 �

T 0iX
t=�+1

(yt � �y(�;T 0i ))
2

35 :
(A.1)

To simplify the notation, in what follows we use �yi = �y(T 0i�1;T 0i ), �yi;1 = �y(T 0i�1;�) and

�yi;2 = �y(�;T 0i ) to denote the mean using the whole segment, and the �rst and second

subsegments de�ned by � , respectively. The �rst element of A
�
T 0i�1; T

0
i

�
is de�ned by:

T�2�̂�21

T 0iX
t=T 0i�1+1

(yt � �yi)2 = T�2�̂�21

T 0iX
t=T 0i�1+1

0@yt � 1

T 0i � T 0i�1

T 0iX
t=T 0i�1+1

yt

1A2

:

Provided that � = 1� c=T , 0 � c <1, in (2), by the FCLT we have that:

T�2�̂�21

T 0iX
t=T 0i�1+1

(yt � �yi)2 )
Z �0i

�0i�1

 
Wc (r)�

1

�0i � �0i�1

Z �0i

�0i�1

Wc (s) ds

!2
dr;

given that �̂21
p! �21. The same applies to the other two elements of A

�
T 0i�1; T

0
i

�
so that

we obtain:

A
�
T 0i�1; T

0
i

�
)

Z �0i

�0i�1

 
Wc (r)�

1

�0i � �0i�1

Z �0i

�0i�1

Wc (s) ds

!2
dr

�
Z ��

�0i�1

 
Wc (r)�

1

�� � �0i�1

Z ��

�0i�1

Wc (s) ds

!2
dr

�
Z �0i

��

 
Wc (r)�

1

�0i � ��

Z �0i

��

Wc (s) ds

!2
dr:

Finally, by the FCLT:
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F1 (m+ 1jm) ) sup
1�i�m+1

sup
��2�i(�)

24Z �0i

�0i�1

 
Wc (r)�

1

�0i � �0i�1

Z �0i

�0i�1

Wc (s) ds

!2
dr

�
Z ��

�0i�1

 
Wc (r)�

1

�� � �0i�1

Z ��

�0i�1

Wc (s) ds

!2
dr

�
Z �0i

��

 
Wc (r)�

1

�0i � ��

Z �0i

��

Wc (s) ds

!2
dr

35 : (A.2)

Note that this limiting distribution can be written as a function of independent func-

tionals of demeaned OU processes. Let us denote the �rst term on the right-hand side of

(A.2) as:

A0
�
�0i�1; �

0
i

�
=

Z �0i

�0i�1

 
Wc (r)�

1

�0i � �0i�1

Z �0i

�0i�1

Wc (s) ds

!2
dr;

which can also be expressed as:

A0
�
�0i�1; �

0
i

�
=

�
�0i � �0i�1

�2 Z 1

0

�
Wc (a)�

Z 1

0

Wc (b) db

�2
da

=
�
�0i � �0i�1

�2 Z 1

0

W �
c (a)

2 da;

with W �
c (a) = Wc (a) �

R 1
0
Wc (b) db, a =

�
r � �0i�1

�
=
�
�0i � �0i�1

�
and b =

�
s� �0i�1

�
=�

�0i � �0i�1
�
. The same applies to the second and third element on the right-hand side of

(A.2), so that the limiting distribution can be alternatively expressed as:

F1 (m+ 1jm) ) sup
1�i�m+1

sup
��2�i(�)

(�0i � �0i�1)
2

�Z 1

0

W �
c (a)

2 da (A.3)

�
Z l

0

W �
c;1 (a)

2 da�
Z 1

l

W �
c;2 (a)

2 da

�
� sup

1�i�m+1
sup

��2�i(�)
Hc

�
�0i�1; �� ; �

0
i

�
;

with l =
�
�� � �0i�1

�
=
�
�0i � �0i�1

�
, W �

c;1 (a) = Wc (a) �
R l
0
Wc (b) db and W �

c;2 (a) =

Wc (a)�
R 1
l
Wc (b) db.

A-3



It is possible to derive a simpli�ed expression of the limiting distribution of the statistic

if we note that (A.1) can be written as �we are in debt with one anonymous referee for

pointing out this simpli�cation:

A
�
T 0i�1; T

0
i

�
= T�2�̂�21

24(�yi;1 � �yi) �X
t=T 0i�1+1

(yt � �yi � �yi;1) + (�yi;2 � �yi)
T 0iX

t=�+1

(yt � �yi � �yi;2)

35
= T�2�̂�21

�
(�yi;1 � �yi)2(� � T 0i�1) + (�yi;2 � �yi)2(T 0i � �)

�
:

Let �T 0i =
�
T 0i � T 0i�1

�
and ��0i =

�
�0i � �0i�1

�
, so that �yi =

��T 0i�1
�T 0i

�yi;1 +
T 0i ��
�T 0i

�yi;2,

�yi;1 � �yi = T 0i ��
�T 0i

(�yi;1 � �yi;2) and �yi;2 � �yi = �
��T 0i�1
�T 0i

(�yi;1 � �yi;2). Then,

A
�
T 0i�1; T

0
i

�
= T�2�̂�21 (�yi;1 � �yi;2)2

�
(� � T 0i�1)(T

0
i � �)2

(�T 0i )
2

+
(T 0i � �)(� � T 0i�1)

2

(�T 0i )
2

�
= T�2�̂�21

(� � T 0i�1)(T
0
i � �)

�T 0i
(�yi;1 � �yi;2)2

= T�1�̂�21
(�� � �0i�1)(�

0
i � �� )

��0i
(�yi;1 � �yi;2)2: (A.4)

Since:

T�1=2(�yi;1 � �yi;2) ) �1

 Z ��

�0i�1

Wc (s) ds�
Z �0i

��

Wc (s) ds

!

= �1

 �
�0i � �0i�1

��
�� � �0i�1

� Z l

0

Wc (a) da�
�
�0i � �0i�1

��
�0i � ��

� Z 1

l

Wc (a) da

!
;

with a =
�
s� �0i�1

�
=
�
�0i � �0i�1

�
and l =

�
�� � �0i�1

�
=
�
�0i � �0i�1

�
. Then,

T�1=2(�yi;1 � �yi;2) ) �1

�
1

l

Z l

0

Wc (a) da�
1

1� l

Z 1

l

Wc (a) da

�
= �1

R l
0
Wc (a) da� l

R 1
0
Wc (a) da

l (1� l)
;
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so that,

A
�
T 0i�1; T

0
i

�
)

(�� � �0i�1)(�
0
i � �� )

��0i

�R l
0
Wc (a) da� l

R 1
0
Wc (a) da

�2
l2 (1� l)2

= ��0i l (1� l)

�R l
0
Wc (a) da� l

R 1
0
Wc (a) da

�2
l2 (1� l)2

= ��0i

�R l
0
Wc (a) da� l

R 1
0
Wc (a) da

�2
l (1� l)

:

Using these elements, it is straightforward to see that:

F1 (m+ 1jm)) sup
1�i�m+1

sup
��2�i(�)

264��0i
�R l

0
Wc (a) da� l

R 1
0
Wc (a) da

�2
l (1� l)

375 : (A.5)

As can be seen, the expressions (A.3) and (A.5) show that the limiting distribution of

F1 (m+ 1jm) depends on the length of the speci�c regime ��0i into which the additional

break date is searched.

A.3 Proof of Theorem 3

Using the elements in the previous proof, we can see that when � = 1� c=T , 0 � c <1,

in (2) the �rst element on the right-hand side of (16) converges towards:

�
T 0i � T 0i�1

��2
�̂�21

T 0iX
t=T 0i�1+1

(yt � �yi)2 =
�
�0i � �0i�1

��2
T�2�̂�21

T 0iX
t=T 0i�1+1

(yt � �yi)2

)
�
�0i � �0i�1

��2 Z �0i

�0i�1

 
Wc (r)�

1

�0i � �0i�1

Z �0i

�0i�1

Wc (s) ds

!2
dr

�
Z 1

0

W �
c (a)

2 da;
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with W �
c (a) de�ned above. The same applies to the other elements in (16) so that:

F a1 (m+ 1jm) ) sup
1�i�m+1

sup
��2�(�)

�Z 1

0

W �
c (a)

2 da

�
Z l

0

W �
c (a)

2 da�
Z 1

l

W �
c (a)

2 da

�
(A.6)

� sup
1�i�m+1

Jac (x) ;

As stated in Bai and Perron (1998), since over the di¤erent regimes the WSSR are com-

puted using non-overlapping observations, the weak limits in (A.6) are independent across

regimes, which implies that the limit distribution of the F a1 (m+ 1jm) statistic can be

computed as the maximum of m+1 independent random variables Jac (x). Consequently,

P (F a1 (m+ 1jm) � x) = Jac (x)
m+1 ;

and the critical values for the F a1 (m+ 1jm) statistic for di¤erent values of m and � can

be obtained from the distribution function Jac (x).

Similar developments can be applied to obtain the limit distribution of the second

modi�ed statistic, so that:

F b1 (m+ 1jm)) sup
1�i�m+1

sup
��2�(�)

�R l
0
Wc (a) da� l

R 1
0
Wc (a) da

�2
l (1� l)

� sup
1�i�m+1

J bc (x) :

A.4 Proof of Theorem 4

The key elements involved in the computation of the F0 (m+ 1jm) are given by:

A
�
T 0i�1; T

0
i

�
= �̂�20

24 T 0iX
t=T 0i�1+1

(yt � �yi)2 �
�X

t=T 0i�1+1

(yt � �yi;1)2 �
T 0iX

t=�+1

(yt � �yi;2)2
35 ; (A.7)

an expression that is similar to (A.1) but without rescaling by T�2 and with �̂21 replaced

by �̂20. Since � = 1� c=T , 0 � c <1, in (2), the rescaled elements inside the brackets in
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(A.7) converge towards:

T�2
T 0iX

t=T 0i�1+1

(yt � �yi)2 ) �21

Z �0i

�0i�1

 
Wc (r)�

1

�0i � �0i�1

Z �0i

�0i�1

Wc (s) ds

!2
dr

T�2
�X

t=T 0i�1+1

(yt � �yi;1)2 ) �21

Z ��

�0i�1

 
Wc (r)�

1

�� � �0i�1

Z ��

�0i�1

Wc (s) ds

!2
dr

T�2
T 0iX

t=�+1

(yt � �yi;2)2 ) �21

Z �0i

��

 
Wc (r)�

1

�0i � ��

Z �0i

��

Wc (s) ds

!2
dr:

Following the developments in Perron (1991), the (rescaled) non-parametric long-run

variance estimator �̂20 converges to:

(hT )�1 �̂20 ) ��21

Z 1

0

W �
c (r; �

0
B;m)

2dr;

with the constant � de�ned by � =
R 1
�1K (s) ds where K (j=h) is the kernel used in the

computation of �̂20,
19 and where W �

c (r) denotes the projection of Wc (r) onto the space

spanned by f1; 1(r > �01); 1(r > �02); : : : ; 1(r > �0m)g. Andrews� (1991) AR(1)-based

automatic bandwidth selection procedure that is applied is de�ned by:

ĥmax1 = 1:1447

�
4â2T

(1 + â2) (1� â2)

�1=3
;

where â is the OLS estimate of the autoregressive parameter of the AR(1) model that is

estimated for the residuals from (24). Since yt � I (1), we have that (1� â) = Op (T
�1)

which implies that ĥmax1 = Op (T ) and, hence,

T�2�̂20 ) ��21

Z 1

0

W �
c (r; �

0
B;m)

2dr:

19In this paper we use the quadratic spectral kernel, which implies K (s) =
�
25=

�
12�2s2

��
(sin (6�s=5) = (6�s=5)� cos (6�s=5)) and � = 1:2931.
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Taking all these elements together, we have that (A.7) converges in the limit to:

A
�
T 0i�1; T

0
i

�
)

�
�

Z 1

0

W �
c (r; �

0
B;m)

2dr

��1 24Z �0i

�0i�1

 
Wc (r)�

1

�0i � �0i�1

Z �0i

�0i�1

Wc (s) ds

!2
dr

�
Z ��

�0i�1

 
Wc (r)�

1

�� � �0i�1

Z ��

�0i�1

Wc (s) ds

!2
dr

�
Z �0i

��

 
Wc (r)�

1

�0i � ��

Z �0i

��

Wc (s) ds

!2
dr

35 ;
and, consequently,

F0 (m+ 1jm)) sup
1�i�m+1

sup
��2�i(�)

�
�

Z 1

0

W �
c (r; �

0
B;m)

2dr

��1
Hc

�
�0i�1; �� ; �

0
i

�
:
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B Tables of critical values and Monte Carlo simula-

tion results

B.1 Tables of critical values
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Table B.1: Asymptotic critical values for the Fd (mj0), UDmaxd andWDmaxd statistics,
and the � constant for the union statistics

F1 (mj0) statistic
� �nm 1 2 3 4 5 6 7 8 9 UDmax WDmax
0.05 0.10 0.27 0.15 0.11 0.08 0.07 0.06 0.05 0.04 0.04 0.27 0.28

0.05 0.37 0.21 0.14 0.11 0.09 0.07 0.06 0.06 0.05 0.37 0.38
0.025 0.46 0.26 0.18 0.14 0.11 0.09 0.08 0.07 0.06 0.46 0.48
0.01 0.60 0.34 0.23 0.18 0.14 0.12 0.10 0.09 0.08 0.60 0.61

0.15 0.10 0.27 0.15 0.11 0.08 0.06 0.27 0.28
0.05 0.37 0.21 0.14 0.11 0.09 0.37 0.38
0.025 0.46 0.26 0.18 0.14 0.11 0.46 0.48
0.01 0.60 0.34 0.23 0.18 0.14 0.60 0.61

0.2 0.10 0.27 0.15 0.10 0.27 0.28
0.05 0.37 0.21 0.14 0.37 0.38
0.025 0.46 0.26 0.18 0.46 0.48
0.01 0.60 0.34 0.23 0.60 0.61

F0 (mj0) statistic
� �nm 1 2 3 4 5 6 7 8 9 UDmax WDmax
0.05 0.10 7.76 7.46 6.65 6.15 5.70 5.33 4.99 4.69 4.42 8.43 8.98

0.05 9.31 8.39 7.36 6.75 6.23 5.80 5.41 5.08 4.77 9.76 10.63
0.025 10.83 9.25 8.05 7.32 6.68 6.20 5.79 5.43 5.11 11.08 12.26
0.01 12.80 10.38 8.94 8.01 7.32 6.77 6.28 5.87 5.51 12.94 14.28

0.15 0.10 6.86 5.95 4.96 4.15 3.21 7.24 8.08
0.05 8.41 6.91 5.68 4.71 3.67 8.64 9.70
0.025 9.96 7.79 6.34 5.23 4.07 10.09 11.33
0.01 11.92 8.87 7.09 5.82 4.56 11.98 13.36

0.2 0.10 6.50 5.29 4.10 6.77 7.48
0.05 8.03 6.25 4.78 8.20 9.09
0.025 9.57 7.16 5.41 9.65 10.69
0.01 11.55 8.24 6.21 11.60 12.72

�� constant for the union statistics
FU (mj0) statistic

� �nm 1 2 3 4 5 6 7 8 9 UDmax WDmax
0.05 0.10 1.24 1.18 1.17 1.16 1.15 1.15 1.14 1.14 1.14 1.21 1.32

0.05 1.19 1.15 1.14 1.13 1.13 1.12 1.12 1.12 1.12 1.18 1.22
0.025 1.17 1.13 1.12 1.12 1.11 1.11 1.11 1.11 1.10 1.16 1.16
0.01 1.14 1.11 1.11 1.10 1.10 1.09 1.09 1.09 1.09 1.13 1.12

0.15 0.10 1.25 1.20 1.19 1.19 1.19 1.23 1.30
0.05 1.21 1.17 1.16 1.15 1.15 1.20 1.22
0.025 1.18 1.14 1.13 1.13 1.14 1.17 1.17
0.01 1.14 1.12 1.12 1.13 1.13 1.14 1.13

0.2 0.10 1.26 1.22 1.21 1.24 1.28
0.05 1.21 1.18 1.17 1.20 1.22
0.025 1.18 1.15 1.15 1.18 1.17
0.01 1.15 1.13 1.13 1.15 1.13
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Table B.2: Percentiles of the limiting distribution of the F1(m+1jm) test statistic under
the null hypothesis of m structural breaks, with � = 0:15 trimming

�1 �2 90% 95% 97.5% 99%
0.0 0.0 0.271 0.367 0.463 0.595
0.2 0.0 0.174 0.233 0.299 0.380
0.3 0.0 0.133 0.179 0.228 0.295
0.4 0.0 0.101 0.133 0.170 0.220
0.5 0.0 0.091 0.117 0.144 0.178
0.6 0.0 0.101 0.134 0.167 0.219
0.7 0.0 0.132 0.178 0.227 0.294
0.8 0.0 0.172 0.232 0.297 0.383
0.2 0.6 0.056 0.073 0.090 0.113
0.2 0.7 0.067 0.091 0.115 0.148
0.2 0.8 0.098 0.132 0.167 0.213
0.3 0.7 0.041 0.057 0.072 0.094
0.3 0.8 0.068 0.091 0.115 0.148
0.4 0.8 0.057 0.073 0.091 0.113

B-3



Table B.3: Response surfaces to approximate asymptotic critical values for the
F1 (m+ 1jm) statistic

Response surface for � = 0:15 trimming Response surface for � = 0:2 trimming
qi (90) qi (95) qi (97:5) qi (99) qi (90) qi (95) qi (97:5) qi (99)

Constant 0.19976 0.27097 0.33898 0.43429 0.23305 0.31849 0.39279 0.51608
m+ 1 0.069355 0.093165 0.12036 0.15654 0.035111 0.044852 0.065766 0.073822
�01 -1.0506 -1.4234 -1.7713 -2.2994 -0.76273 -1.0329 -1.327 -1.6473
�02 -0.91861 -1.2528 -1.5945 -2.0573 -1.3322 -1.7944 -2.2993 -2.8137
�03 -0.70643 -0.97381 -1.2634 -1.6337
�04 -1.9091 -2.5557 -3.1133 -4.0907�
�02 � �01

�2
1.2826 1.7183 2.0755 2.7067 0.69502 0.94493 1.1982 1.4467�

�03 � �02
�2

-0.77756 -1.0353 -1.2296 -1.6271�
�04 � �03

�2
1.0776 1.4462 1.7515 2.3082�

�02 � �01
�3

0.37166 0.49962 0.61979 0.79848 0.29151 0.37785 0.47938 0.57359�
�03 � �02

�3
0.48756 0.65365 0.82408 1.0529�

�04 � �03
�3

0.5096 0.63972 0.77859 1.0099�
�02 � �01

�4
0.10593 0.17229 0.30655 0.37909 0.46269 0.60481 0.7926 1.0268�

�03 � �02
�4

0.46473 0.61601 0.76995 0.99354�
�04 � �03

�4
0.47885 0.60557 0.74677 0.96125

�01�
0
2 4.9633 6.7998 8.4449 11.0321 6.8934 9.3944 11.9073 14.6075

�01�
0
3 1.3883 1.8497 2.3827 3.118

�01�
0
4 -0.64643 -1.0735 -1.3225 -1.803

�02�
0
3 -0.7465 -0.85568 -0.84964 -1.2024

�02�
0
4 -1.0441 -0.87488 -1.1403 -0.92061

�03�
0
4 8.2439 10.7604 13.0505 16.8277�

�01�
0
2

�2
-7.9025 -11.3078 -14.2963 -19.0513 -29.2615 -40.0477 -50.4537 -62.1692�

�01�
0
3

�2
-9.7196 -13.0662 -16.8865 -22.1729�

�01�
0
4

�2
3.9658 6.6857 8.081 11.0277�

�02�
0
3

�2
-1.0112 -1.9845 -2.7759 -3.4772�

�02�
0
4

�2
6.5205 6.1799 7.8481 7.212�

�03�
0
4

�2
-19.4391 -25.0053 -30.2275 -38.4969�

�01�
0
2

�3
13.6587 20.0593 25.6652 34.7477 74.9627 102.5975 129.2464 159.8464�

�01�
0
3

�3
27.5466 37.3052 48.1805 63.7459�

�01�
0
4

�3
-10.5665 -18.0597 -21.4575 -29.3801�

�02�
0
3

�3
1.0398 2.6807 4.0275 5.0804�

�02�
0
4

�3
-15.9105 -15.9008 -19.9233 -19.1424�

�03�
0
4

�3
28.7593 36.978 44.7113 56.8095�

�01�
0
2

�4
-9.6853 -14.4132 -18.544 -25.3558 -69.0372 -94.4848 -119.1584 -147.5741�

�01�
0
3

�4
-27.1268 -36.9519 -47.5982 -63.5589�

�01�
0
4

�4
10.4566 18.0688 21.1916 29.1702�

�02�
0
3

�4
-0.72268 -1.9049 -2.9781 -3.806�

�02�
0
4

�4
13.5808 14.0014 17.3964 17.1208�

�03�
0
4

�4
-16.0248 -20.6229 -24.9596 -31.6979

R2 0.98879 0.98839 0.98757 0.98687 0.98837 0.98805 0.98825 0.98692
�R2 0.98733 0.98688 0.98596 0.98517 0.98308 0.98261 0.98292 0.98097
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Table B.4: Asymptotic critical values for the F a1 (m+ 1jm) and F0 (m+ 1jm) statistics,
and the � constant for the union statistic

Asymptotic critical values for the F a1 (m+ 1jm) statistic
� �nm 0 1 2 3 4 5 6 7 8 9
0.05 0.10 0.33 0.44 0.50 0.55 0.58 0.62 0.64 0.66 0.68 0.70

0.05 0.44 0.55 0.62 0.67 0.71 0.74 0.77 0.80 0.81 0.84
0.025 0.56 0.68 0.74 0.80 0.84 0.86 0.89 0.91 0.93 0.95
0.01 0.72 0.83 0.91 0.96 0.99 1.01 1.06 1.10 1.12 1.15

0.15 0.10 0.33 0.44 0.50 0.55 0.59 0.62 0.65 0.67 0.69 0.71
0.05 0.44 0.55 0.62 0.68 0.72 0.75 0.77 0.79 0.81 0.83
0.025 0.55 0.68 0.76 0.80 0.83 0.87 0.89 0.92 0.94 0.96
0.01 0.73 0.85 0.94 0.99 1.03 1.06 1.09 1.11 1.12 1.14

0.2 0.10 0.33 0.44 0.50 0.54 0.58 0.61 0.63 0.66 0.69 0.70
0.05 0.45 0.56 0.62 0.67 0.70 0.73 0.75 0.78 0.80 0.82
0.025 0.57 0.68 0.74 0.79 0.82 0.86 0.88 0.90 0.93 0.95
0.01 0.73 0.83 0.90 0.96 0.97 1.01 1.03 1.05 1.08 1.12

Asymptotic critical values for the F0 (m+ 1jm) statistic
� �nm 0 1 2 3 4 5 6 7 8 9
0.05 0.10 8.00 9.48 10.38 10.99 11.43 11.82 12.18 12.47 12.72 12.93

0.05 9.47 10.93 11.75 12.43 12.98 13.35 13.66 13.98 14.24 14.53
0.025 10.85 12.19 13.24 13.85 14.53 14.96 15.30 15.53 15.73 16.00
0.01 12.73 14.23 15.27 15.93 16.42 16.75 17.11 17.46 17.78 18.10

0.15 0.10 7.03 8.53 9.36 9.99 10.46 10.86 11.15 11.48 11.71 11.93
0.05 8.55 10.01 10.93 11.47 11.96 12.32 12.68 12.93 13.12 13.37
0.025 9.90 11.32 12.19 12.85 13.36 13.75 14.25 14.57 14.76 15.09
0.01 11.61 13.09 14.21 15.10 15.51 15.96 16.26 16.48 16.62 17.10

0.2 0.10 6.69 8.15 9.00 9.55 10.07 10.46 10.81 11.09 11.33 11.59
0.05 8.20 9.61 10.54 11.09 11.62 12.01 12.33 12.61 12.80 13.01
0.025 9.55 11.01 11.93 12.52 12.97 13.36 13.72 14.08 14.29 14.59
0.01 11.22 12.77 13.73 14.61 15.22 15.59 15.88 16.20 16.39 16.60

�
F (m+1jm)
� constant for the union F aU (m+ 1jm) statistic

� �nm 0 1 2 3 4 5 6 7 8 9
0.05 0.10 1.23 1.18 1.17 1.16 1.16 1.15 1.15 1.15 1.15 1.15

0.05 1.19 1.17 1.16 1.15 1.15 1.14 1.13 1.12 1.12 1.11
0.025 1.17 1.15 1.14 1.12 1.11 1.10 1.11 1.11 1.11 1.12
0.01 1.14 1.11 1.10 1.12 1.12 1.14 1.11 1.10 1.09 1.09

0.15 0.10 1.23 1.19 1.18 1.17 1.17 1.16 1.16 1.15 1.14 1.14
0.05 1.19 1.17 1.15 1.14 1.13 1.13 1.13 1.14 1.14 1.13
0.025 1.17 1.14 1.13 1.15 1.14 1.13 1.13 1.12 1.12 1.11
0.01 1.14 1.16 1.14 1.11 1.11 1.11 1.11 1.11 1.11 1.12

0.2 0.10 1.27 1.21 1.19 1.18 1.18 1.16 1.16 1.15 1.14 1.14
0.05 1.20 1.16 1.16 1.15 1.14 1.13 1.14 1.14 1.14 1.14
0.025 1.16 1.14 1.13 1.14 1.14 1.13 1.13 1.12 1.12 1.12
0.01 1.14 1.14 1.13 1.10 1.09 1.10 1.09 1.12 1.11 1.11
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Table B.5: Asymptotic critical values for the F b1 (m+ 1jm) statistic and the � constant
for the union statistic

Asymptotic critical values for the F b1 (m+ 1jm) statistic
� �nm 0 1 2 3 4 5 6 7 8 9
0.05 0.10 0.27 0.37 0.42 0.46 0.50 0.52 0.54 0.56 0.58 0.60

0.05 0.37 0.47 0.53 0.56 0.60 0.63 0.66 0.68 0.69 0.71
0.025 0.47 0.57 0.63 0.68 0.72 0.74 0.76 0.78 0.79 0.81
0.01 0.61 0.71 0.77 0.81 0.85 0.87 0.90 0.92 0.95 0.98

0.15 0.10 0.28 0.37 0.43 0.47 0.50 0.53 0.55 0.57 0.59 0.60
0.05 0.37 0.47 0.53 0.58 0.62 0.64 0.66 0.68 0.69 0.71
0.025 0.47 0.58 0.64 0.69 0.71 0.74 0.76 0.78 0.80 0.82
0.01 0.63 0.73 0.80 0.84 0.89 0.91 0.92 0.93 0.96 0.98

0.2 0.10 0.28 0.37 0.42 0.46 0.49 0.52 0.54 0.57 0.59 0.60
0.05 0.39 0.47 0.53 0.57 0.60 0.63 0.65 0.67 0.69 0.70
0.025 0.49 0.58 0.63 0.68 0.70 0.73 0.75 0.77 0.80 0.82
0.01 0.63 0.71 0.77 0.82 0.84 0.86 0.88 0.91 0.94 0.96

�
F (m+1jm)
� constant for the union F bU (m+ 1jm) statistic

� �nm 0 1 2 3 4 5 6 7 8 9
0.05 0.10 1.24 1.19 1.18 1.16 1.16 1.15 1.16 1.16 1.15 1.14

0.05 1.19 1.16 1.15 1.15 1.15 1.14 1.13 1.13 1.12 1.12
0.025 1.17 1.15 1.14 1.13 1.11 1.10 1.11 1.11 1.12 1.12
0.01 1.14 1.11 1.11 1.11 1.11 1.11 1.12 1.11 1.10 1.09

0.15 0.10 1.24 1.20 1.18 1.17 1.17 1.16 1.16 1.15 1.14 1.14
0.05 1.20 1.17 1.16 1.15 1.13 1.13 1.13 1.13 1.14 1.13
0.025 1.17 1.14 1.13 1.15 1.15 1.13 1.13 1.12 1.12 1.11
0.01 1.13 1.15 1.13 1.11 1.10 1.11 1.11 1.12 1.11 1.11

0.2 0.10 1.28 1.22 1.19 1.18 1.18 1.17 1.16 1.15 1.14 1.14
0.05 1.20 1.17 1.16 1.15 1.14 1.13 1.14 1.13 1.14 1.14
0.025 1.16 1.14 1.13 1.13 1.15 1.14 1.13 1.12 1.11 1.12
0.01 1.14 1.15 1.12 1.11 1.10 1.10 1.10 1.12 1.12 1.12
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B.2 Tables of Monte Carlo simulations

B.2.1 One structural break

Table B.6: Empirical size and power for the Fj(mj0), UDmaxj and WDmaxj statistics,
j 2 f1; 0; Ug. I(1) and NI(1) cases, m = 1. LRV estimated using the one-at-a-time break
dates estimation strategy

F1(mj0) F0(mj0) FU(mj0) UDmaxj WDmaxj

 c Tnm 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 0 U 1 0 U
0 0 100 .08 .08 .08 .08 .08 .05 .00 .00 .00 .00 .06 .06 .06 .06 .06 .08 .04 .02 .07 .08 .05

300 .05 .06 .06 .06 .06 .03 .00 .00 .00 .00 .04 .04 .04 .04 .04 .05 .02 .01 .04 .06 .04
1000 .05 .05 .05 .05 .05 .02 .00 .00 .00 .00 .04 .04 .04 .04 .04 .05 .02 .01 .04 .05 .03

15 100 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .02 .01 .00 .00 .00
300 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .01 .00 .00 .00
1000 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00

30 100 .00 .00 .00 .00 .00 .04 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .03 .02 .01 .00 .00
300 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .01 .00 .00 .00
1000 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00

1 0 100 .08 .08 .08 .08 .08 .05 .00 .00 .00 .00 .07 .06 .06 .06 .06 .08 .04 .07 .08 .02 .06
300 .06 .06 .06 .06 .06 .04 .00 .00 .00 .00 .04 .04 .04 .05 .05 .06 .03 .04 .06 .01 .03
1000 .05 .05 .05 .05 .05 .03 .00 .00 .00 .00 .04 .04 .04 .04 .04 .05 .02 .04 .05 .01 .03

15 100 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .03 .01 .00 .01 .00
300 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .02 .01 .00 .01 .00
1000 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00

30 100 .00 .00 .00 .00 .00 .12 .02 .01 .00 .00 .04 .00 .00 .00 .00 .00 .10 .04 .00 .06 .00
300 .00 .00 .00 .00 .00 .05 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .04 .01 .00 .02 .00
1000 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .05 .02 .04 .05 .01 .03

5 0 100 .16 .16 .16 .16 .16 .07 .01 .00 .00 .00 .14 .13 .13 .13 .13 .16 .05 .14 .17 .03 .12
300 .09 .09 .09 .09 .09 .04 .00 .00 .00 .00 .06 .06 .06 .06 .06 .09 .04 .06 .09 .01 .05
1000 .07 .07 .06 .06 .06 .03 .00 .00 .00 .00 .04 .06 .05 .05 .05 .07 .02 .04 .06 .01 .04

15 100 .00 .00 .00 .00 .00 .31 .01 .01 .00 .00 .13 .01 .00 .00 .00 .00 .28 .11 .00 .16 .00
300 .00 .00 .00 .00 .00 .10 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .09 .02 .00 .04 .00
1000 .00 .00 .00 .00 .00 .05 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .04 .01 .00 .01 .00

30 100 .00 .00 .00 .00 .00 .85 .19 .04 .02 .02 .60 .06 .01 .00 .01 .00 .83 .57 .00 .67 .00
300 .00 .00 .00 .00 .00 .54 .03 .00 .00 .00 .23 .01 .00 .00 .00 .00 .49 .20 .00 .30 .00
1000 .00 .00 .00 .00 .00 .18 .01 .00 .00 .00 .05 .01 .00 .00 .00 .00 .16 .04 .00 .08 .00
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Table B.7: Empirical size and power for the Fj(mj0), UDmaxj and WDmaxj statistics,
j 2 f1; 0; Ug. I(0) case, m = 1. LRV estimated using the one-at-a-time break dates
estimation strategy

F1(mj0) F0(mj0) FU(mj0) UDmaxj WDmaxj

 � Tnm 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 0 U 1 0 U
0 0 100 .00 .00 .00 .00 .00 .04 .03 .02 .02 .01 .02 .01 .01 .01 .00 .00 .04 .02 .00 .03 .00

300 .00 .00 .00 .00 .00 .05 .04 .04 .05 .04 .02 .02 .01 .01 .02 .00 .05 .02 .00 .04 .00
1000 .00 .00 .00 .00 .00 .06 .06 .08 .07 .06 .02 .02 .03 .03 .02 .00 .06 .02 .00 .07 .00

.5 100 .00 .00 .00 .00 .00 .04 .02 .01 .01 .01 .02 .00 .00 .00 .00 .00 .04 .01 .00 .03 .00
300 .00 .00 .00 .00 .00 .05 .04 .03 .03 .02 .03 .01 .01 .01 .01 .00 .05 .03 .00 .04 .00
1000 .00 .00 .00 .00 .00 .06 .05 .07 .06 .06 .03 .02 .03 .02 .02 .00 .06 .03 .00 .07 .00

.8 100 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .02 .00 .00 .01 .00
300 .00 .00 .00 .00 .00 .04 .01 .00 .00 .00 .01 .00 .00 .00 .00 .00 .03 .01 .00 .02 .00
1000 .00 .00 .00 .00 .00 .06 .04 .04 .03 .03 .02 .01 .00 .01 .00 .00 .05 .02 .00 .04 .00

1 0 100 .00 .00 .00 .00 .00 .99 .95 .88 .84 .84 .96 .86 .74 .64 .67 .00 .98 .96 .00 .96 .00
300 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.5 100 .00 .00 .00 .00 .00 .43 .13 .06 .03 .04 .24 .04 .01 .01 .01 .00 .41 .22 .00 .28 .00
300 .00 .00 .00 .00 .00 .95 .82 .68 .57 .61 .88 .63 .43 .30 .35 .00 .94 .86 .00 .91 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.8 100 .00 .00 .00 .00 .00 .05 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 .05 .01 .00 .02 .00
300 .00 .00 .00 .00 .00 .19 .04 .01 .01 .01 .08 .01 .00 .00 .00 .00 .17 .07 .00 .11 .00
1000 .00 .00 .00 .00 .00 .73 .52 .36 .28 .28 .58 .30 .16 .11 .12 .00 .72 .56 .00 .63 .00

5 0 100 .00 .00 .00 .00 .00 1.0 .98 .95 .93 .94 1.0 .96 .93 .92 .92 .00 1.0 1.0 .00 1.0 .00
300 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.5 100 .00 .00 .00 .00 .00 .99 .81 .46 .31 .36 .98 .55 .25 .15 .17 .00 .99 .97 .00 .98 .00
300 .00 .00 .00 .00 .00 1.0 1.0 1.0 .99 .99 1.0 1.0 .98 .98 .98 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.8 100 .00 .00 .00 .00 .00 .51 .04 .01 .01 .01 .23 .01 .00 .00 .00 .00 .46 .21 .00 .27 .00
300 .00 .00 .00 .00 .00 1.0 .66 .23 .08 .12 .98 .31 .04 .01 .02 .00 1.0 .97 .00 .99 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
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Table B.8: Empirical size and power for the Fj(mj0), UDmaxj and WDmaxj statistics,
j 2 f1; 0; Ug. I(1) and NI(1) cases, m = 1. LRV estimated using the joint break dates
estimation strategy

F1(mj0) F0(mj0) FU(mj0) UDmaxj WDmaxj

 c Tnm 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 0 U 1 0 U
0 0 100 .07 .07 .07 .07 .07 .09 .00 .00 .00 .00 .07 .05 .05 .05 .05 .07 .07 .04 .07 .07 .04

300 .05 .06 .06 .06 .06 .05 .00 .00 .00 .00 .04 .04 .04 .04 .04 .05 .04 .01 .04 .06 .03
1000 .05 .05 .05 .05 .05 .04 .00 .00 .00 .00 .04 .04 .04 .04 .04 .05 .04 .01 .04 .05 .03

15 100 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .03 .01 .01 .00 .00
300 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .02 .01 .00 .00 .00
1000 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00

30 100 .00 .00 .00 .00 .00 .04 .01 .00 .00 .00 .01 .00 .00 .00 .00 .00 .03 .02 .01 .00 .00
300 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .01 .00 .00 .00
1000 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .01 .00 .00 .00

1 0 100 .07 .08 .07 .07 .08 .08 .00 .00 .00 .00 .08 .06 .06 .06 .06 .07 .07 .07 .08 .04 .05
300 .05 .06 .06 .06 .06 .05 .00 .00 .00 .00 .04 .04 .04 .04 .04 .05 .04 .04 .06 .01 .03
1000 .05 .05 .05 .05 .05 .04 .00 .00 .00 .00 .04 .04 .04 .04 .04 .05 .04 .04 .05 .01 .03

15 100 .00 .00 .00 .00 .00 .06 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 .04 .01 .00 .02 .00
300 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .02 .01 .00 .01 .00
1000 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00

30 100 .00 .00 .00 .00 .00 .14 .03 .01 .00 .00 .06 .00 .00 .00 .00 .00 .13 .05 .00 .07 .00
300 .00 .00 .00 .00 .00 .06 .01 .00 .00 .00 .02 .00 .00 .00 .00 .00 .05 .02 .00 .03 .00
1000 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .05 .04 .04 .05 .01 .03

5 0 100 .16 .16 .16 .17 .17 .11 .01 .00 .00 .00 .14 .13 .13 .13 .13 .16 .09 .15 .17 .04 .12
300 .09 .09 .09 .09 .09 .06 .00 .00 .00 .00 .07 .06 .06 .06 .06 .09 .06 .07 .09 .02 .05
1000 .07 .07 .06 .06 .06 .05 .00 .00 .00 .00 .04 .06 .04 .05 .05 .07 .04 .04 .06 .01 .04

15 100 .00 .00 .00 .00 .00 .41 .03 .01 .00 .00 .16 .01 .00 .00 .00 .00 .36 .14 .00 .20 .00
300 .00 .00 .00 .00 .00 .15 .01 .00 .00 .00 .04 .00 .00 .00 .00 .00 .12 .03 .00 .06 .00
1000 .00 .00 .00 .00 .00 .06 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .05 .01 .00 .01 .00

30 100 .00 .00 .00 .00 .00 .90 .24 .07 .04 .04 .69 .09 .02 .01 .01 .00 .88 .67 .00 .76 .00
300 .00 .00 .00 .00 .00 .60 .05 .01 .00 .00 .29 .01 .00 .00 .00 .00 .56 .26 .00 .36 .00
1000 .00 .00 .00 .00 .00 .21 .01 .00 .00 .00 .06 .01 .00 .00 .00 .00 .18 .06 .00 .09 .00
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Table B.9: Empirical size and power for the Fj(mj0), UDmaxj and WDmaxj satistics,
j 2 f1; 0; Ug. I(0) case, m = 1. LRV estimated using the joint break dates estimation
strategy

F1(mj0) F0(mj0) FU(mj0) UDmaxj WDmaxj

 � Tnm 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 0 U 1 0 U
0 0 100 .00 .00 .00 .00 .00 .04 .03 .02 .02 .02 .02 .01 .01 .01 .01 .00 .04 .01 .00 .04 .00

300 .00 .00 .00 .00 .00 .05 .04 .04 .04 .04 .02 .02 .01 .02 .02 .00 .05 .02 .00 .05 .00
1000 .00 .00 .00 .00 .00 .06 .06 .08 .07 .06 .02 .02 .03 .03 .02 .00 .06 .02 .00 .07 .00

.5 100 .00 .00 .00 .00 .00 .05 .02 .01 .01 .01 .02 .01 .00 .00 .00 .00 .04 .02 .00 .03 .00
300 .00 .00 .00 .00 .00 .06 .04 .03 .03 .03 .03 .01 .01 .01 .01 .00 .05 .03 .00 .04 .00
1000 .00 .00 .00 .00 .00 .06 .06 .07 .06 .06 .03 .02 .03 .02 .02 .00 .06 .03 .00 .07 .00

.8 100 .00 .00 .00 .00 .00 .04 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .03 .01 .00 .01 .00
300 .00 .00 .00 .00 .00 .04 .01 .00 .00 .00 .01 .00 .00 .00 .00 .00 .03 .01 .00 .02 .00
1000 .00 .00 .00 .00 .00 .06 .04 .04 .03 .03 .02 .01 .00 .01 .00 .00 .05 .02 .00 .04 .00

1 0 100 .00 .00 .00 .00 .00 .99 .95 .89 .85 .86 .96 .88 .77 .67 .70 .00 .99 .96 .00 .97 .00
300 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.5 100 .00 .00 .00 .00 .00 .46 .17 .08 .05 .06 .26 .07 .02 .01 .02 .00 .44 .24 .00 .31 .00
300 .00 .00 .00 .00 .00 .95 .83 .70 .60 .63 .88 .65 .45 .33 .38 .00 .94 .87 .00 .91 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.8 100 .00 .00 .00 .00 .00 .07 .01 .00 .00 .00 .02 .00 .00 .00 .00 .00 .06 .02 .00 .03 .00
300 .00 .00 .00 .00 .00 .20 .04 .01 .01 .01 .09 .01 .00 .00 .00 .00 .18 .08 .00 .12 .00
1000 .00 .00 .00 .00 .00 .73 .52 .37 .29 .29 .59 .31 .17 .12 .13 .00 .72 .56 .00 .64 .00

5 0 100 .00 .00 .00 .00 .00 1.0 1.0 1.0 .99 .99 1.0 1.0 .99 .98 .98 .00 1.0 1.0 .00 1.0 .00
300 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.5 100 .00 .00 .00 .00 .00 1.0 .86 .55 .37 .42 1.0 .63 .30 .20 .22 .00 1.0 .99 .00 1.0 .00
300 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.8 100 .00 .00 .00 .00 .00 .61 .07 .01 .01 .01 .29 .02 .00 .00 .00 .00 .57 .27 .00 .36 .00
300 .00 .00 .00 .00 .00 1.0 .71 .28 .11 .15 .98 .35 .07 .02 .03 .00 1.0 .98 .00 .99 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
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Table B.10: Empirical size and power of HLT and BP test statistics. I(1) and NI(1)
cases, m = 1

OAAT estimation Joint estimation

 c T S1 S0 U F1 F a1 F b1 F0 F aU F bU F1 F a1 F b1 F0 F aU F bU
0 0 100 .14 .04 .15 .08 .06 .08 .05 .04 .07 .08 .06 .07 .08 .05 .07

300 .08 .01 .09 .06 .04 .05 .03 .02 .04 .05 .04 .05 .04 .03 .04
1000 .05 .00 .05 .05 .03 .05 .02 .02 .04 .05 .04 .05 .04 .02 .04

15 100 .05 .06 .09 .00 .00 .00 .02 .01 .00 .00 .00 .00 .03 .01 .01
300 .00 .01 .01 .00 .00 .00 .02 .00 .00 .00 .00 .00 .03 .01 .00
1000 .00 .00 .01 .00 .00 .00 .01 .00 .00 .00 .00 .00 .01 .00 .00

30 100 .01 .05 .05 .00 .00 .00 .03 .01 .01 .00 .00 .00 .04 .01 .01
300 .00 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 .03 .00 .00
1000 .00 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 .02 .00 .00

1 0 100 .14 .04 .16 .08 .06 .06 .04 .04 .04 .07 .06 .06 .07 .06 .08
300 .09 .01 .09 .06 .04 .04 .03 .02 .02 .06 .04 .04 .05 .03 .04
1000 .05 .00 .05 .05 .04 .04 .02 .03 .03 .05 .04 .04 .04 .03 .04

15 100 .05 .06 .09 .00 .00 .00 .03 .01 .01 .00 .00 .00 .05 .02 .01
300 .00 .01 .01 .00 .00 .00 .02 .01 .01 .00 .00 .00 .02 .01 .01
1000 .01 .00 .01 .00 .00 .00 .01 .00 .00 .00 .00 .00 .01 .00 .00

30 100 .02 .06 .07 .00 .00 .00 .11 .04 .04 .00 .00 .00 .14 .06 .05
300 .00 .01 .01 .00 .00 .00 .04 .01 .01 .00 .00 .00 .05 .02 .02
1000 .00 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .03 .00 .00

5 0 100 .53 .16 .54 .16 .13 .13 .06 .10 .10 .16 .13 .13 .10 .10 .15
300 .15 .01 .15 .09 .06 .06 .04 .04 .04 .09 .06 .06 .06 .05 .07
1000 .06 .01 .06 .07 .04 .04 .02 .03 .03 .07 .04 .04 .04 .03 .04

15 100 .52 .34 .59 .00 .00 .00 .29 .13 .13 .00 .00 .00 .38 .16 .15
300 .04 .04 .07 .00 .00 .00 .09 .03 .03 .00 .00 .00 .13 .04 .04
1000 .01 .01 .02 .00 .00 .00 .04 .01 .01 .00 .00 .00 .06 .01 .01

30 100 .56 .55 .67 .00 .00 .00 .83 .60 .60 .00 .00 .00 .89 .69 .68
300 .03 .11 .11 .00 .00 .00 .51 .22 .22 .00 .00 .00 .57 .28 .28
1000 .00 .02 .02 .00 .00 .00 .17 .05 .05 .00 .00 .00 .19 .06 .06
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Table B.11: Empirical size and power of HLT and BP test statistics. I(0) case, m = 1

OAAT estimation Joint estimation

 � T S1 S0 U F1 F a1 F b1 F0 F aU F bU F1 F a1 F b1 F0 F aU F bU
0 0 100 .00 .05 .05 .00 .00 .00 .04 .02 .02 .00 .00 .00 .04 .02 .02

300 .00 .03 .02 .00 .00 .00 .05 .02 .02 .00 .00 .00 .05 .02 .02
1000 .00 .03 .03 .00 .00 .00 .06 .02 .02 .00 .00 .00 .06 .02 .02

.5 100 .01 .05 .05 .00 .00 .00 .04 .02 .02 .00 .00 .00 .04 .02 .02
300 .00 .01 .01 .00 .00 .00 .05 .03 .03 .00 .00 .00 .05 .03 .03
1000 .00 .02 .02 .00 .00 .00 .06 .03 .03 .00 .00 .00 .06 .03 .03

.8 100 .04 .05 .07 .00 .00 .00 .03 .01 .01 .00 .00 .00 .04 .01 .01
300 .00 .01 .01 .00 .00 .00 .03 .01 .01 .00 .00 .00 .04 .01 .01
1000 .00 .01 .01 .00 .00 .00 .05 .02 .02 .00 .00 .00 .05 .02 .02

1 0 100 .00 .10 .10 .00 .00 .00 .99 .96 .96 .00 .00 .00 .99 .96 .96
300 .00 .24 .24 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0
1000 .00 .95 .94 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0

.5 100 .01 .06 .06 .00 .00 .00 .42 .23 .23 .00 .00 .00 .45 .25 .25
300 .00 .02 .02 .00 .00 .00 .94 .87 .87 .00 .00 .00 .95 .88 .88
1000 .00 .18 .18 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0

.8 100 .04 .06 .07 .00 .00 .00 .05 .01 .01 .00 .00 .00 .07 .02 .02
300 .00 .01 .01 .00 .00 .00 .18 .08 .08 .00 .00 .00 .19 .09 .09
1000 .00 .01 .01 .00 .00 .00 .72 .57 .57 .00 .00 .00 .72 .58 .58

5 0 100 .70 .97 .97 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0
300 .26 .97 .97 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0
1000 .00 .97 .97 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0

.5 100 .63 .85 .87 .00 .00 .00 .99 .98 .98 .00 .00 .00 1.0 1.0 1.0
300 .11 .99 .99 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0
1000 .00 1.0 1.0 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0

.8 100 .53 .41 .61 .00 .00 .00 .48 .23 .23 .00 .00 .00 .58 .29 .29
300 .01 .42 .42 .00 .00 .00 1.0 .98 .98 .00 .00 .00 1.0 .98 .98
1000 .00 .94 .93 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0
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Table B.12: Frequency of estimated number of structural breaks. Union statistics, m = 1

I(1) and NI(1) cases
OAAT estimation Joint estimation

U F aU F bU F aU F bU

 c Tnm 1 2 > 2 1 2 > 2 1 2 > 2 1 2 > 2 1 2 > 2
1 0 100 .14 .02 .00 .04 .00 .00 .07 .00 .00 .05 .01 .00 .07 .00 .00

300 .09 .00 .00 .02 .00 .00 .04 .00 .00 .02 .00 .00 .04 .00 .00
1000 .05 .00 .00 .02 .00 .00 .04 .00 .00 .02 .00 .00 .04 .00 .00

15 100 .07 .02 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00
300 .01 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00
1000 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

30 100 .06 .01 .00 .04 .00 .00 .04 .00 .00 .04 .01 .00 .04 .01 .00
300 .01 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00
1000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

5 0 100 .48 .06 .00 .09 .01 .00 .14 .01 .00 .09 .01 .00 .14 .01 .00
300 .14 .01 .00 .04 .00 .00 .06 .00 .00 .04 .00 .00 .07 .00 .00
1000 .06 .00 .00 .03 .00 .00 .04 .00 .00 .02 .00 .00 .04 .00 .00

15 100 .54 .03 .00 .12 .00 .00 .12 .00 .00 .15 .01 .00 .14 .01 .00
300 .07 .00 .00 .03 .00 .00 .03 .00 .00 .04 .00 .00 .04 .00 .00
1000 .02 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00

30 100 .63 .03 .00 .59 .01 .00 .59 .01 .00 .67 .02 .00 .66 .02 .00
300 .11 .00 .00 .22 .00 .00 .21 .00 .00 .27 .00 .00 .27 .00 .00
1000 .02 .00 .00 .05 .00 .00 .05 .00 .00 .06 .00 .00 .06 .00 .00

I(0) case
One-at-a-time estimation Joint estimation

U F aU F bU F aU F bU

 � Tnm 1 2 > 2 1 2 > 2 1 2 > 2 1 2 > 2 1 2 > 2
1 0 100 .09 .01 .00 .95 .00 .00 .95 .00 .00 .53 .27 .16 .53 .27 .16

300 .24 .00 .00 .99 .01 .00 .99 .01 .00 .27 .32 .41 .27 .32 .41
1000 .93 .02 .00 .99 .01 .00 .99 .01 .00 .15 .26 .59 .15 .26 .59

.5 100 .05 .01 .00 .23 .00 .00 .23 .00 .00 .19 .05 .01 .19 .05 .01
300 .02 .00 .00 .87 .01 .00 .86 .01 .00 .55 .22 .10 .56 .23 .10
1000 .18 .00 .00 .99 .01 .00 .99 .01 .00 .30 .33 .38 .30 .33 .37

.8 100 .06 .01 .00 .01 .00 .00 .01 .00 .00 .01 .01 .00 .01 .01 .00
300 .01 .00 .00 .08 .00 .00 .08 .00 .00 .07 .02 .01 .07 .02 .01
1000 .01 .00 .00 .57 .00 .00 .56 .00 .00 .43 .12 .04 .42 .12 .03

5 0 100 .93 .04 .00 .99 .01 .00 .99 .01 .00 .84 .10 .06 .84 .10 .06
300 .95 .01 .00 .99 .01 .00 .99 .01 .00 .73 .13 .14 .73 .13 .14
1000 .95 .02 .00 .99 .01 .00 .99 .01 .00 .60 .17 .23 .60 .17 .23

.5 100 .83 .03 .00 .97 .01 .00 .97 .01 .00 .95 .03 .01 .95 .03 .01
300 .99 .00 .00 .99 .01 .00 .99 .01 .00 .92 .05 .03 .92 .05 .03
1000 .99 .01 .00 .99 .01 .00 .99 .01 .00 .83 .09 .08 .83 .09 .08

.8 100 .57 .03 .00 .23 .00 .00 .22 .00 .00 .28 .01 .00 .27 .01 .00
300 .42 .00 .00 .97 .00 .00 .97 .00 .00 .95 .03 .01 .95 .03 .01
1000 .93 .01 .00 .98 .01 .00 .98 .01 .00 .92 .05 .03 .92 .05 .03
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(b) The I(0) case

Figure B.1: Densities of the estimated break fraction, m = 1, 
 = 5
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B.2.2 Two structural breaks

This section provides the empirical power analysis with two structural breaks using the

one-at-a-time (OAAT) and joint break dates estimation strategies.
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Table B.13: Empirical power for the Fj(mj0), UDmaxj and WDmaxj statistics, j 2
f1; 0; Ug. I(1) and NI(1) cases, m = 2

F1(mj0) F0(mj0) FU(mj0) UDmaxj WDmaxj
Method 
 c Tnm 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 0 U 1 0 U
OAAT 1 0 100 .08 .08 .08 .08 .08 .04 .01 .00 .00 .00 .07 .06 .06 .06 .06 .08 .04 .07 .08 .02 .05

300 .06 .06 .06 .06 .06 .03 .00 .00 .00 .00 .04 .04 .05 .05 .05 .06 .02 .04 .06 .01 .03
1000 .05 .05 .05 .05 .05 .03 .00 .00 .00 .00 .04 .04 .04 .04 .04 .05 .02 .04 .05 .01 .03

15 100 .00 .00 .00 .00 .00 .04 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .04 .01 .00 .02 .00
300 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .02 .01 .00 .01 .00
1000 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00

30 100 .00 .00 .00 .00 .00 .15 .02 .01 .00 .01 .05 .00 .00 .00 .00 .00 .14 .05 .00 .07 .00
300 .00 .00 .00 .00 .00 .07 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 .05 .02 .00 .03 .00
1000 .00 .00 .00 .00 .00 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00 .05 .02 .04 .05 .01 .03

5 0 100 .17 .20 .20 .20 .19 .05 .00 .00 .00 .00 .14 .16 .16 .16 .16 .17 .05 .13 .19 .02 .14
300 .08 .09 .09 .09 .09 .03 .00 .00 .00 .00 .05 .07 .07 .07 .07 .08 .02 .05 .09 .00 .06
1000 .07 .07 .07 .07 .07 .03 .00 .00 .00 .00 .04 .07 .04 .05 .05 .07 .02 .04 .07 .01 .04

15 100 .00 .00 .00 .00 .00 .14 .03 .01 .00 .00 .04 .01 .00 .00 .00 .00 .12 .04 .00 .06 .00
300 .00 .00 .00 .00 .00 .10 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 .08 .02 .00 .02 .00
1000 .00 .00 .00 .00 .00 .04 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .04 .01 .00 .02 .00

30 100 .00 .00 .00 .00 .00 .46 .24 .06 .03 .03 .17 .09 .02 .01 .01 .00 .41 .16 .00 .22 .00
300 .00 .00 .00 .00 .00 .30 .05 .00 .00 .00 .07 .00 .00 .00 .00 .00 .26 .07 .00 .11 .00
1000 .00 .00 .00 .00 .00 .18 .01 .00 .00 .00 .04 .00 .00 .00 .00 .00 .15 .04 .00 .06 .00

Joint 1 0 100 .08 .08 .08 .08 .08 .09 .00 .00 .00 .00 .07 .06 .06 .05 .06 .08 .07 .07 .08 .03 .05
300 .06 .06 .06 .06 .06 .06 .00 .00 .00 .00 .04 .04 .04 .04 .05 .06 .04 .04 .06 .01 .03
1000 .05 .05 .05 .05 .05 .05 .00 .00 .00 .00 .04 .04 .04 .04 .04 .05 .04 .04 .05 .01 .03

15 100 .00 .00 .00 .00 .00 .07 .00 .00 .00 .00 .02 .00 .00 .00 .00 .08 .07 .07 .08 .03 .05
300 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .01 .00 .00 .00 .00 .06 .04 .04 .06 .01 .03
1000 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 .00 .00 .00 .00 .05 .04 .04 .05 .01 .03

30 100 .00 .00 .00 .00 .00 .18 .02 .01 .01 .01 .07 .01 .00 .00 .00 .08 .07 .07 .08 .03 .05
300 .00 .00 .00 .00 .00 .07 .00 .00 .00 .00 .02 .00 .00 .00 .00 .06 .04 .04 .06 .01 .03
1000 .00 .00 .00 .00 .00 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00 .05 .04 .04 .05 .01 .03

5 0 100 .16 .18 .18 .18 .18 .12 .01 .00 .00 .00 .14 .14 .14 .15 .14 .16 .09 .13 .18 .05 .12
300 .08 .09 .09 .09 .09 .08 .00 .00 .00 .00 .06 .06 .06 .07 .06 .08 .07 .06 .09 .02 .05
1000 .07 .06 .06 .06 .06 .06 .00 .00 .00 .00 .04 .06 .04 .04 .05 .07 .05 .04 .07 .01 .04

15 100 .00 .00 .00 .00 .00 .21 .06 .01 .01 .01 .07 .02 .00 .00 .00 .16 .09 .13 .18 .05 .12
300 .00 .00 .00 .00 .00 .13 .00 .00 .00 .00 .03 .00 .00 .00 .00 .08 .07 .06 .09 .02 .05
1000 .00 .00 .00 .00 .00 .07 .00 .00 .00 .00 .02 .00 .00 .00 .00 .07 .05 .04 .07 .01 .04

30 100 .00 .00 .00 .00 .00 .56 .31 .09 .05 .06 .23 .12 .03 .01 .02 .16 .09 .13 .18 .05 .12
300 .00 .00 .00 .00 .00 .35 .07 .01 .00 .00 .11 .01 .00 .00 .00 .08 .07 .06 .09 .02 .05
1000 .00 .00 .00 .00 .00 .21 .01 .00 .00 .00 .06 .01 .00 .00 .00 .07 .05 .04 .07 .01 .04
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Table B.14: Empirical power for the Fj(mj0), UDmaxj and WDmaxj statistics, j 2
f1; 0; Ug. I(0) case, m = 2

F1(mj0) F0(mj0) FU(mj0) UDmaxj WDmaxj
Method 
 c Tnm 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 0 U 1 0 U
OAAT 1 0 100 .00 .00 .00 .00 .00 1.0 .99 .98 .97 .96 .99 .96 .93 .90 .90 .00 1.0 .98 .00 .99 .00

300 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.5 100 .00 .00 .00 .00 .00 .50 .18 .09 .05 .06 .26 .07 .03 .02 .02 .00 .46 .24 .00 .32 .00
300 .00 .00 .00 .00 .00 .98 .94 .89 .84 .82 .93 .85 .71 .59 .60 .00 .98 .93 .00 .95 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.8 100 .00 .00 .00 .00 .00 .06 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .05 .02 .00 .03 .00
300 .00 .00 .00 .00 .00 .26 .05 .01 .01 .01 .11 .01 .00 .00 .00 .00 .23 .09 .00 .15 .00
1000 .00 .00 .00 .00 .00 .86 .70 .61 .52 .51 .72 .46 .35 .27 .27 .00 .85 .71 .00 .77 .00

5 0 100 .00 .00 .00 .00 .00 .99 .99 .98 .96 .96 .98 .98 .95 .94 .94 .00 .99 .98 .00 .98 .00
300 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.5 100 .00 .00 .00 .00 .00 .95 .88 .55 .38 .42 .75 .64 .30 .18 .20 .00 .93 .72 .00 .83 .00
300 .00 .00 .00 .00 .00 1.0 1.0 1.0 .99 .99 1.0 1.0 .98 .97 .98 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.8 100 .00 .00 .00 .00 .00 .21 .06 .01 .01 .01 .06 .02 .00 .00 .00 .00 .18 .06 .00 .09 .00
300 .00 .00 .00 .00 .00 .93 .78 .32 .16 .19 .63 .42 .08 .02 .03 .00 .91 .58 .00 .73 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

Joint 1 0 100 .00 .00 .00 .00 .00 1.0 .99 .98 .98 .97 .99 .97 .94 .92 .91 .00 1.0 .99 .00 .99 .00
300 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.5 100 .00 .00 .00 .00 .00 .53 .21 .12 .07 .08 .29 .09 .04 .02 .03 .00 .50 .26 .00 .35 .00
300 .00 .00 .00 .00 .00 .98 .95 .89 .84 .83 .94 .85 .73 .62 .62 .00 .98 .93 .00 .95 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.8 100 .00 .00 .00 .00 .00 .09 .01 .00 .00 .00 .03 .00 .00 .00 .00 .00 .08 .03 .00 .04 .00
300 .00 .00 .00 .00 .00 .27 .06 .01 .01 .01 .13 .01 .00 .00 .00 .00 .25 .11 .00 .16 .00
1000 .00 .00 .00 .00 .00 .86 .70 .62 .53 .52 .73 .48 .36 .28 .27 .00 .85 .71 .00 .77 .00

5 0 100 .00 .00 .00 .00 .00 1.0 1.0 .99 .97 .97 1.0 .99 .95 .92 .93 .00 1.0 1.0 .00 1.0 .00
300 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.5 100 .00 .00 .00 .00 .00 .95 .88 .58 .42 .47 .79 .68 .33 .22 .24 .00 .94 .75 .00 .84 .00
300 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .96 .97 .00 1.0 1.0 .00 1.0 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00

.8 100 .00 .00 .00 .00 .00 .31 .10 .03 .02 .02 .10 .03 .01 .00 .01 .00 .25 .09 .00 .12 .00
300 .00 .00 .00 .00 .00 .93 .78 .33 .16 .20 .64 .43 .09 .03 .04 .00 .91 .60 .00 .73 .00
1000 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00 1.0 1.0 .00 1.0 .00
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Table B.15: Empirical power of HLT and BP test statistics, m = 2

I(1) and NI(1) cases
One-at-a-time estimation Joint estimation


 c T S1 S0 U F1 F a1 F b1 F0 F aU F bU F1 F a1 F b1 F0 F aU F bU
1 0 100 .14 .04 .16 .08 .06 .06 .04 .05 .07 .08 .05 .05 .08 .06 .07

300 .08 .01 .09 .06 .04 .04 .03 .02 .04 .06 .04 .04 .04 .03 .04
1000 .05 .00 .06 .05 .04 .04 .02 .02 .04 .05 .04 .04 .04 .03 .04

15 100 .05 .06 .09 .00 .00 .00 .04 .01 .01 .00 .00 .00 .06 .02 .02
300 .00 .01 .01 .00 .00 .00 .02 .01 .01 .00 .00 .00 .03 .00 .00
1000 .00 .00 .01 .00 .00 .00 .01 .00 .00 .00 .00 .00 .02 .00 .00

30 100 .02 .06 .06 .00 .00 .00 .14 .05 .05 .00 .00 .00 .17 .07 .06
300 .00 .01 .00 .00 .00 .00 .06 .02 .02 .00 .00 .00 .07 .02 .02
1000 .00 .00 .00 .00 .00 .00 .03 .00 .00 .00 .00 .00 .04 .00 .00

5 0 100 .70 .16 .71 .17 .12 .12 .05 .09 .13 .16 .11 .11 .10 .10 .13
300 .20 .02 .21 .08 .06 .06 .03 .03 .06 .08 .05 .05 .07 .04 .06
1000 .07 .00 .07 .07 .04 .04 .02 .03 .04 .07 .04 .04 .05 .03 .04

15 100 .71 .40 .74 .00 .00 .00 .12 .04 .04 .00 .00 .00 .19 .07 .07
300 .06 .05 .10 .00 .00 .00 .08 .02 .02 .00 .00 .00 .12 .03 .03
1000 .01 .00 .01 .00 .00 .00 .04 .01 .01 .00 .00 .00 .06 .02 .01

30 100 .75 .68 .82 .00 .00 .00 .43 .17 .17 .00 .00 .00 .53 .22 .21
300 .03 .15 .16 .00 .00 .00 .27 .07 .07 .00 .00 .00 .32 .11 .10
1000 .00 .01 .01 .00 .00 .00 .17 .04 .04 .00 .00 .00 .19 .05 .05

I(0) case
One-at-a-time estimation Joint estimation


 � T S1 S0 U F1 F a1 F b1 F0 F aU F bU F1 F a1 F b1 F0 F aU F bU
1 0 100 .00 .13 .12 .00 .00 .00 1.0 .98 .98 .00 .00 .00 1.0 .99 .99

300 .00 .40 .40 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0
1000 .00 .99 .99 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0

.5 100 .01 .07 .07 .00 .00 .00 .48 .26 .26 .00 .00 .00 .51 .28 .28
300 .00 .05 .05 .00 .00 .00 .98 .93 .93 .00 .00 .00 .98 .94 .94
1000 .00 .28 .27 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0

.8 100 .04 .06 .08 .00 .00 .00 .06 .03 .03 .00 .00 .00 .08 .03 .03
300 .00 .01 .01 .00 .00 .00 .24 .11 .11 .00 .00 .00 .25 .13 .13
1000 .00 .01 .01 .00 .00 .00 .85 .72 .72 .00 .00 .00 .85 .73 .73

5 0 100 .86 .99 .99 .00 .00 .00 .99 .98 .98 .00 .00 .00 1.0 1.0 1.0
300 .46 .98 .98 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0
1000 .04 .95 .95 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0

.5 100 .81 .94 .95 .00 .00 .00 .94 .75 .75 .00 .00 .00 .95 .78 .78
300 .21 1.0 1.0 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0
1000 .00 1.0 1.0 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0

.8 100 .72 .49 .77 .00 .00 .00 .20 .06 .06 .00 .00 .00 .27 .10 .10
300 .02 .61 .61 .00 .00 .00 .92 .62 .62 .00 .00 .00 .92 .63 .63
1000 .00 .99 .99 .00 .00 .00 1.0 1.0 1.0 .00 .00 .00 1.0 1.0 1.0
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Table B.16: Frequency of estimated number of structural breaks. Union statistics, m = 2

I(1) and NI(1) cases
One-at-a-time estimation Joint estimation

U F aU F bU F aU F bU

 c Tnm 1 2 > 2 1 2 > 2 1 2 > 2 1 2 > 2 1 2 > 2
1 0 100 .14 .01 .01 .05 .00 .00 .07 .00 .00 .05 .00 .00 .07 .00 .00

300 .09 .00 .00 .02 .00 .00 .04 .00 .00 .02 .00 .00 .04 .00 .00
1000 .05 .00 .00 .02 .00 .00 .04 .00 .00 .03 .00 .00 .04 .00 .00

15 100 .06 .02 .01 .01 .00 .00 .01 .00 .00 .02 .00 .00 .02 .00 .00
300 .01 .00 .00 .01 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00 .00
1000 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

30 100 .05 .01 .01 .05 .00 .00 .05 .00 .00 .06 .01 .00 .06 .01 .00
300 .00 .00 .00 .02 .00 .00 .02 .00 .00 .02 .00 .00 .02 .00 .00
1000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

5 0 100 .45 .23 .01 .07 .02 .00 .13 .00 .00 .07 .03 .00 .11 .03 .00
300 .20 .01 .00 .03 .00 .00 .06 .00 .00 .03 .01 .00 .05 .01 .00
1000 .07 .00 .00 .02 .00 .00 .04 .00 .00 .02 .00 .01 .03 .01 .00

15 100 .42 .30 .01 .03 .01 .00 .03 .01 .00 .03 .04 .00 .02 .04 .00
300 .09 .01 .00 .01 .00 .00 .01 .00 .00 .03 .01 .00 .03 .01 .00
1000 .01 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00

30 100 .38 .41 .01 .01 .16 .00 .01 .15 .00 .01 .20 .01 .01 .19 .01
300 .14 .02 .00 .06 .02 .00 .06 .02 .00 .06 .05 .00 .06 .04 .00
1000 .01 .00 .00 .04 .00 .00 .04 .00 .00 .04 .01 .00 .04 .01 .00

I(0) case
One-at-a-time estimation Joint estimation

U F aU F bU F aU F bU

 � Tnm 1 2 > 2 1 2 > 2 1 2 > 2 1 2 > 2 1 2 > 2
1 0 100 .11 .01 .00 .58 .40 .00 .58 .40 .00 .34 .31 .34 .34 .31 .33

300 .35 .04 .00 .00 .98 .02 .00 .98 .01 .00 .16 .84 .00 .16 .84
1000 .12 .87 .00 .00 1.0 .00 .00 1.0 .00 .00 .14 .86 .00 .14 .86

.5 100 .05 .01 .00 .25 .01 .00 .24 .01 .00 .23 .04 .02 .22 .04 .02
300 .05 .00 .00 .72 .21 .00 .72 .21 .00 .49 .26 .19 .49 .26 .19
1000 .26 .01 .00 .01 .98 .02 .01 .98 .02 .00 .22 .78 .00 .22 .78

.8 100 .06 .01 .00 .03 .00 .00 .03 .00 .00 .02 .01 .00 .02 .01 .00
300 .01 .00 .00 .11 .00 .00 .10 .00 .00 .09 .02 .01 .09 .03 .01
1000 .01 .00 .00 .69 .03 .00 .69 .03 .00 .54 .12 .07 .54 .12 .06

5 0 100 .01 .93 .00 .00 .98 .00 .00 .98 .00 .01 .78 .21 .01 .78 .21
300 .02 .95 .00 .00 1.0 .00 .00 1.0 .00 .00 .67 .33 .00 .67 .33
1000 .01 .94 .00 .00 1.0 .00 .00 1.0 .00 .00 .53 .47 .00 .53 .47

.5 100 .19 .72 .00 .00 .74 .01 .00 .73 .01 .00 .73 .05 .00 .72 .05
300 .01 .98 .00 .00 1.0 .00 .00 1.0 .00 .00 .88 .12 .00 .88 .12
1000 .00 .99 .00 .00 1.0 .00 .00 1.0 .00 .00 .78 .22 .00 .78 .22

.8 100 .42 .32 .01 .03 .04 .00 .03 .04 .00 .02 .07 .00 .02 .07 .00
300 .40 .21 .00 .06 .56 .00 .06 .55 .00 .04 .57 .02 .04 .57 .02
1000 .12 .87 .00 .00 1.0 .00 .00 1.0 .00 .00 .88 .12 .00 .88 .12
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Supplementary material
Appendix C. Empirical illustration: Figures, tables
and purchasing power parity hypothesis testing



C Empirical illustration

This section provides the pictures of the time series that are analized and the �gures (hit

maps) that summarize the estimated break dates for the PWT database. We include the

discussion about testing the unit root hypothesis on RER, which is usually implemented

in international economics as a way to test the (quasi) PPP hypothesis. The results also

include the estimation of half-life of shocks.
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C.1 Testing the PPP hypothesis

This part of the empirical application goes beyond the illustration of the statistical pro-

cedures that have been proposed in the paper, although we consider that it might be

of interest to test the PPP hypothesis for the databases that have been collected. To

do so, we have computed the ADF test statistic, which null hypothesis is the existence

of a unit root against the alternative hypothesis of mean-reverting RER. The structural

breaks robust analysis described in this paper, performed using either the HLT or BP

approaches, determines the speci�cation of the type of ADF regression equation that

needs to be estimated. When no structural break is detected, the standard ADF statistic

is computed. When evidence of structural breaks is found, the ADF regression equation

is modi�ed to include the detected structural breaks, as suggested by Perron (1990,1989)

�note that we use the additive outlier speci�cation:

qn;t = �n +
mnX
i=1


n;iDUn;i;t + un;t (C.8)

�un;t =
mnX
i=1

knX
j=0

�n;i;jD (Tn;i)t�j + �nun;t�1 +
knX
j=1

�n;j�un;t�j + "n;t; (C.9)

where DUn;i;t = 1 for t > Tn;i , 0 otherwise, and D (Tn;i)t = 1 for t = Tn;i + 1 , 0

otherwise, n = 1; : : : ; N . In those cases for which no structural breaks have been detected


n;i = �n;i;j = 0 8i; j in (C.8) and (C.9). Critical values are computed by simulation,

taking into account the speci�c sample size, the vector of mi structural breaks and the

number of lags of the parametric correction (kn) in the ADF regression equation is selected

using the BIC with a maximum of kmax =
�
4(T=100)1=4

�
lags.

As is customary in the literature, it is also of interest to measure the shock persis-

tence of RER. Usually, persistence is measured by computing impulse-response functions

(IRFs), half lives (HLs) and cumulative impulse-response functions (CIR). The IRF mea-

sures the e¤ect of a shock of size one at time t on h future values of the variable of

interest. Following Andrews and Chen (1994), IRFs functions can be calculated from the

in�nite-order moving average representation of an autoregressive process of order pn for
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qn;t from qn;t = (1�
n;1L�� � ��
n;pnLpn)�1"n;t =
P1

h=0 cn;h"n;t�h, so that IRFn(h) = cn;h

for h = 0; 1; :::, where L is the lag operator, n = 1; : : : ; N . From this expression, it is

straightforward to de�ne other popular measures of shock persistence such as the half

life, de�ned as the number of periods that it takes until half the e¤ect of a shock dissi-

pates, and the cumulated impulse response CIRn =
P1

h=0 IRFn(h), which measures the

total cumulative e¤ect of a shock over time. This is a scalar measure of persistence that

summarizes the information contained in the IRF.

C.1.1 Simulation experiment

As mentioned above, this �nal part of the empirical application is beyond the statistical

procedures that have been designed in the paper, and its validity might depend on the

ability of the di¤erent statistics to detect the presence of structural breaks to obtain

meaningful conclusions about the PPP hypothesis compliance. In order to address this

issue, we have conducted a small scale simulation experiment to assess the performance

of this analysis. The DGP is given in (26), with � 2 f0:84; 1g, 
 2 f0; 1; 5g, �0B;1 = 0:5,

T = 150 and mmax = 5 �the value of � = 0:84 corresponds to the mean of the estimated

parameters in the empirical results for the historical and PWT databases. The rest of the

speci�cation of the simulation experiment is de�ned in Section 5. The experiment allows

us to investigate di¤erent issues. First, we analyze the results of ignoring the presence of

structural breaks in the computation of the ADF unit root test statistic. In case that the

null hypothesis of unit root is rejected �i.e., evidence of PPP is found �we proceed to

compute the HL of a shock following the procedure described above. Second, we conduct

the robust structural break analysis that has been described in this paper using the U ,

F bU (OAAT) and F
b
U (joint) statistics.

20 Depending on the outcome of these statistics,

the standard ADF (without structural breaks) or Perron�s (1990) ADF (with multiple

level shifts) unit root test statistics are computed. If the null hypothesis of unit root is

rejected, the HL of shocks is obtained as described above.

Results in Table C.1 show that when the time series are I(1), the rejection rates of the

20The results obtained with the Fd(mj0) and the UDmaxU statistics do not substantially modify the
conclusions.
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ADF statistic are close to the nominal size of 5% when the structural break is ignored.

This result is in accordance with the theory, since �xed break magnitudes have negligible

e¤ects in the limit. This is also found for the BP-based ADF statistic, whereas for the

HLT-based one we observe a mild over-size distortion � the empirical size is 0.069 for

HLT-based ADF, 0.061 for the BP (OAAT) based ADF and 0.065 for the BP (joint)

based ADF statistics. Therefore, we can conclude that prior information about the

presence of structural breaks does not a¤ect the �nite sample performance of the ADF,

especially if the BP statistics are used. As for the HL estimates that are obtained when

the unit root is rejected, the model that ignores the structural breaks always produces

the largest estimates, followed by the BP-based ones and, �nally, the HLT-based ones

�note that the true HL is in�nite. Knowledge about the presence of structural breaks

is relevant when the time series are I(0), since unaccounted structural breaks decrease

the empirical power of the ADF statistic. As can be seen, the HLT and BP based ADF

unit root test statistics show similar performance for 
 = 1, although the HLT and BP

(joint) based ADF unit statistics outperform the BP (OAAT) based ADF ones when

the break magnitude increases to 
 = 5 �in this case the larger rejection rates shown

by the HLT-based ADF statistics might be due to the over-size distortions discussed

above. Finally, the HL estimates that are computed without considering the possibility

of structural breaks tend to over-estimate the true HL as the magnitude of the structural

break increases, whereas the ones that are based on the robust structural break analysis

show mild under-estimation biases regardless of the break magnitude.

In all, we can conclude that the prior information that is obtained from the robust

structural breaks analysis can be helpful to test the PPP hypothesis and measure shock

persistence.

C.1.2 Empirical results

Let us �rst focus on the countries from the historical time series provided by Jordà, Schu-

larick and Taylor (2018). The PPP holds in 13 out of 16 countries with HLT structural-

breaks-based-results, and in 14 (OAAT) or 13 (joint) out of 16 countries with the BP
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structural-breaks-based ones �the degree of coincidence between both methods is 81%

(OAAT) and 88% (joint). The empirical evidence in favor of the PPP is much weaker

with the PWT database, although there are also no large di¤erences between the use

of one or another method of structural breaks detection. With RER-C we only do not

reject PPP compliance in 43 (U) and 35 (F bU , OAAT) out of 180 countries, and in 33

(F bU , joint) out of 157 countries, with coincidence ratios of 77% (OAAT) and 73% (joint).

With RER-A the �gures are 49 (U), 31 (F bU , OAAT) and 33 (F
b
U , joint), with coincidence

ratios of 78% (OAAT) and 79% (joint). Finally, with RER-O the �gures are 48 (U), 38

(F bU , OAAT) and 36 (F
b
U , joint), with coincidence ratios of 79% (OAAT) and 72% (joint).

In spite of the great di¤erences found in the number and position of the structural

breaks with both methods, this fact does not seem to have a great in�uence on the

PPP compliance. The greater number of structural breaks found with the HLT method

might be explained by the size distortions in �nite samples detected in the simulations

above. But although this implies introducing a greater number of parameters in the

ADF speci�cation, this does not seem to have reduced the power of the test statistic. In

summary, while with historical data, PPP compliance is broad (around 81%), in the case

of PWT database it is much smaller (around 25%). It should be noted that although

the PWT database theoretically runs from 1950 to the present, for many countries the

available information de�nes shorter samples, starting in 1970 or even later in some cases.

The smaller sample size reduces the possibilities of �nding support for PPP due to the

low power of the unit root test tests in �nite samples and, also, because the highly

persistent RER needs time to return to its level of equilibrium. In fact, since Rogo¤

(1996) called attention to the so-called �Rogo¤ puzzle� a broad body of literature has

focused on studying the persistence of RER with more interest than the PPP compliance

itself. According to these studies, half lives of deviations from parity usually fall in the

range of 3 to 5 years.

Results available upon request show that for the historical database, the average HL

with HLT-based-results is 4.24, 4.37 with BP (OAAT) and 4.12 with BP (joint). For the

PWT database these values are 2.81/3.77/3.76, 2.55/3.84/3.81 and 2.16/2.73/2.75 for
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RER-C, RER-A and RER-O, respectively. Therefore, we �nd very similar values with

the di¤erent databases and methods, which o¤er shocks persistence estimates that lay

within the range of values of the so-called �Rogo¤ puzzle�.

Table C.1: Results of ADF experiment

I(1) I(0)
Structural breaks Structural breaks


 True No breaks HLT BP(O) BP(J) True No breaks HLT BP(O) BP(J)
PPP 0 0.060 0.069 0.061 0.065 0.960 0.959 0.960 0.960

1 0.059 0.072 0.060 0.063 0.923 0.920 0.925 0.924
5 0.047 0.090 0.053 0.059 0.098 0.372 0.266 0.330

HL 0 1 7.040 6.659 6.969 6.715 3.728 3.591 3.572 3.584 3.585
1 1 6.997 6.376 6.918 6.715 3.395 3.767 3.726 3.736 3.727
5 1 6.804 5.317 6.351 5.592 3.377 5.446 3.376 3.104 2.909

Notes: The columns labelled as BP(O) and BP(J) denote the results that are based on the BP
statistics computed using the one-at-a-time and the joint break dates estimation strategies, respec-
tively
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