
Facultat de Farmàcia i Ciències de l'Alimentació

Departament de Nutrició, Ciències de l'Alimentació i Gastronomia

Dr. Fabián Ignacio Lanuza Rilling (PhD. MSc.)

Research Seminar

https://www.linkedin.com/in/fabianlanuza/ https://www.researchgate.net/profile/Fabian-Lanuza

October, 2023

https://orcid.org/0000-0001-8545-9301

UNIVERSITAT DE

BARCELONA

CONFLICTO DE INTERESES

No presento ningún conflicto de interés con la siguiente ponencia.

WHERE ARE YOU FROM ?: CHILE

×

17,574,003 habitantes North-South 4,300 km. 2,700 miles

Pucon

Patagonia

<u>Degree</u> Undergraduate: Nutritionist 2012, Temuco, Chile.

MSc: Human Nutrition 2016, Santiago, Chile.

PhD.: Food and Nutrition 2019, Barcelona, UB.

PROFESSIONAL EXPERIENCE

- 2013: Clinical Nutritional Consultant
 - Health Care Program Coordinator
- 2015: Research assistant:

International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support (INFORMAS) in INTA.

University San Sebastián

(Classes, workshops & clinical practice supervision)

2016-2019 - Professor in Universidad de La Frontera.

2023 - Professor in Universidad Católica de Temuco

UNIVERSIDAD DE LA FRONTERA

https://www.ufro.cl/

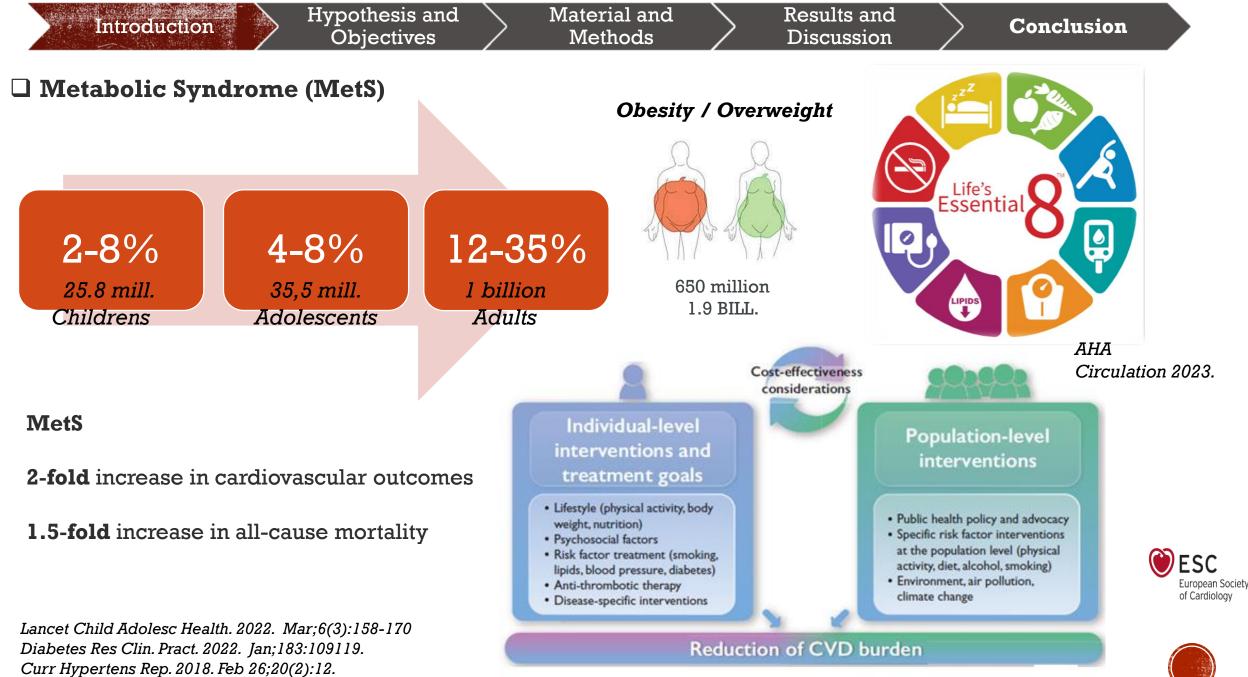
http://www.inta.cl/

2016-2019: TEACHING, WS, DIETETIC LABORATORY, COURSES.

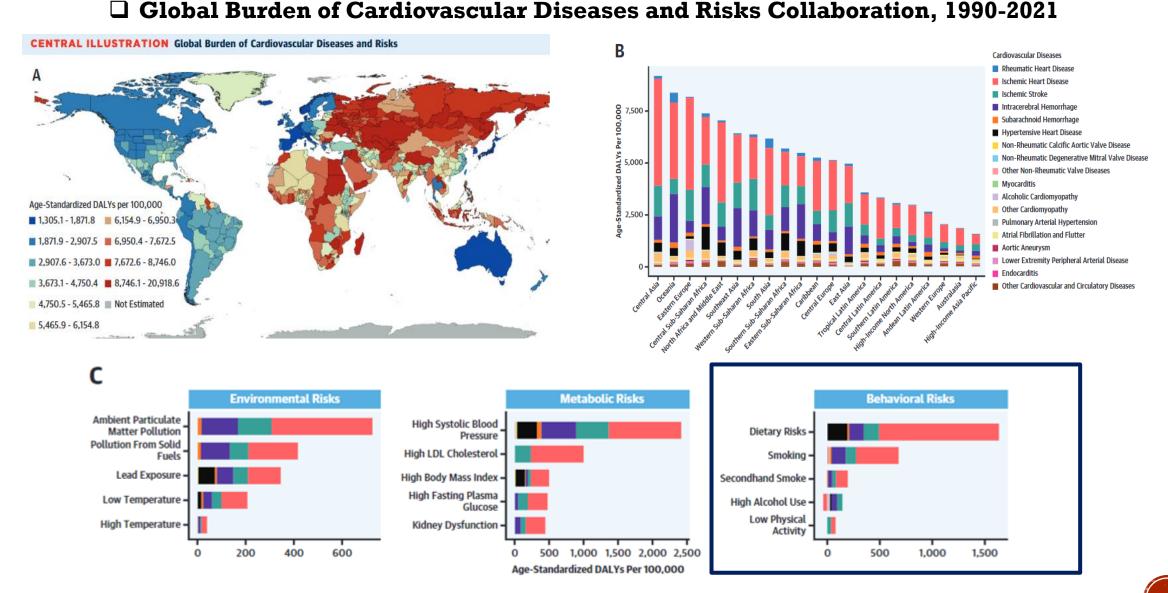
Clinical Supervisor

HHHA: Hospital

Child Nutrition Seminar



CONTENT

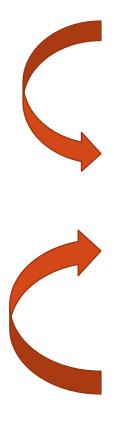


Eur Heart J. 2021 Sep 7;42(34):3227-3337.

Hypothesis and Introduction Conclusion **Objectives** Discussion Methods

Material and

Results and

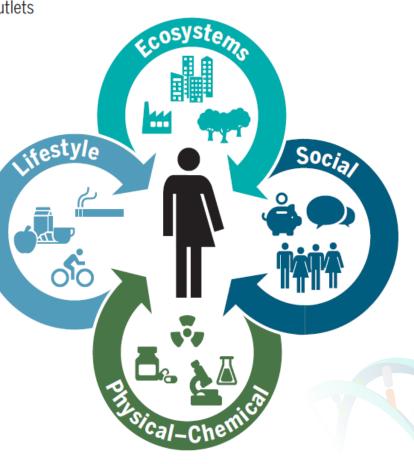

Remember: One DALY represents the loss of the equivalent of one year of full health

[Am Coll Cardiol. 2022 Dec, 80 (25) 2372-2425

Material and Methods Results and Discussion

Conclusion

□ The exposome and health: Where chemistry meets biology

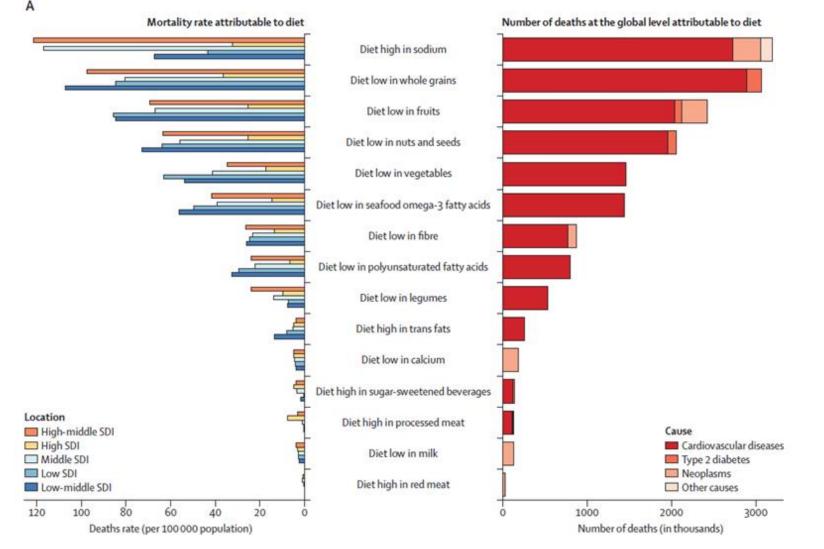

Ecosystems

Food outlets, alcohol outlets Built environment and urban land uses Population density Walkability Green/blue space

Lifestyle Physical activity Sleep behavior Diet Drug use Smoking Alcohol use

Social

Household income Inequality Social capital Social networks Cultural norms Cultural capital Psychological and mental stress


Physical-Chemical

Temperature/humidity Electromagnetic fields Ambient light Odor and noise Point, line sources, e.g. factories, ports Outdoor and indoor air pollution Agricultural activities, livestock Pollen/mold/fungus Pesticides Fragrance products Flame retardants (PBDEs) Persistent organic pollutants Plastic and plasticizers Food contaminants Soil contaminants Drinking water contamination Groundwater contamination Surface water contamination Occupational exposures

Introduction Hypothesis and Objectives Material and Methods Discussion Conclusion Conclusion

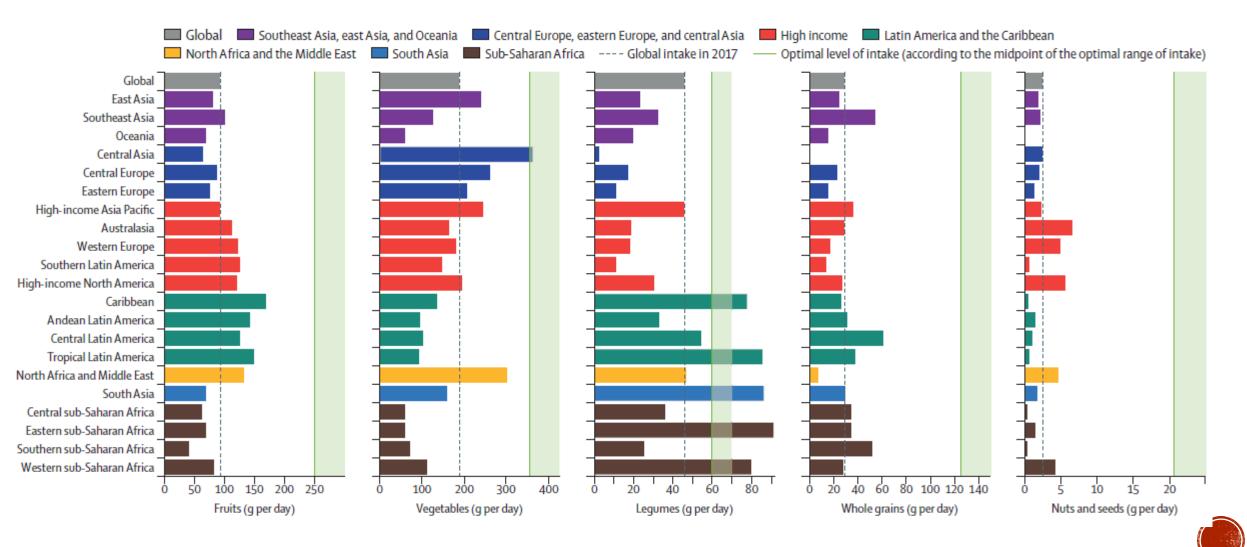
Global Burden of Disease Study.

Lancet 2019; May393: 1958-72

□ Health effects of dietary risks: 195 countries, 1990–2017: A systematic Analysis for the Global Burden of Disease Study.

Hypothesis and

Objectives


Introduction

Material and

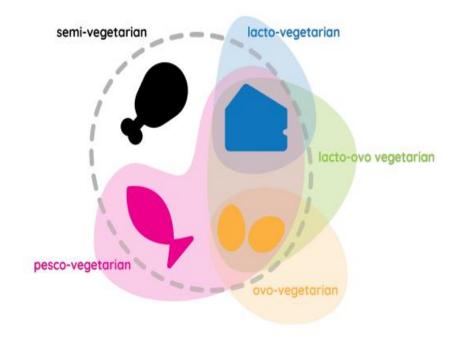
Methods

Results and

Discussion

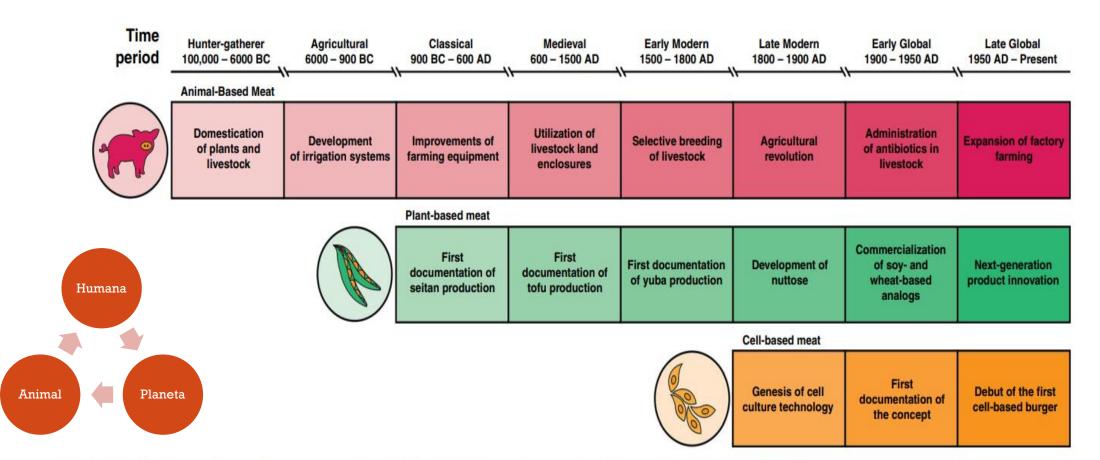
Lancet 2019; May393: 1958-72

Conclusion


Analysis in Nutrition Research 2019. Chapter 4 - Dietary Pattern Analysis: p75-101.

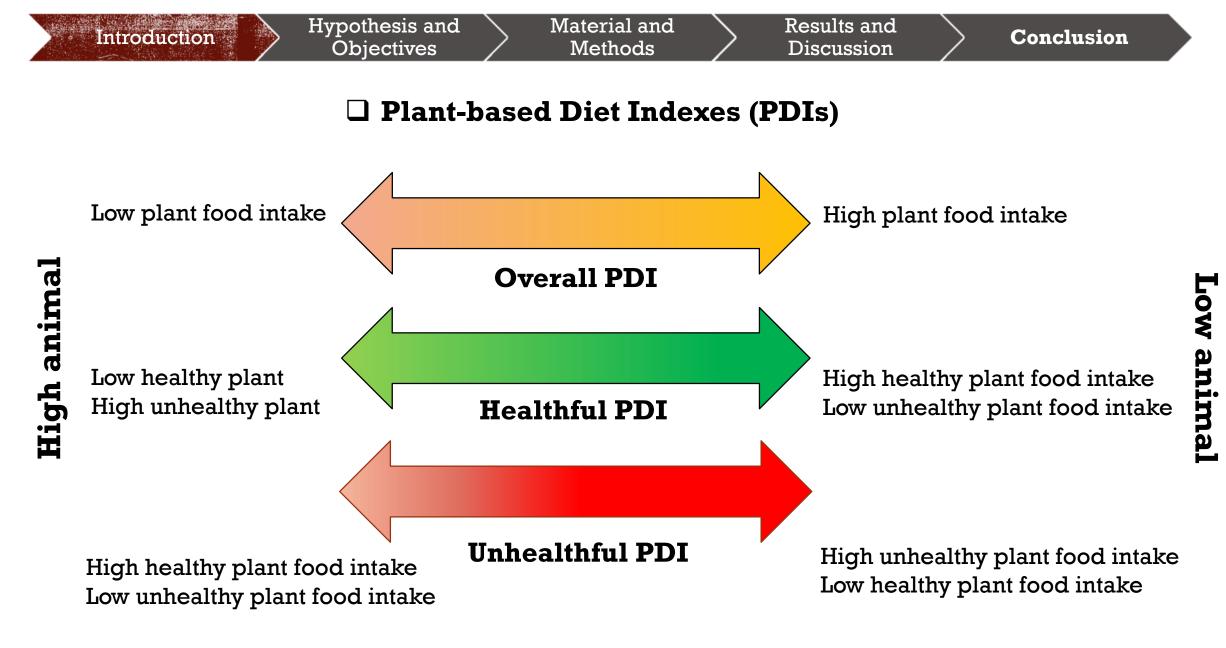
Plant-based diets

Plant-based diets constitute a diverse range of dietary patterns that emphasize foods derived from plant sources coupled with lower consumption or exclusion of animal products. Vegetarian diets form a subset of plant-based diets, which may exclude the consumption of some or all forms of animal foods (see box).


Common vegetarian diets

- Vegan diets omit all animal products, including meat, dairy, fish, eggs and (usually) honey.
- Lacto-vegetarian diets exclude meat, fish, poultry and eggs, but include dairy products such as milk, cheese, yoghurt and butter.
- Lacto-ovo vegetarian diets include eggs and dairy, but not meat or fish.
- Ovo-vegetarian diets exclude meat, poultry, seafood and dairy products, but allow eggs.
- Pesco-vegetarian (or pescatarian) diets include fish, dairy and eggs, but not meat.
- Semi-vegetarian (or flexitarian) diets are primarily vegetarian but include meat, dairy, eggs, poultry and fish on occasion, or in small quantities.

FOOD SUPPLY AND SAFETY


Fig. 1. The history and evolution of animal-, plant- and cell-based approaches to meat production. ^{13,87-93}. Humans have consumed plant-based meat (2555 years ago) for only 0.098% of the time period for which their ancestors have consumed animal-based meat (2,600,000 years ago). Likewise, humans have eaten cell-based meat (7 years ago) for only 0.274% of the time period for which they have consumed plant-based meat.

NATURE COMMUNICATIONS | (2020)11:6276 | https://doi.org/10.1038/s41467-020-20061-y | www.nature.com/naturecommunications

Fig. 2 Geographical distribution of plant-based (green circles) and cell-based (orange circles) meat companies. Companies were included as listed in the Good Food Institute alternative protein company database (August 2020).

Categories of PDIs

Introduction

Healthy plant foods

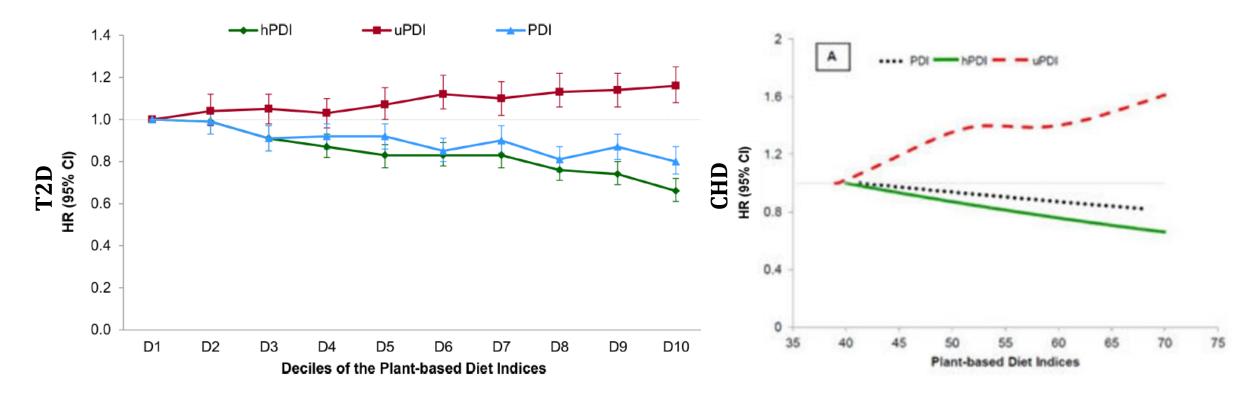
- Whole Grains
- Fruits
- Vegetables
- Legumes
- Nuts
- Vegetable Oils
- Tea and Coffee

Less healthy plant foods

- F & V juices
- Refined grains
- Potatoes/fries
- Sugar sweetened
 - beverages
- Sweet and desserts

Animal foods

- Animal fat
- Dairy
- Eggs
- Fish or seafood
- Meat
- Miscellaneous


PLoS Med . 2016 Jun 14;13(6):e1002039

Food groups	y Study (KoGES). Items in the food frequency questionnaire	PDI	hPDI	uPDI	Pro-vegetarian
Healthy plant					
Whole grains	Mixed grains, barley, grain with beans	Positive	Positive	Reverse	Positive ²
Fruits	Strawberry, watermelon, banana, peach/	Positive	Positive	Reverse	Positive
	plum, oriental melon/melon,				
	persimmon/dried persimmon, pear/pear				
	juice, tangerine, orange/orange juice,				
Vagatablas	apple/apple juice, grape/grape juice	Donitireo	Positive	Reverse	Positive
Vegetables	Sweet potatoes, radish, napa cabbage/napa cabbage soup, spinach, lettuce, perilla	FOSITIVE	FOSITIVE	Reverse	FOSITIVE
	leaves, sesame leaves/vegetable salad,				
	other green vegetable, Deodeok/bellflower				
	root, bean sprouts/mung-bean sprouts,				
	bracken/sweet potato stem, oyster				
	mushroom, other mushrooms, green pepper				
	leaf/chamnamul, crown daisy /chive				
	/watercress, cucumber, carrot/carrot juice,				
	onion, green peppers, zucchini, pumpkin/kabocha squash, laver,				
	kelp/seaweed, tomato/tomato juice				
Nuts	Peanuts/almonds/pine nuts	Positive	Positive	Reverse	Positive
Legumes	Beans/beans cooked in soy sauce, tofu,	Positive	Positive	Reverse	Positive
0	bean curd, soybean milk				
Tea and	Coffee, green tea	Positive	Positive	Reverse	Not scored
coffee					
Less healthy p					
Refined	White rice, instant noodles, other noodles	Positive	Reverse	Positive	Positive ²
grains	(udon noodles), black bean sauce noodles,				
	cold noodles, rice cake/rice cake soup,				
	other rice cakes, cereals, white breads,				
	other breads, grain powder, starch jelly, stir-fried noodles and vegetables				
Potatoes	Potatoes	Positive	Reverse	Positive	Positive
Sugar	soft drink, other beverages (sweetened rice		Reverse	Positive	Not scored
sweetened	tea, citron tea)				
beverages	- /				
Sweets and	Sweet red bean bread, cake/chocolate pie,	Positive	Reverse	Positive	Not scored
desserts	cookies/crackers/snacks,				
	candies/chocolates, sugars (added to tea or				
G-14- G-1	coffee)	Desition	D	Desition	N
Salty food	Bean paste, Bean paste/bean paste soup,	Positive	Reverse	Positive	Not scored
group	Kimchi (Korean cabbage, radish), watery				
	radish kimchi, other kimchi, pickled vegetable (preserved in soy sauce or salt),				
	vegetable (preserved in soy sauce of sait),				

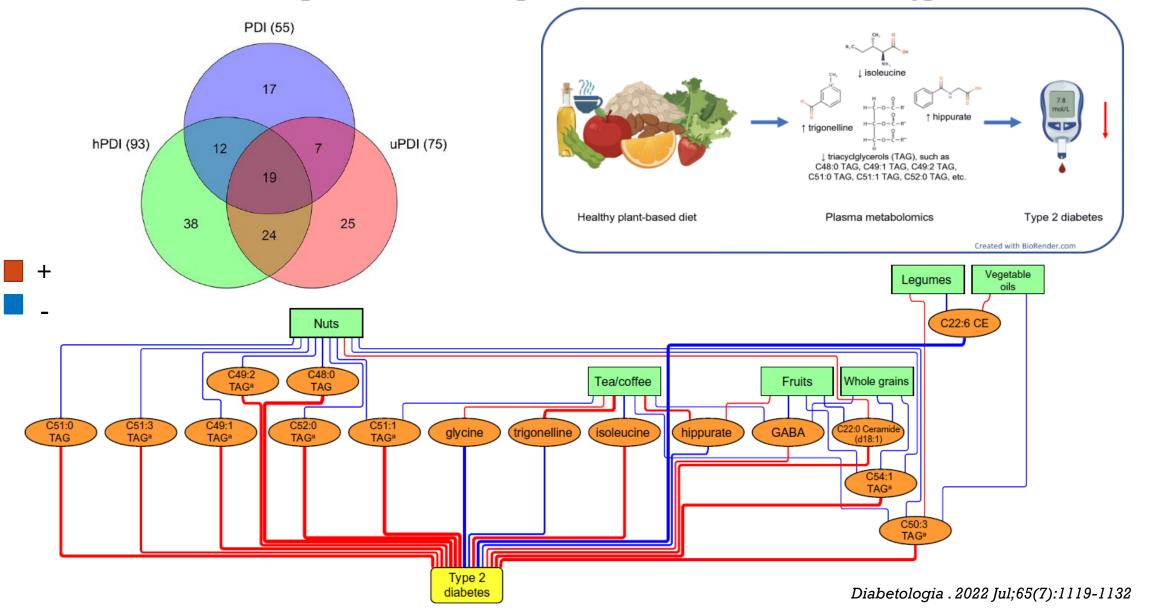
S1 Table. Scoring system and classification of food items in the Korean Genome and Epidemiology Study $(KoGES)^1_{\infty}$

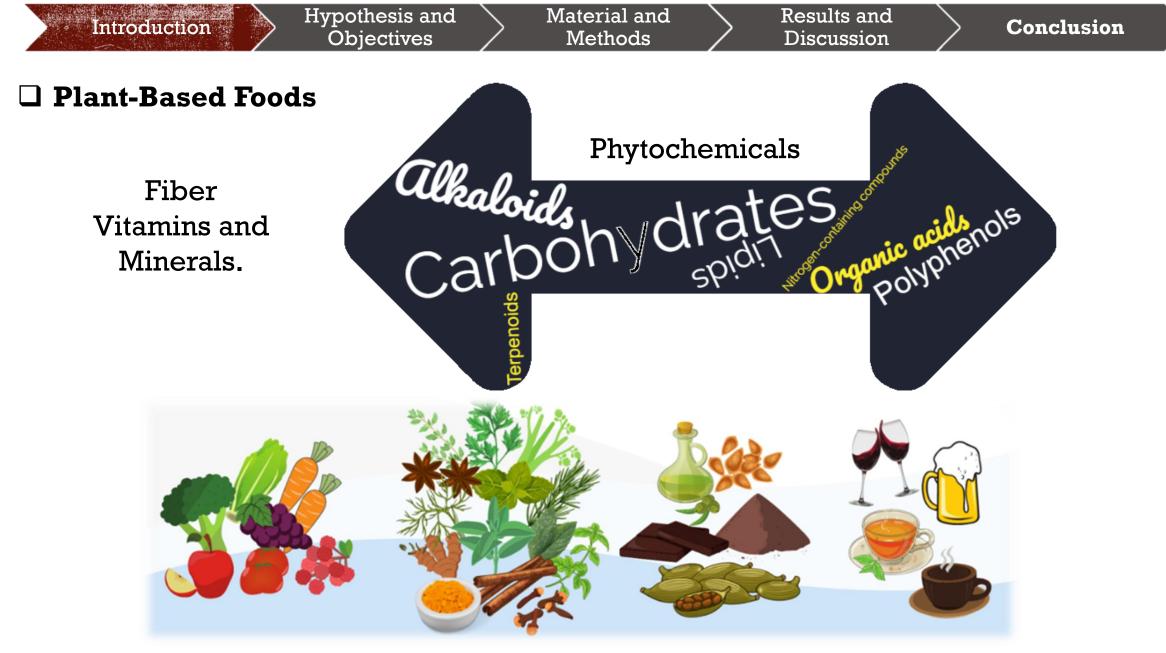
D PDIs and Incidence of Type 2 Diabetes/ Risk of Coronary Heart Disease in US Men and Women

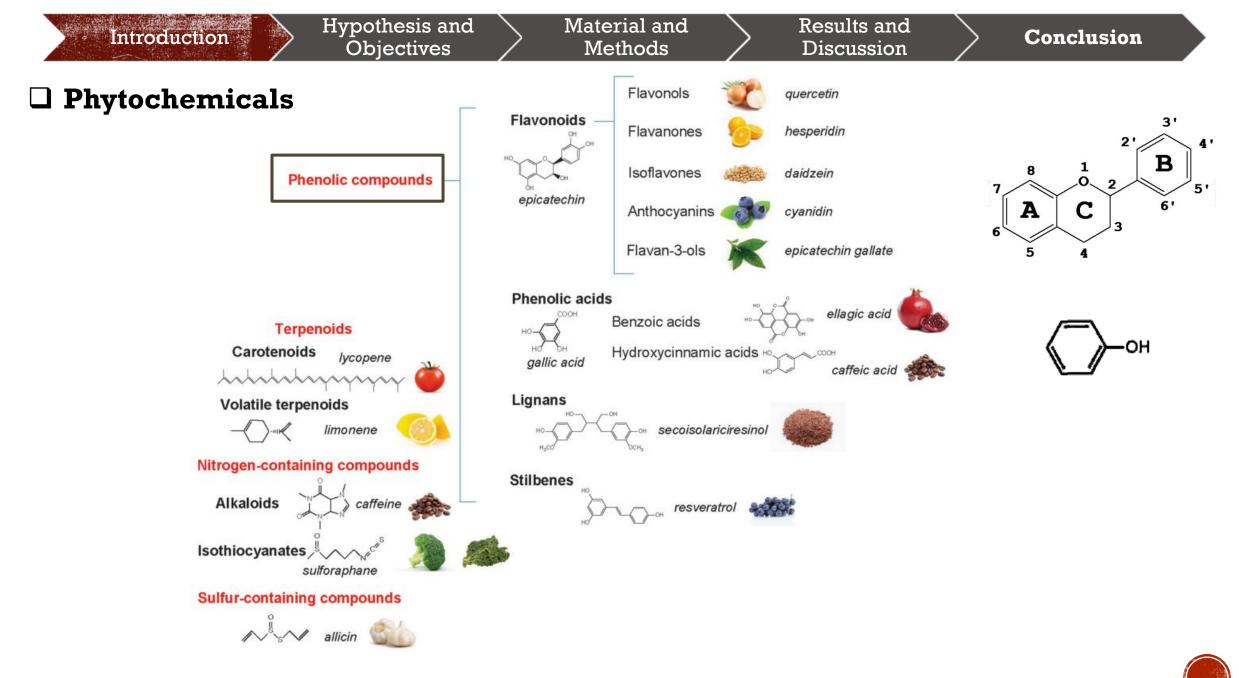
Three cohorts:

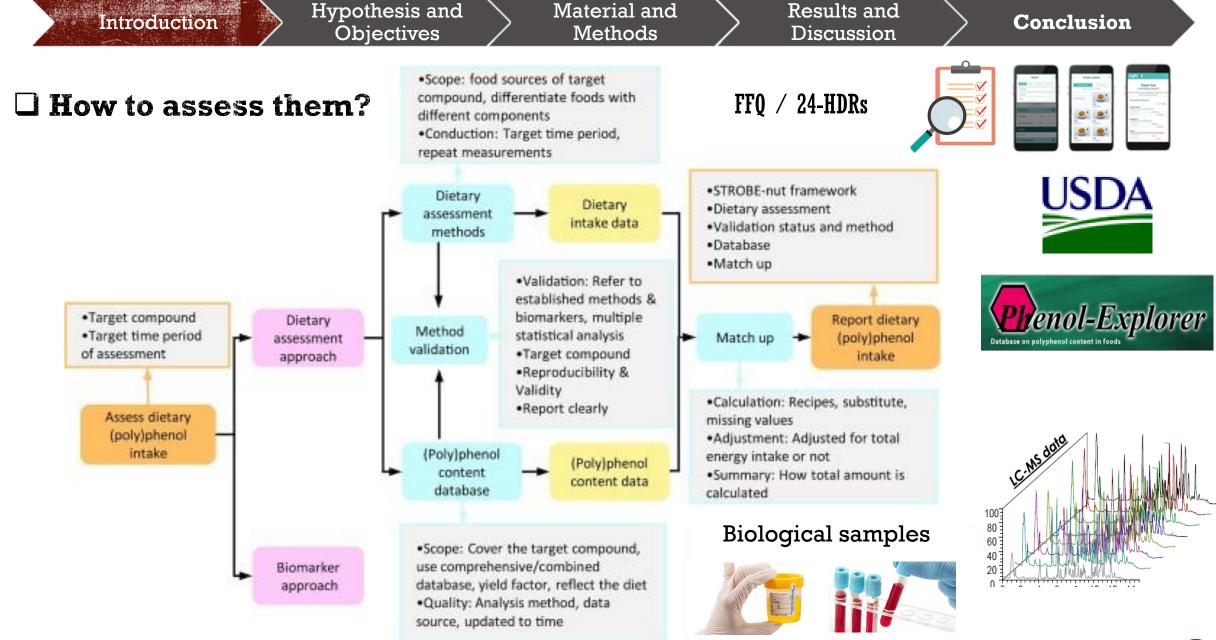
Nurses' Health Study (NHS) Nurses' Health Study 2 (NHS2) Health Professionals Follow-Up Study (HPFS)

NOT ALL PLANT-BASED DIETS ARE HEALTHY

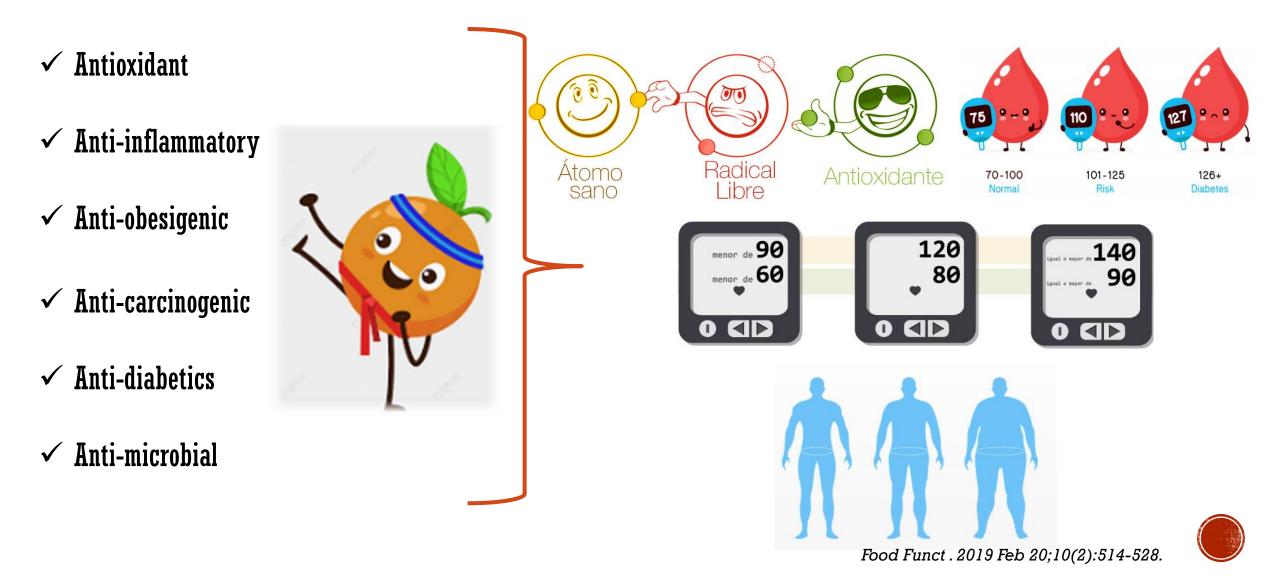

 \approx 200,000 participants


PLoS Med . 2016 Jun 14;13(6):e1002039 J Am Coll Cardiol. 2017 Jul 25;70(4):411-422.

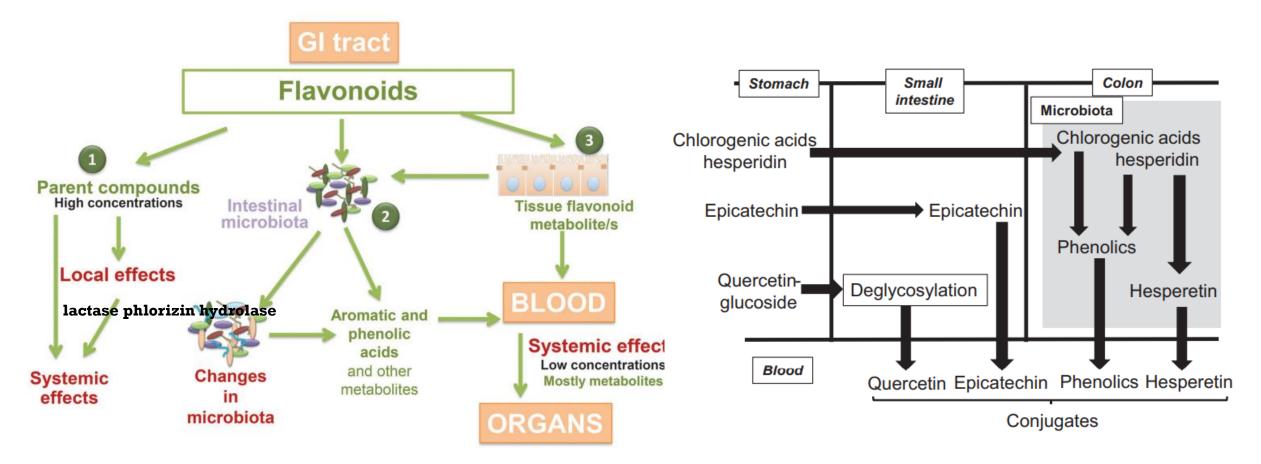

□ Plasma metabolite profiles related to plant-based diets and the risk of type 2 diabetes

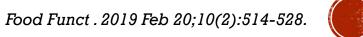


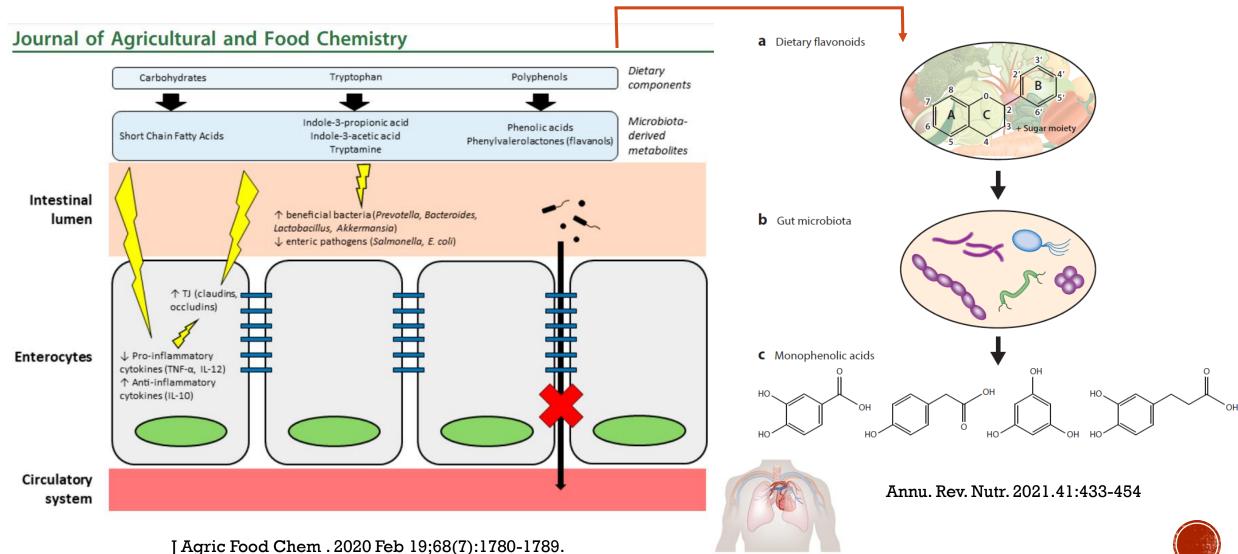
JAgric Food Chem . 2011 May 11;59(9):4331-48

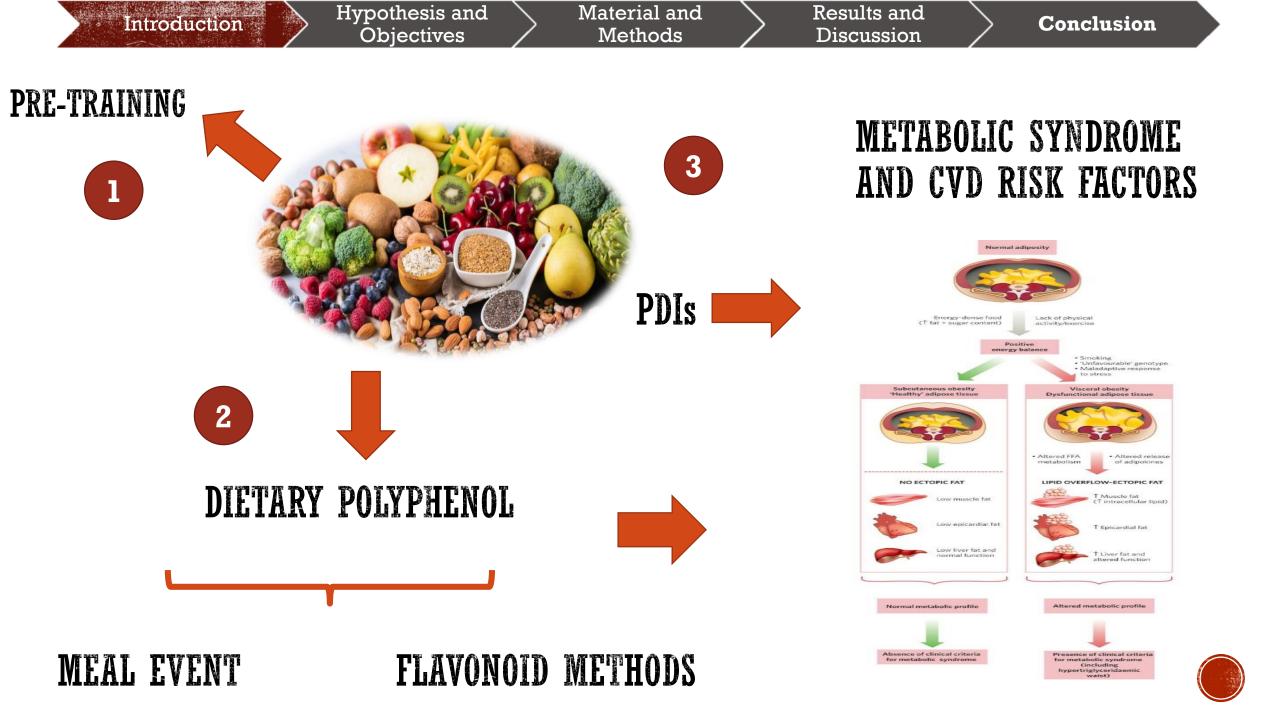


Adv Nutr 2021;12:1781–1801




Potential properties of polyphenols related to cardiovascular health


D Polyphenol metabolism in the colon and metabolite absorption


Do not forget interindividual variability, external factors (sex, age, BMI, others)

Schematic representation of the mechanisms of action responsible for the effects of microbiotaderived dietary metabolites on intestinal permeability.

Decreased cardiometabolic disease risk

CONTENT

GLOBAL HYPOTHESIS

Adherence to a healthy dietary pattern could have protective effects on cardiometabolic risk and the development of chronic noncommunicable diseases.

PRINCIPAL STUDY

We hypothesized how better adherence to certain plant-based dietary patterns, and theoretically with higher amount of (poly)phenolrich foods, could have a beneficial effect on cardiometabolic factors and metabolic syndrome.

GENERAL OBJECTIVE

To study adherence to a (poly)phenol-rich dietary pattern and its association with health outcomes in participants of the DCH-NG MAX subcohort of the DiGuMet project.

SPECIFIC OBJECTIVES

1. To analyze the interconnection and current challenges of the four pillars of the food system, from a psychological perspective. (Manuscript 1)

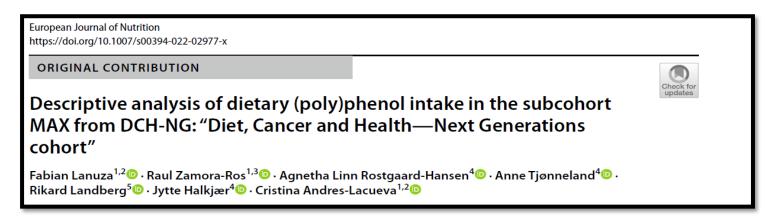
Received: 9 September 2022	Revised: 21 October 2022	Accepted: 3 November 2022				
DOI: 10.1002/oby.23644						
PERSPECTIVE						
Perceptual blindless in nutrition: We are in a critical time to be connected						
Fabian Lanuza ^{1,2}						

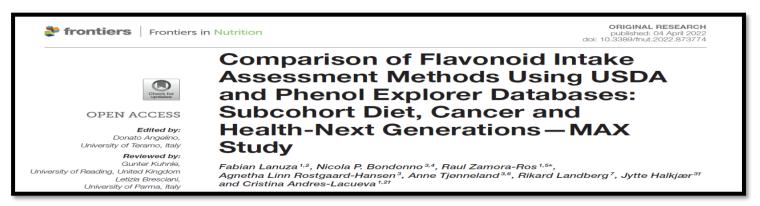
2. To review the advances in polyphenols research which have been conducted in Chile, with a focus on (poly)phenol-rich foods and health-related outcomes. (Manuscript 2)

FOOD REVIEWS INTERNATIONAL https://doi.org/10.1080/87559129.2021.2009508	Taylor & Francis Taylor & Francis Group				
REVIEW	Check for updates				
Advances in Polyphenol Research from Chile: A Literature Review					
F Lanuza ^{a,b,c} , R Zamora-Ros ^{a,d} , F Petermann-Rocha ^{e,f} , MA Martínez Pantoja ^h , AM Labraña ⁱ , AM Leiva-Ordoñez ⁱ , G Nazar ^k , K Ramírez-A Laso ^m , S Parra-Soto ^{e,f} , M Martorell ⁱ , M Villagrán ⁿ , DF Garcia-Diaz ^o , and C Celis-Morales ^{f,p,q}	Alarcón ⁱ , N Ulloa ⁱ , N Lasserre-				

3. To evaluate the association between whole grain consumption and cardiometabolic risk factors in adults from the Chilean National Health Survey 2016-2017. (Manuscript 3 – Pre-training)

we nutrients	MDPI
Article Wholegrain Consumption and Risk Factors for Cardiorenal Metabolic Diseases in Chile: A Cross-Sectional Analysis of 2016–2017 Health	
National Survey	
Fabian Lanuza ^{1,2,+} , Raul Zamora-Ros ^{1,3,+} , Nicole Hidalgo-Liberona ¹ , Cristina Andrés-Lacueva ^{1,4,*} and Tomás Meroño ^{1,*}	


4. To analyze the association between a healthy eating score with depression in older adults from the Chilean National Health Survey 2016-2017. (Manuscript 4 – Pre-training)



SPECIFIC OBJECTIVES

5. To descriptive analysis of dietary intakes of all individual (poly)phenols and total intake per class and subclass by meal event, and to identify their main food sources using 24-HDRs in the subcohort MAX from the DCH-NG. (Manuscript 5)

6. To compare the flavonoid intakes using different methods based on USDA and Phenol Explorer databases in participants from subcohort DCH-NG MAX. (Manuscript 6)



SPECIFIC OBJECTIVES

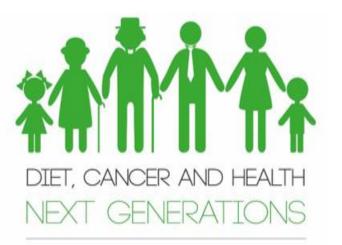
7. To analyze the relationships between (poly)phenol intakes using 24-HDRs and cardiometabolic risk, with a longitudinal design using DCH-NG MAX subcohort. **(Manuscript 7)**

8. To analyze the associations between plant-based dietary patterns (based on 24-HDRs), cardiometabolic risk, and metabolomic profiles (based on plasma), with a longitudinal study design of the MAX sub-cohort. (Manuscript 8 – Accepted)

CONTENT

Material and Methods

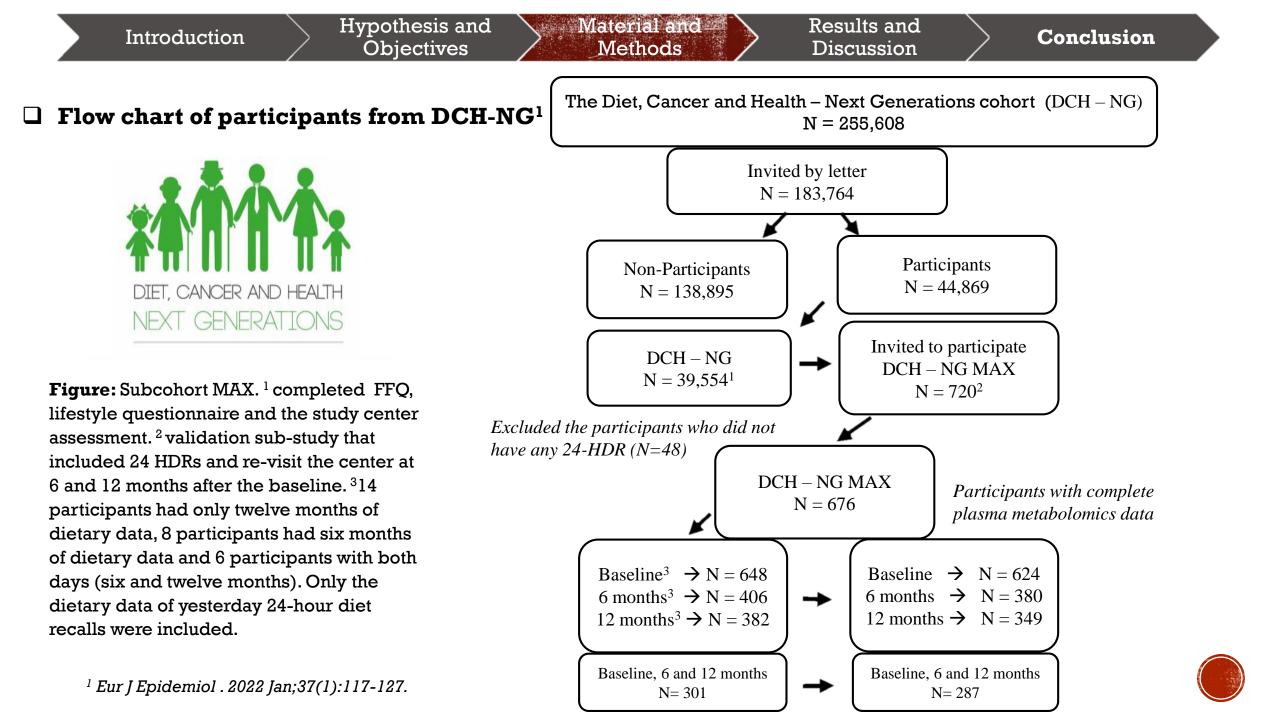
□ Study design – Observational studies

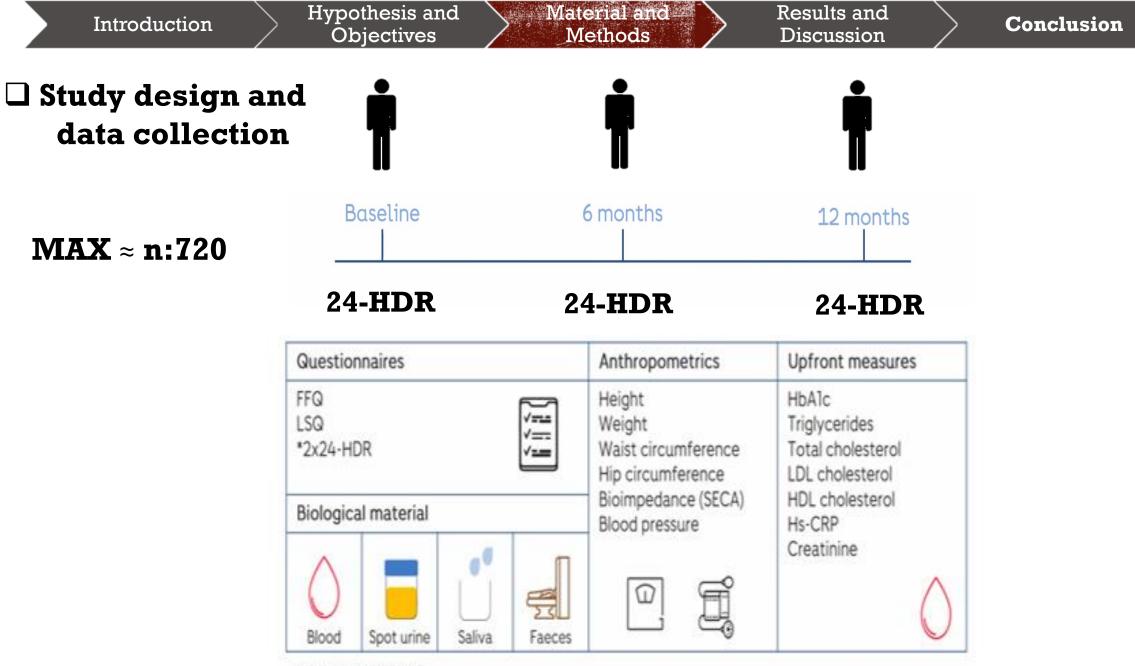

1. Chilean National Health Survey (CNHS)

2. Diet Cancer Health – Next Generations (MAX study)

Joint Programming Initiative - A Healthy Diet for a Healthy Life (JPI HDHL)

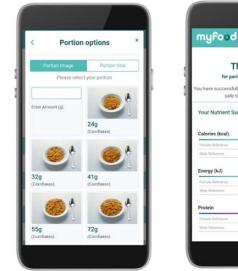
Encuesta Nacional de Salud 2016 -2017


Chilean National Health Survey¹


Area	Description
Responsible institution	Ministry of Health, Dept. of Epidemiology, Chilean government.
Executing institution	PUC (Pontificia Universidad Católica de Chile)
Design	Cross-sectional population survey
Population	Individuals with ≥ 15 years, Chilean or foreign residents in all regions of Chile
Representative	National, regional, urban/rural
Application mode	Interview – tablet (trained interviewer and nurse)
Sample size	6233 participants
Laboratory measurements	25
Anthopometrical measurements	3 (weight, height, circumference waist)

¹ Free available survey database: https://www.gob.cl/ministerios/ministerio-de-salud/

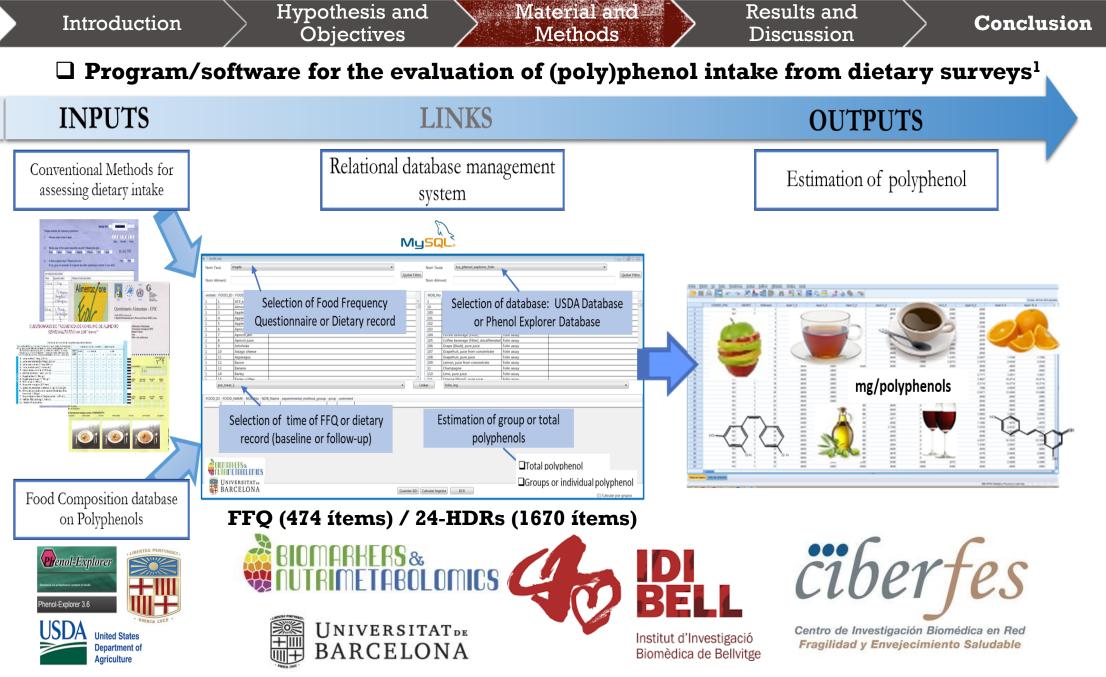
^{*}Not collected in DCH-NG


Hypothesis and Objectives

Search × Search... Category v Brand v Category v Brand v Category v Brand v Category v Brand v Category v Category v Brand v Category v

. . .

. . .



. . .

- ✓ Web/App-online
- ✓ 1600 Food items
- ✓ Portion images
- \checkmark Recipe builder

Source	Database	Description	Website/Book
Denmark	FRIDA	Danish national food database	https://frida.fooddata.dk/
Sweden	Livsmedelsverket	Swedish national food database	https://www.livsmedelsverket.se/en
United States	USDA	American national food database	https://fdc.nal.usda.gov/
United Kingdom	McCance and	English national food database	Edition of McCance and Widdowson's
	Widdowson's		The Composition of Foods (MW 6 & 7)
Myfood 24	Marcas de productos	Brand database in the English	https://www.myfood24.org/
	alimenticios	Myfood24 database	

¹Software published in digital repository \rightarrow http://diposit.ub.edu/dspace/handle/2445/187698)

□ Plant-Based Diet Indexes (PDIs)

	Health Plant Foods	Less Health Plant Foods	Animal
PDI	+	+	-
hPDI	+*	-*	
uPDI		+	

Characteristics

- \checkmark Mean dietary intakes
- \checkmark Three versions and categories
- ✓ 18 food groups

✓ Total score:

18 pts. (lowest possible score)

90 pts. (highest possible score)

Positive score (+):

Q1=1, Q2=2, Q3=3, Q4=4 y Q5=5

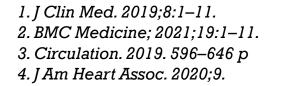
Reverse score (-):

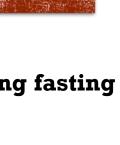
Q1=5, Q2=4, Q3=3, Q4=2, Q5=1

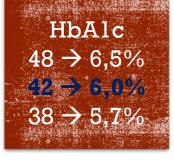
*Example 1 (positive) Individuals with the highest intake quintile for fruit

consumption received a score of 5.

***Example 2 (reverse)** Individuals with the highest intake quintile for SSB consumption received a score of 1.




□ Metabolic Syndrome


Three or more of its five components according to the International Diabetes Federation (IDF) definition, AHA, among others.

- \checkmark WC (> 88 cm in women and > 102 cm in men);
- ✓ high serum TG concentration \ge 1.7 mmol/L;
- \checkmark reduced serum HDL-C (< 1.3 mmol/L in women and < 1.0 mmol/L in men);
- ✓ high blood pressure, SBP (> 130 mmHg) and/or DBP (> 85 mmHg);
- high HbAlc (> 42 mmol/mol) as a biomarker for long-term glycemic control, replacing fasting plasma glucose^{1,2}

PLUS \rightarrow high hs-CRP as a cardiovascular risk factor ($\geq 2.0 \text{ mg/L}$)^{3,4}

CONTENT

Objective 1: To analyze the interconnection and current challenges of the four pillars of the food system, from a psychological perspective.

Received: 9 September 2022

Revised: 21 October 2022 Accepted: 3 November 2022

DOI: 10.1002/oby.23644

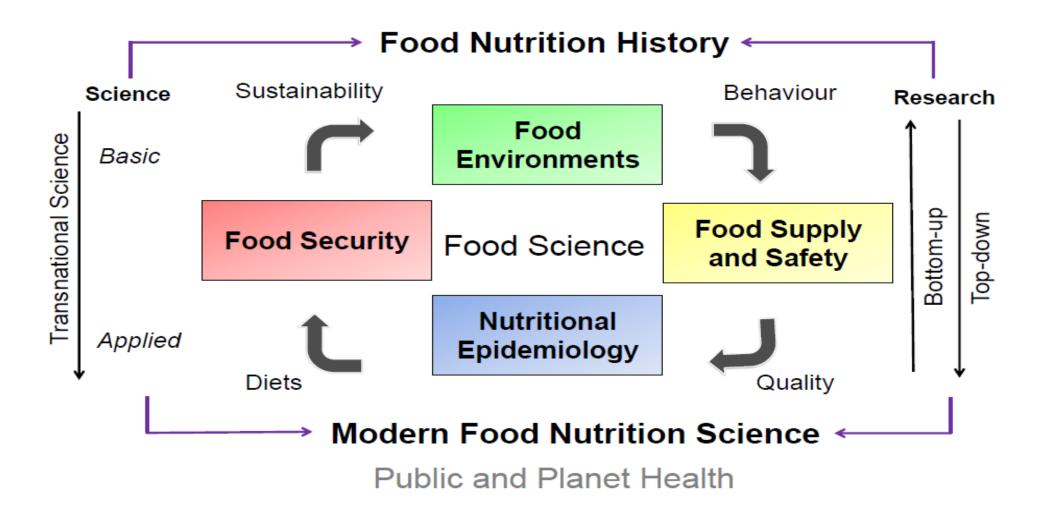
PERSPECTIVE

Perceptual blindless in nutrition: We are in a critical time to be connected

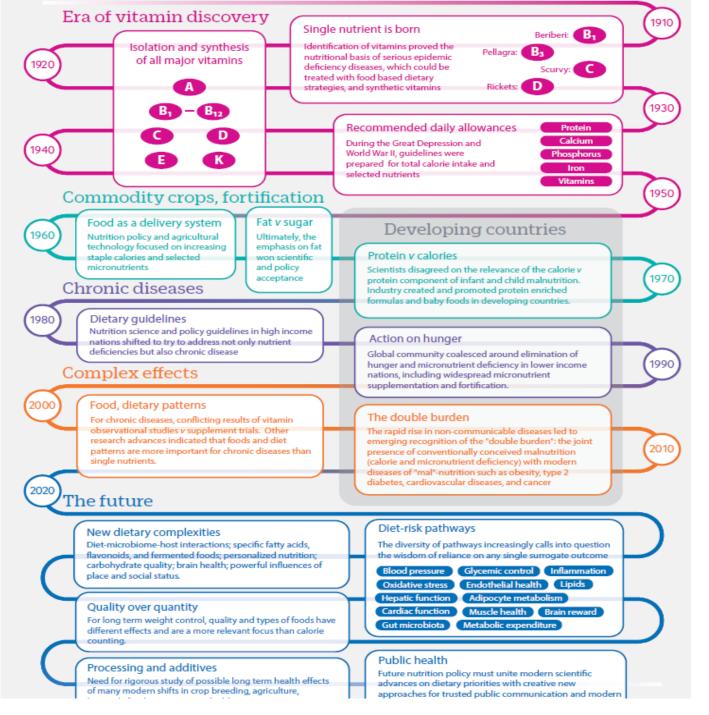
Fabian Lanuza
1,2
Image: Registration of the second second

Cristina Andrés-Lacueva^{1,5} 💿

□ Manuscript 1: Perspective

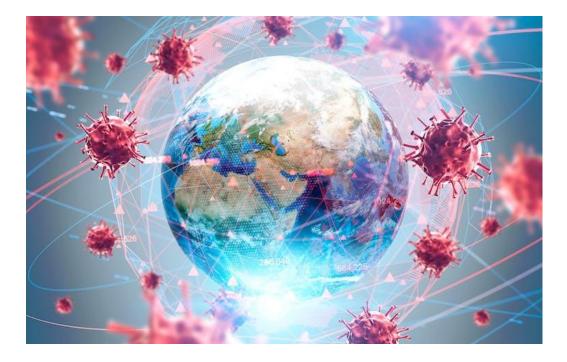

Abstract

Our health and well-being are affected by our food systems. The new nutrition reality has been linked to complex food systems, interrelated with several pathways and determinants, including physical, socioeconomic, environmental, and ecological, and lately, has been strongly associated with population bealth, the increase in chronic diseases, and climate change. We briefly comment on four pillars namely food environments, food security, food supply, and safety and nutritional epidemiology, all of which are key determinants of food systems. We overview some highlights, challenges, and methodologies with a view to advancing food and nutrition science as an integrated field of research. By modifying food systems, we are able to improve the aging and well-being of populations and the health of the planet. Trusted science, nutritional education, new scientific-public communication, integrated policy, investment, food availability, and cultural strategies are all essential for creating better food systems. Perceptual blindness in nutrition must be transformed.


Lanuza, et al. Obesity 2023 Feb;31(2):302-305.

□ Pillars and key determinants of Food Systems

Lanuza, et al. Obesity 2023 Feb;31(2):302-305.



Mozaffarian & Colleagues, BMJ, 2018. DOI: <u>https://doi.org/10.1136/bmj.k2392</u>

PANDEMIA, GUERRA, INFLACIÓN Y CAMBIO CLIMÁTICO.

Guerra Rusia Ucrania hoy: Rusia se niega a ampliar el acuerdo de exportación de cereales con Ucrania

Sigue la última hora sobre la guerra entre Ucrania y Rusia en directo. Rusia rechazó la ampliación del acuerdo de exportación de cereales y fertilizantes con Ucrania si no se levantan las sanciones que pesan sobre el comercio ruso de productos agrícolas. Toda la actualidad de la guerra rusoucraniana, Vladímir Putin y Volodímir Zelenski.

CLIMATE CHANGE

Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets

Michael A. Clark¹⁺, Nina G. G. Domingo², Kimberly Colgan², Sumil K. Thakrar², David Tilman^{3,4}, John Lynch⁵, Inês L. Azevedo^{6,7}, Jason D. Hill²

Results and

Discussion

Objective 2: To review the advances in (poly)phenols research which have been conducted in Chile, with a focus on polyphenol-rich foods and health-related outcomes.

FOOD REVIEWS INTERNATIONAL https://doi.org/10.1080/87559129.2021.2009508

REVIEW

Check for updates

Taylor & Francis

Taylor & Francis Group

Advances in Polyphenol Research from Chile: A Literature Review

F Lanuza^{a,b,c}, R Zamora-Ros^{a,d}, F Petermann-Rocha^{e,f}, MA Martínez-Sanguinetti^g, C Troncoso-Pantoja^h, AM Labrañaⁱ, AM Leiva-Ordoñez^j, G Nazar^k, K Ramírez-Alarcónⁱ, N Ulloa^l, N Lasserre-Laso^m, S Parra-Soto^{e,f}, M Martorellⁱ, M Villagránⁿ, DF Garcia-Diaz^o, C Andrés-Lacueva^{a,b}, and C Colis Moralos^{f,P,g}

and C Celis-Morales^{f,p,q}

□ Manuscript 2: Review

ABSTRACT

Certain countries have the privilege of diverse ecosystems that allow access to wide food availability. This fact carries an intrinsic diversity in bioactive compounds such as phytochemicals, especially polyphenols. The aim of this review is to summarize the advances in polyphenols research which have been conducted in Chile, with a focus on polyphenol-rich foods and healthrelated outcomes. In the first part, several studies that have analyzed food sources rich in polyphenols are presented. This is followed by a description of *in vitro* and *in vivo* studies from Chile that have evaluated the polyphenol compounds of Chilean foods or their extracts along with their biological activity or health effects. Most polyphenol studies in our search have an *in vitro* experimental design where mainly protective activities are tested. The antioxidant effect is remarkable in all studies. As well as discussing the future direction of dietary assessment and the approach to biomarkers in this field, currently, additional emphasis and research investment are necessary to explore more native foods with an added value.

Lanuza, et al. Food Review International 2021, Dec;6(39):3134-3171

□ Summary of the total phenolic content (mg GAE/100 g) by food sources, species, regions of Chile, origin and weight expressed.

Table 1. (Continued).

Food (common name)	Species	Region of Chile	Origin	Weight	Total Phenolic Content (mg GAE/100 g)	Reference
Maqui	Aristotelia chilensis (Molina) Stuntz	Valparaíso	Fruit	FW	1230	[30]
		O'Higgins Maula			1580	
		Maule			1500	
		La Araucanía	Emuit	FW	1370	[37]
		NA (Chile)	Fruit		1664	[38]
		O'Higgins	Fruit	FW	880	[39]
		Aysén	Fruit	FW FW ^a	1970	
		La Araucanía	Fruit Juice	FW	1222	
			Juice	FW	730 911	[40]
		Maule	Fruit	FW	1620	[41]
145 B. 19		Valparaíso	Fluit	FVV	1450	
N. 11 1 1 1		La Araucanía			1110	
and the second		O'Higgins			1600	
		La Araucanía	Fruit	FW ^a	1750	[42]
		La Aradeania	Stem		990	
			Leaves		2640	
		Biobío	Fruit	FW ^ь	113	[43]
		Araucanía	Truit		75	
		Los Ríos			103	
		Biobío	Fruit	FW ^a	1300	[44]
		Los Ríos	Fruit	FW ^a	728	[45]
		Biobío	Fruit	FW ^a	1900	[46]
						(Continue

□ Summary of study sample, biological activity and potential health benefits by food sources and species.

Table 2. (Continued).

. .		Main polyphenolic			
Food	Specie	groups	Material or subject of intervention (Type)	Biological activity and potential health benefits	Ref
Maqui	Aristotelia chilensis (Molina) Stuntz	Anthocyanins Proanthocyanidin	Male C57BL/6 J mice H4IIE and L6 cell	Improves hyperglycemia and insulin resistance.	[96]
		Phenolic acids	Fruit, leave and stems.	Inhibiting effects on <i>a</i> -glucosidase and <i>a</i> -amylase activity. Antioxidant activity.	[42]
			RAW264.7 mice cell	Prevention of macrophage activation.	[45]
			3T3- L1 cell mice cell Rat brain homogenates	Improving effects on adipocytes apoptosis. Reduce oxidative stress.	[98]
			2	Antioxidant activity.	[134]
		2	HUVEC Cells	Oxidative stress protection. Antioxidant activity.	
			RAW264.7 mice cell 3T3- L1 cell mice cell	Reduce adipogenesis and lipid accumulation in adipocytes. Anti-inflammatory effect in macrophages.	[135]
			Male Wistar rats	Inhibitory effects on inflammatory.	[136]
	SXAN		RAW264.7 mice cell C57BL/6 male mice	Antioxidant activity. Antioxidant and anti-inflammatory activities.	[136]
			RAW 264.7 cell	Reduces immune stress.	
			Blood and fecal samples RAW264.7 mice cell 3T3- L1 cell mice cell	Regulates gut microbiota. Increased GSH/GSSG ratio. Prevented caspase-3 induction. Decreased MCP-1 gene expression.	[137]
			HT-29 and Caco-2 cell	Improved IRS-1 phosphorylation. Exhibited chemoprotective abilities on decreasing growth of cellular models. Inhibiting lipid peroxidation.	[138]
			C57BL/6 J male mice	Improve insulin response. Decreased weight gain. Increased thermogenic activity.	[139]
			Male BALB/c mice	Prevents inflammation in skin mice by UVB-induced method.	[140]
			Human keratinocyte (HaCaT) cells PC-12 cell mice	Protects against the damage caused by UVB exposure. Neuronal protection against amyloid $A\beta$ toxicity.	[141]
			(Sprague-Dawley) Male Wistar rats	Protects heart from damage induced. Inhibiting lipid peroxidation.	[142]
a, et al. Food R (39):3134-317	eview Internationa 1	al 2021,	36 prediabetic human adult subjects. Delphinol capsule (maqui berry extract).	Antioxidant activity. Decrease fasting blood glucose and insulin levels.	[143]
			(maqui beny extract).		[1.4.4]

C57BI/6 J mice.

Objective 5: To descriptive analysis of dietary intakes of all individual (poly)phenols and total intake per class and subclass by meal event, and to identify their main food sources using 24-HDRs in the subcohort MAX from the DCH-NG.

Material and

Methods

European Journal of Nutrition https://doi.org/10.1007/s00394-022-02977-x

ORIGINAL CONTRIBUTION

Introduction

Conclusion

Results and

Discussion

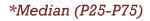
Descriptive analysis of dietary (poly)phenol intake in the subcohort MAX from DCH-NG: "Diet, Cancer and Health—Next Generations cohort"

Hypothesis and

Objectives

Fabian Lanuza^{1,2} · Raul Zamora-Ros^{1,3} · Agnetha Linn Rostgaard-Hansen⁴ · Anne Tjønneland⁴ · Rikard Landberg⁵ · Jytte Halkjær⁴ · Cristina Andres-Lacueva^{1,2}

Received: 9 December 2021 / Accepted: 29 July 2022 © The Author(s) 2022



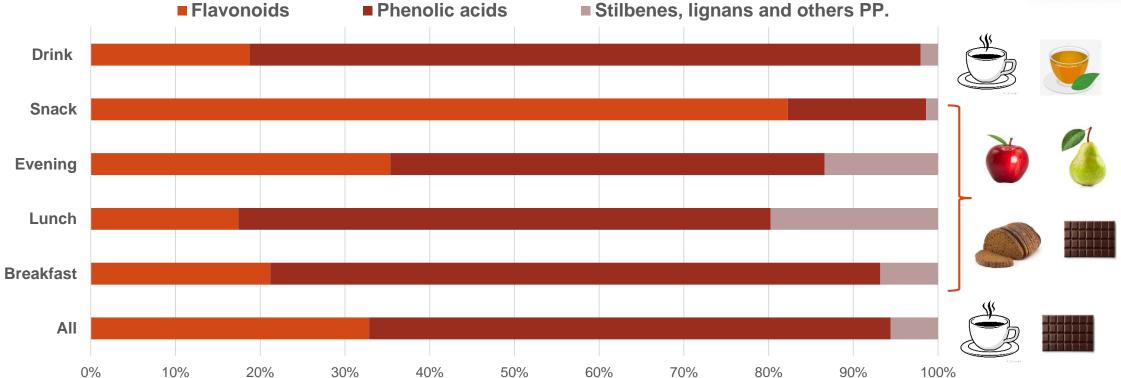
□ Total (poly)phenol/classes median content by meal events in all sample (n=676).

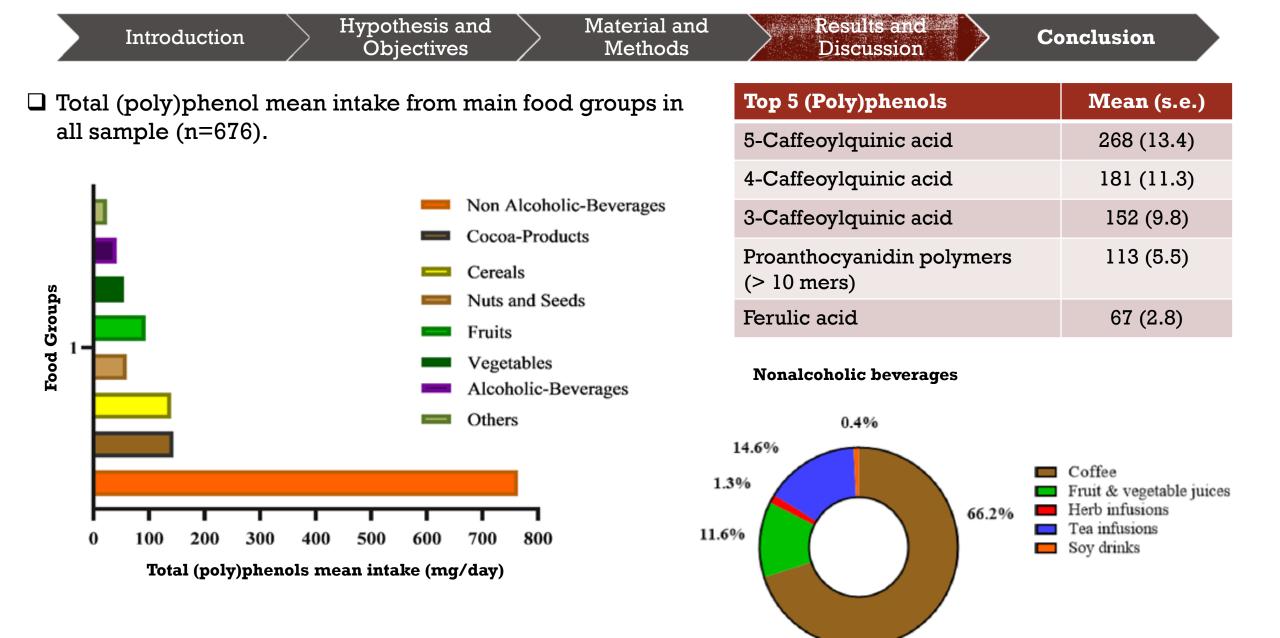
Hypothesis and

Objectives

	All*	Breakfast*	Lunch*	Evening*	Snack*	Drink*
	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/day)
Total	1164	201	114	106	191	363
(poly)phenols	(722-1731)	(63-430)	(58-208)	(60-179)	(62-370)	(144-897)
Flavonoids	335	28	15	29	116	54
	(178-563)	(7-94)	(4-46)	(8-75)	(23-246)	(1-167)
Phenolic acids	628	95	54	42	23	228
	(265-1132)	(21-312)	(25-105)	(21-80)	(6-103)	(47-698)
Stilbenes	0.0	0.0	0.0	0.0	0.0	1.7
	(0.0-1.7)	(0.0-0.1)	(0.0-0.1)	(0.0-0.1)	(0.0-0.1)	(0.3-4.0)
Lignans	5	0.1	0.5	0.3	0.0	0.0
	(1-15)	(0.0-2.0)	(0.1-7.4)	(0.1-0.9)	(0.0-0.1)	(0.0-0.1)
Other	52	9.1	17	11	2.3	4.3
(poly)phenol class	(33-78)	(3-18)	(7-33)	(5-18)	(0.2-8)	(1-10)

Results and


Discussion



\Box Percentage contribution of (poly)phenol classes by all and meal events (n = 676).

Objective 6: To compare the flavonoid intakes using different methods based on USDA and Phenol Explorer databases in participants from subcohort DCH-NG MAX.

Frontiers | Frontiers in Nutrition

ORIGINAL RESEARCH published: 04 April 2022 doi: 10.3389/fnut.2022.873774

OPEN ACCESS

Edited by:

Donato Angelino, University of Teramo, Italy

Reviewed by:

Gunter Kuhnle, University of Reading, United Kingdom Letizia Bresciani, University of Parma, Italy

Comparison of Flavonoid Intake Assessment Methods Using USDA and Phenol Explorer Databases: Subcohort Diet, Cancer and Health-Next Generations—MAX Study

Fabian Lanuza^{1,2}, Nicola P. Bondonno^{3,4}, Raul Zamora-Ros^{1,5*}, Agnetha Linn Rostgaard-Hansen³, Anne Tjønneland^{3,6}, Rikard Landberg⁷, Jytte Halkjær^{3†} and Cristina Andres-Lacueva^{1,2†}

□ Total flavonoids content by (poly)phenol databases and the methods of estimation used in MAX study.

	Flavonoid Databases				
	Phenol Explorer (PE)			USDA	
	Total aglycones (mg/day)	Total aglycones transformed (mg/day)	Total glycosides ^a (mg/day)	Total aglycones ^b (mg/day)	Aglycones (mg/day)
Methods	Chromatography with/ after hydrolysis (1)	Chromatography without hydrolysis /Transformation (2)	Chromatography without hydrolysis (3)	Chromatography without hydrolysis / Transformation (4)	Chromatography without hydrolysis /Transformation (5)
Mean \pm SD	378 ± 393	367 ± 392	427 ± 422	457 ± 608	197 ± 328
Median ^c (p25-p75)	275 (116–524)	261 (106–511)	312 (140–592)	283 (122–592)	78 (36–187)
P20	90	80	110	93	30
P40	205	192	239	207	62
P60	361	348	415	370	105
P80	608	587	679	721	236

^aAll forms (glycosides, aglycones, and esters), Phenol Explorer.

^bSum of flavonoids, isoflavones. and proanthocyanidins, USDA.

^cResults are significant different by Wilcoxon (between all pairs) and Friedman tests (p < 0.001).

Results and

Discussion

□ Top food sources by databases and methods used in MAX Study

Top food sources	Flavonoid Databases					
		Phenol Explorer		USDA		
	Total aglycones	Total aglycones transformed ^a	Total glycosides ^b	Total aglycones		
Food items (n)	955	912	912	1,030		
Cocoa products (%)	31.2	33.8	29.1	26.4		
Total fruits (%)- Apple (%)	20.7-12.0	20.5-10.7	21.1-11.9	19.5-10.8		
Tea (%)	17.9	18.7	20.8	27.0		
Nuts and seeds (%)	11.4	9.3	8.4	6.7		
Wine (%)	6.1	6.5	6.6	5.3		
Cereals and baked products (%)	5.4	5.6	7.4	2.7		
Vegetables (%)	4.0	3.5	4.5	4.8		
Cumulative percentage (%) ^c	96.7	97.9	97.9	92.4		

^aTransformed (converted from glycosides by chromatography without hydrolysis).

^bAll forms (glycosides, aglycones, and esters), Phenol Explorer.

^cThe residual percentage of food sources comes from oils, herbs, seasonings, and others beverages.

Degree of reliability and correlation in continuous and quintiles flavonoid intake estimations by databases and methods used.

Comparison	Intra Class Coefficient (ICC) (95% CI)	Kappa (95% CI)	Spearman's Rho
PE - Total aglycones &	0.99 (0.99-0.99)	0.98 (0.94-0.96)	0.99
PE - Total aglycones transformed.			
PE - Total aglycones &	0.97 (0.94-0.99)	0.96 (0.96-0.97)	0.98
PE - Total glycosides			
PE - Aglycones tranformed &	0.98 (0.84-0.99)	0.96 (0.96-0.97)	0.99
PE Total glycosides			
PE - Total aglycones &	0.73 (0.70-0.76)	0.89 (0.88-0.90)	0.92
USDA - Total aglycones			
PE - Aglycones transformed. &	0.72 (0.68-0.76)	0.88 (0.87-0.90)	0.91
USDA - Total aglycones			
PE Total glycosides &	0.76 (0.73-0.77)	0.87 (0.86-0.89)	0.91
USDA - Total aglycones			

Objective 7: To analyze the relationships between (poly)phenol intakes using 24-HDRs and cardiometabolic risk, with a longitudinal design using DCH-NG MAX subcohort.

Nutrition, Metabolism & Cardiovascular Diseases (xxxx) xxx, xxx

Dietary polyphenols, metabolic syndrome and cardiometabolic risk factors: An observational study based on the DCH-NG subcohort

Fabian Lanuza ^{a,b}, Raul Zamora-Ros ^{a,c,*}, Nicola P. Bondonno ^{d,e}, Tomas Meroño ^{a,b}, Agnetha Linn Rostgaard-Hansen ^d, Gabriele Riccardi ^f, Anne Tjønneland ^d, Rikard Landberg ^g, Jytte Halkjær ^{d,1}, Cristina Andres-Lacueva ^{a,b,1}

^a Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain

^b Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, 28029, Spain

^c Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain

^d Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100 Copenhagen, Denmark

^e Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia

^fDepartment of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy

^g Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden

Received 14 November 2022; received in revised form 17 February 2023; accepted 27 February 2023

Handling Editor: A. Siani

Available online 🔳 🔳 📕

□ MetS associations by total and quartiles of total (poly)phenol intake and class of (poly)phenol¹.

Metabolic Syndrome	Quartile 1	Quartile 2	Quartile 3	Quartile 4	P trend	Continuous (log2)
Prevalence	k=358	k=360	k=360	k=358		n=676, k=1436
(Poly)phenols						
Cutoff	<651	652-1053	1053-1798	>1799		1368 (19)*
Model 0	l Ref.	0.52 (0.28-0.96)	0.40 (0.21-0.75)	0.50 (0.27-0.91)	0.059	0.83 (0.69-0.99)
Flavonoids						
Cutoff	<135	136-291	292-552	>559		420 (0.T)*
iviodel 3	l Ref.	0.61 (0.34-1.07)	0.44 (0.23-0.83)	0.49 (0.26-0.91)	0.046	0.88 (0.79-0.99)
Phenolic acids						
Cutoff	<234	235-552	553-1151	>1152		867 (18.9)*
Model 3	l Ref.	0.63 (0.35-1.13)	0.38 (0.19-0.73)	0.55 (0.30-1.00)	0.134	0.86 (0.75-0.97)
Stilbenes ²						
Cutoff	<0.00	0.00-0.01	0.01-0.31	>0.32		1.4 (0.1)*
Model 3	l Ref.	1.17 (0.65-2.09)	0.77 (0.41-1.45)	0.97 (0.50-1.88)	0.987	0.98 (0.94-1.01)
Lignans						
Cutoff	<0.6	0.6-2.2	2.2-16.5	>16.5		11.7 (0.3)*
Model 3	l Ref.	0.67 (0.37-1.23)	0.69 (0.37-1.27)	0.71 (0.37-1.34)	0.692	0.94 (0.86-1.02)
Alkylphenols						
Cutoff	<8.8	8.9-26.6	26.7-51.6	>51.7		39.1 (0.5)*
Model 3	l Ref.	1.19 (0.64-2.19)	1.49 (0.80-2.78)	0.96 (0.46-1.98)	0.781	0.99 (0.89-1.10)
Tyrosol ²						
Cutoff	<1.6	1.7-5.5	5.6-13.7	>13.7		10.8 (0.3)*
Model 3	l Ref.	1.71 (0.94-3.11)	1.24 (0.67-2.32)	1.03 (0.53-2.00)	0.478	0.98 (0.89-1.07)

1 All data were computed using **generalized linear mixed models.** *All (poly)phenol values are mean and standard error (s.e.) adjusted for age, sex, time origin and energy intake. The data models represent the OR (odds ratios) and CI (confidence interval). n: subjects, k: measures. MetS, metabolic syndrome. **Model 3 adjusted for all covariates in Model 2 plus intakes of saturated FA, polyunsaturated FA, monounsaturated FA, total sugars, fiber, sodium and total energy**; P for trend used the continuous variable of quartiles of polyphenols. 676: Q1 (k: 359); Q2 (k: 359); Q3 (k: 360); Q4 (k: 358).

Conclusion

□ Cardiometabolic risk factor associations by total and classes of (poly)phenols

Cardiometabolic risk factors (prevalence)	(Poly)phenols n=676, k=1436	Flavonoids n=676, k=1436	Phenolic acids n=676, k=1436	Stilbenes n=676, k=1436	Lignans n=676, k=1436	Alkyphenols n=676, k=1436	Tyrosols n=676, k=1436
WC (22.6%)					٦		
Model 3	0.91 (0.77-1.08)	0.90 (0.81-1.00)	0.93 (0.82-1.05)	0.96 (0.93-0.99)	0.96 (0.89-1.04)	0.94 (0.86-1.03)	0.92 (0.85-1.00)
SBP (18.1%)							
Model 3	0.81 (0.68-0.97)	0.90 (0.81-1.00)	0.86 (0.76-0.98)	1.01 (0.97-1.05)	0.97 (0.90-1.05)	1.02 (0.93-1.13)	0.95 (0.88-1.03)
DBP (29.1%)							
Model 3	0.87 (0.76-1.00)	0.96 (0.88-1.05)	0.94 (0.85-1.04)	1.01 (0.98-1.04)	0.98 (0.92-1.04)	1.00 (0.93-1.08)	0.98 (0.92-1.04)
HbAlc (4.5%)							
Model 3	0.94 (0.78-1.14)	1.03 (0.90-1.17)	0.91 (0.80-1.05)	1.00 (0.96-1.04)	0.97 (0.88-1.07)	0.94 (0.86-1.04)	0.98 (0.89-1.08)
TG (22.0%)							
Model 3	0.89 (0.77-1.02)	0.95 (0.87-1.04)	0.93 (0.83-1.03)	0.99 (0.96-1.02)	0.99 (0.92-1.06)	1.06 (0.98-1.15)	0.97 (0.90-1.04)
HDL (11.0%)							
Model 3	0.77 (0.64-0.91)	0.88 (0.78-0.98)	0.86 (0.76-0.98)	0.98 (0.95-1.02)	0.98 (0.90-1.07)	1.14 (1.02-1.28)	0.94 (0.86-1.02)
hsCRP (18.8%)				7			
Model 3	0.88 (0.76-1.02)	0.98 (0.89-1.07)	0.89 (0.80-0.99)	1.01 (0.97-1.04)	0.96 (0.90-1.03)	1.05 (0.96-1.14)	0.95 (0.88-1.02)

Model 3 adjusted for all covariates in Model 2 plus intakes of saturated FA, polyunsaturated FA, monounsaturated FA, total sugars, fiber, sodium and total energy;

Objective 8. To analyze the associations between plant-based dietary patterns (based on 24-HDRs), cardiometabolic risk, and metabolomic profiles (based on plasma), with a longitudinal study design of the MAX sub-cohort.

Material and

Methods

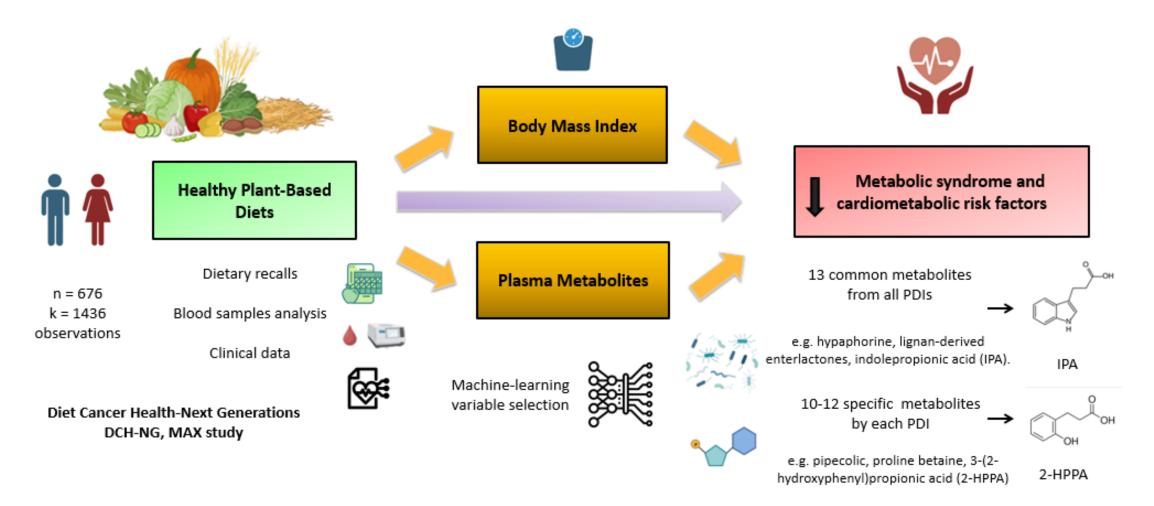

Results and

Discussion

Hypothesis and

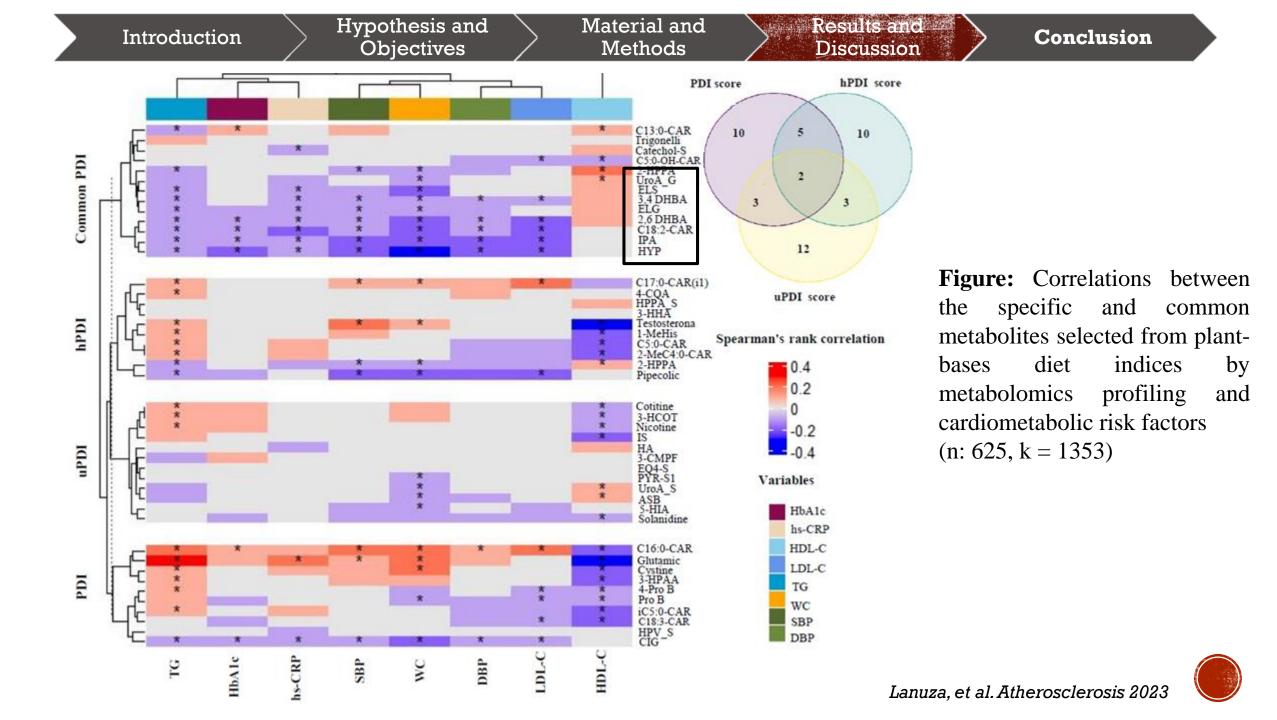
Objectives

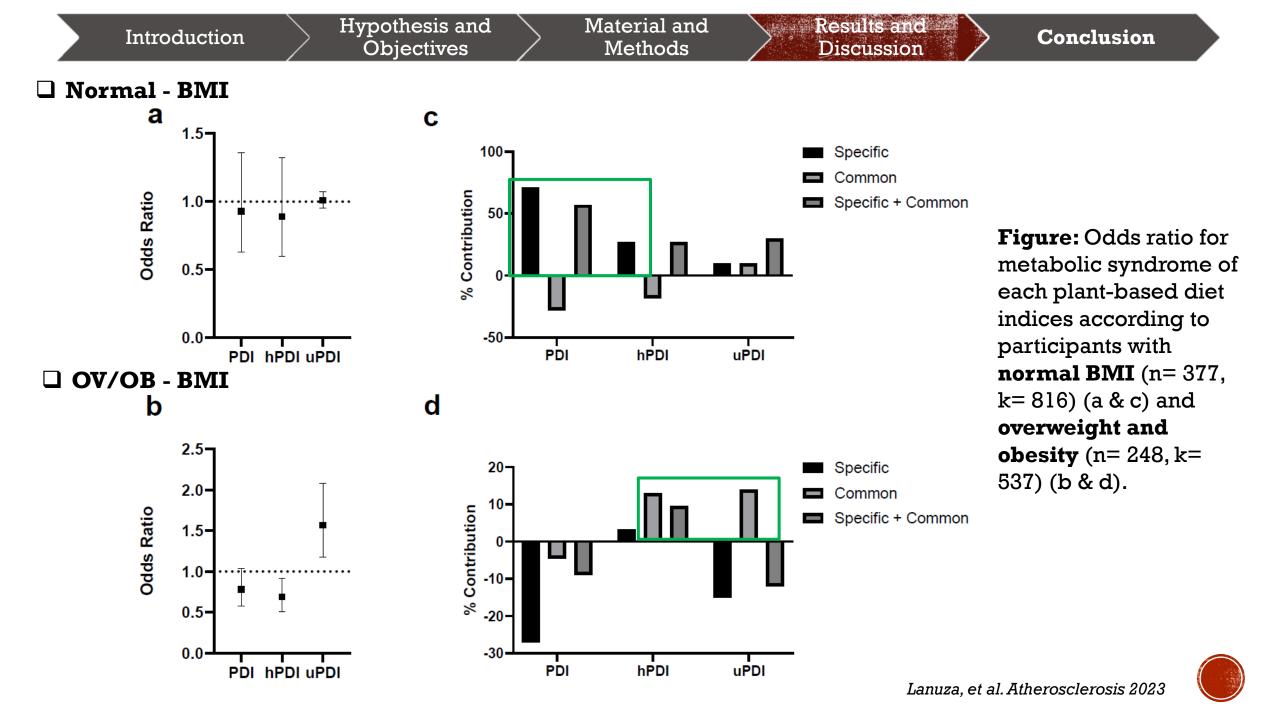

Introduction



Conclusion

□ Metabolomics, plant-based diets and MetS




□ Associations between Plant-Based Diet indices and prevalent Metabolic Syndrome (n = 676).

	Tertile 1	Tertile 2	Tertile 3	P-trend	Per SD					
	Overall plant-based diet									
Number of cases	72	53	30		155					
K-measures	474	467	495		1436					
Model l	Ref.	0.73	0.37	< 0.001	0.68					
		(0.45-1.18)	(0.21-0.64)		(0.54-0.85)					
Model 2	Ref.	0.80	0.43	0.007	0.70					
		(0.48-1.34)	(0.24-0.79)		(0.55-0.90)					
		Healthful plant	based diet							
Number of cases	85	43	27		155					
K-measures	490	474	472		1436					
Model 1	Ref.	0.46	0.27	< 0.001	0.60					
		(0.28-0.75)	(0.15-0.48)		(0.47-0.75)					
Model 2	Ref.	0.38	0.26	< 0.001	0.56					
		(0.22-0.65)	(0.14-0.49)		(0.43-0.74)					
		Unhealthful plan	t-based diet							
Number of cases	35	49	71		155					
K-measures	481	490	465		1436					
Model l	Ref.	1.50	2.48	< 0.001	1.50					
		(0.86-2.60)	(1.45 - 4.24)		(1.21-1.86)					
Model 2	Ref.	1.49	2.70	< 0.001	1.61					
		(0.82-2.72)	(1.50-4.85)		(1.26-2.05)					

Total mean plant-based scores were used as a continuous variable, after SD transformation. The data represent the OR (odds ratios) and confidence interval (CI). n, subjects. k, measures. Model 1 was an unadjusted model. Model 2 was adjusted for age, sex, time point, total energy intake, physical activity, smoking and alcohol intake. Lanuza, et al. Atherosclerosis 2023

Introduction

Diet, Cancer, Health – Next Generations / MAX study

Strengths

Limitations

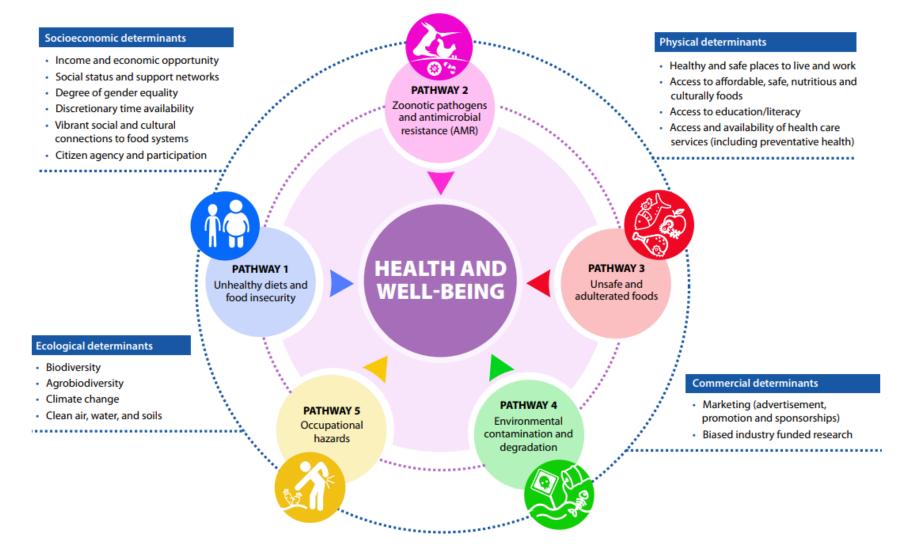
- Prospective observational analysis of the variables
- ✓ Estimation of dietary (poly)phenols using UB Software.
- Comparative of flavonoid methods according to FCDB of (poly)phenols.
- ✓ Analysis of various dietary patterns, especially PDIs

- ✓ Size of study and short follow-up.
- Common measurement errors and biases for 24 HDRs.
- ✓ Without representation in the general population.
- ✓ It does not allow establishing a cause-effect relationship.

Advantages/implications

- ✓ Descriptive and inferential analyses, exploration/support associations (diet & cardiometabolic health).
- ✓ Three measurement timepoints for assessing biochemical, dietary, metabolomic, and lifestyles variables.
- Most comprehensive (FCDB) for (poly)phenols.
- Integrated dietary, metabolomic, and biostatistical methods.

CONTENT


	Objectives	Conclusions
5.	To descriptive analysis of dietary intakes of	The meal events that provided the biggest contribution of polyphenols were drinks
	all individual polyphenols and total intake	meal events, which occurred extensively during the day, and also the breakfast meal
	per class and subclass by meal event, and	event. The main food sources for individual polyphenols were nonalcoholic
	to identify their main food sources using	beverages such as coffee and tea, cocoa products such as dark chocolate, and
	24-HDRs in the subcohort MAX from the	cereals such as rye products. The individual polyphenols consumed the most were
	DCN-NG.	hydroxycinnamic acids and proanthocyanidins.
6.	To compare the flavonoid intakes using	When comparing PE and USDA total aglycones, there was a moderate reliability
	different methods based on USDA and	when a continuous variable was used, while the reliability was excellent when
	Phenol Explorer databases in participants	flavonoid intake was modeled as a categorical variable. It is worth mentioning
	from subcohort DCH-NG MAX.	that the recommendation would be to use categorical variables and similar methods
		of estimated flavonoid intakes.

	Objectives	Conclusions
7.	To analyze the relationships between	Total polyphenol, flavonoid and phenolic acid intakes were associated
	polyphenol intakes using 24-HDRs and	with lower odds of MetS, after adjusting for age, sex, lifestyle and dietary
	cardiometabolic risk, with a	confounders. These intakes were also consistently and significantly
	longitudinal design using DCH-NG	associated with a lower risk for higher SBP and lower HDL-c concentrations.
	MAX subcohort.	
8.	To analyze the associations between	PDIs, especially the healthful and unhealthful versions, were associated with
	plant-based dietary patterns (based	lower and higher odds of MetS, respectively. Additionally, we identified a
	on 24-HDRs), cardiometabolic risk, and	common metabolic fingerprint reflecting mainly the BMI-mediation pathway
	metabolomic profiles (based on	of diet on MetS risk. We identified specific selected metabolites for each
	plasma), with a longitudinal study	dietary pattern, 10 metabolites for PDI, 10 metabolites for hPDI and 12
	design of the MAX sub-cohort.	for uPDI, and 13 metabolites at the intersection of all PDI. Those common
		metabolites in PDI and hPDI showed an inverse association with some
		cardiovascular risk factors.

CONCLUSIONES

What are 'food environments'?

by European Public Health Alliance | Dec 20, 2019 | Europe and Health, Healthy Environments

Cell

Leading Edge

del año

como aueigazar rápido con la dieta militar

in ř

Sin dieta

Box 1. Glossary

Dietary restriction (DR): a broad term describing the reduction in specific dietary components or in amounts of food provided

Caloric restriction (CR): reduction in total calorie intake Protein restriction (PR): reduction in protein content of the diet

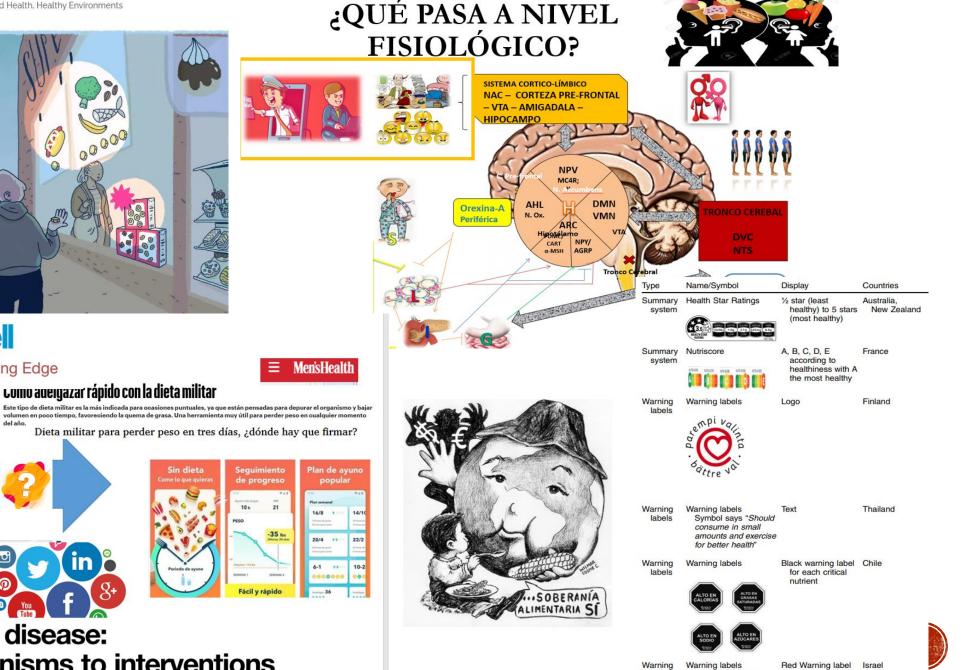
Methionine restriction (MR): reduction in levels of the amino acid methionine in the diet

Time-restricted feeding (TRF): reduction in the daily period of food intake (animal studies)

Time-restricted eating (TRE): reduction in the daily period of food intake (clinical studies)

Intermittant fasting (IF): short-term daily or weekly fasting periods of 12-48 hours

Periodic fasting (PF): prolonged fasting periods lasting 48 or more hours and normally occurring twice a month or less Fasting-mimicking diet (FMD): a nutritional program containing ingredients at quantities that do not interfere with the fasting response


Ketogenic diet (KD): diet very high in fat, and very low in carbohydrates

Healthspan: the period of life during which health and functional capacity are maintained

Longevity diet (LD): diet composition or feeding regimen designed to enhance healthy longevity

Review

Nutrition, longevity and disease: From molecular mechanisms to interventions

Warning

labels

Warning labels

Symbol not given

since not finalized

for each critical nutrient

ACKNOWLEDGEMENTS

DRA. CRISTINA ANDRES-LACUEVA

MARÍA

DE MAEZTU

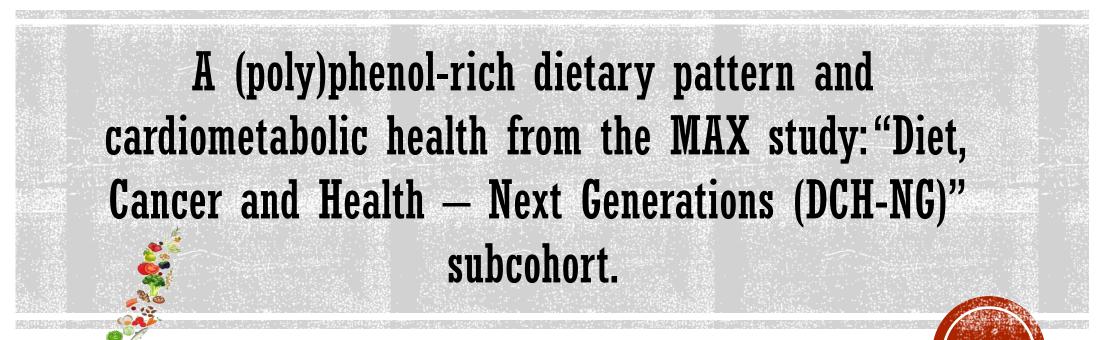
DR. RAUL ZAMORA-ROS

AGENCIA ESTATAL D

Danish Cancer Society

MINISTERIO DE CIENCIA

E INNOVACIÓN


GOBIERNO DE ESPAÑA

Facultat de Farmàcia i Ciències de l'Alimentació

Departament de Nutrició, Ciències de l'Alimentació i Gastronomia

Dr. Fabián Ignacio Lanuza Rilling (PhD. MSc.)

Research Seminar

https://www.linkedin.com/in/fabianlanuza/ https://www.researchgate.net/profile/Fabian-Lanuza

October, 2023

https://orcid.org/0000-0001-8545-9301

UNIVERSITAT DE

BARCELONA