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Abstract

In this work we use different methods from algebraic topology, statistics, and
data analysis to study a specific data set. This includes tools and analysis methods
such as homology, simplicial complexes, persistent homology, bottleneck distance,
Wasserstein distance, total persistence, persistence entropy, and directional hierar-
chical analysis. Our aim is to study a database generated during a previous neuro-
science experiment by Cos et al. (2021). This database is a high-dimensional elec-
troencephalogram (EEG) data set of recordings from 11 participants in a decision-
making experiment in which three motivational states were induced by manipu-
lating social pressure onto participants.

Our goal is to find out the intrinsic dimension of this database, that is, the
number of latent variables, and look for subjects in the study population who are
significantly different from the rest. This work was inspired by a paper by Ferrà et
al. (2023), in which the authors present a new analytical approach using topologi-
cal data analysis (TDA). Traditional dimensionality reduction methods determine
how many dimensions should be retained attempting to preserve variance of the
data, while topological data analysis estimates an optimal dimension by studying
the data’s topology. While a TDA classifier was used by Ferrà et al., in this work
we use directed hierarchical analysis combined with distances between persistence
diagrams and persistent entropy to assess the amount of topological variation de-
pending on the ambient dimension.

Keywords: Algebraic topology, Persistent homology, Principal component analy-
sis, Dimensionality reduction, Persistence entropy.

2020 Mathematics Subject Classification. 55N31, 62R40, 68T09



Chapter 1

Introduction

1.1 Problems encountered in big data analysis

With the development of computer science and the advent of the information
age. The amount of data generated in everyday life has grown exponentially. We
have ushered in an era known as the Big Data Society. Scholars in the last cen-
tury could only use very primitive data collection methods to obtain information
when conducting data analysis, such as using paper questionnaires to interview
passers-by on the street. The total amount of data and data dimensions that can be
obtained by this survey method is not high, because it is difficult to find millions
of people to conduct a certain survey (so it will lead to a lack of data volume),
and let the respondents fill in a It is also unrealistic to have a questionnaire with
thousands of questions (so the data dimensionality will be very low). Therefore,
the amount of data that could be used in the field of data analysis at that time was
actually very scarce compared to now. In order to obtain sufficient analysis data,
methods such as resampling were needed to expand the amount of data.

Although we can obtain sufficient data now, the tools and means we can use
are not sufficient for how to analyze and process these data. More complex data
brings more information on the one hand, and more complex data structures on
the other hand. Research on how to find the results we need in the huge and
complex data, or reveal the potential relationship hidden behind the data that we
do not know is still a thorny problem in the field of data analysis.

A common problem that plagues researchers in big data analysis is the "curse
of dimensionality", which is a term first proposed by the American applied math-
ematician Richard Bellman when considering optimization problems. When the
dimension of (mathematical) space increases, analyzing and organizing high-dim-
ensional spaces (often hundreds or even thousands of dimensions), encounters
various problem scenarios due to the exponential increase in volume. Such dif-
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2 Introduction

ficulties are not encountered in low-dimensional spaces, such as physical spaces,
which are usually only modeled in three dimensions. The reason why this hap-
pens is also obvious. Because in three dimensions, each variable is connected with
at most two other variables, and in N-dimensional space, each variable is con-
nected with at most N − 1 variables, then when the value of N is large enough,
the relationship between variables The connection between each other will be like
a ball of yarn that is entangled with each other and cannot be untied. In order
to solve this problem, we need to use data dimensionality reduction technology
to reduce the dimensionality of data while retaining information to the greatest
extent for more convenient research.

1.2 Purpose of this work

The purpose of this work is to analyze data through topology in the field of
mathematics rather than statistics. Among them, our main research goal is to use
topological data analysis (TDA) to accomplish the following goals:

1. Data dimension reduction and find topological latent dimension of data.

2. Find the most critical variables in the data set.

3. Outlier detection.

If you use traditional data dimensionality reduction methods, such as principal
component analysis (PCA). We can only preserve the original information of the
data by retaining the variance. According to the definition of PCA, we know that
the more principal components we keep, the more information we can get, and this
leads to a problem: how much information we need to keep is determined accord-
ing to our needs. If more information is needed, then more principal components
should be retained, and if less information is needed, more principal components
should be removed.

In this work, we explore a new possibility, namely whether there is a range
so that we can reduce the data dimension by removing variables in this range
without causing obvious damage to the original data structure.

Let us take a very simple example to understand what has been said above:
If we now have a data set with 100 dimensions. After PCA data dimensionality
reduction it was transformed into a data set with 100 principal components. If we
need to retain 80% of the variance, then we sort the value of the retained variance
from large to small, and then select the first 20 principal components as variables
in the new data set. If we only need to retain 60% of the variance, then we choose
the first 15 principal components. In other words, if only PCA is used, there is no
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objective standard to tell us that we should reduce to a specific number of principal
components. We ultimately decide how many principal components to choose
based on how much variance we need to preserve, and this is a very subjective
decision. Subjective decisions may be wrong, because we may subjectively think
that retaining 15 principal components (60% of variance) is enough for analysis,
but this may not be the case.

Therefore, we need a standard that can judge how many principal components
need to be retained through objective facts. If we measure informativeness not by
retained variance, but by the topology of the data, a different situation may arise.
For example: when we select the first 20 principal components (equivalent to re-
taining 80% of the variance), then we find that after removing some of the five
principal components (note that these five principal components are determined
according to a specific standard!), the remaining 15 principal components almost
maintain the topology of the data when there are 20 principal components. In
other words, these 15 specific principal components have almost the same topolog-
ical data structure as the original 20 principal components! Then we can remove
the five principal components that do not affect the topological data structure,
and achieve data dimensionality reduction without affecting the topological data
structure of the original data.



Chapter 2

Data Dimensionality Reduction

2.1 Significance of dimensionality reduction

Before we start, we need to introduce first the significance of data dimension-
ality reduction. High-dimensional data usually causes two major problems:

1. Curse of Dimensionality

2. Visualization of Data

Visualization of data is easy to understand, since we cannot observe directly
the high-dimensional (larger than 3) space, so we need to put them in a lower-
dimensional space. We briefly mentioned a headache in data analysis in the intro-
duction before, that is, the curse of dimensionality.

The "curse of dimensionality" is a term first proposed by Bellman when con-
sidering optimization problems to describe the analysis and organization of high-
dimensional spaces (usually there are hundreds or thousands of dimensions), en-
countering various problematic scenarios due to exponentially increasing volume.
Such difficulties are not encountered in low-dimensional spaces, such as physical
spaces, which are usually only modeled in three dimensions.

But in the virtual data space, the dimensionality is often extremely huge.
Because we can regard a collected data with n variables as a point in an n-
dimensional space, and all the collected data together constitute a set in this space,
we call it "data point cloud". This dimension n can be an arbitrarily large positive
integer (usually tens or hundreds in practice). Then the dimension of this data
space will also be far beyond three-dimensional.

A simple example is the sparsity of the available data.

Example 2.1. Logical tables in text analysis. Logical tables can encode categorical
variables with One hot encoding. One hot encoding is a commonly used encoding
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2.2 Latent dimension 5

method for converting categorical variables into numeric vectors with a certain
length. The specific method is to create a vector, only write 1 in the category that
the categorical variable is actually equal to, and write 0 in the position of the rest
of the possible values of this variable. Finally, when we convert all categorical
variables into vectors represented by only 0 and 1, we have obtained a very large
data matrix. The elements of this matrix only contain 0 and 1 and most of the
positions are 0. This is the most classic "sparse" data, because we need to use a lot
of space to store meaningless 0, and this will lead to low algorithm efficiency.

Another example is the existence of redundant variables.

Example 2.2. When we want to use the values of some variables in the database
to predict the values of other variables, we often need to consider a question,
which variables are really related to the response variables we need to predict?
For example, if we want to predict the age of some people. Then the variables
that may be relevant are: income level, height, weight, frequency of hospital visits,
etc. Variables that do not have a significant correlation such as: eye color, break-
fast preference, etc. If we do not remove these irrelevant "redundant variables"
during prediction, the values of these variables may affect the accuracy of predic-
tion. In other words, the higher the dimension, the better. We hope to keep only
the variables we need and have a positive effect on our research. Therefore, we
need to remove some redundant variables to improve the accuracy and algorithm
efficiency.

2.2 Latent dimension

One of the goals of this paper is to find the "latent dimension" of a data set. So
here we briefly introduce the definition of latent dimension and some assumptions
related to it.

First of all, we need to define the conception of "latent space".

Definition 2.3. A latent space, also known as a latent feature space or an embedding
space, is an embedding of a set of elements in a manifold where similar elements
have smaller distances in the latent space. A position in the latent space is defined
by a set of latent variables resulting from the similarity between elements.

In most cases, the dimensionality of the latent space is set to be lower than that
of the feature space of the data points, which means that the construction of the
latent space is actually a dimensionality reduction, which can also be seen as a
form of data compression.

Like the original data space, each dimension of the latent space is a "latent
variable".
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Definition 2.4. In statistics, latent variables, or hidden variables, latent variables,
as opposed to observed variables, refer to unobservable random variables. Latent
variables are variables that can only be inferred indirectly through mathematical
models from other observable variables that can be directly observed or measured.

The most common latent variables are the results of linear combinations of
the original variables. For example, in principal component analysis (PCA), each
principal component we get can be regarded as a latent variable.

A hypothesis closely related to latent dimensions is the Manifold Hypothesis.

Definition 2.5. The Manifold Hypothesis assumes that many high-dimensional data
sets that appear in the real world actually lie on a low-dimensional latent manifold
within this high-dimensional space. That is, many data sets that initially appear
to require many variables to describe can actually be described by relatively few
variables, likened to the local coordinate system of the underlying manifold.

This work builds on the Manifold Hypothesis, but the topic of this work is not
to explain the latent space and its latent variables, but to find the number of latent
variables, the so-called "latent dimension".

2.3 Dimensionality reduction methods

In this section, we briefly introduce some common data dimensionality re-
duction methods. The reason for introducing them is that the data dimensionality
reduction method we created in this paper is partly based on them and also draws
important inspiration from them.

According to different classification standards, there are many different clas-
sifications of dimensionality reduction methods. Here we classify according to
whether the dimensionality reduction method is linear or nonlinear.

Definition 2.6. Linear dimensionality reduction refers to a data dimensionality reduc-
tion method based on linear assumptions that may lose the nonlinear structural
information inside the data.

Non-Linear dimensionality reduction refers to a data dimensionality reduction
method that is not based on linear assumptions and aims to capture the internal
nonlinear structure of the data.

In this work we use the linear dimensionality reduction, so we just introduce
them. the most commonly used linear dimensionality reduction method is factor
analysis (also known as factor method). Factor analysis provided by the British
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psychologist C. E. Spearman. It refers to the study of statistical techniques for ex-
tracting common factors from variable groups. Factor analysis is actually a collec-
tion of different sub-methods.Factor analysis finds hidden representative factors
(that is, latent variables) among many variables. Grouping variables with the same
nature into one factor can reduce the number of variables and test the hypothesis
of the relationship between variables.

The output of factor analysis is always (except LDA) n factors (where n is the
dimension of the original data), and a new coordinate system composed of these
n factors (essentially a rotation of the original coordinate system).

There are mainly several methods in factor analysis: Correspondence Analysis
(CA), Principal Component Analysis (PCA), Multiple Correspondence Analysis
(MCA) and Linear Discriminant Analysis (LDA).

CA is a method specially used to find the correlation between variables (or
individuals) stored in contingency table data. PCA and MCA are similar to CA,
but they are used for numerical variables and categorical variables respectively.
The research method by topological data analysis used in this paper is based on
PCA. So for a more detailed introduction to PCA and the differences between
PCA and MCA, we will explain it in detail using mathematical language in the
next section.

2.4 Principal component analysis (PCA)

The data dimensionality reduction method we created using topological data
analysis (TDA) in this paper is based on Principal Component Analysis (PCA).
So in this section, we will focus on using mathematical language to introduce the
definition of PCA, the mathematical principle, the way to interpret, the method of
use and the inspiration for the method used in this work.

Definition 2.7. In multivariate analysis, Principal Component Analysis (PCA) is a
method of statistical analysis, simplifying data sets. It was first introduced by K.
Pearson for non-random variables, and then H. Hotelling extended this method to
the case of random vectors. It uses orthogonal transformation to linearly transform
the observed values of a series of possibly related variables, thereby projecting
the values of a series of linearly uncorrelated variables, which are called Princi-
pal Components. Specifically, the principal component can be viewed as a linear
equation, which contains a series of linear coefficients to indicate the projection
direction.

The objective of PCA is to find the isomorphic transformation from original
space that keeps the adjacency relationships among variables.
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Express results in a fictitious space and then find the most informative projec-
tion planes (factorial plane) in that fictitious space. And the quantity of "informa-
tion" is usually measured using the sum of squared deviations or variance.

We can also not find the best projection plane, but only reduce the dimen-
sionality of the data, and study the projection coordinates of the original high-
dimensional data points in low dimensions.

First of all, we need to know that PCA is only available for numerical variables,
which means that no categorical variables are allowed.

And then we need to define some basic concepts officially.

Definition 2.8. In the field of data analysis, Inertia refers to statistical inertia, that
is, variance that one variable has.

Definition 2.9. A principal component is a certain linear combination of the original
variables.

PCa = u1a · X1 + u2a · X2 + · · ·+ una · Xn

where X1, . . . , Xn are original variables.

We can also call principal components factorial axes. Because in the geometric
sense, each principal component is equivalent to a new coordinate axis obtained
after the original coordinate axis (original variable) is rotated.

Definition 2.10. A factorial plane is a plane consisting of two factorial axes (princi-
pal components).

It should be noted that PCA can also project the original data point cloud onto
the hyperplane, and it is not necessary to project onto the two-dimensional plane.

Definition 2.11. The most informative projection plane is the factorial plane that max-
imizes the projected inertia (Definition 2.8).

Definition 2.12. The matrix obtained after centering (a zero-meaning process) the
elements of the original matrix is called centralized matrix.

After defining the most basic concepts, we will use some linear algebra meth-
ods to find the best dimensionality reduction space, the principal components of
the dimensionality reduction space and the dimensionality reduction projection
coordinates of the original data points.

Suppose given a triplet {X, M, D}, where X is a centralized data matrix with
dimension m × n (m individuals and n variables), D is a matrix of individuals
weights with dimension m × m and M is the metric matrix to compare individuals
with dimension n × n.
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In the case of PCA, the metric matrix M assumes the Euclidean metric and
hence M = Idp.

If the data matrix X is centralized, the angle between two projected variables
(the projected variables represented as a vector in factorial plane) matches the
correlation between them.

We can deduce this result from cosine similarity, which says that

similarity = cos(θ) =
A · B

∥A∥ · ∥B∥ =
∑n

i=1 AiBi√
∑n

i=1(Ai)2
√

∑n
i=1(Bi)2

.

This result is also used to measure cohesion within clusters in the field of data
mining.

Now we need a matrix that can catch relationships and oppositions of data.
And then find the best rotation of original axis that make the new coordinate
system represents the most information of the original one.

As we mentioned before, the quantity of "information" is measured using the
sum of squared deviations or variance. In PCA, we generally use variance to
measure how much information there is. There are many ways to measure infor-
mation, and variance is used in PCA, because we want the projected projection
values to be as dispersed as possible. Imagine if the projections of two points
overlap each other, then we cannot distinguish the two in the projection space.

And mathematically, the dispersion can be expressed by variance.
If we want to reduce a two-dimensional space to one dimension, then equiv-

alently, we need to find a one-dimensional basis so that all data are transformed
into coordinate representations on this basis, and the variance calculated by the
following formula:

Var(X1) =
1
m

m

∑
i=1

(X1i − µ)2,

where X1 is the first variable. We are considering the case that reduce the dimen-
sion from 2 to 1. So we only need one one-dimensional basis PC1 and X1i are the
projected coordinates of original data points.

Because we have already centralized the data, so the value of µ is equal to 0.
For the problem of reducing the above two-dimensional to one-dimensional, it

is enough to find the direction that maximizes the variance. But what if we want
to reduce a three-dimensional space to two dimensions? Same as before, first we
hope to find a direction that maximizes the variance after projection, thus complet-
ing the selection of the first direction, and then we choose the second projection
direction. If we still simply choose the direction with the largest variance, it is
obvious that this direction and the first direction should be "almost coincident".
Obviously, such a dimension is useless, so there should be other constraints. In-
tuitively speaking, let the two fields represent as much original information as
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possible, we do not want a (linear) correlation between them, because the correla-
tion means that the two fields are not completely independent, and there must be
repeated representations information.

Mathematically, we can express association in terms of covariance between two
variables. Because we have completed centralization, µ = 0 and

Cov(X1, X2) =
1
m

m

∑
i=1

X1i · X2i.

Since we need the projections of the two variables to be orthogonal, we need
their covariance to be equal to 0.

So far, we have obtained the optimization goal of the dimensionality reduction
problem: reduce a set of n dimensional vectors to k dimensions (k is greater than
0, less than n), and the goal is to select k units (the modulus is 1) orthogonal base,
so that after the original data is transformed into this set of bases, the covariance
between each variable is 0, and the variance of the variable is as large as possible
(under the constraint of orthogonality, the largest k variances).

And this means that we have to diagonalize the covariance matrix.
Suppose we only have two variables X1 and X2, then we form them into a

matrix X (m × 2) by columns: X11 X21

... ...
X1m X2m


Because we have centered the matrix. So we can directly calculate the covariance
matrix of these two variables by multiplying the transpose of the matrix by the
matrix and then multiplying by the coefficient 1

m .
And then we have the covariance matrix

1
m

Xt · X =

 1
m ∑m

i=1(X1i)
2 1

m ∑m
i=1(X1i · X2i)

... ...
1
m ∑m

i=1(X1i · X2i)
1
m ∑m

i=1(X2i)
2


The last step will be the diagonalization of this covariance matrix. We need to

find a matrix P that can convert the covariance matrix into a diagonal matrix. The
first k columns of matrix P are the coefficients of the linear combination that give
the principal component.

In summary, we have learned how to find the best k principal components, and
now we will generalize it into the more general case. We define MXtDXM to be a
covariance matrix, which preserves the covariance between the original variables
and the variance of each variable.
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According to the content and conditions above, we can deduce the following
results using knowledge of linear algebra (we refer to the book of Greub [4] for
the linear algebra knowledge involved).

The following propositions are proven using the basic linear algebra.

Proposition 2.13. Rang(MXtDXM) = r, r = rang(X) and also r is the number of
positive eigenvalues and n − r null eigenvalues.

Proposition 2.14. Tr(MXtDXM) = ∑r
i=1 λi where λi are r non null eigenvalues.

Proposition 2.15. In the case of PCA, we consider the Euclidean distance, so the
metric matrix M = Id and then (MXtDXM) = (XtDX)

If X is centralized and D is diagonal: (XtDX) is the covariance matrix of X.
If X is standardized and D is diagonal: (XtDX) is the correlation matrix of X.

(We prefer the correlation matrix because big variabilities do not dominate the
analysis.)

Proposition 2.16. If we diagonalize the correlation matrix (XtDX) (meaning that
X is standardized and D is diagonal), then we will get r eigenvalues λi and sort
decreasingly in the diagonal, λ1 ≥ λ2 ≥ ... ≥ λr. Moreover, their corresponding
eigenvectors ui = (ui1, ..., uin) are orthonormal and contribute a orthonormal base
for individuals.

Proposition 2.17. In general, if we diagonalize (MXtDXM) with M any matrix,
then the result is a little bit different. We will still get r eigenvalues λi and sort
decreasingly in the diagonal as before λ1 ≥ λ2 ≥ ... ≥ λr.

But the eigenvectors are no longer orthonormal and uorti = M−1/2ui

Proof. |uorti|M = 1 and we see ut
orti Muorti = ut

i M−1/2MM−1/2ui = 1;
uorti Muortj = 0 and we see uorti Muortj = ut

i M−1/2MM−1/2uj = 0.

In fact, every eigenvalue λi represents the quantity of information (variance)
conserved by factor (principal component) i. And the sum of λ ∑r

i=1 λi is equal to
the total inertial of the data matrix X.

Their corresponding eigenvectors ui = (ui1, ..., uin) are the directions of respec-
tive principal component PCi. Geometrically, we can consider them as the rotation
of original axis and they formed the new coordinate system that we need.
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We still have a problem, that is: how many principal components should we
choose, and what criteria do we use to select the first k principal components?

As mentioned before, in principal component analysis, we use inertia (variance)
to measure how much "information" each principal component holds during the
analysis. It is logical to use variance as a measure of information. Because the
larger the variance, the easier it is for us to distinguish different projection points,
so it is easier to analyze more valuable information.

But so far, PCA does not have an objective criteria to judge the value of k in
the first k principal components that need to be retained.

In other words, researchers completely rely on their own subjective needs for
the amount of retained data to determine the value of k. If it is necessary to
preserve 90% of the variance, then select the top k principal components whose
cumulative variance exceeds 90%. And if only 60% of the variance needs to be
retained, then the first k principal components whose cumulative variance exceeds
60% are also selected.

According to practical experience, generally speaking, data analysts only need
to retain 80% of the variance to obtain better statistical analysis results.

Figure 2.1: Example of principal components ordered in their variances

As this picture showed above, we kept the first 5 (k = 5) principal components,
thereby preserving 84,17% of the variance of the original data.

However, experience is not always reliable. It may be that for some data sets,
only retaining 80% of the variance will cause some key information to be missing.
As a result, the analysis results are seriously distorted. Therefore, we need a more
objective selection standard that only focuses on the nature of the data set itself,
rather than relying entirely on the subjective judgment of researchers.

In Chapter 4 of this work, we will propose a new, more objective judgment
method based on the topology of the data set itself. Using this new standard, we
can get rid of subjective judgments to choose the principal components we need.



Chapter 3

Topological Data Analysis

3.1 Introduction to TDA

With the recent explosion in the amount, variety, and dimensionality of avail-
able data, identifying, extracting, and exploiting their underlying structures has
become a crucial problem for data analysis and statistical learning.

Traditional data analysis techniques have not always been able to keep up
with the explosion in data volume and complexity because they often rely on
oversimplified assumptions. The field of topological data analysis (TDA) attempts
to fill this gap by producing a family of techniques derived from the idea that data
has a shape that can be rigorously quantified to study data.

TDA constructs simplicial complexes associated with the data and infers quali-
tative characteristics of the set from the homology of the complexes. These features
can quantify complex topological shapes and geometric structures in data to an-
swer questions from the data domain. These data are usually represented as point
clouds in Euclidean or more general metric spaces. In this work, we introduce a
commonly used topology tool —persistence diagrams. Persistence diagrams rep-
resent loops and holes in space by considering the connectivity of data points to
obtain continuous values instead of a single fixed value.

TDA is a new field emerging from diverse work in algebraic topology and
computational geometry in the 2000s. Although the history of data analysis via
geometric methods goes back a long way, TDA really started as a field in topo-
logical persistence by Edelsbrunner et al. [1]. This marks the real beginning of
TDA. Later Zomorodian and Carlsson’s persistent homology [8] made TDA a re-
ally powerful technique to use. Although the underlying principles of topological
data analysis are not easy to understand, thanks to the existing topological data
analysis code files in various programming languages. Even a novice who does
not understand can complete the analysis. In this work, the ultra-fast C++ Ripser

13
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package is used as the core computing engine, and the Ripser.py module built in
Python is used to implement the analysis work.

3.2 Basic concepts

First, we need to define some basic concepts in algebraic topology, as well as
related theorems and conclusions. Because the tools used later are based on these
concepts.

We divide these concepts into two parts:

1. Simplicial complexes and filtrations.

2. Homology groups.

According to the definition, in affine space the difference between tow points
is a vector, and the addition of a point and a vector yields another point, although
addition between points cannot be done.

From this definition, we can deduce the following fact. There are n + 1 affinely
independent points in a k-dimensional Euclidean space (k ≥ n) if and only if there
is no (n − 1)-dimensional hyperplane that contains n + 1 points. The hyperplane
that contains n + 1 points needs to be at least n-dimensional.

Definition 3.1. A n-simplex is a n-dimensional polytope which is the smallest
convex hull of its n + 1 vertices. More formally, an n-simplex is determined by a
set of points

C = {θ0P0 + · · ·+ θnPn |
k

∑
i=0

θi = 1, θi ≥ 0, i = 0, . . . , n}

where {P0, . . . , Pn} are n + 1 affinely independent points.

Example 3.2. A 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is
a triangle, a 3-simplex is a tetrahedron, and a 4-simplex is a 5-cell.

An n-simplex is the smallest convex hull containing a set of affinely indepen-
dent points.

Before the definition of simplicial complex, we need to define the faces that
have been shared between simplices.

Definition 3.3. The convex hull of any nonempty subset of the n + 1 points that
define an n-simplex is called a face of the simplex. Faces are also simplices them-
selves.
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If we wish to study more complex structures, it is not enough to rely on one
simplex. We want to study the graphics formed by simplices according to certain
rules. And those combinations of simplices ar called simplicial complexes. In
mathematics, a simplicial complex is a set composed of points, line segments,
triangles, and their n-dimensional analogues.

Definition 3.4. A simplicial complex K is a set of simplices that satisfies the follow-
ing conditions:

1. Every face of a simplex from K is also an element (a simplex) in K.

2. The non-empty intersection of any two simplices σ1, σ2 ∈ K is a face of both
σ1 and σ2.

The reason we define simplicial complexes is that we need to create simplicial
complexes based on data clouds. Each data point in the data point cloud is usually
regarded as a vertex, then we can regard the data point cloud as a set of vertices.

We want to create simplices and simplicial complexes relating data points. The
idea is to consider subsets of data points and then find out the possible structures
of simplicial complexes.

Thanks to the work of Pavel Aleksandrov, we were able to define the concept
of nerve for a covering.

Definition 3.5. Let I be a set of indices and C be a family of open subsets (Ui)i∈I .
The nerve of C is a set of finite subsets of index set I. It contains all finite subsets
J ⊆ I such that the intersection of the Ui with subindices i in J is non-empty.

N(C) := {J ⊆ I :
⋂
j∈J

Uj ̸= ∅, J f inite set}.

Based on the conception of nerve, we can construct a widely used complex
which is called Čech complex.

Definition 3.6. Given a finite point cloud X and an ε ≥ 0. The Čech complex is the
nerve of the set of ε-balls centered at points of X.

Čech complex is widely use and captures topological information of a point
cloud. But in this work, we will use another complex similar to the Čech complex,
which is called Vietoris-Rips complex.

The reason of choosing Vietoris-Rips complex is that the Čech complex is more
computationally expensive than the Vietoris-Rips complex.

Definition 3.7. If X is a finite point subset in Rn and given a parameter ε ≥ 0, we
define the Vietoris-Rips complex as

VRε(X) := {σ ⊆ X | d(xi, xj) ≤ ε, f or all xi, xj ∈ σ}.
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In order to study the possible changes of a simplicial complex with different
values of parameter ε, we need to use a concept in set theory which is filtration.

Definition 3.8. Given a simplicial complex C, the filtration about C is a family of
indexed subcomplexes F = {Ci ⊆ C}i∈I . F is indexed on an ordered set I such
that if i ≤ j then Ci ⊆ Cj and also ∅, C ∈ F.

There exist i0, i1, . . . , in−1, in ∈ I, i0 ≤ i1 ≤ · · · ≤ in−1 ≤ in such that

∅ = Ci0 ⊆ Ci1 ⊆ · · ·Cn1 ⊆ Cn = C.

Example 3.9. Given a point cloud X ⊆ Rn, FC = {Cε(X) | ε ≥ 0} and FVR =

{VRε(X) | ε ≥ 0} are filtrations for the Čech complex and the Vietoris-Rips com-
plex.

Furthermore, we can study the variation of holes in different dimensions in
each step. In order to see the appearance and disappearance of holes, we need
to understand the following concepts. The following definitions, theorems and
propositions are derived from the book of Allen Hatcher [5]. For more information
and details, consult this book.

Algebraic topology has two important tools: Homotopy and Homology. We
explain a little bit these concepts. When two continuous functions from one topo-
logical space to another are called homotopic if one can be "continuously changed"
into the other, such a deformation will be called a homotopy between these two
functions. In practice, there are technical difficulties in using homotopies with
certain spaces and their fundamental group is difficult to calculate for higher di-
mensions. Fortunately there is a more computable alternative than homotopy
groups: the homology groups Hn(X).

Before the definition of homology groups, is necessary to know some prelimi-
nary concepts such as n-cell, CW-complexes and boundary functions.

From the part of cell-complex in [5], we can know that there is a more familiar
way to constructing the torus S1 × S1 by identifying opposite sides of a square.
More generally, an orientable surface Mg of genus g can be constructed from a
polygon with 4g sides by identifying pairs of edges. A simple way to understand
the genus is the number of "holes" of a surface. For example a sphere has genus 0
because of no hole exist, and a torus has genus 1 with the hole seems like the one
a donuts has.

It is possible to express a topological surface such like a torus with a polygon.
The 4g edges of the polygon then become a union of 2g circles in the surface that
all intersect in a single point. The interior of the polygon can be thought of as
an open disk, or a 2-cell, attached to the union of the 2g circles. We can also
consider the union of the circles which formed a 2-cell as being obtained from
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their common point of intersection, by attaching 2g open arcs, or 1-cells. And also
we can regard the two extremes of an closed arc (closed 1-cell) as two discrete
points, or 0-cells.

Until here we get the idea of n-cell and now we consider that n-cells have a
frontier (or boundary). A 0-cell is a vertex; an 1-cell is an arc with two 0-cells as
boundary; a 2-cell is a surface whose frontier consists of a linear combination of
several 1-cells; a 3-cell is a three-dimensional object with a linear combination of
2-cells as boundary.

Attaching n-cells is to link the boundary of one of them with the other. A
complex formed by attaching the n-cells for various values of n is called a cell
complex or CW-complex.

Example 3.10. If we attach a 1-cell to a 0-cell, we will obtain a structure that the
two extremes of that 1-cell coincide and match in the same vertex (that 0-cell). It
seems like a cycle in graph theory.

If we attach a 2-cell to a 0-cell, we obtain a sphere (the surface of a hollow ball)
because we linked the boundary of the 2-cell with the vertex 0-cell.

What we introduced above are two simple examples of CW − complex.

Definition 3.11. An n-dimensional hole (Hn) is a hole formed (or restricted) by the
frontier (or boundary) generated by an n-cell. The 0-dimensional holes (H0) are
the connected components, usually a vertex. The 1-dimensional holes (H1) are the
holes formed by linear combinations of 1-cells. The hole exists in a cycle which is
formed by the concatenation of edges (1-cells). The 2-dimensional holes (H2) are
the holes formed by linear combinations of 2-cells. The interior of a hollow sphere
is the most common example.

We let Cn be a free abelian group with basis of n-cells. Thus a C0 group is a
free abelian group with a basis of 0-cells that are vertices. Then we can define a
homomorphism (called boundary function) ∂i : Ci → Ci−1 by sending the basis
elements of i-cells to (i − 1)-cells.

For example, we can define a chain of homomorphism as follows:

Ci
∂i−→ Ci−1

∂i−1−→ · · · −→C2
∂2−→ C1

∂1−→ C0

By the proposition proven in the book of Allen Hatcher [5], we know that Ker ∂i

is the frontier of i-dimensional holes (Hi). And also that Im ∂i+1 is the boundary
of Hi filled with no hollow space, so to say Hi is no longer a hole.

Definition 3.12. The n-dimensional homology group (Hn) is a quotient group defined
as

Hn(X) := Ker ∂n/Im ∂n+1,
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which is used to find the n-dimensional hole (Hn) (defined in 3.11) in the given
topological space X.

We can summarize the key idea of homology groups with the phrase "Find the
holes".

3.3 Persistent homology and persistence diagram

In this section, we define the core conception of TDA consulting the article of
H. Edelsbrunner [2].

As we have already defined filtration in Definition 3.8, we have ∅ = Ci0 ⊆ Ci1 ⊆
· · ·Cn1 ⊆ Cn = C, we apply the homology functor, which for each space gives a
vector space and for each inclusion gives a linear map:

0 = H(C0) → H(C1) → · · · → H(Cn) = H(C)

referring to this sequence as a persistence module.
As we defined above in 3.11 Hn is the n-th homology group with n the dimen-

sion. We assume coefficients in a field F, so that Hn = F
⊕

F
⊕ · · ·⊕ F = Fβn is

a vector space over F, with βn = rank Hn known as the n-th Betti number. (The
n-th Betti number refers to the number of n-dimensional holes on a topological
surface.)

It is instructive to split the module into indecomposable summands of the form

0 → F → · · · → F → 0.

There is a unique such decomposition whose direct sum gives the original
module. Each summand can be interpreted as the birth of a homology class at
its first non-zero term and the death of the same class right after its last non-zero
term.

In other words, we can define it using mathematical language more precisely.

Definition 3.13. Given a simplicial complex C with FC = {Ci ⊆ C}i∈I , every h ∈
Hn(Ci) is an n-dimensional hole of the homology group in the subspace Ci.

The birth time of hole h is the first time j in which h appears as an n-dimensional
hole. We define the homomorphism fi,j : H(Ci) → H(Cj) so that

Tbirth(h) := in f {j ∈ I | h ∈ Im f j,i}.

The death time of hole h is the first time j in which h disappears and no longer
is an n-dimensional hole, so that

Tdeath(h) := in f {j ∈ I | h /∈ Im fi,j}.
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Hence the persistent homology is the homology where the persistence of a hole
refers to the time between its birth and its death. And we use persistence to assess
the variation of holes along the process of the related filtration.

Definition 3.14. A persistence diagram is a two-dimensional diagram with the birth
time of n-dimensional hole (Hn) in the abscissa axis and the death time of n-
dimensional hole (Hn) in the ordinate axis.

The coordinates of points in this diagram are represented by (birth, death).

Example 3.15. Here we draw a persistence diagram with the principal components
we have. In this diagram we have two holes: 0-dimensional holes H0 and 1-
dimensional holes H1.

Figure 3.1: Persistence diagram with H0 and H1.

We can observe that all H0 have the same birth time because the data points
exist at the beginning and then they die along the process of filtration. The blue
vertical column is formed by them. And the orange points represent the H1 holes,
which do not follow a certain behavior like H0.

Definition 3.16. The i-th post-removal persistence diagram is the persistence diagram
generated by removing all the PCs in the trajectory (see 4.2) until this hierarchy
and also the i-th principal component from the rest of the principal components
given as the results of previous hierarchies.

We define I as the set of removed PCs for the i-th post-removal persistence
diagram and J as the set of removed PCs in previous hierarchies until now (has
the same elements with the trajectory until now). So we have:

I = {PC i}
⋃

{J}.
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Example 3.17. Given a set of five principal components named by numbers from
1 to 5, in the first hierarchy of DHA we chose the PC 5 and remember this result
(keep it in the trajectory defined in 4.2) and continue the operations of DHA until
the end.

In this case the trajectory is {5, 3, 2, 1, 4}. So that in the first hierarchy, we
owned all PCs and the 5 post-removal persistence diagram is the one we look for
because it satisfied the criterion established at the beginning. In the second hier-
archy, we remembered the previous result so that we had one less and just con-
sidered four PCs {1, 2, 3, 4}. Hence the second one is 3 post-removal persistence
diagram generated by the removing PC 5 (already removed from the original data
when the second hierarchy began) and PC 3 (selected in this hierarchy for compli-
ance with the criteria established at the beginning). In the third hierarchy we had
2 post-removal diagram generated by the removing of PCs {5, 3, 2}, and so on.

So that in the i-th post-removal persistence diagram not only we removed PC
i but also we removed the previous PCs we have already known.

3.4 Wasserstein distance and bottleneck distance

There are several methods to measure the difference between persistence di-
agrams. For TDA, we have two common measures widely used: Wasserstein
distance and bottleneck distance.

In mathematics, the Wasserstein distance is a distance function defined be-
tween probability distributions on a given metric space. This distance is also
called "earth mover distance" because we can consider the distribution as a unit
amount of earth (soil) piled on M, and the metric is the minimum "cost" of turning
one pile into the other, which is assumed to be the amount of earth that needs to
be moved times the mean distance it has to be moved.

Definition 3.18. Given a metric space (X, d) that is a Radon space, for n ∈ [1, ∞),
the Wasserstein n-distance between two probability distributions µ and ν on X
with finite n-moments is

Wn(µ, ν) = (in fγ∈Γ(µ,ν) E(x,y)∼γ
d(x, y)n)

1
n ,

where Γ(µ, ν) is the set of all couplings of µ and ν. A coupling γ is a joint proba-
bility measure on X × X whose marginal distribution are µ and ν on the first and
factors respectively.

Their marginal distributions are∫
X

γ(x, y)dy = µ(x),
∫

X
γ(x, y)dx = ν(y).
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We use this distance as the metric function between two diagrams because
we can match two diagrams and then calculate the minimum cost of transport
one into other. The parameter n is used to determine the parameter for moment.
Wasserstein distance is a family of distances with different parameters, and the
bottleneck distance is a particular case of Wasserstein distance with the parameter
equal to ∞.

Bottleneck distance is computationally more costly than Wasserstein distance
because to consider the parameter equal to ∞ costs more time than a finite pa-
rameter. Consequently, we use Wasserstein distance in this paper with parameter
equal to 1 because the default parameter used in Python is 1.

Example 3.19. We show an example of bottleneck distance for a persistence dia-
gram using DHA-bottleneck distance (introduced later in Section 4.2).

Figure 3.2: Bottleneck distance between the original diagram and a post-removal
diagram.

This figure shows the curve which represents the bottleneck distance between
the original persistence diagram and the post-removal persistence diagram for
each hierarchy (defined in 4.1). The algorithm we used here will be introduced
later in Section 4.2.

So we only see here that the distance of a post-removal diagram from the orig-
inal one is in general monotonously increasing with the increase of PCs removed
from all. This result makes sense because it is logical to think that the distance will
be larger with more variables (PCs) removed and also the diagram will be more
different from the original.

Moreover we will see the same figure with Wasserstein distance in the example
4.9, and that has the curve softer than we have seen here.
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3.5 Total persistence

One of the disadvantages of TDA is the difficulty to interpret and explain the
meaning of the results we obtained. For example, once we made the persistence
diagram, we cannot find out a conclusion directly from this diagram.

So we need a method to quantify the diagram with a certain number that
allows us to do a numerical analysis and what we found is a intrinsic topologi-
cal property called total persistence. We used the concept defined in the work of
M. Rucco [6].

Definition 3.20. Total persistence is a numerical property of the persistence diagram
defined by

Total Persistence := ∑
i∈I

li with li = deathi − birthi,

where I is the set of hole indices.

So the total persistence is simply the sum of the persistence time of all holes
once generated during the process of filtration. It obviously is a real positive
number. So we can consider it as a numerical descriptor of a persistence diagram.

3.6 A measure of information: entropy

In information theory, the ntropy of a random variable is the average level
of "information" inherent in the variable’s possible outcomes. And this average
information level is determined according to the unexpectedness and uncertainty
of the event. We need to notice that events with a smaller probability will provide
more information entropy, because an ordinary event will not make people feel
surprised, nor will it make people feel that something special has happened. And
once an unusual event occurs, it is natural to notice possible changes, and this
provides us with more information.

A very simple example is: when a patient goes to the doctor. When the doctor
asks what symptoms he has, if the patient answers: "When I feel hungry, I want
to eat food. When I feel thirsty, I want to drink water." Then the doctor cannot
get a lot of valuable information from this answer, because the event answered by
the patient is a very common and high probability event. Of course, this answer
also contains certain information. For example, "want to drink water" means that
the patient is not a patient with rabies or other diseases that cannot drink water.
But obviously, the amount of information contained in this answer will be very
little. But if the patient answers: "When I was hungry, I did not have the appetite
to eat. When I was thirsty, I did not want to drink." In this case, the doctor can
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pass these rare symptoms to quickly and accurately judge the disease that patient
suffers. Because this is not a common occurrence, more information is included to
allow doctors to specify several rare and special diseases.

According to this idea, Claude Shannon has defined the information entropy in
his paper ’A mathematical theory of communication’ [7] as a reasonable measure
of information contained. We use his definition here.

Definition 3.21. Given a discrete random variable X with the distribution accord-
ing to p : X → [0, 1] (i.e., the probability), the Information entropy is defined as

H(X) := − ∑
x∈X

p(x) log(p(x)) = E[− log(p(X))].

The base of logarithm can be defined depending on the situation we study.

By the definition of information entropy, we can see that the event with lower
probability will give a greater information.

3.7 Persistence entropy

Scholars who use TDA for data analysis are inspired by the definition of in-
formation entropy (defined in 3.21), thus defining a new entropy based on total
persistence and persistence of holes (defined in 3.13) to measure the amount of
topological information. This entropy is called persistence entropy and we will use
the definition in the work of M. Rucco [6].

In the case of persistent topology, we define the probability of n-hole.

Definition 3.22. The parameter for the distribution is defined as:

pi :=
deathi − birthi

Total persistence
.

Before the definition of persistence entropy, we would like to see that this
parameter we defined above is a probability.

It is easy to see that:
1) pi ≥ 0 because the death time will never be earlier than the birth time.
2)∑i∈I pi =

Total persistence
Total persistence = 1

3)P(
⋃n

i=1 hi) = P(h1
⋃ · · ·⋃ hn) = P(h1) + · · ·+ P(hn) = ∑n

i=1 P(hi).

Definition 3.23. Persistence entropy is defined as

Persistence entropy(X) := − ∑
x∈X

p(x) log2(p(x)) = E[− log2(p(X))],

where X is a set of holes exist in a certain persistence diagram and x ∈ X are the
holes. The logarithm is with base 2: log2.
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This paper has two core conceptions:

1. Persistence entropy.

2. Directed hierarchical analysis.

Persistence entropy is a useful measure of topological information, and we can
define more criteria and tools based on that in the following content of this thesis.

Definition 3.24. An interval of tolerance is an interval of real numbers calculated
by the mean value of the all differences in absolute value between the original
persistence entropy and the persistence entropy of i post-removal diagram in each
hierarchy.

Interval := [original entropy − mean, original entropy + mean].

Definition 3.25. We define topological latent dimension as the last dimension before
the difference between the persistence entropy of i post-removal diagram and orig-
inal persistence entropy varies intensely with the variation larger than the interval
of tolerance (in 3.24).

Example 3.26. In order for readers to understand the above two definitions more
clearly, here we will give a specific example.

The graphic below shows a blue curve and a red curve. The blue curve rep-
resents the persistence entropy generated with DHA-Persistence entropy (we will
introduce later in section 4.4) and the red curve represents the original persistence
entropy generated with all principal components we have.

Also we need to know that the persistence entropy of a diagram generated by
only one principal component (or one variable in the general case) is always null.
By the definition 3.11, we know that the 1-dimensional hole H1 is formed by the
1-cell and we do not have any H1 in the 1-dimensional space. So we always show
the total persistence and persistence diagram with H1 until where we have two
PCs remained.

In this case, we have twelve PCs at the beginning, so that the graphic shows
the number of PCs removed from x = 0 to x = 10.
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Figure 3.3: A curve of persistence entropy in H1 with DHA-Persistence entropy.

Obviously, in this case, the interval of tolerance (definition 3.24) is [original
entropy +1.06417, original entropy −1.06417], and the last x with variation con-
tained in the interval is x = 9 means we have removed nine PCs and equivalent to
remain three PCs. So the topological latent dimension in this case is 9.

Although we found the topological latent dimension based on the topological
information using persistence entropy, there is no objective definition to say which
is the most proper definition of the topological dimension for a set of data. This is
only one possible definition with the point of view on the persistence entropy and
my own criterion.

Further more, in the example 3.26 we can observe that seems like where x = 8
(equivalent to four PCs remained) also can be considered as a topological latent
dimension if we optimize the relation between the count of PCs removed and the
their persistence entropy. But for more general cases, we need a objective criterion
like interval of tolerance (defined in 3.24) to deal with the other situations.



Chapter 4

Directed Hierarchical Analysis

In this chapter, we will introduce a new analysis method that is defined for
the first time which is called Directed Hierarchical Analysis (DHA). The purpose of
this paper is to find a data dimensionality reduction method based on topological
persistent homology, persistent entropy and principal component analysis.

First of all, we need to apply PCA over the data base in order to concentrate the
information and remove the multicollinearity between the variables. Once we have
the principal components, we need to find out how many principal components
we need to keep optimally after pooling information using PCA, and learn which
ones they are.

As we said before, the traditional way to select principal components depend
on the accumulation of variance. More variance always means more information
kept in the projection space. We also pointed out that this method depend on the
amount of variance that we expected to use for the analysis. So there is not an
objective criteria to decide the number of reserved principal components, and it
will be determined according to the researcher’s needs.

Inspiration from the jenga game tells us that we can remove some princi-
pal components and then observe the possible variation of topological structure
caused by the removing. There will be a spoiled structure or remain stable and
keep almost the same structure as before.

One of the innovation in this paper is find out a method that decide how many
PCs to keep by looking at the topology itself in the data structure. That is to
say, this is an objective standard. The other innovation is the creation of the new
analysis method called Directed hierarchical analysis (DHA).

DHA is based on the topological properties and information. In the section 3.3,
we have introduced how to capture the topological structure of the data through
the birth and death of n-dimensional holes over time (In general they are zero and
one dimensional holes).

26
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Definition 4.1. Directed Hierarchy Analysis (DHA) is an analysis method that re-
move one principal component from the rest of them in each step of analysis and
then compare the changes occurred or different value of some specific data struc-
ture properties properties between the original topological data structure (without
removing any principal component) and the post-removal topological structure.

Process of algorithm:

1. Decide a certain criterion and a specific topological structure property for
choosing the principal component.

2. At the beginning, there are n principal components generated by PCA.

3. Remove the first principal component and calculate the value of property
defined at first.

4. Repeat the third step until we have calculated all values of the property for
each removing.

5. Find out which is the value of property that satisfies the criteria defined at
first.

6. Discover the principal component removed that corresponds to the genera-
tion of the value selected in the fifth step.

7. Remove the principal component discovered in the sixth step and back for-
ward to the second step with n − 1 principal components. We refer to this
set of steps, steps 2 through 7, as an hierarchy.

8. Continue this process until the last one principal component is remained.

We named this method as DHA because of two characteristics possessed: Di-
rectionality and Hierarchical (also known as memory or heredity).

Directed means there is an orientation that given by a certain criterion (or rule)
that help us to decide which principal component is the one that need to be re-
moved from all. The direction make sure that we will not analyze randomly and
always study all of them.

Hierarchical means that each hierarchy (defined in the step 7 of definition 4.1)
of the analysis is based on the results of the previous hierarchy. We can continue
go deeper into the next hierarchy based on the results of all previous hierarchies.

Definition 4.2. In each hierarchy, we keep the name (or the number) of the selected
PC and the order of this hierarchy. Add this PC into a sequence. Continue this
operation and every time add the PC selected following the order of correspondent
hierarchy until the last hierarchy.
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The sequence created by the names of PCs in their order we call that trajectory
of DHA.

In other words, the trajectory of DHA is:

trajectory = {Ni}i=1,2,...,n−1
⋃
{Nn}

The Nn is the last PC remained when the n − 1-th hierarchy has been done.

Example 4.3. Given 7 principal components by PCA. We define the Wasserstein
distance between the original persistence diagram and the persistence diagram
generated after the removing of one PC as the topological structure property in
this case. And the criterion of selection is to find out the minimum Wasserstein
distance between two diagrams.

And the first principal component removed by DHA in the first hierarchy is
PC 5, then we continue the DHA with PC 1, 2, 3, 6, 7. At the end of all, we got the
trajectory (4.2) of this case which is {5, 3, 6, 1, 2, 4} means in the first hierarchy
we removed PC 5 with {1,2,3,4,6,7} remained, in the second hierarchy, base on the
removal of PC 5, we removed PC 3 with {1,2,4,6,7} remained. In the third hierarchy,
base on the removal of PC 5 and PC 3, we removed PC 6 with {1,2,4,7} remained
and so on. Now we can observe the curve of Wasserstein distance generated
by removing the PCs in order and their correspondent Wasserstein distance to
original diagram in each hierarchy.

If we do not use DHA, we will not have the criterion to detect the princi-
pal component wanted and probably we have to use all of the values of certain
topological structure property. And then, as we did not choose any principal com-
ponent of them, we should remove two of them from the original n PCs. Also
the Non-Hierarchical makes that the result we got before will not help us to get
further more for the following steps. Iterating over all possible results at each step
makes the analysis very inefficient. Further more, it will let the values that are not
related to my research purpose interfere with the final analysis results, resulting
in distortion of the results.

We have told that DHA needs a topological structure property and also a cer-
tain criterion, in this paper, we will use the following DHA-based methods with
different criteria and properties.

Based on DHA: minimum wasserstein distance, minimum bottleneck distance,
maximum total persistence, maximum persistent entropy and the combination
of these methods. These methods are based on the concepts introduced in the
previous chapters.

We will describe these DHA-based methods in detail in each section of this
chapter.
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4.1 Distance centroid method

As we introduced in the section 3.4, Wasserstein distance and Bottleneck dis-
tance can used as the metric function that measure the difference between two
persistence diagrams.

To find out the latent dimension by selecting the principal components, we can
compare the difference between the original persistence diagram and the post-
removal diagram.

Here we define the simplest method to do the comparison: Distance centroid
method.

Definition 4.4. Distance centroid method is an analysis method that in the step i
(i ∈ {1, 2, . . . , n− 1}). We remove i principal components from all of them and then
calculate the distance (bottleneck, Wasserstein, etc) between the i post-removal
persistence diagram (definition 3.16) and the original persistence diagram. We
consider all possible cases where i principal components are removed and calcu-
late the mean value of these distances between the persistence diagrams. We call
this mean of distance as centroid.

Once we have all distance centroid in each step, we can draw a curve that
represents the mean distance between the i post-removal diagram and the original
one.

Figure 4.1: A curve of distance centroids

Example 4.5. Here is an example of the result of distance centroid method. The
blue curve represents the mean of Wasserstein distance between the i post-removal
diagram and the original one with twelve principal components. The abscissa axis
x represents the number of principal components removed and where x = i means
that we take out i + 1 principal components. So that when x = 0, we calculate all
possible twelve cases of remove just one principal component from the all.

We can observe that this curve rises almost following the same slope before
x = 8 (the distance centroid with nine PCs removed), and then the slope became
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smaller and reached the maximum value in x = 9 (ten PCs removed).
According to the hypothesis, the distance centroid will keep going up and

the curve should never go down. Because whenever more PCs is removed, the
resulting persistence diagram should be farther away from the original image.
So we can assume from this phenomenon that maybe something was happened
when the curve reached the highest point. And that dimension is what we really
interested in.

Proposition 4.6. Distance centroid method is extremely inefficient and we will prove
this fact.

If we have n principal components after the PCA. And we would like to find
out the number j when we removed j PCs, we can reach the dimension in which
the Wasserstein distance between j post-removal diagram and the original one
does not behave like previous steps.

With Distance centroid method, in the first step, we need to remove 1 PC
from n and then calculate the Wasserstein distance between the 1 post-removal
persistence diagram and the original. So that in the first step we need to choose
one different PC n times and then calculate the distance centroid.

In the second step, we have to remove 2 PC and if we want to iterate over all
possibilities, we need to calculate (n

2) =
n!

2!(n−2)! times and then obtain the distance
centroid.

In the general case with i PCs removed, the computation times will be (n
i ) =

n!
2!(n−2)! .

To complete the analysis using this method, the computation will be a waste
of time because it is necessary to iterate all possibilities and the time is:

TIME =
n−1

∑
i=1

(
n
i

)
The computational complexity is factorial which is the most complex type.

The inefficiency of distance centroid method prompted us to think and use a
new method to reduce computing time and improve efficiency. That is DHA.

4.2 DHA with Wasserstein distance

In fact, their is no necessity to iterate all possible cases if we want to find the
dimension in which the behaviour of distance (Wasserstein, Bottleneck, etc) has
changed and behaves differently than the previous steps. For example, in the first
time of removing PC. We can only consider among the principal components,the
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one whose distance between the 1 post-removal diagram and original diagram is
closest. Assume that PC is the fifth of n. And in the second step, we remember
that in the first hierarchy, we have already known the PC 5 and 1 post-removal
diagram with PC 5 removed is the closest one to the original diagram. So we do
not have to consider the combination consist of PC 5 with other PCs and PC 5
can be removed from the rest. So that in the second hierarchy, we only need to
consider n − 1 PCs and do the same as the first hierarchy.

Definition 4.7. DHA-Wasserstein distance is a variant method based on DHA with
Wasserstein distance between the post-removal persistence diagram and the orig-
inal persistence diagram as the topological structure property and the criterion is
always choose the PC which causes the smallest distance to the original diagram
after the removing.

Topological property: Wasserstein distance between the original and post-
removal

Criterion: Choose the PC i such that the Wasserstein distance between i post-
removal diagram and the original is smallest.

Proposition 4.8. DHA is more efficient than distance centroid method. The time
we need to complete the analysis is:

TIME = n − 1

The computational complexity is linear so it is efficient.

This TIME not only for just one variant method of DHA but also for the whole
family of methods based on DHA.

We have mentioned an example 4.5 to explain How does it work work.

Example 4.9. Here we can do a comparison between the results of the same subject
with distance centroid method and DHA-Wasserstein distance method.

Figure 4.2: Comparison between two methods using the same data with H0.
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Both methods use the same data from a subject, and also use the persistence
diagram of 0-dimensional holes H0 (in section 3.2). The right figure has two
curves, the orange one represents the distance centroids in each step and the blue
one represents the trajectory (see 4.2), means that the order of removing principal
components with DHA-Wasserstein distance. In the first hierarchy, we removed
the PC 9, in the second we removed the PC 10 and the final one is PC 3.

We can see that the DHA - Wasserstein distance has generated almost the same
the curve as the left one.

The criterion of DHA-Wasserstein distance is choosing the smallest distance
not the biggest distance because we want to find the PC which matter less and
unrelated with the topological structure. We do our best to make sure the structure
be stable as before, not to destroy it with the most extreme PC.

The reason for choosing the Wasserstein distance instead of the bottleneck
distance is as stated in 3.4, because bottleneck is a special case of Wasserstein,
which is the Wasserstein distance when the parameter value is equal to positive
infinity. Wasserstein distance is more proper for the generality.

In this paper, we use the Wasserstein distance with parameter equal to 1. Be-
cause of the default parameter of Wasserstein distance function defined in Python
is 1.

4.3 DHA with total persistence

We have already introduced the concept of total persistence in the section 3.5.
As we also told in Section 3.7, these two conceptions are related deeply.

Persistence entropy contains the topological information of a topological struc-
ture, total persistence is used to calculate that entropy. And the persistence entropy
only depends on the persistence of each n-dimensional hole and total persistence.
So that persistence also contains some parts of topological information. From here,
there is the idea of the new method.

Definition 4.10. DHA-Total persistence is a variant analysis method based on DHA
with total persistence of each i post-removal diagram as the topological structure
property and the criterion is always choose the PC which causes the maximum
total persistence.

Topological property: Total persistence of each i post-removal diagram.
Criterion: Choose the PC i such that the i post-removal diagram has the max-

imum total persistence.

Attention, in the last section, we used the criterion which select the PC with
minimum Wasserstein distance but in this case we changed ourselves to choose
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the maximum value of total entropy because we want to keep as much as possible
the topological information contained by total persistence.

Example 4.11. There are two graphics that show two results of two different sub-
jects with DHA-Total persistence.

Figure 4.3: Comparison between two subjects with DHA-Total persistence with
H1.

The left one is the result generated with the subject 30 and the right one is
the result generated with subject 26. Have to be aware of that the subject 26 is an
outlier among all observations of our data base.

The red horizontal line represents the total persistence of the original persis-
tence diagram. And both blue curves are formed by the total persistence of i
post-removal persistence diagram found by DHA - Total persistence.

We can find observe the blue curve in the left figure represents a monotone
decreasing from the original total persistence. on the other hand, we can see this
curve behaves strangely because the total persistence found in the first hierarchy
has jumped to a extreme high altitude from the original. And in almost every
hierarchy, the total persistence we have chosen are above the red line until the
giant descent and then went down the red line.

4.4 DHA with persistence entropy

In this section we go a step further and define the final variant method (used
in this paper) based on DHA with the same reason as the DHA - Total persistence.

Definition 4.12. DHA-Persistence entropy is a variant analysis method based on
DHA with persistence entropy as the topological structure property and two crite-
ria choosing the maximum value of persistence entropy or the value of persistence
entropy which is the closest to the original entropy.
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Topological property: Persistence entropy of i post-removal persistence dia-
gram.

Criteria:

1. Choose the PC i such that the i post-removal diagram has the maximum
persistence entropy.

2. Choose the PC i such that the i post-removal diagram has the persistence
entropy which is the closest to the original entropy.

The first criterion based on the idea of DHA-Total persistence which keep the
topologically most informative choice. And serves for the detection of the outliers
and atypical observation in the data base because we always select the extreme
large value of persistent entropy in each hierarchy. It can also be used to find out
the dimension that the topological structure of data reach the most informative
state which can help us to apply some topological analysis about that, like DHA-
Total persistence.

The second criterion is used to find the topological latent dimension (defined in
3.25) that always choose the PC that produces the less variation from the original
in persistence entropy.

Example 4.13. Here we only show an example for the DHA-Maximum persistence
entropy which means we establish the first criterion. For the example of DHA-
Approximate original entropy with the second criterion, see example 3.26.

In this example, we put two graphics of the DHA-Maximum persistence en-
tropy with the same data.

Both graphics have one blue curve which represents the persistence entropies
of each i post-removal diagrams, the red horizontal line which represents the orig-
inal persistence entropy. And the abscissa axis represents the number menus 1 of
the quantity of PCs removed. In other words, x = j means j + 1 PCs removed
from all.

The left figure shows the number of removed PCs from 1 to 11, but as we said
in the example 3.26, we actually need just from 1 to 10 because when eleven PCs
have been removed, only one PC is remained and will never form 1 − cell or 1-
dimensional hole. So that the total persistence or the persistence entropy with H1
and one PC left will always equal to zero.

For the reason of visibility, we put the right figure without the last hierarchy.
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Figure 4.4: DHA-Maximum persistence entropy with H1.

From the right figure, the increasing of persistence entropy can be obviously
observed and get the maximum value where x = 5 (means six PCs have been re-
moved and equivalent to other six PCs left) and then start decreasing monotonously.
So we can conclude that we only need six specifics PCs which are not be removed
to find out the possible maximum topological information (see the section 3.6).
And these 6 PCs remained are the principal components who concentrate the
most topological information.

We say that this highest point of persistence entropy as a possible maximum
entropy because we are unable to decide that there is no another order of removing
the PCs can get larger entropy. The only thing we can say is the highest point we
found probably is the maximum with DHA-Maximum persistence entropy. And
we will mention this disadvantages of DHA in the conclusion.

The trajectory of this case is {0, 3, 2, 1, 5, 4, 8, 10, 9, 7, 6, 11}, so that we know
the first six PCs {0, 3, 2, 1, 5, 4} do not contain so much topological information
and the last six {8, 10, 9, 7, 6, 11} are the most informative.

So we succeed to find the principal components given by PCA which are the
most topologically informative. And this method contributes the theoretical and
practical basis to discover the order of topological information instead of the order
of variance information used in traditional PCA.

4.5 Combined DHA methods

In the final section of this chapter, we create a method that combining the
methods mentioned above.

In the section 3.6, we provided a method to measure the topological infor-
mation using persistence entropy. And the main objective of this paper is data
dimensionality reduction with latent dimension. As we defined the topological
latent dimension in 3.25, the reduction and the latent dimension are based on
persistence entropy, in other words, topological information contained.
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So we consider the DHA method combined with Wasserstein distance, total
persistence, maximum persistence entropy, approximate original entropy all based
on the persistence entropy as the topological structure property.

Definition 4.14. Combined DHA method based on persistence entropy is a variant
method based on DHA.

In the first step we calculate the trajectories (definition 4.2) respectively pro-
duced by DHA-Wasserstein distance, total persistence, maximum persistence en-
tropy, approximate original.

And then we calculate the persistence entropies of post-removal diagrams ac-
cording to these trajectories.

Example 4.15. Here we put two graphics of the combined DHA method based on
persistence entropy to make a clear and understandable explanation.

The left figure uses the data of subject 25 and the right one uses the data of
subject 26 which is an outlier among all observations in our data base. The abscissa
axis represents the number of PCs removed. Where x = j, we removed j PCs. And
we consider the case of H1 so there is no necessity to express the x = 11 because
it is impossible to create H1 with one PC (variable/dimension) remained, so the
persistence is always null.

Figure 4.5: Quadruple Entropy for subjects 25 and 26 with H1.

First of all, we explain the meaning of these graphics. For the left graphic,
the blue curve represents the persistence entropy calculated using the trajectory
of DHA-Maximum persistence entropy. The orange curve represents also the per-
sistence entropy but calculated using the trajectory of DHA-Wasserstein distance
({9, 10, 7, 8, 2, 6, 11, 0, 1, 3, 4, 5}). We know that DHA-Wasserstein distance is used
to find the minimum Wasserstein distance between the original and post-removal
diagram. But in this case, we do not calculate the distance, but the persistence
entropies according to the trajectory found. And the green curve made by the



4.5 Combined DHA methods 37

trajectory of DHA-Total persistence, the red curve drew by the trajectory of DHA-
Approximate original entropy ({6, 0, 9, 4, 5, 11, 1, 3, 2, 8, 7}).

Obviously,it can be observed that the blue curve established a supreme limit
and other curves are all above that. In most circumstances, the blue curve restrict
the others because it was generated by the trajectory of DHA-Maximum persis-
tence entropy ({0, 3, 8, 7, 10, 9, 4, 5, 11, 6, 1, 2}). And the green curve is located in
the second highest position because in every hierarchy of DHA-Total persistence
we select the PC which made the maximum total persistence (trajectory={0, 3, 8,
7, 10, 9, 4, 5, 11, 6, 1}). So it is reasonable that two curves blue and green are the
highest curves.

The red curve approximates a lot the red horizontal line (represents the original
entropy) because in every hierarchy we choose the PC with less variation from
the original persistence entropy, so it ought to be the most similar curve to the
horizontal red line.

And the orange curve behaves a monotonously decreasing from the first hierar-
chy because we can see that the graphic of DHA-Wasserstein distance of example
4.9 behaves almost the same monotonously decreasing curve. It make sense be-
cause in each hierarchy of DHA-Wasserstein distance, the Wasserstein distance
is farther and farther away from the original persistence diagram. So that is the
reason of the behavior of orange curve like that.

For the right figure, as we already known that this subject is an outlier, such
these strange curves do not surprise us. We can see that the green, red, orange
curves behave the same as the left image. But the blue curve is extremely high
compare with the others. And from here, we can deduce that subject 26 has
extreme high values of persistence entropies in each hierarchy. And the subject 25
does not have those.

So this example also explain the fundamental reason of the outliers detection
using the extreme high values of persistence entropies.



Chapter 5

Application of DHA in a specific
dataset

5.1 Origin of dataset

The dataset used in this study was a preprocessed version of a dataset col-
lected during a series of experiments carried out by Dr. Ignasi Cos at the Center
for Brain and Cognition of Universitat Pompeu Fabra. The experiments were ap-
proved by the Clinical Research Ethics Committee (CEIC-Parc Salut Mar) of Uni-
versitat Pompeu Fabra-Hospital del Mar with reference number 2015/6085/I, and
the methodology was designed in accordance with the corresponding directives
and regulations.

The original neuroscience study was described in the following work: Cos I,
Deco G, Gilson M (2021): Behavioural and neural correlates of social pressure
during decision-making of precision reaches. DOI:10.21203/rs.3.rs-1974463/v1,
and an exploitation of the dataset with methods from topological data analysis
was carried out in FerrÃ A, Cecchini G, Nobbe Fisas FP, Casacuberta C, Cos I
(2023): A topological classifier to characterize brain states: When shape matters
more than variance, arXiv:2303.04231 [cs.LG].

5.2 Research objectives

The study by Cos et al. (2021) was carried out with eleven participants. High-
density electro-encephalograms (EEG) were recorded during 1200 ms from human
participants during a decision-making task in which motivation was modulated
via social pressure. The manipulation of motivation was performed by means of
a function of the participant’s aiming accuracy with respect to that of a virtual

38
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partner. The purpose of simulated partners was to introduce an implicit bias to
modulate the participant’s motivation to reach more accurately.

Each participant performed two sessions of six blocks each, with each block
consisting of 108 trials. The six blocks were distributed into two groups of three.
Each group consisted of one block playing alone and two blocks each alongside
a partner of a lesser/higher aiming skill. The goal of this manipulation was to
induce three distinct motivational states as a function of the level of social pressure
exerted. Hence, the dataset consists, per trial, of EEGs from a variable number
of channels (normally 60 electrodes per participant) lasting 1200 ms each. Each
participant performed 12 blocks of 108 trials.

The purpose of the classifier developed in Ferrà et al. (2023) was to ascertain
that TDA is a suitable predictor of brain motivational states when applied to the
study dataset.

5.3 Quartiles and box plot

First of all, we need to find out the outliers that exist in our data set.
As we said in the section 4.4 and example 4.15. DHA-Maximum persistence

entropy serves to detect the outliers based on the selection of most extreme high
value of entropy.

Box plot and quantiles can be used as an powerful tool to see directly the
distribution of the entropies produced by DHA-Maximum persistence entropy
with different subjects. Box plot is a statistical graph used to show the dispersion
of a set of data. It can display the maximum (top bar), minimum (bottom bar),
median (orange line), and upper and lower quartiles (top and bottom of the box)
of a set of data. The first quartile Q1 is equal to the number that larger than the
first 25% of all the values in the sample arranged from small to large. The second
quartile, also known as the median, is equal to the number that larger than the
first 50% of all the values in the sample arranged from small to large. The third
quartile Q3, also known as the larger quartile, is equal to the number that larger
than the first 75% of all the values in the sample arranged from small to large. Box
plot can be considered as an expression of the distribution of probability density.

In this section, we will show two images of box plots for all subjects with both
the H1 and H0. As we said in the section 3.3, the persistence diagrams can be
made with the birth and death of H1 or H0. The most examples we showed above
(specially in the chapter 4) are generated with H1 because their can almost always
happen that some H0 holes with death time equal to infinity, it is equivalent to
say that exist some data points are connected components independent of others
and never connect with other connected components. And the calculation of total
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persistence does not admit the infinity death time. So we need to remove those
H0 holes that will never die. And this can probably cause the lost of information,
That is why we use H1 holes with more frequencies. Here we give two graphics
one above the other with H1 and H0 respectively.

Figure 5.1: Box plots of persistence entropy for all subject with H1 above and H0
below.

First of all, we noticed that although the scale and sizes of these two pictures
are different, the interrelationships between subjects are still well preserved. This
means that subjects that exhibit anomalous properties in the upper image will still
do the same in the lower image.

As mentioned in the previous sections, subject 26 is a very typical outlier. It
is easy to observe that in the box plot using H1, the distribution of persistence
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entropy of subject 26 is significantly more disperse than other subjects. The size
of the area in which 50% of the data is reserved in the middle of the box plot is
jointly determined by Q3 and Q1. We noticed that Q1 was close to 9.5, while Q3
was already close to 10.8. The difference between Q3 and Q1 is even much larger
than the difference between the maximum and minimum values of some other box
plots. In particularly, the median of subject 26 obviously situated at a much higher
position than others. There is no other subject has the median more than 10. The
subject 29 has the same behavior as the subject 26 with a widely disperse box and
a median significantly higher than others. And we also find the subject 31 is the
other type of outliers. The box plot is extremely compressed into an area smaller
than the most of boxes of other subjects and the median almost coincide with the
Q3 if we do not enlarge the size of the graphic. From the figure above using H1,
it is clearly to see the subjects {25, 28, 30, 32, 33, 34 ,35} formed the main part of
the observations, these observations compare the same behaviors between them.
And we consider here the subject 27 not also as an outlier because the expansion
of box is moderate and is relatively more closer than subjects 26, 29, 31.

For subjects like subject 27 that cannot be judged only by the information in
H1, we can use the results in H0 for comparative testing. In the second figure, we
see the subjects 29, 31 remain the anomaly and specially the subject 31. The abnor-
mality of subject 31 in H0 is even more obvious than the most obvious subject 26
in H1. According to the expansion of the box and the position of median in H0,
we can divide the rest of subjects into two classes consist of normal observations.
They are subjects {25, 26, 32, 33, 34, 35} and {27, 28, 30}. As we have already
determined the normal observations in H1, we can find out the intersection be-
tween two figures. The criterion is simple and reasonable that we only consider
one observation is normal if and only if it has been viewed as normal in both of
two figures. So that the normal subjects are {25, 27, 28, 30, 32, 33, 34, 35}. And the
outliers are subjects {26, 29, 31}.

5.4 Results of DHA-Wasserstein distance

Since total persistence is a topological property in the persistence diagram, we
use it to study how the topology of the data may change as PCs are removed.

In this section, we only show the results of DHA-Wasserstein distance with H1

because of the reason mentioned above in the section 5.3.
With the division of data set into the normal and outlier classes, we just need

to show the figures more representative of each class. For more results, please
consult the attached appendix.

Here we show three results of the normal class, there are subjects {25, 33, 35}.
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Figure 5.2: DHA-Wasserstein distance in h1 applied on subjects 25, 33, 35.

Every figure has a blue curve which represents the variation of Wasserstein
distance between the original persistence diagram and the post-removal diagram
(definition 3.16) following the own trajectory (definition 4.2). Where x = i means
we removed i + 1 PCs.

We can see that all these three figures show a smoothly monotonously increas-
ing with a stable and after reaching the peak, start monotonically decreasing until
the elimination of eleven PCs at x = 10. The peaks for them are x = 7, x = 6 and
x = 8 respectively.

We use DHA-Wasserstein distance analysis because we designed a process
and raised a question: If we remove the PC with the least impact (measured by
the Wasserstein distance to original diagram) on the overall at each step, will there
be a certain node so that when we get there, even the PC with the least impact
on the overall. That PC will still have a significantly higher impact on the pop-
ulation than removing the PC in the previous step. If that node does not exist,
then the Wasserstein distance between the original diagram and the original di-
agram should continue to increase monotonically and the increase rate is almost
the same, and there should be no intense sudden growth. Generally speaking, as
we remove more principal components, the topological structure constructed by
the remaining principal components should be more different from the original
structure, that is to say, as we remove more principal components , the distance
between the post removal diagram and the original diagram should be getting
farther and farther. But the facts do not match our conjectures. Because when we
reached these three peaks, we found that as we continued to remove the principal
components, the distance between the post removal diagram and the original di-
agram became abnormally closer and closer. In fact, the topology of our remain-
ing principal components cannot be more and more similar to the original one.
But this abnormal phenomenon appeared. This means that when the topological
structures of the three subjects reach the corresponding peaks, their topological
structures collapse, and the calculation of the Wasserstein distance between them
and the original cannot correctly and truly reflect the difference between them.

Even this phenomenon also happens with the subjects of outlier class.
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Figure 5.3: DHA-Wasserstein distance in H1 applied on subjects 26, 29, 31.

We can see that in this case, even the curve of subject 26 is the same as the
previous three pictures, monotonically increasing to the peak, and then looking
monotonically decreasing. Even the x value of its peak is equal to 7 (with 8 PCs
removed) just like subject 25.

Subjects 29 and 30 are outliers, so their curves do not fully comply with the
previous rules. The curve of subjects 29 did not satisfy the monotonically increas-
ing property at x = 6 before reaching the peak. And ubjects 31 did not satisfy the
monotonous decrease after peak when x = 9. This proves that these two subjects
are outliers from another aspect.

Although we obtained these results and know some rupture or structural
change happened, we still have no idea about what actually happened when the
curves of variation reached their own peak. To find out the reason, we need the
intervention of topological information.

5.5 Results of DHA-Total persistence

The purpose of DHA-Total persistence is to find the trajectory of PCs removed
that keep the maximum persistence entropy in each hierarchy as we defined in
the section 4.3. In this section, we only show the results of DHA-Total persistence
with H1 (the persistence of H1 holes in diagrams) because of the reason mentioned
above in the section 5.3.

Same as above, we put three results of the normal class, there are subjects
28, 30, 32.
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Figure 5.4: DHA-Total persistence in H1 applied on subjects 28, 30, 32.

Every figure has a blue curve which represents the variation of total persistence
of the post-removal diagram following the own trajectory (definition 4.2) and the
red horizontal line is the total persistence of the original persistence diagram .
Where x = i means we removed i + 1 PCs.

As these three subjects belong to the normal class, they have almost the same
curve performance with respect to their own red line. They always start near the
original total persistence (it can be a point above or below), and then remove PCs in
order according to their respective trajectories. And their total persistence is a very
stable, smooth (meaning there is no intense sudden slope change) monotonous
decreasing curve.

We can also observe three more total persistence curves of the subjects in the
normal class. Because these three subjects are still normal, but their curve forms
have different performances from the above three pictures.

Figure 5.5: DHA-Total persistence in H1 applied on subjects 33, 34, 35.

If we only observe the part of curve below the red horizontal line these six
graphics have the same trend and performance. The most significant difference
is in the beginning of these curves. The curves began around the original total
persistence, But then they start growing briefly until they reach a peak (not the
same one as in DHA-Wasserstein distance). Although these three curves seem
to show some abnormality, if we compare them with the pictures generated by
outliers below, we will find that subjects 33, 34, 35 still belong to the normal class
with subjects 28, 30, 32.
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Figure 5.6: DHA-Total persistence in H1 applied on subjects 26, 29, 31.

It is clear that the three outliers once again show distinct trends from other
observations. If we choose the PC that can produce the largest total persistence
when removing in each hierarchy, then it is probably to choose some extreme
values. Such as some extremely large values. For example, subjects 26, 29. We
can clearly see that subject 26 has a lot of extreme large values, while subject 29
suddenly has an abnormally large value when x = 6 (that is, when 7 PCs have
been removed), making the trend of the curve is cut off directly from the middle,
forming a mountain-shaped image. In addition, subjects 26, 29 also had a sudden
drop. Unlike the six pictures in the previous normal class, when subject 26 and
subject 29 began to show a downward trend, their decline speed was very rapid,
instead of having a smooth and smooth downward trend like the previous six
figures. And subject 31 belongs to the special one among these three outliers.
In fact, according to the results of this section and the previous sections of this
chapter. Subject 31 may be similar in structure to the observation of the normal
class. The reason why subject 31 is an outlier is probably because the scale of
values is not at the same level as other observations. The curve starts from 0.25
and then went down.

5.6 Results of combined DHA based on persistence entropy

In the last section, we study the topological changes of the data set directly
through persistence entropy, and we also indirectly use all the previously men-
tioned methods as auxiliary elements.

For this data set, we investigate two problems:

1. At what dimension to obtain the largest possible persistence entropy, and
which principal components support these dimensions.

2. In what dimension, we can ensure that many unnecessary dimensions (that
is, principal components) are removed, and at the same time, we can en-
sure that the persistence entropy of the removed persistence diagram has no
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significant change compared with the original one. And determine which
principal components are retained.

In order to solve these two problems, we used two analysis methods, DHA-
Maximum persistence entropy and DHA-Approximate original entropy, respec-
tively. At the same time, we also use the trajectory obtained in the previous two
sections to construct auxiliary curves for us. For more details and specific ways of
how works this combined DHA analysis method, please consult in the section 4.5.

As the previous section, we exhibit three results of the normal class, there are
subjects 30, 32, 33 and they are in H1 because the reason explained above.

Figure 5.7: Combined DHA in H1 applied on subjects 30, 32, 33.

These figures are called Quadruple entropy plot. Because all those curves repre-
sent the variation of persistence entropies and Quadruple means they were calcu-
lated through four different trajectories.

Unlike the figures in the previous two sections of this chapter, the graphics in
this section with x = j means j PCs have been removed. So when x = 0 means
in that time the persistence entropy belongs to the original diagram. And when
x = 10 means the post-removal only has two PCs remained. Of course, as we said
several times before, their is no need to show the result when x = 11 because H1

could not birth with just one dimension left.
Obviously, we can see that these three subjects have almost the same behav-

iors in the orange curves generated by the trajectory of DHA-Wasserstein distance.
These curves start from the original entropy, and then basically keep monotoni-
cally decreasing. The trend of orange curves also make sense. Because we can
see in the sections 4.2 and 5.4. If we remove PCs according to the trajectory order
in DHA-Wasserstein distance, we find that the generated post-removal diagrams
will be farther and farther away from the original diagram, and the increase in this
distance is monotonous before reaching the peak. On the other hand, we can also
see that the blue curves of these three pictures are the curves generated when PCs
are removed according to the trajectory order in DHA-Maximum entropy. They
also showed a high degree of similarity. They all start from the original entropy,
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and then because the maximum value is selected every time, it increases all the
way up to the peak, and then declines smoothly. And the other three curves are
all within the range delineated by the blue curve, and none of the curves can pass
through the blue curve and go beyond this range.

Because the green curve is the curve generated when PCs are removed accord-
ing to the trajectory order in DHA-Total persistence. The similarity between itself
and DHA-persistence entropy is relatively high. So we will not explain it here in
particular. And look directly at the red curve, which is the curve generated when
PCs are removed according to the trajectory order in DHA-Approximate original
entropy. We can see that this curve closely fits the red horizontal line representing
original entropy in most hierarchies, until x = 7 or x = 8, there is a drastic change
and it breaks away from the red horizontal line.

According to our previous definition of topological latent dimension (defini-
tion 3.25). We can consider an interval of tolerance that does not include x = 10
(because when x = 10 always present a rapid fall), and then find that the value
that best matches the definition of latent topological dimension will be around
dim = 4 (x = 8, we removed 8 PCs from all 12 PCs).

Finally we also observe that by the time we get to the last few PCs, all four
curves have basically converged and coincided with the same curve.

And then we observe the results of the three outliers in the quadruple entropy
plot.

Figure 5.8: Combined DHA in H1 applied on subjects 26, 29, 31.

First we observe the blue curves, the blue curve of subject 26 reaches the peak
when x = 2, that is to say, after we only remove two PCs in the order of the trajec-
tory of DHA-Maximum entropy, we immediately reached the possible maximum
value of persistence entropy. For subject 29, the change of its blue curve is too
drastic. When x = 3, the blue curve suddenly rises sharply, that is to say, there is
a very large topological difference between the PCs selected to be removed after
this hierarchy and the two PCs removed when x = 1 and x = 2. Subject 31 is
because its blue curve is not significantly higher than the other three curves, and
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it has just reached the peak until x = 9.
Another curve we need to look at is the green one. We noticed that the green

curve of subject 26 does not maintain the same upward and downward trend as
the blue curve as the three green curves in the normal class above. Instead, it
fits the red curve of original entropy very well and decreases monotonically after
x = 2. The green curve for subject 29 is even more unusual. When thinking about
x = 6, the green curve suddenly skyrocketed, and then showed an inexplicable
trend. The green curve of subject 31 is the same as the three examples in the
normal class.

The orange curves for all three subjects are in line with our expectations and
show no abnormalities. It is possible that the order given by the trajectory gen-
erated by the DHA-Wasserstein distance can always provide us with a form that
allows the persistence entropy to decline smoothly.

Finally we look at the red curve. We noticed that the red curves of subject 26
and 29 both went up abnormally when x = 9. And when x = 10, its value coin-
cides with the blue curve. Although the last four curves converged and overlapped
together in the three pictures in the previous normal class. But the way the red
curve coincides with the blue curve is still very strange. However, subject 31 does
not develop downward along with the orange and green curves, but coincides
almost horizontally with the blue curve and x = 10.

Similarly, we find that for subject 26, 29, 31. These four curves did not converge
to one curve at the end, but diverged completely and irregularly.

According to the results we obtained, subject 26 has the topological latent di-
mension 8 (with H1); subjects 27 also has 8, and subjects 31 has 7.

Another notable result occurs in H0. We give three examples here. We exhibit
subjects 25, 29, 32 to show that this abnormality has nothing to do with whether it
is an outlier.

Figure 5.9: Combined DHA in H0 applied on subjects 25, 29, 32.

We found that in H0, the green curve shows a high correlation with the orange
curve. This may be due to the fact that for the persistence diagrams of H0, in each
hierarchy, the PC that has the least impact on the overall is also able to retain the
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maximum total persistence each time. In other words, in the persistence diagram
of H0, the Wasserstein distance between the total persistence and post-removal
diagram and the original diagram is highly correlated.

And we can also find that the topological latent dimensions (with H0) for sub-
jects 25, 32 are clear, they are 6 and 5 (because of x = 6 and x = 7 respectively)
and for subject 29 we cannot decide because the sudden changes in x = 4, x = 8
and x = 9 of the red curve.



Chapter 6

Conclusion

The core purpose of this work is based on the validity of the Manifold Hypoth-
esis, since we attempt to find a latent dimension of a given data set. The latent
dimension can be different depending on the criteria on which it is based. Thus
we defined a topological latent dimension (Definition 3.25) in Chapter 3 and then
we implemented a method to determine it. To accomplish our purpose, we de-
signed some key analytical methods for the first time, such as Directed Hierarchy
Analysis (DHA), in Chapter 4.

Based on the PCA method, we concentrated the original data information into
a relatively smaller number of principal components than in the original dataset.
Then we used persistent homology and persistence entropy from algebraic topol-
ogy, and some other auxiliary methods (such as Wasserstein distance); we com-
bined them with the DHA analysis method, and then conducted research. In addi-
tion to finding a topological latent dimension through this method, we also found
which PCs are topological latent variables through the trajectory (Definition 4.2)
generated by the DHA method.

In Chapter 5, we first performed PCA processing on the data set (5.1) and
obtained 12 PCs. Then we analyzed the 11 study subjects using the combined
DHA method. We successfully found outliers through DHA-maximum entropy
—they are subjects 26, 29, and 31. By focusing on H1, we successfully found that
the topological latent dimension of most observations is dim = 4. We also found
a strong correlation between total persistence and Wasserstein distance with H0.

Our method also has disadvantages. The information contained in persistent
entropy is implicit, and if there is no analysis method based on the amount of
topological information (for example, the topological classifiers used in [3]), the
topological latent dimension we have found is difficult to be used for other pur-
poses. Therefore, this work provides a theoretical basis for an analysis method
based on the amount of topological information that may appear in the future.
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Annex 1: Results for all subjects

In the first annex, we exhibit all the results we have obtained using the combined
DHA in H1, H0, DHA-Total persistence in H1 and DHA-Wasserstein distance in
H1.

Figure 1: Combined DHA in H1 applied on subject 25.
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Figure 2: Combined DHA in H1 applied on subject 26.

Figure 3: Combined DHA in H1 applied on subject 27.
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Figure 4: Combined DHA in H1 applied on subject 28.

Figure 5: Combined DHA in H1 applied on subject 29.
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Figure 6: Combined DHA in H1 applied on subject 30.

Figure 7: Combined DHA in H1 applied on subject 31.
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Figure 8: Combined DHA in H1 applied on subject 32.

Figure 9: Combined DHA in H1 applied on subject 33.
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Figure 10: Combined DHA in H1 applied on subject 34.

Figure 11: Combined DHA in H1 applied on subject 35.
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Figure 12: Combined DHA in H0 applied on subject 25.

Figure 13: Combined DHA in H0 applied on subject 26.
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Figure 14: Combined DHA in H0 applied on subject 27.

Figure 15: Combined DHA in H0 applied on subject 28.
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Figure 16: Combined DHA in H0 applied on subject 29.

Figure 17: Combined DHA in H0 applied on subject 30.
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Figure 18: Combined DHA in H0 applied on subject 31.

Figure 19: Combined DHA in H0 applied on subject 32.
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Figure 20: Combined DHA in H0 applied on subject 33.

Figure 21: Combined DHA in H0 applied on subject 34.
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Figure 22: Combined DHA in H0 applied on subject 35.

Figure 23: DHA-Total persistence in H1 applied on subject 25.
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Figure 24: DHA-Total persistence in H1 applied on subject 26.

Figure 25: DHA-Total persistence in H1 applied on subject 27.
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Figure 26: DHA-Total persistence in H1 applied on subject 28.

Figure 27: DHA-Total persistence in H1 applied on subject 29.
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Figure 28: DHA-Total persistence in H1 applied on subject 30.

Figure 29: DHA-Total persistence in H1 applied on subject 31.
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Figure 30: DHA-Total persistence in H1 applied on subject 32.

Figure 31: DHA-Total persistence in H1 applied on subject 33.
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Figure 32: DHA-Total persistence in H1 applied on subject 34.

Figure 33: DHA-Total persistence in H1 applied on subject 35.
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Figure 34: DHA-Wasserstein distance in H1 applied on subject 25.

Figure 35: DHA-Wasserstein distance in H1 applied on subject 26.
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Figure 36: DHA-Wasserstein distance in H1 applied on subject 27.

Figure 37: DHA-Wasserstein distance in H1 applied on subject 28.
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Figure 38: DHA-Wasserstein distance in H1 applied on subject 29.

Figure 39: DHA-Wasserstein distance in H1 applied on subject 30.
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Figure 40: DHA-Wasserstein distance in H1 applied on subject 31.

Figure 41: DHA-Wasserstein distance in H1 applied on subject 32.
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Figure 42: DHA-Wasserstein distance in H1 applied on subject 33.

Figure 43: DHA-Wasserstein distance in H1 applied on subject 34.
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Figure 44: DHA-Wasserstein distance in H1 applied on subject 35.



Annex 2: Code used for this work

We also put the code we have used to accomplish the algorithm defined by us.
Here we just show the core code what is the function for DHA (Also called AJD
in spanish). There will be some comments in chinese or spanish to make me not
forget.
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Figure 45: First part of DHA.
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Figure 46: Second part of DHA.
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Figure 47: Third part of DHA.
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Figure 48: Fourth part of DHA.
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Figure 49: Fifth part of DHA.
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Figure 50: Sixth part of DHA.


