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Abstract

The main goal of this work is to prove the De Rham Theorem and highlight
its meaning and relevance. It will provide the reader with the necessary concepts
to prove the De Rham Theorem. To do that, this work presents a brief but com-
prehensive introduction to both homology and cohomology theory as well as to
smooth manifolds.
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Chapter 1

Introduction and motivation

Smooth manifolds are one of the mathematical structures most related to physics
due to the intrinsic nature of space-time. In the many areas of study of smooth
manifolds, this work revolves around a single theme, the De Rham Cohomolgy
and one of its central results, the De Rham’s theorem. Despite the many appli-
cations in electromagnetism and gauge theories in modern day particle physics,
this work is purely mathematical and it will focus its scope in the mathematical
tools to prove the Theorem. However in the last chapter, we will provide an in-
tuitive notion of what the De Rham’s theorem means, and we will also discuss
its relevance in physics. First of all an introduction to homology and cohomology
will be made to give us the homological tools for the theorem. Afterwards, an in-
troduction to smooth manifolds will follow so we can combine differential forms
and homological algebra. In the last chapter the work will present the De Rham
Cohomology and a set of results needed to prove the theorem and the proof itself.
The stimulus for the theorem will become more apparent but for now let us give
the reader some motivation.
First of all, one defines a quocient group of closed forms modulus exact forms.
This is the so called De Rham Cohomology. Studying these groups one finds a
very remarkable result: De Rham cohomology groups are topological invariants
(in fact they are homotopic invariants). The same De Rham groups are obtained
for different differentiable structures, depending only on the topological manifold.
This result leads to the following question: can one compute the De Rham coho-
mology of a smooth manifold in a purely topological way?. The De Rham theorem
answers precisely that question. It establishes an isomorphism between the singu-
lar cohomology groups and the De Rham cohomology groups. In conclusion, this
work aims to study a powerful theorem involving many branches of mathematics,
relating topological and geometrical properties to algebraic structures. We will not
go in detail in some aspects that could be interesting and we will skip proofs since
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2 Introduction and motivation

they can easily be found in the bibliography and would require a whole book to
be complete. All in all, it is a physics-inspired work but studied purely from the
mathematical side, used to expand the knowledge of content not taught during
the Mathematics degree.



Chapter 2

Introduction to homology and
cohomology

Before getting in depth with cohomology of differential forms it is useful to
introduce the basics of homology and cohomology.

2.1 Simplicial homology

Definition 1. Let n ≥ 0 be a natural number. The (geometric) n-simplex
∆n ⊆ Rn+1 is the convex hull of the standard basis vectors of Rn+1 endowed with
the subspace topology.

Let us denote these standard basis vectors by e0, . . . , en. Every point v ∈ ∆n can
uniquely be written as a convex linear combination of the ei, i.e., there is a unique
expression

v =
n

∑
i=0

tiei, ti ≥ 0, t0 + · · ·+ tn = 1.

The coordinates ti are the barycentric coordinates of the point v. Thus, to be
completely specific, we have

∆n =
{
(t0, t1, · · · , tn) ∈ Rn+1 | ti ≥ 0, t0 + · · ·+ tn = 1

}
.

Recall that a convex linear map is a map which sends convex linear combina-
tions to convex linear combinations. It follows that a convex linear map

α : ∆n → ∆m

is uniquely determined by its values on ei ∈ ∆n for i = 0, . . . , n.

3



4 Introduction to homology and cohomology
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Figure 2.1: Representation of a 3-simplex ∆3

Definition 3. Let X be a topological space.

(1) A singular n-simplex in X is a continuous map σ : ∆n → X.

(2) The singular n-chain group Cn(X) is the free abelian group generated by the
singular n-simplices in X. Its elements are called singular n-chains in X.

Let us recall the notion of a free abelian group generated by a set. As a moti-
vation for the concept we include the following reminder.

Reminder 4. Let V be a finite-dimensional vector space with basis b1, . . . , bn ∈
V and let W be a further vector space over the same field. Then a linear map
f : V → W is uniquely determined by the values f (b1), . . . , f (bn) ∈ W.

Definition 5. Let S be a set. A free abelian group generated by S is a pair
(F(S), iS) consisting of an abelian group F(S) and a map of sets iS : S → F(S)
which satisfies the following universal property: Given a further pair (A, j : S →
A) with A an abelian group and j a map of sets, then there is a unique group
homomorphism f : F(S) → A such that f ◦ iS = j.

2.2 Singular homology

Recall that we have the i-th face map di : ∆n−1 → ∆n for 0 ≤ i ≤ n. Given a
singular n-simplex σ : ∆n → X in a space X, we obtain a singular (n − 1)-simplex
di(σ) in X by setting:

di(σ) = σ ◦ di : ∆n−1 di−→ ∆n σ−→ X, 0 ≤ i ≤ n.
By linear extension, this gives rise to a group homomorphism
di : Cn(X) → Cn−1(X), 0 ≤ i ≤ n,
which will also be called the i-th face map. We proceed to give some essential

definitions.



2.2 Singular homology 5

Definition 2.1. Let X be a topological space.

(1) The n-th singular boundary operator ∂ is given by

∂ =
n

∑
i=0

(−1)idi : Cn(X) → Cn−1(X).

(2) The kernel Zn(X) of the boundary operator ∂ : Cn(X) → Cn−1(X), i.e., the abelian
group

Zn(X) = ker(∂ : Cn(X) → Cn−1(X)),

is the group of singular n-cycles in X. An element of Zn(X) is sometimes also
referred to as a closed singular n-chain.

(3) The image Bn(X) of the boundary operator ∂ : Cn+1(X) → Cn(X), i.e., the abelian
group

Bn(X) = im(∂ : Cn+1(X) → Cn(X)),

is the group of singular n-boundaries in X.

These definitions state that a singular p-chain c is called a cycle if ∂c = 0, and
a boundary if c = ∂c′ for some (p + 1)-chain c′. We would like the reader to give
special attention to this two objects. This is so later in the work the relationship be-
tween cycles and boundaries and what will be called closed f orms and exact f orms
respectively, becomes apparent.
Since Bn(X) ⊂ Zn(X) we can define the nth homology group of X as the following
quotient group

Hn(X) = Zn(X)/Bn(X).

To every quocient group, there are equivalence classes. The equivalence classs
in Hp(X) of a singular p-cycle c is called the homology class of c and as usual is
denoted [c].

Definition 2.2. A chain complex is defined as a sequence of A-modules and A-linear
maps, where A is a commutative ring,

· · · → Cp+1
∂−→ Cp

∂−→ Cp−1 → · · · .

Definition 2.3. Let M be a topological space, the sequence of abelian groups and homo-
morphisms

· · · → Cp+1(M)
∂−→ Cp(M)

∂−→ Cp−1(M) → · · · .

is called the singular chain complex.
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Proposition 2.4. (Properties of Singular Homology Groups)
(a) For any one-point space {q}, H0({q}) is the infinite cyclic group generated by the
homology class of the unique singular 0-simplex mapping ∆0 to q, and Hp({q}) = 0 for
all p ̸= 0.

(b) Let {Mj} be any collection of topological spaces, and let M =
⋃

j Mj. The inclusion
maps ij : Mj → M induce an isomorphism

⊕
j Hp(Mj)

∼−→ Hp(M).

(c) Homotopy equivalent spaces have isomorphic singular homology groups.

Full proof of these properties can be found in chapter 16 of [2]

2.3 Cellular homology

Now, we discuss another kind of homology theory which, as we will see in the
last theorem, will provide isomorphic groups to singular homology. This is very
useful when dealing with explicit calculations.

First of all we need to define a new type of spaces, called CW-complexes. We
will not go in depth, we are only going to present the key fundamentals of this
complexes to understand cellular homology. We will follow the introduction in
chapter IV of the Glen E Bredon book. [1].

A CW-complex is a space made up of "cells" attached in a nice way. The "C"
in "CW" stands for "closure finite," and the "W" stands for "weak topology." It is
possible to define these spaces intrinsically, but we prefer to do it by describing the
process by which they are constructed. For the most part, we will be concerned
only with "finite" complexes, meaning complexes having a finite number of cells,
but we shall give the definition in general.

Let K(0) be a discrete set of points. These points are the 0-cells. If K(n−1) has
been defined, let { f∂σ} be a collection of maps f n−1

∂σ : Sn−1 → K(n−1), where σ

ranges over some indexing set. Let Y be the disjoint union of copies Dn
σ of Dn, one

for each σ, let B be the corresponding union of the boundaries Sn−1
σ of these disks,

and put together the maps f∂σ to produce a map f : B → K(n−1). Then define

K(n) = K(n−1) ∪ f Y.

The map f n−1
∂σ is called the "attaching map" for the cell σ. We refer to K(n−1) ∪ f

Y as being obtained fron Y by attaching an n-cell.
If K(n) has been defined for all integers n ≥ 0, let K =

⋃
n K(n) with the "weak"

topology that specifies that a set is open if and only if its intersection with each
K(n) is open in K(n). (It follows that a set is closed if and only if its intersection
with each K(n) is closed.)
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For each σ, let fσ : Dn
σ → K be the canonical map given by the attaching of

the cell σ. This map is called the "characteristic map" of the cell σ. Let Kσ be
the image of f 0

σ . This is a compact subset of K which will be called a "closed
cell" (note, however, that this is generally not homeomorphic to Dn since there are
identifications on the boundary). Denote by Uσ the image in K of the open disk
Dn

σ − Sn−1
σ . This is homeomorphic to the interior of the standard n-disk (i.e., to

Rn). We shall refer to Uσ as an "open cell," but remember that this is usually not
an open subset of K. It is open in K(n).

It is clear that the topology of each K(n), and hence of K itself, is characterized
by the statement that a subset is open (closed) if and only if its inverse image
under each fσ is open (closed) if and only if its intersection with each Kσ is open
(closed) in K0

σ, where the topology of the latter is the topology of the quotient of
Dn by the identifications made by f∂σ

We can as well define a subcomplex, which is simply a union of some of the
closed cells which is itself a CW-complex with the same attaching maps.

Proposition 2.5. (Properties of CW-complexes) If K is a CW-complex, then the following
statements all hold:

(1) If A ⊆ K has no two points in the same open cell, then A is closed and discrete.

(2) If C ⊆ K is compact, then C is contained in a finite union of open cells.

(3) Each cell of K is contained in a finite subcomplex of K.

For the computation of singular homology groups through cellular homology
groups, we need to find an isomorphism between these two. This is expressed in
the following theorem.

Theorem 2.6. Let X be a CW complex. The abelian groups C•
cell(X) can be turned into

a chain complex, the homology of which is isomorphic to the singular homology Hn(X) of
X.

We will not give proof of this theorem but the reader may find it in [6]
This theorem provides us with the possibility to compute the singular homol-

ogy group of the n-sphere. We will do so by computing its cellular homology
group.

The n-dimensional sphere Sn admits a CW structure with two cells: one 0-cell
and one n-cell. The n-cell is attached by the constant mapping from Sn−1 to the
0-cell.
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Since the generators of the cellular chain groups Ck(S
(
Kn), Sn

k−1) can be identi-

fied with the k-cells of Sn, we have that Ck(S
(
Kn), Sn

k−1) = Z for k = 0, n, and is
otherwise trivial.

Hence, for n > 1, the resulting chain complex is:

· · · ∂n+2−−→ 0
∂n+1−−→ Z

∂n−→ 0
∂n−1−−→ · · · ∂2−→ 0

∂1−→ Z −→ 0,

We can see that all the boundary maps are either to or from trivial groups, they
must all be zero. This means that the cellular homology groups are equal to:

Hk(S
n) =

{
Z, if k = 0 or k = n,

{0}, otherwise.

2.4 Cohomology groups

In addition to the singular homology groups, for any topological space M and
any abelian group G, one can define a closely related sequence of groups Hp(M; G)

called the singular cohomology groups with coefficients in G. The precise defini-
tion is unimportant for our purposes; we are only concerned with the special case
G = R, in which case it can be shown that Hp(M; R) is a real vector space that is
naturally isomorphic to the space Hom(Hp(M; R), R). (For simplicity, let us take
this as our definition of Hp(M; R).) Any continuous map F : M → N induces
a linear map F∗ : Hp(N; R) → Hp(M; R), defined by F∗([α]) = [F∗α] for each
[α] ∈ Hp(N; R) and each singular p-chain α in M. The functorial properties of F∗

carry over to cohomology: (G ◦ F)∗ = F∗ ◦ G∗ and (IdM)∗ = IdHp(M;R). It follows
that p-th singular cohomology with coefficients in R defines a contravariant func-
tor from the topological category to the category of real vector spaces and linear
maps.

There is an important theorem of algebraic topology called the universal coeffi-
cient theorem, which shows how the singular cohomology groups with coefficients
in an arbitrary group can be recovered from the singular homology groups. Thus,
the cohomology groups besides their set having an algebra structure,they also or-
ganize the information in it in a different way that is more convenient for many
purposes. In particular, the fact that the singular cohomology groups, like the De
Rham cohomology groups, define contravariant functors makes it much easier to
compare the two.

Proposition 2.7. (Properties of Singular Cohomology).

(a) For any one-point space {q}, Hp({q}; R) is trivial except when p = 0, in which
case it is 1-dimensional.
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(b) If Mj is any collection of topological spaces and M = ⨿j Mj, then the inclusion
maps ij : Mj → M induce an isomorphism from Hp(M; R) to ⊕jHp(Mj; R).

(c) Homotopy equivalent spaces have isomorphic singular cohomology groups.

This properties can be deduced from the properties of Singular Homology in
proposition 2.4.

The De Rham theorem establishes an isomorphism between this singular co-
homology and the De Rham cohomology that we will define later in this work.



Chapter 3

Smooth manifolds and differential
forms

Up to this point we have made an introduction to the homological side of the
De Rham cohomology. In this chapter we will make a brief introduction to the
differential geometry side of it. We need to discuss differential forms and from
them, exact and closed forms in order to define de De Rham cohomology. This
chapter requires a background in topology that the not familiarised reader can
find in [5]

Definition 3.1. Let M be a topological space. An atlas of class C∞ and dimension m is a
collection of pairs {(Ui, φi)}i∈I , where Ui is an open set in M, and for all i ∈ I, φi is a
homeomorphism from Ui to an open subset of Rm. The following conditions are satisfied:

i) M =
⋃

i∈I Ui.
ii) For all i, j ∈ I such that Ui ∩ Uj ̸= ∅, the map φj ◦ φ−1

i : φi(Ui ∩ Uj) →
φj(Ui ∩ Uj) is a C∞ map between the two indicated open sets of Rm.

Each pair (Ui, φi) is called a local chart of the atlas.
If we further require that φj ◦ φ−1

i is a Ck differentiable map for all i, j, we will refer to
it as a Ck atlas of dimension m. Similarly, if these functions are demanded to be analytic,
we have an analytic atlas.

From now on, all considered atlases will be C∞ atlases.

Definition 3.2. Let A be a differentiable atlas in a topological manifold M of dimension
m. A maximal atlas is an atlas A such that there is no other atlas B satisfaying A ⊂ B
If A is maximal we say A is a smooth structure in M. We say that the pair (M,A) is a
smooth manifold of dimension m.

10
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Definition 3.3. (Differentiable Map between Manifolds)Let f : M → N be a continuous
map between differentiable manifolds M and N. We say that f is differentiable if for every
chart (U, φ) of M and (V, ψ) of N, the map ψ ◦ f ◦ φ−1 : φ( f−1(V) ∩ U) ⊂ Rm →
ψ(V) ⊂ Rn is differentiable.

Now let us define some concepts that will be needed for a proof in the Stokes
Theorem. A very remarkable result regarding integration. A domain o f integration
is a bounded subset of Rn whose boundary has n-dimensional measure zero.
Let M be a topological n-manifold with boundary. A chart with corners for M
is a pair (U, ϕ), where U is an open subset of M and ϕ is a homeomorphism
from U to a subset of R̄n

+ conitaining part of its boundary. A smooth structure
with corners on a topological manifold with boundary is a maximal collection of
smoothly compatible charts with corners whose domains cover. We can now de-
fine a smooth mani f old with corners which is a topological manifold with boundary
with a smooth structure.

Proposition 3.4. Let N be the boundary of a a compact, oriented, smooth n-manifold with
corners M.Let E1, . . . , Ek be copact domains of integration in M; D1, · · · , Dk are compact
domains of integration in Rn; and for i = 1, · · · , k, Fi : Di → M are smooth maps satisfy-
ing i)Fi(Di) = EiandFi|intDi

isanorientation− preservingdi f f eomorphism f romIntDiontoIntEi

ii)Foreachi ̸= j, EiandEjintersectonlyontheirboundaries.
Then for any n-form ω on M whose support is contained in E1 ∪ . . . ∪ Ek,∫

M
ω = ∑

i

∫
Di

F∗
i ω (3.1)

This is enough as far as integration is concerned.
We now define a special kind of function. Despite seeming a bit arbitrary at

this point, it will be necessary in the proof of the De Rham Theorem.

Definition 3.5. If M is a topological space, an exhaustion function for M is a continuous
function f : M → R with the property that the set Mc = {x ∈ M : f (x) ≤ c} is compact
for each c.

Proposition 3.6. (Existence of Exhaustion functions) Every smooth manifold admits a
smooth positive exhaustion function.

Everything we need is this proposition. The proof requires some work with
partitions of unity that extend more the content of this work and thus we will not
go through it. The proof of this proposition can be found in chapter II of Lee’s
book [2].
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Figure 3.1: This figure represents a smooth function f:M→ M

3.1 Tangent space

In order to define differential forms we need to define the tangent space to a
differential manifold.

Definition 3.7. Let M be a smooth manifold, the set of smooth functions f : M → R is
denoted F (M)

Definition 3.8. Let M be a differential manifold and p∈ M. We will call derivation at p,
any R-lineal map δp : F (M) → R such that for any f, g ∈ F (M),
δp( f · g) = δp( f ) · g(p) + f (p) · δp(g).

The set of all the derivations at p is an R-vector space

Definition 3.9. This vector space is called the tangent space to M at p and it is denoted
by Tp M. The elements of Tp M. are called tangent vectors to M at p. In local coordinates,

the elements ∂
∂xi

∣∣∣
p

form a basis of Tp M

Given the concept of tangent space, we now can work our way to defining a
smooth submanifold of a given manifold.

Definition 3.10. Let M and N be smooth manifolds and let f : M → N be a differentiable
map, we define the di f f erentialo f f inp ∈ M as the map

dp f : Tp M → Tf (p)N
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Definition 3.11. Let M, N be smooth manifolds, f : M → N a smooth function. f is
said to be an immersion if dp f is injective ∀p ∈ M.

Definition 3.12. An injective immersion ϕ : M → N is said to be an embedding if ϕ is
an homomorphism of M in its image ϕ(M) (with the subset topology from N).

Proposition 3.13. Let f : M → N be an embedding. f (M) admits a differentiable struc-
ture such that f : M → f (M) is a diffeomorphism and the inclusion i : f (M) → N is an
embedding.

Proof. For each chart (U, ϕ) of M, where V is an open subset of N, we define f (U)

as the intersection of V and f (M). We consider ( f (U), ϕ ◦ f ( − 1)) as a candidate
chart for f (M). To show that this gives a differentiable structure to f (M), we need
to verify that for any two charts (U1, ϕ1) and (U2, ϕ2) of M, the mapping:

ϕ2 ◦ f−1 ◦ f ◦ ϕ−1
1

∣∣∣
ϕ1(U1∩U2)

is differentiable, which is evident. This also implies that f : M → f (M) is a
diffeomorphism.

To show that i : f (M) → N is an embedding, considering that the topology on
f (M) is induced by the subspace topology of N, we only need to verify that i is
differentiable. Let ( f (U), ϕ ◦ f−1) be a chart of f (M) and (W, δ) be a chart of N.
Since f (U) = V ∩ f (M), we need to show that:

δ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(W)) → δ( f (U) ∩ W) is differentiable, which follows
from the differentiability of f.

After this proposition it is possible to construct a submanifold of a given man-
ifold.

Definition 3.14. Let M and N be smooth manifolds, and let f : M → N be an embedding,
we define a smoothsubmani f old of M as the pair (M,f).

Definition 3.15. Let M be a differentiable manifold of dimension n. We define a vector
field on M as the assignment of an element Xp ∈ Tp M to each point p ∈ M. A vector
field X is said to be differentiable if, for every p ∈ M and any coordinate neighborhood
(U, (x1, . . . , xn)) around this point, the expression of X in this neighborhood is given by:

X|U =
n

∑
i=1

λi(xj)
∂

∂xi

where the functions λi are differentiable.
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3.2 Tangent and cotangent bundles

3.3 Tensor fields

In order to define differential forms we first need to introduce the notion of a
differentiable tensor field.

Definition 3.16. Let E be a real vector space of finite dimension and E∗ its dual vector
space . A (k,l)-tensor is a multilinear map

T : E × ... × E × E∗ × ... × E∗ → R (3.2)

We will denote the real vector space of (k,l) tensors as Z(k,l)(E)

Now, as it is very common in mathematics we define a product between these
mathematical objects.

Definition 3.17. Let T and T’ be a (k,l)-tensor and (k’,l’)-tensor respectively we can define
the tensorial product T ⊗ T′ as the (k+k’,l+l’)-tensor given by:

(T ⊗ T′)((v, v′)(w, w′)) = T(v, w) · T′(v′, w′) (3.3)

Definition 3.18. Let M be a smooth manifold, a (k,l) tensor field is a correspondence to
each p ∈ M an element Kp ∈ T(k,l)(Tp M)

p ∈ M → αp ∈ Z(k,l)(Tp M) (3.4)

such that for every coordinate map U, in the local expression q ∈ U
Let U be an open set in M with coordinates (xi)i=1,...,n using basis { ∂

∂xi }i=1,...,n of Tp M
and {d∂xj}j=1,...,n of T∗

p M. For every p∈ U,

Kp = λ
j1,...,jl
i1,...,ik

dxi1 ⊗ ... ⊗ ...dxik ⊗ ∂

∂xj1
⊗ ... ⊗ ...

∂

∂xjl
(3.5)

A differentiable tensor field is a tensor field such that its restriction to any open set U,
satisfies that λ

j1,...,jl
i1,...,ik

are differentiable functions in U.

3.4 Differential forms

Definition 3.19. A differential k-form in M is an antisymmetric differential tensor field
of type (k,0). Antisymmetric meaning that it changes sign whenever two of its arguments
are interchanged.
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A (k,0)-tensor is said to be contravariant and a (0,k)-tensor is said to be covari-
ant.

Definition 3.20. The covariant k-tensor T on a finite-dimensional vector space V is said
to be alternating if it satisfies

T(X1, ..., Xi, ..., Xj, ..., Xk) = −T(X1, ..., Xj, ..., Xi, ..., Xk) (3.6)

Definition 3.21. Let Tk(V) be the vector space of all contravariant k-tensor. Let V be
a finite vector space, Λk(V) the subspace of Tk(V) consisting of alternating tensors, we
define the alternating projector Alt:Tk(V) → Λk(V) as follows:

(AltT)(X1, ..., Xk) =
1
k!

Σσ(sgn σ)T(Xσ(1), ..., Xσ(k)) (3.7)

Where sgn is the sign of the permutation σ, satisfying sgn σ = +1 if the permutation is
even, and sgn σ = −1 when the permutation is odd.

Definition 3.22. If ω ∈ Λk(V)and η ∈ Λl(V), we deine the wedge product or exterior
product of ω and η to be the alternating (k+l)-tensor

ω ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η) (3.8)

Now we have all the formalism to define the exterior derivative. It is a gener-
alisation of the differential of a function.

If X1, ..., Xn are vector fields on M and ω is a p-form then ω(X1, . . . , Xp) is a
smooth real valued function on M.

Definition 3.23. The definition of the exterior derivative in coordinates is:

d(∑
J

ωJdxj1 ∧ · · · ∧ dxjk) = ∑
J

∑
i

∂ωJ

∂xi dxi ∧ dxj1 ∧ · · · ∧ dxjk (3.9)

3.5 Exact and closed forms

At this point we can make a distinction between what are called closed p-forms
and exact p-forms.

Definition 3.24. An exact p-form is a differential p-form α that is the exterior derivative
of another differential form β. Using the notation introduced earlier, α is such that α = dβ

Definition 3.25. A closed p-form ω is a differential p-form that satisfies dω=0
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Proposition 3.26. Every exact form is closed.

Proof. We want to prove that that dd = 0. It is sufficient to check this on W =

f dx1 ∧ . . . ∧ dxp. We calculate

d
(

d f ∧ dx1 ∧ . . . ∧ dxp
)
=

n

∑
i=1

(−1)i−1 ∂ f
∂xi dxi ∧ dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxp.

If we rearrange the double sum so that it ranges over j < i, then we get two
terms for each pair i, j. These terms are identical except for a dxj ∧ dxi in one and
a dxi ∧ dxj in the other. Thus, it all cancels out.

This distinction is what will allow us to define the De Rham cohomology of M
as a quocient group.

3.6 Smooth singular homology

In the first chapter we introduced homology and cohomology theories. Now
that we have introduced smooth manifolds and differentiable forms we can com-
bine singular homology with differentiable forms.

Definition 3.27. If M is a smooth manifold, a smooth p-simplex in M is a smooth map
σ : ∆p → M. The subgroup of Cp(M) generated by smooth p-simplices is denoted by
C∞

p (M) and called the smooth chain group in dimension p. Elements of this group are
called smooth chains.

Definition 3.28. Let M be a smooth manifold. We define the pth smooth singular homol-
ogy group of M as follows

H∞
p =

Ker[∂ : C∞
p (M) → C∞

p−1(M)]

Im[∂ : C∞
p+1(M) → C∞

p (M)]
(3.10)

Now that we have defined the p-th smooth singular homology group of a
smooth manifold, we are interested in relating it to the singular homology group
of M. Since C∞

p (M) ⊂ Cp(M), there is a map on homology induced by inclusion
too i∗ : H∞

p (M) → Hp(M). This map gives us the relation between smooth sin-
gular homology and singular homology, it is expressed in the following theorem.
Because our main goal is to prove the De Rham’s theorem in this work, we will
not write the prove to this theorem due to length contraints but it is of great use
in showing that singular homology can be computed with smooth simplices.
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Theorem 3.29. (Smooth Singular vs. Singular Homology) For any smooth manifold M,
the map i∗ : H∞

p (M) → Hp(M) induced by inclusion is an isomorphism. The proof to
this theorem will be skipped. Not because it is trivial but rather the opposite, it has many
technical details. The reader can find the complete proof in Chapter 16 of [2].



Chapter 4

The De Rham Cohomology

4.1 Definition and purpose

Now that we have introduced the closed and exact forms we can define the De
Rham cohomology.

Definition 4.1. Let M be a smooth Manifold, Ωp(M) the vector space of all smooth p-
forms on M and d the exterior derivative. The pth De Rham cohomology group of M is the
real vector space

Hp
DR(M) =

ker(d : Ωp(M) → Ωp+1(M))

Im(d : Ωp−1(M) → Ωp(M))

Hp
DR(M) =

closed p − f orms
exact p − f orms

=
Z p(M)

Bp(M)

We can now give an example that will help the reader understand the De Rham
cohomology group, by computing it for spheres.

Theorem 4.2. (Cohomology of Spheres). For n ≥ 1, the De Rham cohomology groups of
Sn are

Hp
dR(S

n) =

{
R if p = 0 or p = n,

0 if 0 < p < n.

Proof. For p=0, we can prove it for a more general case .

Proposition 4.3. (Cohomology in Degree Zero). If M is a connected smooth manifold
with or without boundary, then H0

dR(M) is equal to the space of constant functions and is
therefore 1-dimensional.

18
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Proof. Because there are no 1-forms, B0(M) = 0. A closed 0-form is a smooth real-
valued function f such that d f = 0, and since M is connected, this is true if and only if f
is constant. Therefore, H0

dR(M) = Z0(M) = constants.

For p ≥ 1 we prove it by induction on n. For n ≥ 1, note first that dim H1
dR(S

1) =

1. On the other hand, it can be proved that (see [2]) there is an injective linear map
from H1

dR(S
n) into Hom(H1(S

1; R), R), which is 1-dimensional. Thus, H1
dR(S

1) has
dimension exactly 1 and is spanned by the cohomology class of any orientation
form.

Next, suppose n ≥ 2 and assume by induction that the theorem is true for
Sn−1. Because Sn is simply connected, H1

dR(S
n) = 0 due to the existence of of a

linear map ϕ : H1
DR(M) → Hom(π1(M, q), R (see shapter 17 [2] for more details on

this). For p > 1, we use the Mayer-Vietoris theorem as follows. Let N and S be the
north and south poles in Sn, respectively, and let U = Sn ×{S}, V = Sn ×{N}. By
stereographic projection, both U and V are diffeomorphic to Rn, and thus U ∩ V
is diffeomorphic to Rn × {0}.

Part of the Mayer-Vietoris sequence for {U, V} reads

Hp−1
dR (U) → Hp−1

dR (V) → Hp−1
dR (U ∩ V) → Hp

dR(S
n) → Hp

dR(U) → Hp
dR(V).

Because U and V are diffeomorphic to Rn, the groups on both ends are trivial
when p > 1, which implies that Hp

dR(S
n) ∼= Hp−1

dR (U ∩ V). Moreover, U ∩ V is
diffeomorphic to Rn × {0} and therefore homotopy equivalent to Sn−1. Thus, we
conclude that Hp

dR(S
n) ∼= Hp−1

dR (Sn−1) for p > 1, and the desired result follows by
induction. As in the n = 1 case, any smooth orientation form on Sn determines a
nonzero cohomology class, which therefore spans Hn

dR(S
n).

We now compare this computation with the singular cohomology of the sphere.

Consider the n-dimensional sphere Sn = {v ∈ Rn+1 | ∥v∥ = 1}.
Let A = {(x0, . . . , xn) ∈ Sn | x0 > − 1

2} and B = {(x0, . . . , xn) ∈ Sn | x0 < 1
2}.

Of course, both A and B are open in Sn, and their union is Sn. Furthermore, it
can be easily seen that their intersection can be contracted into the "big circle," i.e.,
A ∩ B has the homotopy type of Sn−1. Also, both A and B are contractible (they
are homeomorphic to Rn via stereographic projection).

So, let’s write part of a Mayer-Vietoris sequence (for the cohomology Hm(X) =

Hm(X, G), where G is a fixed Abelian group):

· · · → Hm(A)⊕ Hm(B) → Hm(A∩ B) → Hm+1(Sn) → Hm+1(A)⊕ Hm+1(B) → · · ·
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Since both A and B are contractible and A ∩ B is homotopic to Sn−1, we have
the following short exact sequence:

0 → Hm(Sn−1) → Hm+1(Sn) → 0

This shows that Hm(Sn−1) is isomorphic to Hm(Sn) for every n > 0 and m > 0.
Therefore, in order to calculate the cohomology groups of spheres, we only need
to know the cohomology groups of S1. And those can be also calculated if we
once again apply the previous schema. Note that in the case of S1, we have that
A ∩ B has the homotopy type of a discrete space with two points. Therefore, all
their cohomology groups are trivial, except for H0 (which can be easily calculated
to be equal to H0(∗)⊕ H0(∗), where ∗ is a one-pointed space).

This schema can be used for other spaces like the torus (which can also be
calculated using Kunneth’s formula).

After defining this new cohomology we are now interested in proving that De
Rham cohomology groups are topological invariants. This will be a consequence
of a more general result, its homotopy invariance. The topological invariance is
of great relevance because it is what motivates the isomorphism stated in the De
Rham theorem. As we saw when we calculated the De Rham cohomology groups
of spheres, one achieves the same result when computing the singular cohomology
groups. This obviously is not a coincidence, this example illustrates the fact that
there is some way of computing the De Rham cohomology with purely topological
tools.
The topological invariance is what gives us hints of this possibility of computing
the De Rham cohomolgy through purely topological methods. We are going to
prove it in theorem 4.5, but first let us give the statement of a very known theorem.

Theorem 4.4. (Whitney Approximation on Manifolds) Let M and N be smooth manifolds,
and let F : M → N be a continuous map. Then F is homotopic to a smooth map F̃ : M →
N. If F is smooth on a closed subset A ⊂ M, then the homotopy can be taken relative to
A.

This proof is not very technical but requires the use of embedded submani-
folds, which we have not introduced in this work.



4.2 Preparation for the theorem 21

Theorem 4.5. (Homotopy Invariance of De Rham Cohomology). If M and N are homo-
topy equivalent smooth manifolds with or without boundary, then Hp

dR(M) ∼= Hp
dR(N) for

each p. The isomorphisms are induced by any smooth homotopy equivalence F : M → N.

Proof. Suppose F : M → N is a homotopy equivalence, with homotopy inverse
G : N → M. By the Whitney approximation theorem there are smooth maps
F̃ : M → N homotopic to F and G̃ : N → M homotopic to G.

Because homotopy is preserved by composition, it follows that F̃ ◦ G̃ ≃ F ◦ G ≃
IdN and G̃ ◦ F̃ ≃ G ◦ F ≃ IdM; so F̃ and G̃ are homotopy inverses of each other.

It can be shown (see citar Lee) that if F and G are homotopic smooth maps, the
induced cohomology maps F∗, G∗ : Hp

DR(N) → Hp
DR(M) are equal. Since F and G

are the inverse of each other, on cohomology,

(F̃ ◦ G̃)∗ = G̃∗ ◦ F̃∗ = Id∗
M = IdHp

dR(M)

where (F̃ ◦ G̃)∗ denotes the induced map on cohomology. The same argument
shows that (G̃ ◦ F̃)∗ is also the identity, so F̃∗ : Hp

dR(N) → Hp
dR(M) is an isomor-

phism.

Corollary 4.6. (Topological Invariance of De Rham Cohomology). The De Rham cohomol-
ogy groups are topological invariants: if M and N are homeomorphic smooth manifolds
with or without boundary, then their De Rham cohomology groups are isomorphic.

This is trivial because every homeomorphism is a homotopy equivalence.

4.2 Preparation for the theorem

In this section we present a series of previous results that are necessary to
develop the proof of the De Rham Theorem.

For the following lemma we introduce the concept of an exact sequence. A
sequence is said to be exact if for every map fi in the sequence, Ker( fi) = Im( fi−1).

Lemma 4.7. (The Five lemma): Consider the following commutative diagram of R-
modules and linear maps

A1

f1
��

α1 // A2

f2
��

α2 // A3

f3
��

α3 // A4

f4
��

α4 // A5

f5
��

B1
β1 // B2

β2 // B3
β3 // B4

β4 // B5
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If the horizontal rows are exact and f1, f2, f4and f5 are isomorphisms, then f3 is also
an isomorphism.

Proof. This is quite an immediate proof. (a) Let b3 ∈ B3. Since f4 is an isomor-
phism, it is surjective, there exists a4 ∈ A4 such that f4(a4) = β3(b3) . Because αiβi

are exact, this implies that β4(β3(b3)) = 0 = f4(α4(a4)) = α5(α4(a4)). Therefore,
α4(a4) = 0 (since f5 is injective).

Since α4(a4) = 0, there exists a3 ∈ A3 such that α3(a3) = a4. Now, consider
b3 − f3(a3). We have β3(b3 − f3(a3)) = β3(b3) − β3 f3(a3) = f4(a4) − f4α3(a3) =

f4(a4)− f4(a4) = 0. Thus, there exists b2 ∈ B2 such that β2(b2) = b3 − f3(a3).

Next, consider a2 ∈ A2 such that f2(a2) = b2 (since f2 is surjective). Now, let’s
compute f3(α2(a2) + a3):

f3(α2(a2)+ a3) = f3α2(a2)+ f3(a3) = β2 f2(a2)+ f3(a3) = β2(b2)+ f3(a3) = b3 − f3(a3)+ f3(a3) = b3.

Hence, we have shown that for any b3 ∈ B3, there exist b2 ∈ B2 and a2 ∈ A2 such
that β2(b2) = b3 − f3(a3) and f3(α2(a2) + a3) = b3.

(b) Now, let a3 ∈ A3 such that f3(a3) = 0. Since f4 is injective, we have
f4α3(a3) = β3 f3(a3) = 0. Therefore, α3(a3) = 0 (since f4 is injective). This implies
there exists a2 ∈ A2 such that α2(a2) = a3.

Next, consider b2 ∈ B2 such that β2(b2) = f2(a2) (by surjectivity of f2). Then
there exists a1 ∈ A1 such that f1(a1) = b1 (by surjectivity of f1). Now, observe:

β1(b1) = β1 f1(a1)

= f2α1(a1)

= f2(a2).

Since β2(b2) = f2(a2), we have β2(b2) = β1(b1). By the injectivity of β1, we can
conclude that b2 = b1. Hence, we have shown that for any a3 ∈ A3 with f3(a3) = 0,
there exists b2 ∈ B2 such that β2(b2) = f2(a2).

Therefore, we have proved both directions, and the map f3 is both surjective
and injective.
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Let us now state a general theorem that can be used to compute the De Rham
cohomology groups of many manifolds, by expressing them as unions of open
submanifolds with simpler cohomology.

Theorem 4.8. (Mayer-Vietoris). Let M be a smooth manifold with or without boundary,
and let U and V be open subsets of M whose union is M. We denote the inclusion of
submanifolds by i : U ∩ V → U, j : U ∩ V → V, k : U → M and l : V → M. For each
p, there is a linear map δ : Hp

dR(U ∩ V) → Hp+1
dR (M) such that the following sequence,

called the Mayer-Vietoris sequence for the open cover {U, V}, is exact:

· · · δ−→ Hp
PR(M)

k∗⊕l∗−−−→ Hp
DR(U)⊕ Hp

DR(V)
i∗−j∗−−→ Hp

DR(U ∩V)
δ−→ Hp+1

DR (M)
k∗⊕l∗−−−→ · · ·

Where the "*" symbol indicates the pullback maps induced in differential forms. For
instance i∗ : Ωp(U) → Ωp(U ∩ V).

The proof of this theorem is not straight-forward, we are only going to give the
statement of a necessary lemma for the proof. A short exact sequence of complexes
consists of three complexes A∗, B∗, C∗, together with cochain maps:

0 → A F−→ B G−→ C → 0,

such that each sequence

0 → Ap F−→ Bp G−→ Cp → 0

is exact.

Lemma 4.9. (The ZigZag Lemma). Given a short exact sequence of complexes as above,
for each p there is a linear map

δ : Hp(C∗) → H(p + 1)(A∗),

called the connectinghomomorphism, such that the following sequence is exact:

. . . δ−→ Hp(A∗)
F∗
−→ Hp(B∗)

G∗
−→ Hp(C∗)

δ−→ Hp+1(A∗)
F∗
−→ . . .

The proof of this lemma as well as the whole proof of the Mayer-Vietoris the-
orem can be foun in Chapter 15 of [2]
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Theorem 4.10. (Stokes’s Theorem for Chains) If c is a smooth p-chain in a smooth mani-
fold M, and ω is a smooth (p − 1)-form on M, then∫

∂c
ω =

∫
c

dω.

Proof. It suffices to prove the theorem when c is just a smooth simplex σ. Since p
is a manifold with corners, Stokes’s theorem says that∫

σ
dω =

∫
∆p

σ∗dω =
∫

∆p

dσ∗ω =

The maps Fi,p : i = 0, 1, . . . , p are parametrizations of the boundary faces of σ

satisfying the conditions of proposition 3.4, except possibly that they might not
be orientation-preserving. To check the orientations, note that Fi,p is the restric-
tion to ∆p ∪ ∂Hp of the affine diffeomorphism sending the simplex

[
e0, . . . , ep

]
to[

e0, . . . , ei, . . . , ep, σi
]
. This is easily seen to be orientation-preserving if and only

if
[
σ0, . . . , σbi , . . . , σp, σi

]
is an even permutation of

[
e0, . . . , ep

]
, which is the case if

and only if p − i is even. Since the standard coordinates on ∂Hp are positively
oriented if and only if p is even, then Fi,p is orientation-preserving for ∂Hp if and
only if i is even. Thus, by Proposition 3.4,

∫
∂∆p

σ∗ω =
p

∑
i=0

(−1)i
∫ ∗

σ◦Fi,p

ω.

By definition of the singular boundary operator, this is equal to
∫

∂Hp−1 dω.

Allow us to make a brief incision in this theorem and its relevance. The Stokes
theorem provides a powerful tool for relating the boundary of a chain to the inte-
gral of its derivative over its interior. If ω is exact, then the integral of ω over any
compact submanifold without boundary is zero. This has a very well-known rela-
tive in physics. Consider a physical system described by a conservative force, such
as gravity or an electrostatic field. In these cases, the force can be derived from
a scalar potential function, and the corresponding vector field can be represented
by a differential 1-form ω which is exact, i.e., ω = dϕ for some scalar function ϕ.
This

We now define a homomorphism using this theorem. This is going to be the
linear map that will in fact, be an isomorphism between Hp

dR(M) and Hp(M; R).
Let us define a natural linear map J : Hp

dR(M) → Hp(M; R), called the De Rham
homomorphism, as follows. For any [ω] ∈ Hp

dR(M) and [c] ∈ Hp(M), we define

J [ω] [[c]] =
∫

c
ω,
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where c is any smooth p-cycle representing the homology class [c]. This is well
defined because if c and c0 are smooth cycles representing the same homology
class, then by the isomorphism between smooth singular and singular homology
stated in theorem 3.29 guarantees that c − c0 = ∂b for some smooth (p + 1)-chain
b, which implies ∫

c
ω −

∫
c0

ω =
∫

∂b
ω =

∫
b

dω

Which is zero because dω=0 since dω represents a cohomology class. while if
ω = dα is exact, then ∫

c
ω =

∫
c

dα =
∫

∂c
α

Now, this integral is zero because ∂c = 0, since c represents a homology class.
Clearly, J [ω] [[c + c0]] = J [ω] [[c]] + J [ω] [[c0]], and the resulting homomor-
phism J [ω] depends linearly on ω. Thus, J [ω] is a well-defined element of
Hom(Hp(M), R) ∼= Hp

dR(M).

Lemma 4.11. (Naturality of the De Rham Homomorphism). For a smooth manifold M
and nonnegative integer p, let J : Hp

dR(M) → Hp(M; R) denote the De Rham homo-
morphism.

(a) If F : M → N is a smooth map, then the following diagram commutes:

Hp
dR(N) Hp

dR(M)

Hp(N; R) Hp(M; R)

F∗

J J

F∗

(b) If M is a smooth manifold and U, V are open subsets of M whose union is M, then
the following diagram commutes:

Hp−1
dR (U ∩ V) Hp

dR(M)

Hp−1(U ∩ V; R) Hp(M; R)

δ

J J

∂∗

Proof. Directly from the definitions, if σ is a smooth p-simplex in M and ω is a
smooth p-form on N, we have∫

σ
F∗ω =

∫
∆p

σ∗F∗ω =
∫

∆p

(F ◦ σ)∗ω =
∫

F◦σ
ω.

This implies J (F∗[ω])[σ] = J [ω][F ◦ σ] = J [ω](F∗[σ]) = F∗(J [ω])[σ]. There-
fore, the diagram in part (a) commutes.
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Now we prove part (b). Asking for the commutativity of this diagram is equiv-
alent to asking for the following equation:

J (δ[ω])[e] = (∂∗J [ω])[e] = J [ω](∂∗[e]) (4.1)

for any [ω] ∈ Hp−1
DR (U ∩ V) and any [e] ∈ Hp(M).

Using the identification of Hp
DR(M) with Hom(Hp(M; R), R), we can rewrite

this as
I[ι(ω)] = ι∗[I(ω)].

Let σ be a p-simplex representing ι(ω) and let c be a (p− 1)-chain representing
@(ι(ω)). Then we have

I[ι(ω)](σ) =
∫

σ
ι(ω) =

∫
σ

ω

and
ι∗[I(ω)](c) =

∫
c

I(ω) =
∫

c
ω.

Therefore, we have
∫

σ ω =
∫

c ω, which proves the commutativity of the dia-
gram.

4.3 The De Rham Theorem

Let us begin this section with the statement in the theorem. We subsequently
give some definitions for the prove and prove necessary lemmas.

Theorem 4.12. (De Rham’s Theorem) Let M be an arbitrary smooth manifold. The Ho-
momorphism J : Hp

DR(M) → Hp(M; R) is an isomorphism.

A smooth manifold is a De Rham manifold if J : Hp
DR(M) → Hp(M; R) is an

isomorphism for each integer p≥0.
If M is an arbitrary smooth manifold, an open cover {Ui} of M is called a De

Rham cover if each open set Ui is a De Rham manifold, and every finite intersec-
tion Ui1 ∩ ... ∩ Uik is De Rham. If such De Rham cover is a basis for the topology
of M, it is called a De Rham basis for M.

We now prove the Poincaré Lemma, which is a particular case of the De Rham
Theorem. Later, we will use this lemma to prove the end result.

Lemma 4.13. (Poincaré Lemma). The De Rham Theorem is true for any convex subset U
of Rn+1.
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Proof. We can assume that U contains the origin. We must show:
i)that any closed p-form ω, p ≥1, on U is exact
ii)that any smooth function f on U with d f = 0 is constant.

The reason this is sufficient to prove the lemma is because the De Rham map
takes a constant function with value r to the constant 0-cocycle taking value r on
each 0-simplex.

Since df=0, every ∂ωJ
∂xi is 0 and thus f is is constant in every chart. Now, because

in the Lemma U is convex, U is also connected and the locally constant f is constant
in U. This proves ii).

To prove i), we take U ⊂ Rn+1 with coordinates x0, ..., xn. For p ≥ 0, we define

ϕ : Ωp+1 → Ωp (4.2)

as follows. If ω = f (x0, ..., xn)dxj0 ∧ ... ∧ dxjp then

ϕ(ω) = (
∫ 1

0
tp f (tx)dt)η, (4.3)

where

η =
p

∑
i=0

(−1)ixji dxj0 ∧ ... ∧ ˆdxji ∧ ... ∧ dxjp (4.4)

Then, using Dk to denote the partial derivative with respect to the kth variable,

dϕ(ω) =
n

∑
k=0

(
∫ 1

0
tp+1Dk f (tx)dt)dxk ∧ η + (

∫ 1

0
tp f (tx)dt)dη = S + T (4.5)

where S is the term that contains the sum and T the rest. Also

dω =
n

∑
k=0

Dk f (x)dxk ∧ dxj0 ∧ ... ∧ dxjp , (4.6)

so that

ϕ(dω) =
n

∑
k=0

(
∫ 1

0
tp+1Dk f (tx)dt)(xkdxj0 ∧ xkdxj0 − dxk ∧ η)

=
n

∑
k=0

xk(
∫ 1

0
tp+1Dk f (tx)dt)dxj0 ∧ dxjp − S

= (
∫ 1

0
tp+1 d

dt
f (tx)dt)dxj0 ∧ dxjp − S

= {tp+1 f (tx)]10 − (p + 1)
∫ 1

0
tp f (tx)dt}dxj0 ∧ dxjp − S

= ω − T − S
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since dη = (p + 1)dxj0 ∧ ... ∧ dxjp . Then dϕ(ω) + ϕ(dω) f orω ∈ Ωp(Rn+1), p ≥
1 This means that if ω is a closed p-form, which means that dω=0, then ω =

d(ϕ(ω)), which means that ω is an exact form on U. We have thus proved the
lemma.

After proving the Poincaré Lemma we now have that every convex open subset
of R is De Rham.

Lemma 4.14. If M has a finite De Rham cover, then M is De Rham.

Proof. Let{Ui}i=1,...,k be a cover of M such that each Ui is De Rham. We will prove
the lemma by induction on k. Suppose first that M has a De Rham cover consist-
ing of two sets U,V. We have (explained before i should, form Mayer-Vitoris) the
following commutative diagram

(U)⊕ Hp−1
DR (V)

DR

p−1

f1
��

α1 // Hp−1
DR (U ∩ V)

f2
��

α2 // Hp
DR(M)

f3

��

α3 //

Hp−1(U; R)⊕ Hp−1(V; R)
β1 // Hp−1(U ∩ V; R)

β2 // Hp(M; R)
β3 //

α3 // Hp
DR(U)⊕ Hp

DR(V)

f4
��

α4 // Hp
DR(U ∩ V)

f5

��β3 // Hp−1(U; R)⊕ Hp−1(V; R)
β4 // Hp(U ∩ V; R)

Since U and V and the intersection are De Rham, f1, f2, f4and f5 are isomor-
phisms, it follows from the Five Lemma that f3 is also an isomorphism. This
proves that M is De Rham.

We now make the induction hypothesis that M has a De Rham cover with k ≥ 2
sets and suppose U1, ..., Uk+1 is a De Rham cover of M. By putting U=U1 ∪ ...∪Uk

and V=Uk+1 the hypothesis implies that U, V and U ∩ V are De Rham. Therefore
U ∪ V is also De Rham by the argument above.
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Lemma 4.15. If {Mj} is any countable collection of De Rham manifolds, then their dis-
joint union is De Rham.

Proof. Let {Mj} be a countable collection of manifolds where ψ : Hp
DR(Mj) →

Hp(Mj) is an isomorphism for each j. Let M =
⋃

j Mj be the disjoint union of
these manifolds. Denote the inclusion maps by ij : Mj → M. Then the map
i = (i1, i2, . . .) induces isomorphisms between ⊕jH

p
DR(Mj) and Hp

DR(M) as well as
⊕jHp(Mj; R) and Hp(M; R). For each p, ⊕j(ψ : (Mj) → M) is an isomorphism
between the direct product of the De Rham and singular cohomology groups.
Therefore, by the naturality of the De Rham homorphism stated in Lemma 4.11,
ψ : Hp

DR(M) → Hp(M) must also be an isomorphism.

The next step in this proof is to show that if M has a De Rham basis, then M is
De Rham.

Suppose Uj is a De Rham basis for M. Let f : M → R be an exhaustion
function. We can guarantee its existence using Proposition 3.6. For each integer
m, define subsets Am and A′

m of M by

Am = {q ∈ M | m < f (q) ≤ m + 1},

A′
m = {q ∈ M | m − 1

2
< f (q) < m +

3
2
}.

For each point q ∈ Am, there is a basis open subset containing q and contained
in A′

m. The collection of all such basis sets is an open cover of Am. Since f is an
exhaustion function, Am is compact, and therefore it is covered by finitely many
of these basis sets. Let Bm be the union of this finite collection of sets. This is a
finite De Rham cover of Bm, so because of Lemma 4.15, Bm is De Rham.

Observe that Bm ⊂ A′
m, so Bm can have nonempty intersection with Bm̃ only

when m̃ = m − 1, m, or m + 1. Therefore, if we define

U =
⋃

m odd

Bm, V =
⋃

m even
Bm,

then U and V are disjoint unions of De Rham manifolds, and so they are both De
Rham by Step 1. Finally, U ∩ V is De Rham because it is the disjoint union of the
sets Bm ∩ Bm+1 for m ∈ Z, each of which has a finite De Rham cover consisting
of sets of the form Ui ∩ Uk, where Ui and Vj are basis sets used to define Bm and
Bm+1, respectively. Thus, M = U ∪ V is De Rham by Lemma 4.15.



30 The De Rham Cohomology

If U is an open subset of Rn for some integer n, then U has a basis consisting of
Euclidean balls. Because each ball is convex, it is De Rham, and because any finite
intersection of balls is convex, finite intersections are also De Rham. This means
that U has a De Rham basis and consequently U is De Rham.

Any smooth manifold has a basis given by smooth charts, each of these is
diffeomorphic to an open subset of Rn as are their finite intersection. Since we
proved that any subset of Rn is De Rham and if M has a De Rham basis M is De
Rham, it follows that is De Rham. We have then proved the theorem.



Chapter 5

Conclusions

We are going to use this section to provide the reader with an intuitive meaning
of the De Rham theorem. Since we started this work, with homological algebra, we
began with abstract concepts so it is only natural that the theorem seems somehow
too far from intuition. The expert reader may skip this section since one can find
it overly simplistic, however the goal here is not to be very formal but to help
visualize this whole work.

De Rham cohomology is a mathematical tool that allows us to study the topol-
ogy of a smooth manifold using differential forms. It provides a way to measure
the "holes" or "twists" in a manifold that cannot be detected by considering only
its homology.

The main idea behind De Rham cohomology is to associate cohomology classes
to closed differential forms on a manifold. These cohomology classes capture the
information about the topology of the manifold in a way that is independent of
the specific choice of coordinates.

The cohomology groups in De Rham cohomology, denoted as Hp(M), classify
the closed forms up to exact forms. Each cohomology group Hp(M) represents a
different "degree" of non-exactness or non-triviality. For example, H0(M) counts
the number of globally constant functions on the manifold, while H1(M) counts
the number of non-trivial closed 1-forms that are not exact.

The dimension of each cohomology group Hp(M) corresponds to the number
of independent non-trivial closed p-forms on the manifold. If the dimension is
zero, it means that all closed p-forms on the manifold are exact, indicating a lack
of "holes" or "twists" in that degree. Let us take a more detailed look at this fact.

Homology groups can be used as a tool to count how many holes there are in
a manifold. Cohomology in general does not have such a direct correspondence
to the "counting of holes". Nevertheless, for simple enough manifolds (that is for
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Figure 5.1: Visual representation of a 3D torus

imstance submanifolds of Rn), cohomology gives the same intuition as homology.
Taking this into account let us illustrate a fairly easy example.
We can give an intuitive meaning to the cohomology of this torus. In very in-
formal terms, the p-cohomology group counts, through its generators how many
independent p-spheres cannot be retracted to a single point.

The green line in figure 5 cannot be contracted to a single point so we have
what is called a 1-dimensional hole. The purple line cannot be contracted to a
single point nor can it be transformed to the green loop. Thus the first cohomology
group will have two generators.

Let us now consider a n-sphere, since we computed their cohomology groups
it is interesting to check how our intuition matches the results. For n=0, the sphere
is a point and so its only non trivial cohomology group is H0(S0). For n=1, we
can not contract any two points to a single point because they are not connected,
so H0(S1) is non trivial, furthermore in a loop, we cannot contract a loop to a
single point so H1(S1) is non trivial. In a 2-sphere, again since we cannot contract
any two different given points, H0(S2). However, in a 2-sphere we can obviously
contract any loop to a point (see figure 5), then it follows H1(S2)=0. Now again,
in a 2-sphere we cannot contract 2-spheres so H2(S2) is non trivial.

In the same logic it is quite clear that in any n-sphere we cannot contract
any two points nor an n-sphere, however we can contract any n-1 sphere. Even
more, since all possible two-points or n-sphere are non contractible in S2, there
are infinite many generators so this groups are simply R. Writing these results we
obtain

Hp
dR(S

n) =

{
R if p = 0 or p = n,

0 if 0 < p < n.

As we proved in Theorem 4.2.
Let us now give an intuition to the closed and exact forms. Recall that in
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Figure 5.2: Visual representation of contracting a 1-dimensional loop to a single
point in a 3D-sphere

chapter 2, in section 2.2 we mentioned a relationship between a cycle and a closed
form and between a boundary and an exact form. Intuitively this translates to a
closed form being a hole with no boundary and an exact form being a hole is a
form that is the differential of another form.
In physics, what one can measure are forces and their associated fields. It is
thus very common to calculate the potential given a field. Consider for instance
Maxwell’s equations in the vacuum in compact notation

dF = 0

This expression of Maxwell’s equations states, simply put, that F must be a
closed form. Furthermore, as we discussed this is equivalent to demanding that
F is a cycle. Seeking a potential, is basically finding a form A such that F = dA.
Obviously this is implying that F is an exact form.Which again, as we discussed,
is equivalent to demanding that F is a boundary.

If there are no p-dimensional holes in the manifold, its pth De Rham cohomol-
ogy group is trivial, so this must mean that every exact form is closed.
In physical terms, if there are no holes in the space-time manifold, every field
F derived from a potential must satisfy dF = 0. One could think of charges as
holes in this space-time and so in the absence of these charges, the Faraday tensor
satisfies dF = 0. This is a huge simplification, but it provides some sense of un-
derstanding and above all we hope it gives the reader the sense of relevance of the
De Rham cohomology. The magnificent beauty of the De Rham’s Theorem lies in
the encoding of the information of a given smooth manifold. Independently of the
choice of charts, one can contain the relationship between exact and closed forms
(very relevant in physics) in a purely algebraic object, the singular cohomology
group which is isomorphic to the De Rham cohomology group.
Applications of the theorem could be a whole thesis on its own, in spite of this,
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we aimed to give a brief insight. Hopefully the reader is struck with the same
feeling of amusement as I did while studying this topic and realizing its potential
significance in physics.
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