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Abstract

The main goal of this project is to analyze the function that counts the number
of integer points inside the dilates of a lattice polytope. One of the first result in
this area is Pick’s Theorem [1] proven by the mathematician Georg Alexander Pick
in 1899, which gives the area of a polygon by counting the points on its border
and its interior. In the 1960s, the French mathematician Eugène Ehrhart further
explored this field and proved that for lattice d-polytopes, these functions are
polynomials of degree d [2]. For this reason, these polynomials are called Ehrhart
polynomials. In the following years, with the work of Richard P. Stanley and Ian
G. Macdonald, the fundations of this field, Ehrhart Theory, were stablished.

Our research into this topic started with [3], results from which are stated on
Chapter 6.

In the first chapter, we present and prove Pick’s Theorem. Moreover, we also
show that no analogue to this formula that expresses the volume of a polyhedron
as a function only of its numbers of interior and boundary points exists.

From the second to the fifth chapter, we will follow Ehrhart Theory as it
was done in [4]. All of the proofs are inspired in the ones that appear in this
book, with some changes to make them easier to understand and the exercises
left to the reader solved. In particular, in the second chapter, we make the first
definitions on which this field of mathematics revolves. In addition, we also
enunciate Ehrhart’s Theorem, the first grand theorem on the field. In the third
chapter, we develop the necessary mathematical tools needed to prove the before
mentioned theorem. Lastly, in chapters four and five, we analyze the properties
of the coefficients of the Ehrhart polynomial without new tools and with the help
of the Ehrhart-Macdonald reciprocity respectively.

In the sixth chapter, as we said before, we present the study done by Max
Kölbl, explaining it and showing its results. Moreover, some proofs were added
or reworked for their presentation in this work.

Finally, in the seventh chapter, we return to the title of this paper and prove an
n-dimensional generalization for Pick’s Theorem that we have arrived to ourselves.

2020 Mathematics Subject Classification: 12D10, 30C15, 52B20, 52C07



Chapter 1

Pick’s Theorem

Let us define a simple polygon as a region of the plane homeomorphic to a
disk, whose border is a union of finite segments.

Figure 1.1: Simple polygon

With this definition, let us start with a classical result:

Theorem 1.1. (Pick’s Theorem) Given a simple polygon whose vertices have integer
coordinates, let i be the number of integer points in thr interior to the polygon, and b the
number of integer points on its boundary. Then the area of this polygon is equal to

i +
b
2
− 1.

Proof. First, we will prove the result for rectangles with sides of length m and
n parallel to the axes. It is easy to see that the number of interior points is
i = (m − 1)(n − 1), the number of boundary points b = 2(m + n) and, the area
A = mn. Then, we have that

i +
b
2
− 1 = mn − m − n + 1 + m + n − 1 = mn = A.

Thus, the Theorem holds.
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2 Pick’s Theorem

Second, we will prove the result for right triangles with short sides of length m
and n parallel to the axes. Suppose that there are d points on the hypotenuse, not
counting the vertices. It is easy to see that we can construct a rectangle with two
equal right triangles. Therefore, the number of interior points to the right triangle
is i = (m−1)(n−1)−d

2 , the number of boundary points b = m + n + 1 + d and an area
of A = mn

2 . So,

i +
b
2
− 1 =

mn − m − n + 1 − d
2

+
m + n + 1 + d

2
− 1 =

mn
2

= A

and the claim is proven.

P1

P2

Figure 1.2: Two simple polygons whose union make another simple polygon

Next, we will prove that if P1 and P2 are two simple polygons following
this rule with non-overlapping interiors and with a segment in common, then
P = P1 ∪ P2 also follows it. Let l be number of boundary points in common.
Therefore, l ≥ 2 because they form an edge. Moreover, these points (except the
vertices) will form part of the interior of P . Let i, i1, i2 the number of interior
points, b, b1, b2 the number of boundary points and A, A1, A2 the areas of P , P1

and P2 respectively. Thus,

i = i1 + i2 + l − 2 b = b1 + b2 − 2l + 2

A = i +
b
2
− 1 = i1 + i2 + l − 2 +

b1 + b2

2
− l + 1 − 1 =

= i1 +
b1

2
− 1 + i2 +

b2

2
− 1 = A1 + A2.

So, P also satisfies the statement.
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Figure 1.3: A general triangle and its bounding box

Now, let P be a general triangle and consider its bounding box, that is, the
smallest rectangle with sides parallel to the axes that contains it. From this
definition, we can see that all three of its vertices must be on the sides of the
bounding box and, moreover, one of them must be on a corner. If that was not
the case, there would be a side of the box not touching the triangle and so, we
could find a smaller one. Therefore, the three sides of the triangle make, with the
sides of the bounding box, at most three right triangles. Due to the fact that the
right triangles and the rectangle of the bounding box all satisfy Pick’s Theorem,
the general triangle does too.

Finally, we will prove the result generally by using induction on the number of
sides of the polygon. Suppose that Pick’s Theorem applies to all simple polygons
with integer vertices and less than k sides, and let P be a k sided polygon. If there
is an interior diagonal, we can divide the polygon into two simple polygons with
non-overlapping interiors with less than k sides each, and so, Pick’s Theorem
applies to them. Then due to the fact that the original polygon is the union of
both of them, it also satisfies Pick’s Theorem.

B

A

C

X
Y

Figure 1.4: Proof of the existence of an interior diagonal



4 Pick’s Theorem

To prove that there is an interior diagonal, let A, B, C be three consecutive
vertices such that they form an interior angle of less than 180◦. If AC is an
interior diagonal we are done. If this is not the case, there is at least one vertex
inside the triangle △ABC due to the fact that the polygon is simple. We take all
these vertices and project them on the bisector of ÂBC. Then, the line from B to
the vertex with the closest projection onto it is an interior diagonal (See Figure 1.4).

Thus, the induction hypothesis holds and the Theorem is proven.

Now, we will see that there is no analog to this formula that expresses the
volume of a polyhedron as a function only of its numbers of interior and boundary
points. For this reason, following [5], we make the following definition.

Definition 1.2. (Revee tetrahedra) The Reeve tetrahedra is a family of polyhedra in
three-dimensional space with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, h) where h is
a positive integer.

Figure 1.5: Reeve tetrahedron with h = 2

Proposition 1.3. Let P be a Revee tetrahedron. Then, we have that P has 0 interior
points, 4 boundary points and its volume is h/6.

Proof. We can see that P is inside a 1× 1 column of the grid, and so, it cannot have
any interior points. Moreover, due to this fact, the only points that it can have are
the 4 vertices on its boundary. Its volume comes from the formula

V =
Abh

3
=

h
6

.

Therefore, we can see that i and b don’t depend on h, however, the
volume does. So, the volume of a polyhedron cannot be a function of its
numbers of interior and boundary points.



Chapter 2

Introduction to Ehrhart
Polynomials

To find a result that encompasses Pick’s Theorem, we have to look into
something more general than Theorem 1.1. As we will see, this is highly
complicated and, for this reason, we will restrict ourselves mainly to convex
regions of Rn.

First of all, we must define the generalization of a polygon. Informally, a
polytope is a geometric object with flat sides, also called faces. The dimen-
sion of a polytope is the dimension of the affine space that it spans. An n-
dimensional polytope is called n-polytope, where we have that 2-polytopes are
polygons and 3-polytopes are polyhedra.

Definition 2.1. A convex polytope in Rd is the convex hull of finitely many points.
In other words, for a finite set {v⃗1, ..., v⃗n} ⊂ Rd, the polytope P is the smallest
convex set containing them all. We have that

P = {λ1v⃗1 + · · ·+ λnv⃗n | λk ≥ 0 ∀ k ∈ {1, ..., n}, λ1 + · · ·+ λn = 1}.

The following notation will be used:

P = convex({v⃗1, ..., v⃗n}).

We will define the vertices of a convex polytope as the elements of the minimal
subset V of {v⃗1, ..., v⃗n} such that P = convex(V). A d-polytope with d + 1 vertices
is called a simplex.

Generally, Ehrhart Theory is defined over any lattice structure. However, in
this text we will only work on the integer lattice Zd. The polytopes with ver-
tices on a lattice are called lattice polytopes and, in particular, when we use the
integer lattice they are also called integral polytopes.
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6 Introduction to Ehrhart Polynomials

Definition 2.2. Let P be a polytope and t ∈ Z+. We define the t-dilate of P as

tP =

{
x⃗ | 1

t
x⃗ ∈ P

}
= {t⃗x | x⃗ ∈ P}

Definition 2.3. Let P be an integral polytope. We define the counting function for
the points in the t-dilated polytope as

LP (t) = #(tP ∩ Zd) = #
(
P ∩ 1

t
Zd
)

∀ t ∈ Z+

The following is one of the main Theorem of this text and we will
devote the next chapter to prove it.

Theorem 2.4. (Ehrhart’s Theorem) If P is an integral convex d-polytope, then LP (t)
is a polynomial of degree d in t. This polynomial is called the Ehrhart polynomial of P .



Chapter 3

Proving Ehrhart’s Theorem

3.1 Triangulations

As we will see, most of the claims in Ehrhart Theory are easily shown on
simplices. So, it would be a good idea if we could divide any convex polytope
into simplices. For this matter, we make the following definitions:

Definition 3.1. A supporting hyperplane of a convex polytope P ⊂ Rd is a hy-
perplane H = {x⃗ ∈ Rd | u⃗ · x⃗ = w} such that either u⃗ · x⃗ ≥ w ∀ x⃗ ∈ P or
u⃗ · x⃗ ≤ w ∀ x⃗ ∈ P , where u⃗ ∈ Rd, w ∈ R, u⃗ ̸= 0 are constants of the hyperplane
modulo multiplication by a nonzero scalar.

Definition 3.2. A face of a convex d-polytope is its intersection with one of its
supporting hyperplanes. The (d − 1)-dimensional faces are called facets.

These definitions give rise to an alternative definition of convex polytope.

Definition 3.3. A convex polytope in Rd is a compact set such that

P = {x⃗ ∈ Rd | Ax⃗ ≥ b⃗}

where b⃗ ∈ Rd and A is a matrix. Every component of the inequality corresponds
to a single supporting hyperplane and so, it is not unique. Moreover, it can be
proven that its interior is

P◦ = {x⃗ ∈ Rd | Ax⃗ > b⃗}.

In addition, the minimal A is when it is composed by the hyperplanes that define
the facets of the polytope.

7



8 Proving Ehrhart’s Theorem

Definition 3.4. A triangulation of a d-polytope P is a finite collection T of d-
simplices that has the following properties

• P =
⋃

∆∈T

∆.

• ∀ ∆1, ∆2 ∈ T, ∆1 ∩ ∆2 is a face common to both simplices.

Now, we will show that a triangulation is possible with the vertices of the
polytope, and so, with integral simplices.

Theorem 3.5. (Existence of triangulation) Every convex polytope can be triangulated
so that every vertex of every simplex of the triangulation is a vertex of the polytope in
question.

The following proof is highly technical and it is only added for completion.

Proof. Without loss of generality, assume that P is full dimensional (it is not
contained in a hyperplane) with vertices {v⃗1, ..., v⃗n} ⊂ Rd. Let us randomly choose
h1, ..., hn ∈ R and construct the polytope Q = convex({(⃗v1, h1), ..., (⃗vn, hn)}) ⊂ Rd+1.
We define a lower facet F of Q as a facet such that (x1, ..., xd+1 − ε) ̸∈ Q ∀ ε > 0,
(x1, ..., xd+1) ∈ F.

Now, we will prove that every lower facet of Q is a simplex. We choose any
d + 1 vertices of P , without loss of generality, we assume that they are the first
ones. These define the hyperplane with equation

det

 1 · · · 1 1
v⃗1 · · · v⃗d+1 x⃗
h1 · · · hd+1 xd+1

 = 0.

For it to be a simplex, we need that, if we replace (x⃗, xd+1) for any of the (⃗vj, hj)

∀ j > d + 1, the equation isn’t satisfied. This imposes a restriction on the value of
hj. Doing this for every set of d + 1 vertices imposes a finite amount of restrictions
but, due to the fact that h1, ..., hn are selected randomly, this is possible.
Let π : Rd+1 → Rd such that π(x1, ..., xd, xd+1) = (x1, ..., xd). We define

T = {π(F) | F is a lower facet of Q}.

Let us prove that this is a triangulation. By definition, we have that P ⊇ ⋃
∆∈T ∆.

To demonstrate the equality we will see that P◦ ⊆ ⋃
∆∈T ∆.

Let x⃗ ∈ P◦ and consider the line L = {x⃗ + λ⃗ed+1 | λ ∈ R}. Since x⃗ ∈ P◦, we
have that L ∩ Q◦ ̸= ∅. Then L ∩ Q is a segment with endpoints (x⃗, y) and (x⃗, z)



3.2 Cones 9

where y < z. Since (x⃗, y) is on the boundary of Q, it is contained in some face of
Q. Thus, we can find a supporting hyperplane that defines F

H = {v⃗ ∈ Rd+1 | a⃗ · v⃗ = b}

such that
Q ⊆ {v⃗ ∈ Rd+1 | a⃗ · v⃗ ≥ b}.

We have to notice that (x⃗, z) is not in H, otherwise, the whole segment would
belong to the face, which is a contradiction with L ∩Q◦ ̸= ∅. So a⃗ · (x⃗, y) = b and
a⃗ · (x⃗, z) > b, which gives that ad+1(z − y) > 0 and so, ad+1 > 0. We will prove that
this is a lower facet:

∀ x⃗ ∈ F, ε > 0 a⃗ · (x⃗ − ε e⃗d+1) = b − ε ad+1 < b.

Thus, it is proven that F is a lower facet with x⃗ ∈ π(F), and so, P =
⋃

∆∈T ∆.
Moreover, due to the fact that ad+1 ̸= 0, F is not aligned with the projection and,
because it is a d-simplex, π(F) is also a d-simplex. Therefore, T is a collection of
d-simplices. In addition, we have that if F1, F2 are two lower facets, then F1 ∩ F2 is
a face common to both F1 and F2 and so, π(F1) ∩ π(F2) is a face common to both
π(F1) and π(F2).

This concludes with the proof that T is a triangulation of P .

3.2 Cones

Another helpful tool that we will use are cones. We will see later that a
cone can encompass all of the dilates of a given polytope. For this reason,
we start with the following definitions:

Definition 3.6. A pointed cone K ⊆ Rd is a set of the form

K = {v⃗ + λ1w⃗1 + · · ·+ λnw⃗n | λ1, ..., λn ≥ 0}

such that there exists a hyperplane H that satisfies that K ∩ H = {v⃗}. The point v⃗
is called the apex of K and the vectors w⃗1, ..., w⃗n are its generators. The dimension
of K is the dimension of the affine space spanned by it. If the dimension of K
is d, we say that it is a d-cone. A d-cone is simplicial if it has exactly d linearly
independent generators.

Definition 3.7. Let P ⊂ Rd be a convex polytope with vertices v⃗1, ..., v⃗n. We define
the cone over P as

cone(P) = {λ1w⃗1 + · · ·+ λnw⃗n | λ1, ..., λn ≥ 0} ⊂ Rd+1

where w⃗i = (⃗vi, 1) ∀ i ∈ {1, ..., n}.



10 Proving Ehrhart’s Theorem

Remark 3.8. As we have already said, this structure is useful due to the fact that
if we intersect the cone with the plane xd+1 = t, we get

cone(P) ∩ {x⃗ ∈ Rd+1 | xd+1 = t} = {(x⃗, t) ∈ Rd+1 | x⃗ ∈ tP} = tP × {t},

that is, the t-dilated of P at height t.

Now, following the definitions in the previous section, we make the following:

Definition 3.9. A supporting hyperplane of a cone K ⊂ Rd is a hyperplane
H = {x⃗ ∈ Rd | u⃗ · x⃗ = w} such that either u⃗ · x⃗ ≥ w ∀ x⃗ ∈ K or u⃗ · x⃗ ≤ w ∀ x⃗ ∈ K,
where u⃗ ∈ Rd, w ∈ R, u⃗ ̸= 0 are constants of the hyperplane modulo multiplica-
tion by a nonzero scalar.

Definition 3.10. A face of a d-cone is its intersection with one of its supporting
hyperplanes. The (d − 1)-dimensional faces are called facets.

As in the case of polytopes, it will be easier to work on simplicial cones. For
this reason, we adapt the concept of triangulation to cones.

Definition 3.11. A triangulation of a d-cone K is a finite collection T of simplicial
d-cones having the following properties

• K =
⋃
S∈T

S .

• ∀ S1,S2 ∈ T,S1 ∩ S2 is a face common to both cones.

Theorem 3.12. (Existence of triangulations for pointed cones) Every pointed cone
can be triangulated so that every generator of every simplicial cone of the triangulation is
a generator of the cone in question.

Proof. Let K be a d-cone. By definition, there exists a hyperplane H such that
K ∪ H = {v⃗}, where v⃗ is the apex of K. Let w⃗ ∈ K◦, then

P = (w⃗ − v⃗ + H) ∩K

is a (d − 1)-dimensional convex polytope whose vertices are defined by the gen-
erators of K. By Theorem 3.5, we can triangulate P using no new vertices. Then,
each of the simplices ∆i in this triangulation gives a simplicial cone

Si = {v⃗ + λx⃗ | λ ≥ 0, x⃗ ∈ ∆i},

which, by construction, triangulate K with no new generator.
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3.3 Integer-Point Transforms

To keep track of the points and simplifying the process of counting them, we
can encode the integer points in a set using a sum of Laurent monomials.

Definition 3.13. Let S ⊆ Rd be a set. The integer-point transform of S is the
following function

σS (⃗z) = ∑
m⃗∈S∩Zd

z⃗ m⃗

where z⃗, m⃗ ∈ Rd and z⃗ m⃗ = zm1
1 · · · zmd

d is the element-wise exponentiation.

For simplicial cones, this function has the following form:

Theorem 3.14. Suppose we have a simplicial d-cone

K = {λ1w⃗1 + · · ·+ λdw⃗d | λ1, ..., λd ≥ 0}

with w⃗1, ..., w⃗d ∈ Zd. Then, for every v⃗ ∈ Rd,

σ⃗v+K (⃗z) =
σ⃗v+Π (⃗z)

(1 − z⃗ w⃗1) · · · (1 − z⃗ w⃗d)

where Π is the half-open parallelepiped

Π = {λ1w⃗1 + · · ·+ λdw⃗d | 0 ≤ λ1, ..., λd < 1}.

Proof. Let m⃗ ∈ (⃗v +K) ∪ Zd. By definition, we can write

m⃗ = v⃗ + λ1w⃗1 + · · ·+ λdw⃗d

for λ1, ..., λd ≥ 0. In particular, due to the fact that w⃗1, ..., w⃗d is a basis of Rd,
this is done uniquely. Writing λi in term of its integer and fractional parts
(λi = ⌊λi⌋+ {λi}), we have

m⃗ = (⃗v + {λ1}w⃗1 + · · ·+ {λd}w⃗d) + ⌊λ1⌋ w⃗1 + · · ·+ ⌊λd⌋ w⃗d

where 0 ≤ {λ1}, ..., {λd} < 1, so

p⃗ = v⃗ + {λ1}w⃗1 + · · ·+ {λd}w⃗d ∈ v⃗ + Π.

In particular, p⃗ ∈ Zd since m⃗ and ⌊λi⌋ w⃗i are all integer vectors. Thus, we can
uniquely write

m⃗ = p⃗ + k1w⃗1 + · · ·+ kdw⃗d

where p⃗ ∈ v⃗ + Π, k1, ..., kd ∈ Z+, and so

σ⃗v+K (⃗z) = ∑
m⃗∈(⃗v+K)∩Zd

z⃗ m⃗ = ∑
p⃗∈(⃗v+Π)

z⃗ p⃗ ∑
k1≥0

z⃗ k1w⃗1 · · · ∑
kd≥0

z⃗ kdw⃗d =

= σ⃗p∈(⃗v+Π) (⃗z)
1

1 − z⃗ w⃗1
· · · 1

1 − z⃗ w⃗d
=

σ⃗v+Π (⃗z)
(1 − z⃗ w⃗1) · · · (1 − z⃗ w⃗d)

.
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3.4 Proof of Ehrhart’s Theorem

To finally prove Ehrhart’s Theorem, we will need the following two lemmas:

Lemma 3.15. Let f and g be functions such that

∑
t≥0

f (t)zt =
g(z)

(1 − z)d+1 .

Then, f is a polynomial of degree d, if and only if, g is a polynomial of degree at most d
and g(1) ̸= 0.

Proof. First, we will prove the ⇐ implication. Using the Taylor expansion, we have
that

1
(1 − z)d+1 = ∑

t≥0

(
d + t

t

)
zt = ∑

t≥0

(
d + t

d

)
zt = ∑

t≥0

(t + d) · · · (t + 1)
d!

zt

and ∀ a ≥ 0

za

(1 − z)d+1 = ∑
t≥0

(
d + t

d

)
zt+a = ∑

t≥0

(
d − a + t

d

)
zt.

Assume now that g(z) = ∑d
n=0 anzn. Then

g(z)
(1 − z)d+1 = ∑

t≥0

[
d

∑
n=0

an

(
d − n + t

d

)]
zt ⇒ f (t) =

d

∑
n=0

an

(
d − n + t

d

)
where we have that f is the sum of polynomials of degree d. If f has degree d,
it must have non-zero leading coefficient. Thus, if we look only at the terms of
degree d, we have

d

∑
n=0

an
td

d!
=

td

d!

d

∑
n=0

an =
td

d!
g(1) ̸= 0 ⇒ g(1) ̸= 0.

To prove the ⇒ implication, we must solve the system of equations:

a0

(
d
d

)
+ a1

(
d − 1

d

)
+ · · ·+ ad

(
0
d

)
= a0 = f (0)

a0

(
d + 1

d

)
+ a1

(
d
d

)
+ · · ·+ ad

(
1
d

)
= (d + 1)a0 + a1 = f (1)

...

a0

(
2d
d

)
+ · · ·+ ad

(
d
d

)
= f (d)

Which is a triangular system of linear equations with only one solution. The
condition that g(1) ̸= 0 is the same as in the previous implication.
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Definition 3.16. The generating function of the Ehrhart polynomial is called the
Ehrhart series. For an integral convex polytope P we have

EhrP (z) = 1 + ∑
t≥1

LP (t)zt

Lemma 3.17. σcone(P)(1, ..., 1, z) = 1 + ∑
t≥1

LP (t)zt = EhrP (z).

Proof. This proof follows straightforward by evaluating the Integer-Point trans-
form at (1, ..., 1, z) given in Definition 3.13.

Proof of Ehrhart’s Theorem (Theorem 2.4). It will suffice to prove the theorem for sim-
plices. This is due to the fact that any integral convex polytope can be triangulated
in integral simplices (Theorem 3.5) without using any new vertices. Moreover, the
intersection of these simplices are lower dimensional integral simplices too. Then,
by Lemma 3.15, it suffices to prove that for an integral d-simplex

Ehr∆(z) = 1 + ∑
t≥1

L∆(t)zt =
g(z)

(1 − z)d+1

for some polynomial g of degree at most d and g(1) ̸= 0. In Lemma 3.17 we
have seen that Ehr∆(z) = σcone(∆)(1, ..., 1, z). Thus, we will study the integer-point
transform of cone(∆).

Let v⃗1, ..., v⃗d+1 be the vertices of ∆. Then, cone(∆) ⊆ Rd+1 is simplicial and has
generators w⃗1 = (⃗v1, 1), ..., w⃗d+1 = (⃗vd+1, 1). By Theorem 3.14, we have that

σcone(P)(1, ..., 1, z) =
σΠ(1, ..., 1, z)

∏d+1
n=1(1 − z)

=
σΠ(1, ..., 1, z)
(1 − z)d+1

where Π = {λ1w⃗1 + · · · + λd+1w⃗d+1 | 0 ≤ λ1, ..., λd+1 < 1}. Due to the
fact that Π is bounded, its integer-point transform is a Laurent polynomial,
and because all of the xd+1 coordinates of the generators are 1, we have that
0 ≤ λ1 + · · ·+ λd+1 < d + 1 and, because this sum must be an integer, its max-
imum is d. So, σΠ(1, ..., 1, z) is a polynomial of degree at most d in z. Moreover,
σΠ(1, ..., 1, 1) = #(Π ∪ Zd+1) and because the origin is always in Π, we have
that σΠ(1, ..., 1, 1) ̸= 0. So, all the conditions for Lemma 3.15 and the Ehrhart
polynomial is, indeed, a polynomial with degree d.

Although we have only talked about convex polytopes as Ehrhart first did,
we have that the finite union of polytopes, also called polytopal complexes or
polytopes in general, also has a corresponding Ehrhart polynomial. In this way,
other properties can also be generalized.
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Chapter 4

Exploring the Ehrhart polynomial

4.1 Ehrhart h-polynomial

As we have seen, in some cases it is easier to extract the polynomial
g from the Ehrhart series than to compute the Ehrhart polynomial. For
this reason, it has a name of its own.

Definition 4.1. Let f be a polynomial of degree d. We define its h-polynomial as

h(z) = hdzd + · · ·+ h1z + h0 = (1 − z)d+1 ∑
t≥0

f (t)zt

with h(1) ̸= 0.

This is indeed a polynomial by Lemma 3.15.

Definition 4.2. Let P be an integral d-polytope. We define its h-polynomial1 as
the h-polynomial of its Ehrhart polynomial

hP (z) = h∗dzd + · · ·+ h∗1z + h∗0 = (1 − z)d+1EhrP (z)

From the work done in the previous chapter, we can deduce the following
properties of the coefficients of both Ehrhart polynomial and its h-polynomial.

Proposition 4.3. Suppose ∆ is an integral d-simplex with vertices v⃗1, ..., v⃗d+1 and
let w⃗j = (⃗vj, 1) ∀ j ∈ {1, ..., d + 1}. Then, the k-th coefficient of the h-polynomial of
∆ is equal to the number of integer points in

{λ1w⃗1 + · · ·+ λdw⃗d | 0 ≤ λ1, ..., λd < 1}

with last coordinate equal to k.
1Also called h-vector or δ-vector/polynomial

15
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Proof. By Theorem 3.14 and Lemma 3.17, we see that

h∆(z) = (1 − z)d+1σcone(∆)(1, ..., 1, z) = σΠ(1, ..., 1, z),

and from Definition 3.13 the coefficient of the term zk is the number of integer
points in Π with last coordinate equal to k.

Proposition 4.4. Let P be an integral polytope with Ehrhart polynomial
LP (t) = cdtd + · · ·+ c1t + c0 and h-polynomial hP (z) = h∗dzd + · · ·+ h∗1z + h∗0 .
Then h∗0 = c0 and h∗1 = #(P ∩ Zm)− (d + 1)c0.

Proof. The proof follows straightforward from the proof of Lemma 3.15, solving{
h∗0 = LP (0) = c0

(d + 1)h∗0 + h∗1 = LP (1) = #(P ∩ Zm)

We can also show that all the coefficients of the h-polynomial are non
negative integers. However, the proof of this theorem is very technical
and it is only added for completeness.

Theorem 4.5. (Stanley’s nonnegativity theorem) Suppose P is an integral convex
d-polytope. Then, the coefficients of its h-polynomial are nonnegative integers.

Proof. Triangulate cone(P) ⊂ Rd+1 into simplicial cones K1, ...,Km. We will see
that there exists a vector v⃗ ∈ Rd+1 such that

cone(P) ∩ Zd+1 = (⃗v + cone(P)) ∩ Zd+1

and no boundary of the cones v⃗ +Ki contain any lattice point.

All these boundaries are collections of hyperplanes. Therefore, we will see
which conditions are needed for a hyperplane to contain no integer points. Let
p⃗ ∈ Rd+1 be the apex of the cone and w⃗1, .., w⃗d ∈ Zd+1 the generators that define
it. Thus, we have that

H = { p⃗ + λ1w⃗1 + · · ·+ λdw⃗d | λ1, ..., λd ∈ R}

Let z⃗ ∈ H ∩ Zd+1, then
z1 = p1 + λ1w⃗1

1 + · · ·+ λdw⃗d
1

...

zd+1 = pd+1 + λ1w⃗1
d+1 + · · ·+ λdw⃗d

d+1
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Since w⃗1, .., w⃗d form a hyperplane in Rd+1, they are linearly independent, and so,
the first d equations give a unique result for λ1, ..., λd which is a rational number
plus a fraction of p1, ..., pd respectively. Then, if we pick p1, ..., pd ∈ Q, we have
that all λ1, ..., λd ∈ Q. Therefore, if pd+1 is irrational z⃗ ̸∈ H because no z⃗ ∈ Zd+1

can satisfy the last equation. For this reason, it is enough for all of the coordinates
of p⃗ to be rational except one.

Now we will look to maintain the same integer points after the translation of
the cone. Suppose the hyperplane of a facet is H = {x⃗ ∈ Rd+1 | a⃗ · x⃗ = b} and
that all of the cones are such that a⃗ · x⃗ ≥ b ∀ x⃗ ∈ cone(P). Then, for the translation
v⃗ we want

∀ x⃗ ∈ Zd+1 | a⃗ · x⃗ ≥ b ⇒ a⃗ · (⃗v + x⃗) > b ⇒ a⃗ · v⃗ > 0

∀ x⃗ ∈ Zd+1 | a⃗ · x⃗ < b ⇒ a⃗ · (⃗v + x⃗) < b ⇒ a⃗ · v⃗ < b − a⃗ · x⃗

Due to the fact that the coordinate vectors e⃗1, ..., e⃗d+1 form a basis, one of these
must extend w⃗1, ..., w⃗d into a base of Rd+1. Without loss of generality suppose
that e⃗1 does it. Let µ = e⃗1 · (w⃗1 + · · · + w⃗d) and consider the parallelepiped
Π generated by the vectors w⃗1, ..., w⃗d, µ⃗e1. These tile the space, with the lattice
points included, due to the fact that all vectors are in Zd+1. Let two opposing
corners of Π be elements of H, then, the nearest points to the hyperplane are
in this parallelepiped or the adjacent ones. Between these, there is a finite
number of points, and so, we can define the minimum of b − a⃗ · x⃗ which we
will call ma⃗. Then, we have that for this hyperplane 0 < a⃗ · v⃗ < ma⃗ which is an
open set. Because we have a finite amount of boundary hyperplanes, we have
the intersection of a finite number of open sets, which is open. Additionally,
consider M the minimum of all ma⃗. Let w⃗ = w⃗1 + · · ·+ w⃗n where w⃗1, ..., w⃗n are all
generators of cone(P) and p⃗ its apex, then a⃗ · w⃗ > 0 ∀ a⃗. This is because if w⃗i is
a generator of the hyperplane of a⃗, then a⃗ · w⃗i = 0 and if it isn’t, the point p⃗ + w⃗i

is in cone(P) so a⃗ · ( p⃗ + w⃗i) > b, and because p⃗ is on the boundary by definition
a⃗ · p⃗ = b, we have that a⃗ · w⃗i > 0. Then the vector M

2| p⃗| p⃗ satisfies all inequalities,

and so there is a solution. Moreover, because Qd × (R \ Q) is dense in Rd+1 and
the solution space is open with at least one solution, there is a solution of this
kind and so, there exists a vector v⃗ ∈ Rd+1 that satisfies all our conditions.

From this we have that every lattice point in v⃗ + cone(P) belongs to exactly
one simplicial cone v⃗ +Kj

cone(P) ∩ Zd+1 = (⃗v + cone(P)) ∩ Zd+1 =
m⋃

j=1

((⃗v +Kj) ∩ Zd+1),
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which is a disjoint union. Thus, we have that

σcone(P)(z1, ..., zd+1) =
m

∑
j=1

σ⃗v+Kj(z1, ..., zd+1).

From Proposition 4.3 we have that the coefficients of the h-polynomial of simplicial
cones are nonnegative integers due to fact that they count points, and so, because
the coefficients of the h-polynomial of P are sum of the nonnegative integers, they
are too.

This result, as Ehrhart’s Theorem, can also be generalized to polytopes in gen-
eral.

4.2 Ehrhart polynomial coefficients

Proposition 4.6. Suppose P is an integral convex d-polytope with h-polynomial
hP (z) = h∗dzd + · · ·+ h∗1z + h∗0 . Then h∗0 = c0 = 1.

Proof. Following the proof of Stanley’s nonnegativity theorem (Theorem 4.5) we
have that the origin is in one and only one of the cones v⃗ + Kj and so there is
only one contribution to the constant term of the h-polynomial of P . Moreover,
the equality h∗0 = c0 was proven in Proposition 4.4.

This may seem redundant, due to the fact that the constant term of the Ehrhart
series of a convex polytope was assumed to be 1. This term, however, corresponds
to LP (0) = c0 and so gives a geometric meaning to the assumption that LP (0) = 1.

Proposition 4.7. Suppose P is an integral d-polytope with Ehrhart polynomial
LP (t) = cdtd + · · ·+ c1t + c0. Then, d!ck ∈ Z.

Proof. From Stanley’s nonnegativity theorem (Theorem 4.5) we have that the coef-
ficients of the h-polynomial of P , hP (z) = h∗dzd + · · ·+ h∗1z + h+0 , are all integers.
Now, using the proof of Lemma 3.15, we have that

LP (t) = h∗d

(
t
d

)
+ · · ·+ h∗1

(
t + d − 1

d

)
+ h∗0

(
t + d

d

)
where all of the binomial coefficients can be written as fractions with denominator
d!

To continue our search for the values of the coefficients of the Ehrhart poly-
nomial, we will need the following lemma.
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Lemma 4.8. Suppose P is a d-polytope. Then

vol P = lim
t→∞

#(tP ∩ Zd)

td .

Proof. By definition, vol P =
∫
P dx⃗, and by using the definition of the Rie-

mann integral, we can think computing the volume by approximating it with
d-dimensional boxes that get smaller. In this case, we will let the side of each of
these boxes to be 1/t with center on the grid ( 1

t Z)d. The value of each of this
boxes would be one if its center is in P and zero otherwise. So

vol P =
∫
P

dx⃗ = lim
t→∞

1
td #

(
P ∩

(
1
t

Z

)d
)

= lim
t→∞

#(tP ∩ Zd)

td .

Corollary 4.9. Supose P ⊂ Rd is an integral d-polytope with Ehrhart polynomial
LP (t) = cdtd + · · ·+ c1t + c0. Then its volume vol P is equal to cd.

Proof. Using Lemma 4.8 we have that

vol P = lim
t→∞

cdtd + · · ·+ c1t + c0

td = cd.

Corollary 4.10. Supose P ⊂ Rd is an integral d-polytope with h-polynomial

hP (z) = h∗dzd + · · ·+ h∗1z + h∗0 .

Then, vol P =
h∗d + · · ·+ h∗1 + h∗0

d!
.

Proof. From the proof of Theorem 3.15 and Lemma 4.8, we have that

vol P = lim
t→∞

LP (t)
td = lim

t→∞

1
td

[
h∗d

(
t
d

)
+ · · ·+ h∗1

(
t + d − 1

d

)
+ h∗0

(
t + d

d

)]
=

=
1
d!

[h∗d + · · ·+ h∗1 + h∗0 ]



20 Exploring the Ehrhart polynomial

This result might look simple, but it is astonishing. From counting something
discrete (the points inside a polytope) we can compute something continuous (its
volume). Moreover, we could only count the points from the first d + 1 dilates
to find the volume of the polytope without need of integration. In addition, we
have extended the notion of the Ehrhart polynomial, which first only had geo-
metric meaning for positive integers, to include the number zero. In the next
chapter, we will continue to extend its domain.

Corollary 4.11. Let P be an integral d-polytope with Ehrhart polynomial LP (t) =
cdtd + · · ·+ c1t + c0. Then we have that

vol P min
0≤i≤d

(
t + d − i

d

)
k
≤ ck

d!
≤
(

t + d
d

)
k
vol P ∀ k

where (t+d
d )k represents the coefficient of the k-th term of the binomial coefficient

as a polynomial.

Proof. Let h∗dtd + · · ·+ h∗1t + h∗0 be the h-polynomial of P . Then, the lower bound
is, using Corollary 4.10 and Stanley’s nonnegative theorem (Theorem 4.5):

ck =
d

∑
i=0

h∗i

(
t + d − i

d

)
k
≥

d

∑
i=0

h∗i min
i

(
t + d − i

d

)
k
= d! vol P min

0≤i≤d

(
t + d − i

d

)
k
.

For the upper bound, on the other hand, we have to show that

max
0≤i≤d

(
t + d − i

d

)
k
=

(
t + d

d

)
k
.

Knowing that we can write (t+d−i
d ) = (t + d − i)(t + d − i − 1) · · · (t − i + 1)/d! we

see that, in absolute value, we will get larger coefficients if all of them have the
same sign and with larger absolute values the better. The factors we get are from
the list t + d, t + d − 1, ..., t − d + 1, therefore, the greatest value will come from
(t + d)(t + d − 1) · · · (t + 1)/d! = (t+d

d ) and so

ck =
d

∑
i=0

h∗i

(
t + d − i

d

)
k
≤

d

∑
i=0

h∗i

(
t + d

d

)
k
=

(
t + d

d

)
k
d! vol P .

These bounds are valid for all polytopes. However we get other bounds,
which may be better, if we impose further restrictions in the above deriva-
tion, like convexity (h∗0 = 1).



Chapter 5

Ehrhart-Macdonald reciprocity

One of the most interesting characteristics of the Ehrhart polynomial is that,
although we first defined a geometric meaning only for the positive integers, we
will show that it has geometric meaning in all of the integers.

Theorem 5.1. (Ehrhart-Macdonald reciprocity) Suppose P is an integral convex poly-
tope. Then, the evaluation of the polynomial LP at negative integers yields

LP (−t) = (−1)dimP LP◦(t).

The following results will prove the theorem.

Lemma 5.2. Let S ⊆ Rd be a set, and −S = {−x⃗ | x⃗ ∈ S}. Then

σ−S(z1, ...., zd) = σS

(
1
z1

, ...,
1
zd

)
Proof. By definition

σ−S(z1, ...., zd) = ∑
m∈−S∩Zd

zm1
1 · · · zmd

d = ∑
m∈S∩Zd

z−m1
1 · · · z−md

d =

= ∑
m∈S∩Zd

(
1
z1

)m1

· · ·
(

1
zd

)md

= σS

(
1
z1

, ...,
1
zd

)

Proposition 5.3. Fix linearly independent vectors w⃗1, ..., w⃗d ∈ Zd and let K be the
simplicial cone generated by all of them. Then, if v⃗ ∈ Rd is such that the boundary
of the shifted cone v⃗ +K contains no integer points,

σ⃗v+K

(
1
z1

, ...,
1
zd

)
= (−1)dσ−v⃗+K(z1, ..., zd).

21



22 Ehrhart-Macdonald reciprocity

Proof. From Theorem 3.14 we have that

σ⃗v+K (⃗z) =
σ⃗v+Π (⃗z)

(1 − z⃗ w⃗1) · · · (1 − z⃗ w⃗d)
,

σ−v⃗+K (⃗z) =
σ−v⃗+Π (⃗z)

(1 − z⃗ w⃗1) · · · (1 − z⃗ w⃗d)
,

with

Π = {λ1w⃗1 + · · ·+ λdw⃗d | 0 ≤ λ1, ..., λd < 1}.

Due to the fact that the boundary contains no integer points, we can consider
v⃗ + Π and −v⃗ + Π as open. Then, we have that

−(−v⃗ + Π) + w⃗1 + · · ·+ w⃗d =

= {−(−v⃗ + λ1w⃗1 + · · ·+ λdw⃗d) + w⃗1 + · · ·+ w⃗d | 0 < λ1, ..., λd < 1} =

= {v⃗ + (1 − λ1)w⃗1 + · · ·+ (1 − λd)w⃗d | 0 < λ1, ..., λd < 1} =

= {v⃗ + µ1w⃗1 + · · ·+ µdw⃗d | 0 < µ1, ..., µd < 1} = v⃗ + Π,

and so,

σ⃗v+Π (⃗z) = σ−(−v⃗+Π) (⃗z)⃗z
w⃗1 · · · z⃗ w⃗d = σ−v⃗+Π

(
1
z⃗

)
z⃗ w⃗1 · · · z⃗ w⃗d

where we have used Lemma 5.2 and 1/⃗z = (1/z1, ..., 1/zd). Then,

σ⃗v+K

(
1
z⃗

)
=

σ⃗v+Π(1/⃗z)
(1 − z⃗−w⃗1) · · · (1 − z⃗−w⃗d)

=
σ−v⃗+Π (⃗z)⃗z w⃗1 · · · z⃗ w⃗d

(1 − z⃗−w⃗1) · · · (1 − z⃗−w⃗d)
=

=
σ−v⃗+Π (⃗z)

(⃗z w⃗1 − 1) · · · (⃗z w⃗d − 1)
= (−1)d σ−v⃗+Π (⃗z)

(1 − z⃗ w⃗1) · · · (1 − z⃗ w⃗d)
= (−1)dσ−v⃗+K (⃗z)

Theorem 5.4. (Stanley reciprocity) Suppose K is a d-cone with generators in Zd and
the origin as apex. Then

σK

(
1
z1

, ...,
1
zd

)
= (−1)dσK◦(z1, ..., zd)
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Proof. We triangulate K into simplicial cones K1, ...,Km. Then, similarly to the
proof of Stanley’s nonnegativity theorem (Theorem 4.5), using a system of in-
equalities, we find that there exists a vector v⃗ ∈ Rd such that

(⃗v +K) ∩ Zd = K◦ ∩ Zd (5.1)

and there are no lattice points on the boundary of any triangulation cone or the
cones −v⃗ +Kj. Moreover, we will prove that

(−v⃗ +K) ∩ Zd = K ∩ Zd (5.2)

From (5.1) we have that

(⃗v +K) ∩ Zd = {v⃗ + λ1w⃗1 + · · ·+ λnw⃗n ∈ Zd | λ1, ..., λn ≥ 0} =

= {λ1w⃗1 + · · ·+ λnw⃗n ∈ Zd | λ1, ..., λn > 0} = K◦ ∩ Zd.

Let v⃗ = ν1w⃗1 + · · · + νnw⃗m. Then, from the previous equality, we have that
∀ λ1, ..., λn > 0 such that λ1w⃗1 + · · ·+ λnw⃗n ∈ Zd, λi − νi ≥ 0 ∀ i ∈ {1, ..., n}. This
implies that K ∩ Zd ⊆ (−v⃗ +K) ∩ Zd.

To prove the opposite inclusion, suppose that there exists a point
x⃗ ∈ ((−v⃗ +Kk) \ Kk) ∩ Zd. Without loss of generality, we assume that
w⃗1, ..., w⃗d ∈ Zd be the generators of Kk. Then, we can uniquely write

x⃗ = −v⃗ + λ1w⃗1 + · · ·+ λdw⃗d = (λ1 − ν1)w⃗1 + · · ·+ (λd − νd)w⃗d

with λ1, ..., λd ≥ 0. However, due to the fact that x⃗ ̸∈ Kk, without loss of generality,
we assume that λd − νd < 0. Let y⃗ = ⌈λ1⌉ w⃗1 + · · ·+ ⌈λd−1⌉ w⃗d−1 ∈ Kk ∩ Zd and
consider the point symmetric to x⃗ with respect to y⃗

z⃗ = y⃗ + (⃗y − x⃗) = v⃗ + (2 ⌈λ1⌉ − λ1)w⃗1 + · · ·+ (2 ⌈λd−1⌉ − λd−1)w⃗d−1 − λdw⃗d =

= (2 ⌈λ1⌉+ ν1 − λ1)w⃗1 + · · ·+ (2 ⌈λd−1⌉+ νd−1 − λd−1)w⃗d−1 + (νd − λd)w⃗d ∈ Zd

We can see that z⃗ ∈ (K◦
k \ (⃗v+Kk))∩Zd and, in particular, z⃗ ∈ (K◦ \ (⃗v +K)) ∩ Zd,

which is a contradiction. For this reason, no such x⃗ exists and (5.2) holds.
By using Proposition 5.3 with (5.1) and (5.2), we have

σK

(
1
z⃗

)
= σ−v⃗+K

(
1
z⃗

)
=

m

∑
j=1

σ−v⃗+Kj

(
1
z⃗

)
=

=
m

∑
j=1

(−1)dσ⃗v+Kj (⃗z) = (−1)dσ⃗v+K (⃗z) = (−1)dσK◦ (⃗z).
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Theorem 5.5. Suppose that P is an integral convex polytope. Then, the evaluation of the
rational function EhrP at 1/z yields

EhrP

(
1
z

)
= (−1)dimP+1EhrP◦(z)

Proof. Suppose that P is a convex d-polytope. Then, by using Lemma 3.6 and
Theorem 5.4, we have

EhrP

(
1
z

)
= σcone(P)

(
1
z

)
= (−1)d+1σcone(P)◦(z) = (−1)d+1σcone(P◦)(z) =

= (−1)d+1EhrP◦(z)

Before continuing with the next lemma we will make the following clarifica-
tion. Although the following sums converge on different regions of the complex
plane, in this lemma, we will consider the sums as their analytical continuation,
in other words, as the rational functions they define.

Lemma 5.6. Let f (t) be a polynomial, and consider the rational functions arising from

S+(z) = ∑
t≥0

f (t)zt S−(z) = ∑
t<0

f (t)zt,

then S+(z) + S−(z) = 0

Proof. Taking the negative powers of z − 1 and calculating their Taylor expansion
at z = 0 and z = +∞, we have

1
(z − 1)n =

(−1)n

(1 − z)n = (−1)n ∑
t≥0

(
n + t − 1

t

)
zt = (−1)n ∑

t≥0

(
n + t − 1

n − 1

)
zt,

1
(z − 1)n =

z−n

(1 − z−1)n = z−n ∑
t≥0

(
n + t − 1

t

)
z−t = ∑

t≥n

(
t − 1
n − 1

)
z−t

where

Pn(t) =
(

n + t − 1
n − 1

)
=

(n + t − 1) · · · (t + 1)
(n − 1)!

,

Qn(t) =
(

t − 1
n − 1

)
=

(t − 1) · · · (t − n + 1)
(n − 1)!

,

Qn(−t) =
(−t − 1) · · · (−t − n + 1)

(n − 1)!
= (−1)n−1 (t + 1) · · · (n − t − 1)

(n − 1)!
= (−1)n−1Pn(t).
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So

1
(z − 1)n = (−1)n ∑

t≥0
P(t)zt = ∑

t≥n
Q(t)z−t = ∑

t>0
Q(t)z−t = (−1)n+1 ∑

t<0
P(t)zt.

It can be shown that {Pn}0≤n≤d is a basis of R-vector space of the polynomials
with degree at most d. Therefore, we have that f (t) = ∑d

n=0 anPn(t) and so

S+(z) + S−(z) = ∑
t≥0

f (t)zt + ∑
t<0

f (t)zt = ∑
t≥0

f (t)zt + ∑
t>0

f (−t)z−t =

= ∑
t≥0

d

∑
n=0

anPn(t)zt + ∑
t>0

d

∑
n=0

anPn(−t)z−t =

= ∑
t≥0

d

∑
n=0

anPn(t)zt + (−1)n−1 ∑
t>0

d

∑
n=0

anQn(−t)z−t =

=
d

∑
n=0

an

(
∑
t≥0

Pn(t)zt + (−1)n−1 ∑
t>0

Qn(−t)z−t

)
=

=
d

∑
n=0

an

(
(−1)n

(z − 1)n +
(−1)n−1

(z − 1)n

)
= 0

and we are done.

With all these tools, we can now proceed to prove the Ehrhart-Macdonald reci-
procity.

Proof of Ehrhart-Macdonald reciprocity (Theorem 5.1). Taking the Ehrhart series as a
rational function and using Lemma 5.6 we have

EhrP

(
1
z

)
= ∑

t≥0
LP (t)

(
1
z

)t

= ∑
t≤0

LP (−t)zt = − ∑
t≥1

LP (−t)zt,

and using Theorem 5.5

∑
t≥1

LP◦(t)zt = (−1)d+1EhrP

(
1
z

)
= (−1)d ∑

t≥1
LP (−t)zt.

And the reciprocity follows from comparing the coefficients of the power series on
the left and right hand-side of the equation.

This result, can be extended to general polytopes too.
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Lemma 5.7. Suppose that p is a degree d polynomial with h-polynomial
hdzd + · · ·+ h1z + h0. Then, hd = hd−1 = · · · = hk+1 = 0, hk ̸= 0, if and only if,
p(−1) = p(−2) = · · · = = p(−d + k) = 0, p(−d + k − 1) ̸= 0

Proof. Suppose that hd = hd−1 = · · · = hk+1 = 0, hk ̸= 0. Then, the proof of
Lemma 3.15 gives

p(t) = h0

(
d + t

d

)
+ h1

(
d + t − 1

d

)
+ · · ·+ hk

(
d + t − k

d

)
where we have that all binomial coefficients are zero for t = −1, ...,−d + k. More-
over, for t = −d + k − 1 all of the binomial coefficients except the last one are zero,
and since hk ̸= 0, it is not a root of p.
Conversely, suppose that p(−1) = p(−2) = · · · = p(−d + k) = 0, p(−d + k − 1) ̸=
0, then

0 = p(−1) = h0

(
d − 1

d

)
+ h1

(
d + t − 1

d

)
+ · · ·+ hd+1

(
0
d

)
+ hd

(
−1
d

)
= hd

(
−1
d

)
and so hd = 0. With this reasoning, we have iteratively that the root −d + k gives
that hk+1 = 0. To show that hk ̸= 0, we suppose that hk = 0 following the same
reasoning as in the first part, we would have that p(−d + k − 1) = 0, which is a
contradiction.

Theorem 5.8. Suppose that P is an integral d-polytope with h-polynomial

hP (z) = h∗dzd + · · ·+ h∗1z + h∗0 .

Then, h∗d = · · · = h∗k+1 = 0, h∗k ̸= 0, if and only if, (d − k + 1)P is the smallest dilate of
P that contains an interior lattice point.

Proof. Using Lemma 5.7 we have that h∗k is the highest nonzero coefficient, if and
only if, LP (−1) = · · · = LP (−d + k) = 0, LP (−d + k − 1) ̸= 0, and using the
Ehrhart-Macdonald reciprocity (Theorem 5.1) the claim follows.

Corollary 5.9. Let P ⊂ Rm be an integral d-polytope with h-polynomial
hP (z) = h∗dtd + · · ·+ h∗1t + h∗0 . Then h∗d = #(P◦ ∩ Zm).

Proof. From the Ehrhart-Macdonald reciprocity (Theorem 5.1) and the proof of
Lemma 3.15 we have

#(P◦ ∩ Zm) = LP◦(1) =

= (−1)dLP (−1) = (−1)d
[(

d − 1
d

)
h∗0 + · · ·+

(
0
d

)
h∗1 +

(
−1
d

)
h∗d

]
= h∗d
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5.1 Ehrhart Series of Reflexive Polytopes

There is a group of polytopes that have a very interesting property, their h-
polynomial is palindromic. These are the reflexive polytopes.

Definition 5.10. A polytope P is reflexive if it is integral and it can be described
as

P = {x⃗ ∈ Rd | Ax⃗ ≤ 1⃗}

where A is an integral matrix and 1⃗ is a vector which has all components equal to
1.

Example 5.11. The d-cube [−1, 1]d is a reflexive polytope. As we can see, it is
equivalent to 

1 0 · · · 0
−1 0 · · · 0
0 1 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · −1




x1

x2
...

xd

 ≤


1
1
...
1



Example 5.12. The standard reflexive simplex of dimension d, which is defined as

∆d
sr = convex

({
e1, ..., ed,−

d

∑
i=1

ei

})

is a reflexive polytope because it is equivalent to
1 1 · · · 1
−d 1 · · · 1
1 −d · · · 1
...

...
. . .

...
1 1 · · · −d




x1

x2
...

xd

 ≤


1
1
...
1



Theorem 5.13. (Hibi’s palindromic theorem) Suppose P is an integral d-polytope
that contains the origin in its interior. Then P is reflexive, if and only if, its h-vector is
palindromic, that is, if h∗k = h∗d−k ∀ 0 ≤ k ≤ d/2.

Proof. First, we will see that a P is reflexive if and only if

(t + 1)P◦ ∩ Zd = tP ∩ Zd ∀ t ∈ Z≥0.
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Suppose that P is reflexive, then

tP = {t⃗x ∈ Rd | Ax⃗ ≤ 1⃗} = {x⃗ ∈ Rd | Ax⃗ ≤ t⃗1}

and
tP◦ = {t⃗x ∈ Rd | Ax⃗ < 1⃗} = {x⃗ ∈ Rd | Ax⃗ < t⃗1}.

So
(t + 1)P◦ ∩ Zd = {x⃗ ∈ Zd | Ax⃗ < (t + 1)⃗1},

tP ∩ Zd = {x⃗ ∈ Zd | Ax⃗ ≤ t⃗1}.

Then, it is trivial that tP ∩ Zd ⊆ (t + 1)P◦. On the other hand, if
x⃗ ∈ (t + 1)P◦ ∩ Zd, we have that Ax⃗ < (t + 1)⃗1 but since A and x⃗ both
have integer coefficients, the right-hand side must also have them, so Ax⃗ ≤ t⃗1,
and the equality holds.

Reciprocally, suppose that (t + 1)P◦ ∩ Zd = tP ∩ Zd. Then if H is a facet of
P , there must be no lattice points between tH and (t + 1)H. Indeed, assume that
there was t ∈ Z such that there exists x⃗ ∈ Zd in between tH and (t + 1)H. Let
V be a vertex on H and a⃗1, ..., a⃗d−1 be a basis of generators of H with start at V
and endpoints in vertices of P in H, and a⃗d the vector that goes from the origin
to V. The first vectors form a parallelepiped that tile the hyperplane, and with
a⃗d, one that tiles all Rd. Then, we can find an integer point congruent with x⃗ in
the parallelepiped with origin in tA which has one face on tH and the opposite
on (t + 1)H. Moreover, due to the fact that t + 1 ≥ 1, this face is on a facet of
(t + 1)P . Therefore, if we translate the parallelepiped once with a⃗d, we have an
integer point p⃗ ∈ Zd such that p⃗ ∈ (t + 2)P◦ ∩ Zd and p⃗ ̸∈ (t + 1)P ∩ Zd, which
is a contradiction.

Suppose H = {x⃗ ∈ Rd | a1x1 + · · · + adxd = b} and let v⃗1, ..., v⃗d+1 ∈ Zd

be points such that they uniquely define H. Due to the fact that the origin is in
the interior of P , we have b ̸= 0. Suppose b = 1 and solve the system of linear
equations given by a⃗ · v⃗i = b ∀ 0 ≤ i ≤ d + 1. This system gives rational solutions
for a1, ..., ad. Multiplying both sides of the equation by the least common divisor of
their denominators, we have a solution such that a1, ..., ad ∈ Zd, gcd(a1, ..., ad) = 1
and b ∈ Z+. Then we must have that

{x⃗ ∈ Zd | tb < a1x1 + · · ·+ adxd < (t + 1)b ∀ t ∈ Z≥0} = ∅ (5.3)

Bézout’s identity tells us that there exists x⃗ ∈ Zd such that a1x1 + · · · + adxd =

= gcd(a1, ..., ad) = 1. Then if b > 1 we can find z ∈ Z such that tb < z < (t + 1)b.
This is a contradiction with (5.3) and, therefore, we have that b = 1. Arranging all
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of the equations of the facets in one matrix A, we have Ax⃗ ≤ 1⃗ as we wanted to
prove.

Moreover, Theorem 5.5 tells us that

EhrP◦(z) = (−1)d+1EhrP

(
1
z

)
=

h∗0zd+1 + h∗1zd + · · ·+ h∗dz
(1 − z)d+1 .

Using the previous result we have that P is reflexive if and only if

EhrP◦(z) = ∑
t≥1

LP◦(t)zt = ∑
t≥1

LP (t − 1)zt = z ∑
t≥0

LP◦(t)zt = zEhrP (z) =

=
h∗dzd+1 + · · ·+ h∗1z2 + h∗0z

(1 − z)d+1

that is, if and only if, h∗k = h∗d−k ∀ 0 ≤ k ≤ d/2.

Corollary 5.14. The roots of a reflexive d-polytope P are symmetrically distributed
with respect to the so called critical line (Re(z) = −1/2).

Proof. From the proof of Hibi’s palindromic theorem (Theorem 5.13), we have that
(t + 1)P◦ ∩ Zd = tP∩Zd. By using Ehrhart-Macdonald reciprocity (Theorem 5.1),
LP (t) = LP◦(t + 1) = (−1)dLP (−t − 1). Therefore, if t is a root of LP , we have
that −t − 1 is a root too. Thus, the claim is proven

Definition 5.15. Suppose P an integral d-polytope. We define its k-face polyno-
mial as

Fk
P (t) = ck,ktk + · · ·+ ck,1t + ck,0 = ∑

F⊆P
dimF=k

LF (t)

where F are the faces of P .

Theorem 5.16. Let P be an integral d-polytope. Then, we have the relation

LP (t) = Fd
P (t) =

d

∑
j=0

(−1)jFj
P (−t).

Proof. The first equality is trivial. We will prove the second equality by induction
on the dimension of P . If d = 0, we have that LP is a constant equal to its number
of points and so LP (t) = LP (−t) = (−1)0F0

P (−t).
Suppose that the claim holds for d − 1. Let x⃗ ∈ tP . If x⃗ ∈ tP◦ we are counting this
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point in the term LP◦(t) = (−1)dLP (−t) = (−1)dFd
P (−t). If not, then x⃗ ∈ ∂(tP) =

t∂P and so we are counting this point in the term Fd−1
P (t), but because it has

dimension d− 1, the claim holds. Moreover, due to the fact that (tP) ∩ ∂(tP) = ∅,

LP (t) = (−1)dFd
P (−t) + Fd−1

P (t) =
d

∑
j=0

(−1)jFj
P (−t).

Then, the induction hypothesis holds and the result does too.

Theorem 5.17. Suppose P an integral d-polytope with Ehrhart polynomial
LP (t) = cdtd + · · ·+ c1t + c0. Then

cd−1td−1 + cd−3td−3 + · · · = 1
2

d−1

∑
j=0

(−1)jFj
P (−t).

Proof. Using the Ehrhart-Macdonald reciprocity we have that

LP◦(t) = (−1)dLP (−t) = (−1)dFd
P (−t).

Then, from Theorem 5.16

LP (t)− LP◦(t) =
d−1

∑
j=0

(−1)jFj
P (−t). (5.4)

On the other hand, by writing LP , LP◦ as polynomials using the Ehrhart-
Macdonald reciprocity (Theorem 5.1)

LP (t)− LP◦(t) = 2cd−1td−1 + 2cd−3td−3 + · · · . (5.5)

The result follows from equating the right-hand side of (5.4) and (5.5).

Corollary 5.18. If k and d have different parities, then

ck =
1
2

d−1

∑
j=0

(−1)j+kcj,k.

If k and d have the same parity, then

0 =
1
2

d−1

∑
j=0

(−1)j+kcj,k.

Proof. These equations follow from expanding the face polynomials and equating
coefficients of equal degree in the previous theorem.
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5.2 Relative volume and Euler characteristic

To find further relations between a polytope and the coefficients of its Ehrhart
polynomial, we will use the following.

Lemma 5.19. Suppose that S ⊂ Rd is an m-polytope. Then, its relative volume to the
lattice is equal to

vol S = lim
t→∞

#(tS ∩ Zd)

tm .

Corollary 5.20. Suppose that P ⊂ Rd an integral m-polytope with Ehrhart poly-
nomial LP (t) = cmtm + · · ·+ c1t + 1. Then, its relative volume vol P is equal to
cm.

Corollary 5.21. Suppose P is an integral d-polytope with Ehrhart polynomial
LP (t) = cdtd + · · ·+ c1t + c0. Then

cd−1 =
1
2 ∑

F⊂P
dimF=d−1

vol F .

Proof. The proof follows easily from the definition of the k-face polynomials (Def-
inition 5.15) and Theorem 5.17.

Proposition 5.22. Suppose P is an integral d-polytope with Ehrhart polynomial

LP (t) = cdtd + · · ·+ c1t + c0. Then, cd−1 ≥ d + 1
2(d − 1)!

.

Proof. We have that the minimum relative volume of an integral m-polytope is
1/m!. Moreover, a d-polytope has at least d + 1 facets. Then, its relative surface is

at least
d + 1

(d − 1)!
and the result follows.

Definition 5.23. A simplicial complex S is a set of simplices that satisfy the fol-
lowing conditions:

• Every face of a simplex from S is also in S .

• The non-empty intersection of any two simplices σ1, σ2 ∈ S is a face of both
σ1 and σ2.
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For a simplicial complex, its Euler characteristic is equal to the alternating sum

χ = k0 − k1 + k2 − k3 + · · ·

where kn denotes the number of n-simplices in the complex.

Example 5.24. A simplicial decomposition of the square [0, 1]2 is

S = {{(0, 0)}, {(1, 0)}, {(1, 1)}, {(0, 1)},

{[0, 1]× {0}}, {[0, 1]× {1}}, {{0} × [0, 1]},

{{1} × [0, 1]× {0}}, {(t, t) | t ∈ [0, 1]},

{(x, y) | 0 ≤ x ≤ y ≤ 1}, {(x, y) | 0 ≤ y ≤ x ≤ 1}}.

χ(S) = 4 − 5 + 2 = 1.

Figure 5.1: A simplicial complex of the square [0, 1]2 where the 4 vertices are 0-
simplices, the edges and diagonal are 1-simplices and the top and bottom triangle
are 2-simplices.

Corollary 5.25. Let P be an integral polytope. Then, the constant term of its
Ehrhart polynomial is its Euler characteristic.

Proof. For integral convex polytopes, we have that the constant term is 1, which is
its Euler characteristic. Let P be an integral polytope. If we consider its decompo-
sition into a simplicial complex, we find that

Fj
P (0) = ∑

∆∈S
dim ∆=j

L∆(0) = ∑
∆∈S

dim ∆=j

1 = k j.

For this reason, by using Theorem 5.16, we have that

LP (0) = c0 =
d

∑
j=0

(−1)jFj
P (0) =

d

∑
j=0

(−1)jk j = χ(P).



Chapter 6

Ehrhart polynomials of reflexive
polytopes

An important subclass of lattice polytopes are the reflexive polytopes,
defined in the last chapter, which got attention after Batyrev noticed their
connection to string theory in [6]. The Ehrhart polynomials of these polytopes
have been shown to have the property that their roots are symmetrically
distributed across the critical line:

CL =

{
z ∈ C | Re(z) = −1

2

}
.

As in [3] we will restrict ourselves to those polytopes called CL-polytopes in [7].

Definition 6.1. An integral convex polytope is a CL-polytope if all of its roots lie
on CL.

6.1 CL-polynomials

Definition 6.2. We denote by CL-polynomials as the class of polynomials of the
form

f (z) = b(z)(z2 + z + c0) · · · (z2 + z + cm) ∈ R[z]

where ci ≥ 1/4 and, for a nonzero constant a, we have that b(z) = a if the degree
of f is even or b(z) = a(2z + 1) otherwise.

Proposition 6.3. If f is a CL-polynomial, its h-polynomial has palindromic coeffi-
cients.

33
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Proof. We can prove it inductively on the degree of f .

If f has degree zero, we have that its Ehrhart series is a scalar multiple of
1/(1 − t). On the other hand, if it has degree one, we have that its Ehrhart
polynomial is a scalar multiple of (t + 1)/(1 − t)2. It is easy to see that both of
them are palindromic.

By the inductive step, suppose that f is a polynomial of degree d with palin-
dromic h-polynomial

∞

∑
k=0

f (k)tk =
h∗(t)

(1 − t)d+1 , h∗(t) =
⌊ d

2⌋
∑
i=0

h∗i pd
i (t).

Then,

∞

∑
k=0

(k2 + k + c) f (k)tk = t

(
t
(

h∗(t)
(1 − t)d+1

)′
)′

+ t
(

h∗(t)
(1 − t)d+1

)′
+ c

h∗(t)
(1 − t)d+1 =

= t2
(

h∗(t)
(1 − t)d+1

)′′
+ 2t

(
h∗(t)

(1 − t)d+1

)′
+ c

h∗(t)
(1 − t)d+1 =

=
d

∑
i=0

h∗i

(
t2
(

ti

(1 − t)d+1

)′′
+ 2t

(
ti

(1 − t)d+1

)′
+ c

ti

(1 − t)d+1

)
=

=
d

∑
i=0

h∗i

(
(d − i + 2)(d − i + 1)ti+2 + 2i(d − i + 2)ti+1 + i(i − 1)ti

(1 − t)d+3 +

+2
(d − i + 1)ti+1 + iti

(1 − t)d+2 + c
ti

(1 − t)d+1

)
=

=
d

∑
i=0

h∗i
(d2 − 2di + i2 + d − i + c)ti+2 + 2(di − i2 + d − c + 1)ti+1 + (i2 + i + c)ti

(1 − t)d+3 =

=
⌊ d

2⌋
∑
i=0

h∗i
α(ti+2 + td−i) + β(ti+1 + td−i+1) + γ(ti + td−i+2)

(1 − t)d+3

where we have used α = d2 − 2di + i2 + d − i + c, β = 2(di − i2 + d − c + 1),
γ = i2 + i + c as a shorthand. From this we can see that this polynomial is palin-
dromic. Hence, the induction hypothesis holds.
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Definition 6.4. Let

pd
i (z) = d!

((
z + d − i

d

)
+

(
z + i

d

))
∀ 0 ≤ i <

d
2

pd
d
2
(z) = d!

(
z + d

2
d

)
Note that pd

0, pd
1, ..., pd

⌊ d
2⌋

define a basis for all polynomials whose h-

polynomial is of degree d and palindromic.

Corollary 6.5. If f is a CL-polynomial of degree d

d! ∑
t≥0

f (t)zt =
⌊ d

2⌋
∑
i=0

hi pd
i (z)

where hi are the coefficients of the h-polynomial of f .

Lemma 6.6. Let f be a CL-polynomial of degree d, then for every z0 ∈ CL,
f (z0) ∈ R ·

√
−1

d
.

Proof. Without loss of generality we will write z0 = − 1
2 + a0

√
−1 with a0 ≥ 0. Let

bd
i (z) be the the expression d!(z+d−i

d ) viewed as a polynomial. Then, expressing
everything in exponential form, we have

z + d − j = d − j − 1
2
+ a0

√
−1 = rd

j (z0) exp
(√

−1
(π

2
− µd

j (z0)
))

,

z + d − (2d − j − 1) = −d + j +
1
2
+ a0

√
−1 = rd

j (z0) exp
(√

−1
(π

2
+ µd

j (z0)
))

,

bd
i (z0) =

d−1

∏
j=0

rd
i+j(z0) exp

(
√
−1

(
dπ

2
−

d−1

∑
j=0

µd
i+j(z0)

))
,

bd
d−i(z0) =

d−1

∏
j=0

rd
d−i+j(z0) exp

(
√
−1

(
dπ

2
−

d−1

∑
j=0

µd
d−i+j(z0)

))
=

=
d−1

∏
j=0

rd
2d−(i−j+d−1)−1(z0) exp

(
√
−1

(
dπ

2
−

d−1

∑
j=0

µd
2d−(i−j+d−1)−1(z0)

))
=

=
d−1

∏
j=0

rd
i−j+d−1(z0) exp

(
√
−1

(
dπ

2
+

d−1

∑
j=0

µd
i−j+d−1(z0)

))
=
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=
d−1

∏
j=0

rd
i+j(z0) exp

(
√
−1

(
dπ

2
+

d−1

∑
j=0

µd
i+j(z0)

))
.

Then, we can decompose bd
i (z0) = xd

i (z0)yd
i (z0) and bd

d−i(z0) = xd
i (z0)yd

i (z0) with

xd
i (z0) =

d−1

∏
j=0

rd
i+j(z0)

√
−1

d
, yd

i (z0) = exp

(
−

d−1

∑
j=0

µd
i+j(z0)

√
−1

)
,

and so pd
i (z0) = xd

i (z0)(yd
i (z0) + yd

i (z0)) ∈ R ·
√
−1

d
, and because this is a basis

of the palindromic polynomials, the claim holds for all CL-polynomials of degree
d.

Lemma 6.7. Let d be a fixed parameter. If we regard R ·
√
−1

d
as a totally ordered set

with a
√
−1

d ⪯ b
√
−1

d
, if and only if, a ≤ b.

For every pd
i (z) there exists a unique positive real number ad

i such that
pd

i (−
1
2 + ad

i

√
−1) = 0 and pd

i (−
1
2 + b

√
−1) ≻ 0, ∀ b > ad

i . Moreover, i < k implies
ad

i > ad
k .

Proof. First, we fix an integer 0 ≤ i ≤
⌊ 1

2

⌋
, and consider z = − 1

2 + a
√
−1 ∈ CL.

From the previous proof, we have that pd
i (z) = xd

i (z)(y
d
i (z) + yd

i (z)). We can see
that xd

i (z) ≻ 0.
Consider 0 ≤ j < d. Then, Re (z + d − j) > 0 and we have

µd
j (z) =

π

2
− arctan

(
a

d − j − 1
2

)
a→+∞−−−→ 0.

On the other hand, if j ≥ d. Then Re (z + d − j) < 0 and we have

µd
j (z) =

π

2
+ arctan

(
a

d − j − 1
2

)
a→+∞−−−→ 0,

and so we have that yd
i (z) goes to 1 as a goes to infinity. Then ad

i is the number for
which Re (yd

i (−
1
2 + ad

i

√
−1)) = 0, Re (yd

i (−
1
2 + b

√
−1)) > 0 ∀ b > ad

i .

Moreover, consider

νd
i (z) = µd

d+i(z)−µd
i (z) = arctan

(
a

d − i − 1
2

)
− arctan

(
a

i − 1
2

)
≤ 0 ∀ 0 ≤ i ≤

⌊
d
2

⌋
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due to the fact that arc-tangent is an increasing function and that
i − 1

2 ≤ d − i − 1
2 with equality only at i = d

2 . Then, if we have 0 ≤ i < k ≤
⌊

d
2

⌋
,

arg(yd
i (z)) = arg(yd

k(z)) +
k−1

∑
n=i

νd
n(z) < arg(yd

k(z)),

so if z = − 1
2 + b

√
−1, b ≥ ad

i we have that

0 ≤ arg(yd
i (z)) < arg(yd

k(z))

and so ad
i > ad

k .

6.2 CL-polytopes

Proposition 6.8. Suppose that P is an integral convex CL-polytope, then its
Ehrhart polynomial is a CL-polynomial with an h-polynomial with nonnegative
coefficients.

Proof. It follows trivially from the requirement on its roots and that the Ehrhart
polynomial is real. The second part is due to Hibi’s palindromic theorem.

Proposition 6.9. Let f be a CL-polynomial of degree d. Then for all of its roots
− 1

2 + α
√
−1, α ≤ ad

0.

Proof. First, we notice that the coefficient of pd
0 cannot be zero. This is because all

other pd
i have roots at 0 and −1, meaning that without p0, f wouldn’t be a CL-

polynomial. We will look at f (zd
0) where zd

0 = − 1
2 + ad

0

√
−1. From Lemma 6.7 we

have that pd
0(z

d
0) = 0 and pd

i (z
d
0) > 0 ∀ i > 0. Moreover, if z = − 1

2 + α
√
−1, α > ad

0,
we have that pd

i (z
d
0) > 0 ∀ i. Then, zd

0 is the largest root that can be assumed.
Moreover, it is assumed, if and only if, f = pd

0.

However, we will show that no multiple of pd
0 is the Ehrhart polynomial

of any convex d-polytope with d > 1.

Proposition 6.10. No multiple of pd
0 is the Ehrhart polynomial of any convex d-

polytope with d > 1.
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Proof. The constant term of pd
0 = d!, then if kpd

0 is the Ehrhart polynomial of a
convex d-polytope, we have that k = 1/d!.

Expanding pd
0/d! up to its two greatest coefficients, we have that

pd
0(z)
d!

=

((
z + d

d

)
+

(
z
d

))
=

2
d!

zd + zd−1
d

∑
i=−(d−1)

i
d!

+ · · · =

=
2
d!

zd +
d
d!

zd−1 + · · · = 2
d!

zd +
1

(d − 1)!
zd−1 + · · ·

However, due to the fact that

cd−1 =
1

(d − 1)!
<

d + 1
2(d − 1)!

by Corollary 5.22, this is not the Ehrhart polynomial of any convex d-polytope.

Theorem 6.11. (Hibi’s Lower Bound Theorem) Let P be an integral d-polytope with
h-polynomial h(t) = ∑d

i=0 h∗i ti with h∗d ̸= 0. Then, the equality h∗1 ≤ h∗i ∀ 1 ≤ i < d
holds.

The proof can be found in [8].

Proposition 6.12. The h-polynomial of the standard reflexive simplex of dimension

d is h∆d
sr
(t) =

d

∑
i=0

ti.

Proof. By Proposition 4.3, the k-th coefficient of the h-polynomial of ∆d
sr is equal to

the number of integer points in

Π ={λ1(1, 0, ..., 0, 1) + λ2(0, 1, ..., 0, 1) + · · ·+ λd(0, 0, ..., 1, 1)+

+ λd+1(−1,−1, ...,−1, 1) | 0 ≤ λ1, ...λd < 1}

with last coordinate equal to k. We have that

k
d + 1

[(1, 0, ..., 0, 1) + (0, 1, ..., 0, 1) + · · ·+ (−1,−1, ...,−1, 1)] = (0, 0, ..., 0, k),

and so, there is at least one point with last coordinate k ∀ 0 ≤ k ≤ d. Moreover, it
is easy to see that Π ∩ (Rd × {k}) isconv

{ k

∑
j=1

w⃗ij

}
1≤i1<...<ik≤d+1

◦
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where w⃗i = e⃗i + e⃗d+1 ∀ 1 ≤ i ≤ d and w⃗d+1 = (−1, ...,−1, 1) and e⃗i are the standard
basis vectors. Then, all of the components first d components of these points are
−1, 0, 1 and so (0, ..., 0, k) is the only point that can be in Π∩ (Rd ×{k}). Therefore,

h∆d
sr
(t) =

d

∑
i=0

ti.

Theorem 6.13. Let asr ∈ R≥0 denote the number such that − 1
2 + ad

sr
√
−1 is the extremal

root of the Ehrhart polynomial of ∆d
sr in the upper half plane. Then every CL-polytope of

dimension d ≤ 9 whose extremal root of the Ehrhart polynomial in the upper half complex
plane is − 1

2 + β
√
−1 satisfies β ≤ ad

sr.

Proof. In the case d ≤ 5 it can be showed computationally using Mathematica that
ad

1 < ad
sr < ad

0

p0

(
−1

2
+ ad

sr
√
−1
)
≺ 0, pi

(
−1

2
+ ad

sr
√
−1
)
≻ 0 ∀ 1 ≤ i ≤

⌊
d
2

⌋
,

p0 +
⌊ d

2⌋
∑
i=1

pi

(−1
2
+ ad

sr
√
−1
)
= 0.

Let us consider another CL-polytope of dimension d with Ehrhart polynomial

∑
⌊ d

2⌋
i=0 h∗i pi. Because h∗0 = 1 always and the h-vector is palindromic, we have that

h∗d = 1 and Theorem 6.11 holds. Moreover, since h∗d = 1 it has an interior point

and it must have at least d + 1 vertices so h∗i ≥ 1 ∀ 1 ≤ i ≤
⌊

d
2

⌋
. Let a ≥ ad

sr, then

∣∣∣∣p0

(
−1

2
+ a

√
−1
)∣∣∣∣ ≤

∣∣∣∣∣∣
⌊ d

2⌋
∑
i=1

pi

(−1
2
+ a

√
−1
)∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
⌊ d

2⌋
∑
i=1

h∗i pi

(−1
2
+ a

√
−1
)∣∣∣∣∣∣

where the equality holds if, and only if, a = ad
sr and h∗i = 1 ∀ i.

When 6 ≤ d ≤ 9 it can be showed computationally that ad
2 < ad

sr < ad
1 < ad

0,
which implies that.

p0

(
−1

2
+ ad

sr
√
−1
)
≺ 0, p1

(
−1

2
+ ad

sr
√
−1
)
≺ 0,

pi

(
−1

2
+ ad

sr
√
−1
)
≻ 0 ∀ 2 ≤ i ≤

⌊
d
2

⌋
,
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p0 + p1 +
⌊ d

2⌋
∑
i=2

pi

(−1
2
+ ad

sr
√
−1
)
= 0.

Assume that h∗1 = k ≥ 1 so h∗i ≥ k ∀ 2 ≤ i ≤
⌊

d
2

⌋
. Let a ≥ ad

sr, then∣∣∣∣(p0 + kp1)

(
−1

2
+ a

√
−1
)∣∣∣∣ ≤ ∣∣∣∣(kp0 + kp1)

(
−1

2
+ a

√
−1
)∣∣∣∣ ≤

≤

∣∣∣∣∣∣
⌊ d

2⌋
∑
i=2

kpi

(−1
2
+ a

√
−1
)∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
⌊ d

2⌋
∑
i=2

h∗i pi

(−1
2
+ a

√
−1
)∣∣∣∣∣∣

where the equality holds if, and only if, a = ad
sr and h∗i = 1 ∀ i.



Chapter 7

Generalizing Pick’s Theorem

Knowing the values we get from the first, second and last coefficient, we can
think that all the coefficients of the Ehrhart polynomial are linear functions of
Vd, ..., V0, χ where Vk are the relative volumes of the faces of dimension k.

Remark 7.1. Let P be an integral d-polytope. Then, not all coefficients of the
Ehrhart polynomial of P are linear functions of Vd, ..., V0, χ(P).

Proof. Let P be a Reeve tetrahedron with height h. Then, we have

LP (t) =
h
6

t3 + t2 + αt + 1,

−LP (−1) = 0 =
h
6
− 1 + αt − 1 ⇒ α = 2 − h

6
.

Let us suppose that α = aV + bA + cL + dv + eχ(P) where v is the number of
vertices. Then

2 − h
6
= α = a

h
6
+ 2b + 6c + 4d + e ⇒ a = −1.

Let P be a cube of side l. Then, we have that

LP (t) = (lt + 1)3 = l3t3 + 3l2t2 + 3lt + 1,

3l = α = −l3 + 6l2b + 12lc + 8d + e.

Which is unsolvable with a, b, c, d, e constants.

First, we will try to recover Pick’s Theorem.

Theorem 7.2. (Generalized Pick’s Theorem) Let P be an integral polygon, A its area,
i the number of interior points and b the number of boundary points. Then

A = i +
b
2
− χ(P).

41
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Proof. From all that we know of Ehrhart polynomials, we have that

LP (t) = At2 + αt + χ(P).

In particular

LP (−1) = i = A − α + χ(P) ⇒ α = A + χ(P)− i,

LP (1) = i + b = A + α + χ(P) = 2A + 2χ(P)− i,

and so we have the result
A = i +

b
2
− χ(P).

Observe that for the case of a simple polygon, we have that χ(P) = 1 and so
we recover Pick’s Theorem.

However, if we want to generalize it to higher dimensions we need
more information due to the fact that a polynomial of degree d needs
d + 1 points to be fully defined. Moreover, this information must come
from higher dilates of the polytope.

Theorem 7.3. (3D Pick’s Theorem) Let P be an integral polyhedra, V its volume, i the
number of interior points, b the number of boundary points and I the number of interior
points of its 2-dilate. Then

V =
I + b − 2i − 3χ(P)

6
.

Proof. As in the previous proof we have

LP (t) = Vt3 + βt2 + αt + χ(P).

Then, in particular we have

−LP (−1) = i = V − β + α − χ(P) ⇒ β = V + α − χ(P)− i,

LP (1) = i + b = V + β + α + χ(P) = 2V + 2α − i ⇒ α = i − V +
b
2

,

β = V + α − χ(P)− i =
b
2
− χ(P).

Furthermore,

−LP (−2) = I = 8V − 4β + 2α − χ(P) = 6V + 2i − b + 3χ(P).
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And so

V =
I + b − 2i − 3χ(P)

6
with

α = i − V +
b
2
=

8i + 2b − I + 3χ(P)

6
.

Theorem 7.4. (4D Pick’s Theorem) Let P be an integral 4-polytope, V its volume, i
the number of interior points, b the number of boundary points, and I and B the number
of interior and boundary points of its 2-dilate, respectively. Then

H =
2I + B − 8i − 4b + 6χ(P)

24
where H represents its 4-volume.

Proof. As in the previous proof we have

LP (t) = Ht4 + γt3 + βt2 + αt + χ(P).

Then, in particular we have

LP (−1) = i = H − γ + β − α + χ(P) ⇒ γ = H − i + β − α + χ(P),

LP (1) = i + b = H + γ + β + α + χ(P) = 2H − i + 2β + 2χ(P),

β = i − H − χ(P) +
b
2
⇒ γ = −α +

b
2

.

Furthermore,

LP (−2) = I = 16H − 8γ + 4β − 2α + χ(P) = 12H − 2b + 4i + 6α − 3χ(P),

α =
I + 2b − 4i − 12H + 3χ(P)

6
⇒ γ =

12H − I + 4i + b − 3χ(P)

6
,

LP (2) = I + B = 16H + 8γ + 4β + 2α + χ(P) = 24H − I + 8i + 4b − 6χ(P).

And so

H =
2I + B − 8i − 4b + 6χ(P)

24
with

α =
I + 2b − 4i − 12H + 3χ(P)

6
=

8b − B
12

,

β = i − H − χ(P) +
b
2
=

32i + 16b − 2I − B − 30χ(P)

24
,

γ = −α +
b
2
=

B − 2b
12

.
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After having done this two examples, we will generalize this formulas up to
arbitrary dimension. With the knowledge we have today about Ehrhart polyno-
mials, we have that the minimum number of dilates to count is

d + 1 ≤ 2n + 1 ⇒ n ≥ d
2
⇒ n =

⌈
d
2

⌉
.

This is due to the fact that a polynomial of degree d has d + 1 coefficients and,
apart from the Euler characteristic, from each dilate we get two variables, the
amount of points in the interior and on the boundary.

Theorem 7.5. (n-dimensional Pick’s theorem) Let P be an integral d-polytope, Vd its
d-volume, and ik and bk the number of interior points and boundary points of its k-dilate,
respectively. Then, if d = 2n is even, we have

V2n =
1

(2n)!

[
n

∑
j=1

2(−1)n−j
(

2n
n − j

)
ij +

n

∑
j=1

(−1)n+j
(

2n
n + j

)
bj + (−1)n

(
2n
n

)
χ

]
,

and if d = 2n + 1 is odd,

V2n+1 =
1

(2n + 1))!

[
in+1 +

n

∑
j=1

(−1)n−j−1
[(

2n + 1
n − j + 1

)
−
(

2n + 1
n − j

)]
ij+

+
n

∑
j=1

(−1)n+j
(

2n + 1
n − j

)
bj + (−1)n+1

(
2n + 1
n + 1

)
χ

]
.

To prove this theorem we will first need to calculate the determi-
nant of the following matrix.

Lemma 7.6. Let M be the square matrix
1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
...

. . .
...

1 xn x2
n · · · xn

n

 .

Then its determinant is
det M = Π0≤i<j≤n(xj − xi).

This matrix is called a Vandermonde matrix.
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Proof. We will prove it using induction on the size of the matrix.

For n = 0, we have that det M = 1 = ∏0≤i<j≤n(xj − xi).

By the inductive step, suppose that the formula holds for n − 1. Then, sub-
tracting to each column the previous one multiplied by x0∣∣∣∣∣∣∣∣∣∣

1 x0 x2
0 · · · xn

0
1 x1 x2

1 · · · xn
1

...
...

...
. . .

...
1 xn x2

n · · · xn
n

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 0 0 · · · 0
1 x1 − x0 x1(x1 − x0) · · · xn−1

1 (x1 − x0)
...

...
...

. . .
...

1 xn − x0 xn(xn − x0) · · · xn−1
n (xn − x0)

∣∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣
x1 − x0 x1(x1 − x0) · · · xn−1

1 (x1 − x0)
...

...
. . .

...
xn − x0 xn(xn − x0) · · · xn−1

n (xn − x0)

∣∣∣∣∣∣∣∣ =

= ∏
1≤j≤n

(xn − x0)

∣∣∣∣∣∣∣∣
1 x1 · · · xn−1

1
...

...
. . .

...
1 xn · · · xn−1

n

∣∣∣∣∣∣∣∣ = ∏
1≤j≤n

(xj − x0) ∏
1≤i<j≤n

(xj − xi) =

= ∏
0≤i<j≤n

(xj − xi)

And so, the inductive hypothesis holds.

Proof of the n-dimensional Pick’s theorem (Theorem 7.5). Let us first write down the
system of equations to find the coefficients of the Ehrhart polynomial.

LP
(⌊

− d
2

⌋)
=
⌊
− d

2

⌋d
cd + · · ·+ c0 = (−1)di−⌊− d

2⌋
...

LP (−1) = (−1)dcd + · · ·+ c0 = (−1)di1
LP (0) = c0 = χ

LP (1) = cd + · · ·+ c0 = i1 + b1
...

LP
(⌊

d
2

⌋)
=
⌊

d
2

⌋d
cd + · · ·+ c0 = i⌊ d

2⌋ + b⌊ d
2⌋

For simplicity, let us define

Wd(j) =


(−1)di−j if j < 0

χ if j = 0

ij + bj if j > 0
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Knowing that the term of degree d corresponds to the d-volume Vd, we can solve
it using Cramer’s rule and the previous lemma:

Vd =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Wd(−
⌊
− d

2

⌋
)
⌊
− d

2

⌋d−1 ⌊
− d

2

⌋d−2
· · · 1

...
...

... . . . ...
Wd(−1) (−1)d−1 (−1)d−2 · · · 1
Wd(0) 0 0 · · · 1
Wd(1) 1 1 · · · 1

...
...

...
. . .

...

Wd(
⌊

d
2

⌋
)

⌊
d
2

⌋d−1 ⌊
d
2

⌋d−2
· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⌊
− d

2

⌋d ⌊
− d

2

⌋d−1 ⌊
− d

2

⌋d−2
· · · 1

...
...

... . . . ...
(−1)d (−1)d−1 (−1)d−2 · · · 1

0 0 0 · · · 1
1 1 1 · · · 1
...

...
...

. . .
...⌊

d
2

⌋d ⌊
d
2

⌋d−1 ⌊
d
2

⌋d−2
· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=

d+1

∑
j=0

(−1)d(d−1)/2+jWd

(⌊
−d

2

⌋
+ j
)

∏
⌊− d

2⌋≤i<k≤⌊ d
2⌋

i,k ̸=⌊− d
2⌋+j

(k − i)

(−1)(d+1)d/2 ∏
⌊− d

2⌋≤i<j≤⌊ d
2⌋
(j − i)

=

=

d

∏
n=1

n!
d+1

∑
j=0

(−1)d+jWd

(⌊
−d

2

⌋
+ j
)

/
[

j!
(⌊

d
2

⌋
−
⌊
−d

2

⌋
− j
)

!
]

d

∏
i=1

i!

=

=

d

∏
n=1

n!
d+1

∑
j=0

(−1)d+jWd

(⌊
−d

2

⌋
+ j
)

/ [j!(d − j)!]

d

∏
i=1

i!

=

=
1
d!

d+1

∑
j=0

(−1)d+j
(

d
j

)
Wd

(⌊
−d

2

⌋
+ j
)
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We have

Vd =
1
d!

−⌊− d
2⌋

∑
j=1

(−1)⌊−
d
2⌋−j

(
d

−
⌊
− d

2

⌋
− j

)
ij+

+
⌊ d

2⌋
∑
j=1

(−1)d+⌊− d
2⌋+j

(
d

−
⌊
− d

2

⌋
+ j

)
(ij + bj) + (−1)d+⌊− d

2⌋
(

d
−
⌊
− d

2

⌋)χ

 .

So, if d = 2n is even,

V2n =
1

(2n)!

[
n

∑
j=1

(−1)n−j
(

2n
n − j

)
ij +

n

∑
j=1

(−1)n+j
(

2n
n + j

)
(ij + bj) + (−1)n

(
2n
n

)
χ

]
=

=
1

(2n)!

[
n

∑
j=1

2(−1)n−j
(

2n
n − j

)
ij +

n

∑
j=1

(−1)n+j
(

2n
n + j

)
bj + (−1)n

(
2n
n

)
χ

]
,

and if d = 2n + 1 is odd,

V2n+1 =
1

(2n + 1))!

[
n+1

∑
j=1

(−1)n−j−1
(

2n + 1
n − j + 1

)
ij+

+
n

∑
j=1

(−1)n+j
(

2n + 1
n + j + 1

)
(ij + bj) + (−1)n

(
2n + 1
n + 1

)
χ

]
=

=
1

(2n + 1))!

[
in+1 +

n

∑
j=1

(−1)n−j−1
[(

2n + 1
n − j + 1

)
−
(

2n + 1
n − j

)]
ij+

+
n

∑
j=1

(−1)n+j
(

2n + 1
n − j

)
bj + (−1)n+1

(
2n + 1
n + 1

)
χ

]
.

This result is of theoretical importance due to the fact that, with what is known
today of the coefficients of the Ehrhart polynomial, we can solve the volume in the
minimum theoretical number of dilates. However, computationally, it would be
easy to select as dilate a highly composite number so that with only one loop, one
can calculate the maximum number of dilates possible, its divisors.
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