1	Information delay of significant bloodstream isolates and patient mortality: A
2	retrospective analysis of 6,225 adult patients with bloodstream infection
3	
4	Berta Fidalgo ¹ , Laura Morata ^{3,4} , Celia Cardozo ^{3,4} , Ana del Río ^{3,4} , Javier Morales ¹ , Mariana
5	Fernández-Pittol ¹ , José Antonio Martínez ^{3,4,5} , Josep Mensa ^{3,4} , Jordi Vila ^{1,2,5} , Alex Soriano
6	^{3,4,5} , Climent Casals-Pascual ^{1,2,5}
7	
8	
9 10 11 12 13 14 15	 ¹ Department of Clinical Microbiology, CDB, Hospital Clínic of Barcelona – University of Barcelona – Barcelona, Spain. ² Institute for Global Health (ISGlobal), Barcelona, Spain. ³ Institut d'Investigacions Biomèdiques Agust Pi i Sunyer (IDIBAPS), Barcelona. ⁴ Department of Infectious Diseases, Hospital Clínic of Barcelona – University of Barcelona – Barcelona, Spain. ⁵ CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto Salud Carlos III, Madrid.
16	Spain.
17	
18	
19	
20	
21	
22	
23	Corresponding author:
24	Climent Casals-Pascual, MD PhD
25	Department of Medical Microbiology, CDB
26	Universitat de Barcelona.
27	ISGlobal, Barcelona, Spain
28	ccasals@clinic.cat
29	Tel+34932275400

30 Abstract

31 **Objectives:** The aim of this study was to evaluate the clinical and prognostic impact of 32 communicating microbiological information in real time in adult patients with a bloodstream 33 infection.

Methods. We have retrospectively reviewed 6,225 clinical episodes of bacteraemia in a 700bed tertiary teaching hospital from January 2013 to December 2019. Bacteraemia-associated mortality was compared between periods where blood culture result was relayed to the infectious disease specialist [IDS] in real time and those periods where information was delayed to the following morning. An adjusted logistic regression analysis was used to evaluate the impact of information availability using mortality at 30 days as the main outcome of the study.

41 Results: The initial analysis (all microorganisms included) did not show an association of 42 mortality and information delay to the IDS (OR 1.18; 95%CI: 0.99-1.42). However, 43 information delay of BSI caused by fast-growing microorganisms (like *Enterobacteriaceae*) 44 was associated with a significant increase in the odds of death at 30 days both in the univariate 45 (OR 1.76; 95%CI: 1.30-2.38) and in the multivariate analysis (OR 2.22; 95%CI: 1.50-3.30). 46 Similar results were found with mortality at 14 days and at 7 days in the univariate analysis (OR: 1.54; 95%CI:1.08-2.20 and OR.1.56; 95%CI: 1.03-2.37, respectively) and the 47 48 multivariate analysis (OR: 2.05; 95%CI:1.27-3.32 and OR:1.92; 95%CI:1.09-3.40, 49 respectively).

50 **Conclusions**: Information delivered in real time has prognostic relevance and it is likely to 51 improve survival of patients with documented bloodstream infection. Future studies should 52 address the prognostic impact of adequate resource allocation (microbiologist/IDS with 24/7 53 coverage) in bloodstream infections.

55 INTRODUCTION

56

Bloodstream infections (BSIs) remain a major clinical challenge with a high morbidity 57 58 worldwide with estimated overall mortality rates ranging from 15% to 30% [1]. Rapid 59 identification of BSI and prompt administration of effective treatment have a major impact in 60 clinical outcome, particularly in those patients presenting with features of clinical severity [2]. 61 In this context, a major emphasis has been placed on the development and implementation of 62 rapid diagnostic tools [3], as subsequent development of sepsis has major prognostic 63 implications [4]. The clinical impact of discordant empirical antibiotic therapy has been 64 recently reported indicating an increased number of deaths in patients with BSI particularly for 65 fast-growing bacteria like *Enterobacteriaceae* [5]. A less explored area in the management of 66 BSIs is the time elapsed from blood culture positivity to patient re-assessment once actionable 67 microbiological information becomes available to the infectious diseases specialist (IDS).

68

In this context, we have hypothesised that the mortality at 30 days of BSIs may be affected by the availability of resources to relay the information about a positive blood culture in real time to the IDS. In this study, we have analysed 6,225 cases of BSI prospectively collected from 2013 to 2019 and compared the clinical outcome when microbiological information is provided in real-time and when the information is delayed by 8 hours or more.

75 **METHODS**

76 Study design. This study was designed as an observational retrospective analysis of all 77 episodes of bacteraemia diagnosed from January 2013 to December 2019 consecutively 78 admitted at the Hospital Clínic in Barcelona (Spain), a 700-bed tertiary university hospital with 79 a catchment area of 550,000 inhabitants. In this hospital, a dedicated team of infectious diseases 80 physicians and clinical microbiologists operate in a 24/7 schedule to identify and prospectively 81 follow up all patients with bacteraemia until discharge, death or 30 days after the diagnosis is 82 made, whichever occurs first. For each patient, a comprehensive case-report form including 83 demographic, clinical, biochemical, microbiological, and antimicrobial treatment variables was 84 filled out and registered in a well-curated database.

85

86 For all blood cultures that became positive during daytime working hours (8:00 am to 1:59pm 87 from 2013 to 2015 and 8:00 am to 7:59pm from 2016 to 2019), the microorganism was 88 identified and reported to the IDS immediately, typically within one hour (time elapsed from 89 positivity to MALDI-TOF MS identification). However, if the blood culture became positive 90 during the night-time period (2:00 pm to 7:59 am from 2013 to 2015 and 8:00pm to 7:59am 91 from 2016 to 2019), the identification and information was postponed until the next morning. 92 This routine activity was followed from Monday to Sunday every day of the year. For this 93 study, day-time positivity corresponds to real-time information (RTI) and night-time positivity 94 to delayed information (DI).

95

96 **Clinical data.** The following data were obtained at the time of the diagnosis of the bloodstream 97 infection for all patients included in the study and prospectively recorded in a purpose-built 98 dataset: age, sex, previous admissions, days of admission, admission to intensive care unit 99 (ICU), type of visit/admission (community or hospital/home hospitalization), catheter carrier, 100 dialysis catheter carrier, pre-existing comorbidities, source of infection and drainage of source 101 (if appropriate), renal failure (RF), mechanic ventilation and presence of an indwelling urinary 102 catheter. Data regarding the administration of immunosuppressive therapy (20 mg of daily 103 prednisone or equivalent), surgery or other non-surgical invasive procedures and cardiac arrest 104 were collected. Active empirical antibiotic therapy was defined as a treatment started within 105 the first 24 h of the initial blood cultures, having in vitro activity against the bacteria isolated. 106 The presence of the following clinical factors when the blood cultures were drawn was also 107 documented: persistent bacteraemia, sodium (Na), potassium (K) and creatinine levels, C-108 reactive protein (CRP), drainage of the source of infection, neutropenia, disseminated 109 intravascular coagulation (DIC), acute respiratory distress syndrome (ARDS), septic shock and 110 presence of septic metastases. Persistent bacteraemia was defined as the presence of positive 111 blood cultures after initiation of active antibiotic therapy. The main outcome variable was 112 mortality at 30 days. Secondary analyses included mortality at 14 days and at 7 days.

113

114 Microbiological methods: Between 2013 and 2019, blood samples were processed using the Bactec FX system (Becton-Dickinson Microbiology System, NJ; USA) and typically incubated 115 116 routinely for 5 days. Typically, for *Enterobacteriaceae* the time elapsed between the arrival of 117 blood culture bottles to the laboratory and information reporting was less than 12 hours. All 118 positive blood cultures were Gram-stained and immediately identified by matrix-assisted laser 119 desorption- ionization time of flight (MALDI-TOF) mass spectrometry (Bruker, Bremen, 120 Germany) using the bacterial pellet from a double centrifugation protocol[6,7]. Susceptibility testing was performed by BD Phoenix automated system (BD Diagnostic; Sparks, MD) and 121 122 antibiotic susceptibility was determined according to the recommendations of EUCAST 123 guidelines available at the time of diagnosis [8].

124 The time of sample arrival to the laboratory is registered by barcode scanning of clinical 125 laboratory requests and logged into a laboratory information system (LIS). Similarly, the date 126 and time of positivity and time from incubation to a positive/negative result is registered by the 127 blood culture system and automatically exported to our LIS. The microorganism identified in 128 culture, the antimicrobial susceptibility pattern, and the time at which the blood culture became 129 positive (day or night) were subsequently added or calculated from the database (time of 130 positivity) for the purpose of this study. Prior to 2016, positive blood cultures were not actively 131 reported to the IDS from 2:00 pm until the morning after (8am).

132

133 Statistical analysis

134 Continuous data are described by the mean and the standard deviation (SD) or the median and 135 corresponding interquartile range (IQR), as appropriate. Categorical data are expressed as 136 numbers and percentages. We used t-test for comparison of quantitative normally distributed 137 variables, and Mann-Whitney test for non-normally distributed variables. Comparison of 138 categorical variables was conducted using χ^2 test or Fisher's exact test.

139 The primary endpoint of the study was to 30-day mortality. A univariate logistic regression 140 analysis was performed to explore factors associated with 30-day mortality. Multivariate 141 logistic regression (MLR) was used to estimate the odds of the associations between 142 information availability and death adjusted for potential confounders. MLR models were selected using a best subset regression approach. Variables were eliminated if exclusion of the 143 144 variable: i) did not change the coefficient of information availability when modelling death (p 145 of likelihood ratio test [LRT] < 0.01) and did not change the coefficients of other covariates 146 when modelling information availability; ii) did not change the c-statistic (also known as 147 Harrell's C) by more than 0.01 units; and iii) did not reduce the Akaike and Bayesian 148 Information Criteria (AIC and BIC). The C-statistic corresponds to the area under the receiver

149	operating characteristic curve (AUC-ROC) of the predictions of the model and is a measure of
150	model calibration[9-12]. Statistical analysis was performed using Stata, version 16 (Texas,
151	USA).
152	
153	Ethics approval
154	The study was approved by the Ethical Research Committee of the Hospital Clínic of Barcelona
155	(HCB/2022/0597), Spain.
156	
157	
158	RESULTS
159	
160	Study population
161	A total of 6,225 bacteraemia episodes were included in the study. The main characteristics of
162	the study population and the risk factors associated with mortality at 30 days are detailed in

1. ..

C .1

1 1

1.

• .•

163 Table 1. Of 6,225 patients, 625 (10%) died at 30 days. Of the 6,225 BSI analysed, 2,130(34.2%) 164 became positive during daytime working hours and 4,095 (65.8%) during night-time working 165 hours (not reported to the IDS in real time) (see supplementary sTable1). Blood cultures that become positive overnight were reported to the IDS the following morning. There were not 166 167 statistically significant differences between the two groups of patients compared, namely those 168 with daytime (real-time information) and that night-time (delayed information) blood culture 169 positivity. Only mild differences were observed in the following clinical variables: sex, prior 170 hospital admissions, catheter carrier, administration of immunosuppressive therapy, persistent 171 bacteremia presence of respiratory disease. These differences were unlikely to indicate a 172 population bias in subsequent comparisons of the two groups.

174 Delayed information and prognosis of BSI

175 Of the 625 deaths documented at 30 days, 193 (30.8%) corresponded to blood cultures that 176 became positive during daytime working hours (8:00am-7:59pm) and 432(69.2%) during 177 night-time hours (P value >0.05). Empirical antibiotic treatment was appropriate in 4,661 out 178 of 6,015 patients (77.4%). The initial analysis showed a modest effect of delayed information 179 on 30-day mortality (OR:1.18; 95%CI: 0.99-1.42) but this association was not significant 180 (P=0.06). However, we reasoned that the impact on clinical outcome of fast-growing 181 microorganisms (e.g, Enterobacteriaceae) was likely to be more noticeable than that for 182 slower-growing bacteria (see supplementary sFigure 1 and sTable2). Indeed, when the same 183 analysis was stratified by fast-growing microorganisms (Enterobacteriaceae in general) 184 delayed information was associated with death (See Table 2).

Expectedly, other clinical features, which could have confounded the association, were also associated with a poor outcome of the bacteraemia episode (see Table 3). However, in the multivariate analysis, delayed response remained significantly associated with death (OR: 2.22; 95%CI: 1.50-3.30) after adjusting for potential confounders (see Table 4) in a highly informative model (c-statistic: 0.84, see supplementary sFigure2)

190

The same analysis was repeated using mortality at 14 days and at 7 days as the dependent variable. This analysis showed the same significant trends in the univariate (OR: 1.54; 95%CI:1.08-2.20 and OR.1.56; 95%CI: 1.03-2.37 respectively) and the multivariate analysis (OR: 2.05; 95%CI:1.27-3.32 and OR:1.92; 95%CI:1.08-3.40 respectively) when the analysis was performed for BSI caused by *Enterobacteriaceae* (see supplementary sTable 3 and sTable4).

197 Of note, the overall mortality decreased from 2016 onwards. We reasoned that decreased 198 mortality could have been attributed to changes in management over time; however, the differences between the two groups (real-time/delayed) over time did not disappear (seesupplementary sTable 5).

201

In addition, other pre-analytical variables that could have incurred substantial diagnostic delays
were considered. The time elapsed between blood culture practice and when the time when the
blood cultures cultures arrive to the microbiology laboratory was also analysed. These data
were available for 6,221 records and the median (IQR) time elapsed was 1.63 (0.88-2.98) hours.
We did not find any association between this parameter and 30-day mortality in BSI (OR:0.99;
95%CI: 0.98-1.00, P=0.10) or in BSI associated with *Enterobacteriaceae* (OR:0.99; 95%CI:
0.98-1.00, P=0.45).

- 210 **DISCUSSION**
- 211

Early identification of significant bacterial isolates is of paramount importance to effectively manage patients with BSI [13,14]. This study suggests that relaying clinically relevant microbiological information of blood culture isolates in real time, particularly in rapidly growing bacteria (eg., *Enterobacteriaceae*), may impact clinical outcome.

Several clinical studies have consistently identified rapid reporting of microbiological findings
as key parameter for patient management[15,16]. The advent and implementation of novel and
faster molecular methods for microorganism identification and/or susceptibility testing, from
high-throughput mass spectrometry identification [17] to low-throughput lateral flow assays
[18] have revolutionised clinical microbiology markedly reducing turn-around times from days
to hours [13,19,20].

However, rapid turn-around times do not necessarily imply that the information produced by the microbiology laboratory is readily available to the clinician, or even when available, it is not warranted that appropriate action is taken by the clinician. Despite of this parameter being of critical importance [21,22] for resource allocation, namely 24/7 microbiology or IDS coverage, information relay has been rarely explored (if at all) as a prognostic factor.

228 Our study provides a novel insight into this topic. Indeed, although the global analysis for 229 bacteraemia and real-time information showed a non-statistically significant association with 230 30-day mortality, the stratified analysis for Enterobacteriaceae revealed significant prognostic 231 differences both in the unadjusted and adjusted models. However, this study was not designed 232 to understand the prognostic factors of BSI caused by Enterobacteriaceae. Indeed, most of the 233 prognostic features identified are clinically plausible and have been reported previously[23-234 25]. The aim of this research was to ascertain that the differences between information delay 235 and death was not explained by known confounders.

Due to observational nature of the study, our results do not provide a mechanistic insight that 236 237 explains how real-time information leads to improved clinical management and hence, reduced 238 A priori, most confounders for this association are accounted for, namely mortality. 239 appropriate empirical antibiotic, drainage of source of infection, infection of catheter. Two 240 major factors support the hypothesis that real-time may affect outcome. Firstly, the fact that 241 the association of delayed information with death in the adjusted model increases as the 242 endpoint gets closer to the admission date (i.e. mortality at 30, 14 and 7 days). Secondly, the 243 association is found only for bacteria with rapid growth, like Enterobacteriaceae.

244

This study has limitations. This was a single-centre study conducted at a 700-bed teaching 245 hospital that primarily manages complex patients. It is therefore expected that the 246 247 demographics may not readily translate to all hospitals. Secondly, our hospital during the study 248 period had a microbiologist and ID specialist 24h a day 7 days a week, which based on the 249 results obtained may underestimate the clinical impact as many health services in our country 250 have no ID or microbiology coverage during weekends. Moreover, the time taken for samples 251 to arrive to the microbiology laboratory and to the automated culture system has been shown 252 to be of importance [26], but we could not find this association when we formally examined 253 the time elapsed.

254

The descriptive nature of the study cannot conclusively attribute mortality to the delay in communication of clinically relevant results. However, we would cautiously speculate that lack of specialist coverage may affect the prognosis of BSI. Indeed, if future studies conducted in comparable clinical settings (but with lower specialist coverage) corroborate this association, the need for a 24/7 hospital coverage for a clinical microbiologist and/or an ID specialist should be revisited in view of the important prognostic implications.

262 **REFERENCES**

- 263
- 264 Hattori H, Maeda M, Nagatomo Y, Takuma T, Niki Y, Naito Y, et al. [1] 265 Epidemiology and risk factors for mortality in bloodstream infections: A single-center retrospective study in Japan. Am J Infect Control 266 2018;46:e75-9. https://doi.org/10.1016/j.ajic.2018.06.019. 267 268 [2] Leibovici L, Shraga I, Drucker M, Konigsberger H, Samra Z, Pitlik SD. 269 The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 1998;244:379-86. 270 271 https://doi.org/10.1046/J.1365-2796.1998.00379.X. 272 Lamy B, Sundqvist M, Idelevich EA. Narrative review Bloodstream [3] 273 infections e Standard and progress in pathogen diagnostics. Clinical 274 Microbiology and Infection 2020;26:142-50. 275 https://doi.org/10.1016/j.cmi.2019.11.017. 276 Singer M, Deutschman CS, Seymour C, Shankar-Hari M, Annane D, [4] 277 Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315:801. 278 https://doi.org/10.1001/JAMA.2016.0287. 279 280 Kadri SS, Lai YL, Warner S, Strich JR, Babiker A, Ricotta EE, et al. [5] 281 Inappropriate empirical antibiotic therapy for bloodstream infections 282 based on discordant in-vitro susceptibilities: a retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals. 283 284 Lancet Infect Dis 2021;21:241-51. https://doi.org/10.1016/S1473-285 3099(20)30477-1. Bassi MA, Lopez MA, Confalone L, Gaudio RM, Lombardo L, Lauritano 286 [6] 287 D. Enhanced Reader.pdf. Nature 2020;388:539-47. 288 [7] Zengin Canalp H, Bayraktar B. Direct Rapid Identification from Positive Blood Cultures by MALDI-TOF MS: Specific Focus on Turnaround 289 290 Times. Microbiol Spectr 2021;9. https://doi.org/10.1128/spectrum.01103-291 21. 292 EUCAST clinical MIC breakpoints n.d. [8] 293 https://www.eucast.org/clinical breakpoints/. Altman DG, Bland JM. Education and debate: Statistics Notes: 294 [9] 295 Interaction revisited : the difference between two estimates. Bmj 296 2003;326:219. 297 Hosmer D LS. Assessing the Fit of the Model. In: Applied Logistic [10] Regression. John Wiley & Sons, Ltd; 2005. 298 299 Rowe AK, Kleinbaum DG, Koplan JP. Practical methods for public [11] 300 health practitioners. Am J Prev Med 2004;26:252-3. 301 https://doi.org/10.1016/j.amepre.2003.12.002. Harrell F. RegressionModeling Strategies: With Applications to Linear 302 [12] 303 Models, Logistic and Ordinal Regression, and Survival Analysis. 2nd ed. Springer International Publishing; 2015. 304 https://doi.org/DOI:10.1007/978-3-319-19425-7. 305 Giacobbe DR, Giani T, Bassetti M, Marchese A, Viscoli C, Rossolini 306 [13] 307 GM. Rapid microbiological tests for bloodstream infections due to 308 multidrug resistant Gram-negative bacteria: therapeutic implications. 309 Clinical Microbiology and Infection 2020;26:713-22. https://doi.org/10.1016/j.cmi.2019.09.023. 310

311	[14]	Surviving Sepsis Campaign International Guidelines for Management of
312		Sepsis and Septic Shock 2016 Enhanced Reader.pdf n.d.
313	[15]	Lamy B, Sundqvist M, Idelevich EA. Bloodstream infections - Standard
314		and progress in pathogen diagnostics. Clinical Microbiology and
315		Infection 2020;26:142–50. https://doi.org/10.1016/j.cmi.2019.11.017.
316	[16]	Ehren K, Meißner A, Jazmati N, Wille J, Jung N, Vehreschild JJ, et al.
317		Clinical Impact of Rapid Species Identification From Positive Blood
318		Cultures With Same-day Phenotypic Antimicrobial Susceptibility Testing
319		on the Management and Outcome of Bloodstream Infections. Clin Infect
320		Dis 2020;70:1285–93. https://doi.org/10.1093/CID/CIZ406.
321	[17]	Idelevich EA, Schüle I, Grünastel B, Wüllenweber J, Peters G, Becker K.
322		Rapid identification of microorganisms from positive blood cultures by
323		MALDI-TOF mass spectrometry subsequent to very short-term
324		incubation on solid medium. Clinical Microbiology and Infection
325		2014;20:1001–6. https://doi.org/10.1111/1469-0691.12640.
326	[18]	Aguirre-Quiñonero A, Martínez-Martínez L. Non-molecular detection of
327	[]	carbapenemases in Enterobacteriaceae clinical isolates. Journal of
328		Infection and Chemotherapy 2017;23:1–11.
329		https://doi.org/10.1016/j.jiac.2016.09.008.
330	[19]	Banerjee R, Komarow L, Virk A, Rajapakse N, Schuetz AN, Dylla B, et
331	[1]]	al. Randomized Trial Evaluating Clinical Impact of RAPid IDentification
332		and Susceptibility Testing for Gram-negative Bacteremia: RAPIDS-GN.
333		Clinical Infectious Diseases 2021;73:E39–46.
334		https://doi.org/10.1093/cid/ciaa528.
335	[20]	Barenfanger J, Drake C, Kacich G. Clinical and financial benefits of
336	[20]	rapid bacterial identification and antimicrobial susceptibility testing. J
337		Clin Microbiol 1999;37:1415–8. https://doi.org/10.1128/jcm.37.5.1415-
338		1418.1999.
339	[21]	Yamada K, Kuwabara G, Imoto W, Yamairi K, Shibata W, Oshima K, et
340	[21]	al. Blood culture reports by infectious disease physicians can improve
340		
341		prognosis of bacteremia, including weekend-onset cases. International Journal of Infectious Diseases 2020;100:174–9.
342		https://doi.org/10.1016/j.ijid.2020.08.013.
343	[22]	1 6 55
344 345	[22]	Byl B, Clevenbergh P, Jacobs F, Struelens MJ, Zech F, Kentos A, et al.
343 346		Impact of Infectious Diseases Specialists and Microbiological Data on the Amponentiateness of Antimiorphial Therman for Bostoremia Clinical
340		the Appropriateness of Antimicrobial Therapy for Bacteremia. Clinical Infectious Diseases 1999;29:60–6.
348	[22]	
348 349	[23]	F Deulofeu, B Cervelló, S Capell, C Martí VM. Predictors of mortality in
		patients with bacteremia: the importance of functional status. J Am
350	[24]	Geriatr Soc n.d.;46. https://doi.org/10.1111/j.1532-5415.1998.tb01007.x.
351	[24]	Uzun Ö, Erdal Akalin H, Hayran M, Ünal S. Factors influencing
352		prognosis in bacteremia due to gram-negative organisms: Evaluation of
353		448 episodes in a turkish university hospital. Clinical Infectious Diseases
354	[25]	1992;15:866–73. https://doi.org/10.1093/clind/15.5.866.
355	[25]	Wang F der, Chen YY, Chen TL, Liu CY. Risk factors and mortality in
356		patients with nosocomial Staphylococcus aureus bacteremia. Am J Infect
357	[27]	Control 2008;36:118–22. https://doi.org/10.1016/j.ajic.2007.02.005.
358	[26]	Péan de Ponfilly G, Benmansour H, Manda V, Lecorche E, Mougari F,
359		Munier AL, et al. Impact of 24/7 loading of blood culture bottles in a new
360		automated incubator on the diagnosis of bloodstream infections.

367	Table 1: Characteristics of patients in the study population
368	

368	All patients		Real-time		Delayed information		P-
	F		informatio		v		value
		Ν		Ν		Ν	
Age, median (Q1, Q3)	67 (55, 77)	6225	66 (55, 77)	2130	67 (55, 77)	4095	0.58
Sex, N (%), female	2428 (39.00)	6225	792 (37.18)	2130	1636 (39.95)	4095	0.03
Prior hospital admissions	1966 (31.84)	6175	707 (33.47)	2112	1259 (30.73)	4096	0.05
(previous month), N (%)							
Hospital-acquired	4039 (64.88)	6225	1363 (64)	2130	2676 (65.3)	4095	0.36
bacteraemia*, N (%)							
Days of admission,	1 (0, 12)	5954	1 (0, 11)	2036	1 (0, 12)	3918	0.26
median (Q1, Q3)							
Intubation / mechanical	290 (4.68)	6203	92 (4.33)	2120	198 (4.84)	4083	0.37
ventilation, N (%)							
Urinary catheter, N (%)	1380 (22.50)	6132	471 (22.41)	2101	909 (22.55)	4031	0.91
Fever, N (%)	5433 (88.40)	6143	1868 (88.78)	2104	3565(88.26)	4039	0.55
DIC, N (%)	102 (1.68)	6054	32 (1.55)	2065	70 (1.75)	3989	0.56
ARDS, N (%)	174 (2.82)	6164	61 (2.90)	2102	113 (2.78)	4062	0.79
Catheter, N (%)	3080 (49.72)	6195	1014 (47.9)	2117	2066 (50.66)	4078	0.04
Neutropenia, N (%)	511 (8.33)	6136	186 (8.89)	2094	325 (8.04)	4042	0.26
Corticosteroids, N (%)	1385 (22.45)	6165	437 (20.73)	2108	948 (23.36)	4057	0.02
Chronic renal failure, N (%)	1558 (25.95)	6005	525 (25.51)	2058	1033 (26.17)	3947	0.58
ICU, N (%)	708 (12.57)	5632	247 (12.97)	1904	461 (12.36)	3728	0.52
Persistent bacteraemia, N	536 (8.83)	6070	161 (7.75)	2076	375 (9.39)	3994	0.03
(%)							
C-Reactive Protein,	13.53	5728	12.91 (6.8,	1954	13.93 (7.07,	3774	0.06
median (Q1, Q3)	(6.99,22.15)		21.9)		22.32)		
Serum Sodium, median	138 (135, 140)	6068	138 (135, 140)	2073	138 (135, 140)	3995	0.12
(Q1, Q3)							
Serum Potassium, median	3.9 (3.6, 4.4)	5959	3.9 (3.6, 4.4)	2046	3.9 (3.6, 4.4)	3913	0.72
(Q1, Q3)							
Creatinine, median (Q1,	1.07 (0.76, 1.71)	6071	1.05 (0.75,	3997	1.08 (0.77,	2074	0.22
Q3)			1.67)		1.73)		
Shock, N (%)	1006 (16.27)	6182	334 (15.81)	2112	672 (16.51)	4070	0.48
Drainage of source, N (%)	1576 (26.74)	5893	564 (27.93)	2019	1012 (26.12)	3874	0.14
Metastasis, N (%)	187 (3.14)	5950	62 (3.08)	2015	125 (3.18)	3935	0.84
Surgery, N (%)	1118 (18.31)	6107	375 (17.97)	2087	743 (18.48)	4020	0.62
Medical manipulation, N	1148 (18.85)	6088	402 (19.33)	2080	746 (18.61)	4008	0.50
(%)							
Appropriate empirical	4661 (77.49)	6015	1591 (77.57)	2051	3070 (77.44)	3964	0.91
antibiotic treatment, N							
(%)							0.1.4
Source of infection	10(1(00.01)	(225	(10 (21 02)	0100		4005	0.14
Unknown	1264 (20.31)	6225	448 (21.03)	2130	816 (19.93)	4095	
Abdominal	1239 (19.86)	6225	446 (20.94)	2130	793 (19.36)	4095	
Catheter	1156 (18.57)	6225	362 (17)	2130	794 (19.38)	4095	
Gynaecological	49 (0.79)	6225	13 (0.75)	2130	36 (0.87)	4095	
Urinary tract	1486 (23.87)	6225	503 (23.62)	2130	983 (24)	4095	

Iatrogenic	86 (1.38)	6225	26 (1.22)	2130	60 (1.46)	4095	
Cutaneous	223 (3.58)	6225	73 (3.43)	2130	150 (3.66)	4095	
Pulmonary	389 (6.24)	6225	149 (6.99)	2130	240 (5.86)	4095	
Others	326 (5.24)	6225	110 (5.16)	2130	223 (5.44)	4095	
Comorbidities							
HIV	174 (2.80)	6225	55 (2.58)	2130	119 (2.91)	4095	0.46
Cardiovascular	2549 (40.95)	6225	826 (38.8)	2130	1723 (42.10)	4095	0.01
disease							
Abdominal disease	1111 (17.85)	6225	398 (18.7)	2130	713 (17.4)	4095	0.21
Gastrointestinal	293 (4.71)	6225	98 (4.60)	2130	195 (4.76)	4095	0.78
disease							
Cutaneous disease	39 (0.63)	6225	11 (5.16)	2130	28 (6.84)	4095	0.43
Genitourinary disease	1184 (19.02)	6225	386 (18.12)	2130	798 (19.5)	4095	0.20
Diabetes	1361 (21.86)	6225	449 (21.1)	2130	912 (22.3)	4095	0.28
Respiratory disease	561 (9.01)	6225	220 (10.33)	2130	341 (8.33)	4095	0.09
Haematological	2750 (44.21)	6225	980 (46)	2130	1770 (43.22)	4095	0.04
malignancy	× /		~ /		× /		
Solid organ transplant	865 (13.89)	6225	298 (14)	2130	567 (13.8)	4095	0.88
Autoimmune disease	115 (1.85)	6225	39 (1.83)	2130	76 (1.85)	4095	0.95
Osteoarticular disease	296 (4.76)	6225	108 (5.1)	2130	188 (4.59)	4095	0.40
Other conditions	554 (8.90)	6225	204 (9.6)	2130	350 (8.55)	4095	

369 DIC: Disseminated intravascular coagulation; ARDS: acute respiratory distress syndrome.

370 Persistent bacteraemia was defined as the presence of positive blood cultures after initiation

371 of active antibiotic therapy. * Includes hospital-acquired infection and day-hospital.

372

Table 2: Univariate analysis between information availability of blood culture positivityand 30-day mortality 377 378

Bacteraemia aetiology	Dead/Alive	Real-time information Dead/Alive	Delayed Information Dead/Alive	OR	(95% CI)	P-value
All	625/5600	193/1937	432/3663	1.18	(0.99, 1.42)	0.06
Enterobacteriaceae	262/2867	58/957	204/1910	1.76	(1.30, 2.38)	0.00
Pseudomonas	65/466	21/156	44/310	1.05	(0.61, 1.83)	0.85
aeruginosa					(0.55.4.0.0)	
Staphylococcus aureus	72/430	21/137	51/293	1.14	(0.66, 1.96)	0.65
Enterococcus	94/625	32/231	62/394	1.14	(0.72, 1.79)	0.58
(E.faecalis and						
E.faecium)						
379						
380						
381						
382						
383						
384						

386 387 Table 3: Univariate analysis between characteristics of patients with bloodstream infections by *Enterobacteriaceae* and 30-day mortality

	N	(Alive/death)	OR	(95% CI)	P-value
Delayed information	3,129	(2867/262)	1.76	(1.30, 2.38)	0.00
Age (years) q5	3,129	(2867/262)	1.23	(1.13, 1.40)	0.00
Sex (female)	3,129	(2867/262)	0.93	(0.72, 1.21)	0.61
Prior hospital admissions (previous month)	3,114	(2853/261)	1.28	(0.98, 1.66)	0.07
Hospital-acquired bacteraemia	3,129	(2867/262)	1.72	(1.31, 2.26)	0.00
Days of admission	2,996	(2741/255)	0.97	(0.95, 0.98)	0.00
Intubation or mechanical ventilation	3,124	(2862/262)	1.78	(0.96, 3.33)	0.07
Urinary catheter	3,090	(2831/259)	0.95	(0.69, 1.31)	0.77
Fever	3,096	(2837/259)	0.26	(0.19, 0.35)	0.00
Catheter	3,114	(2854/260)	1.06	(0.81, 1.36)	0.69
Neutropenia	3,087	(2828/259)	2.92	(1.96, 4.32)	0.00
Corticosteroids	3,103	(2842/261)	1.60	(1.20, 2.13)	0.00
Chronic renal failure	3,030	(2780/250)	3.23	(2.49, 4.21)	0.00
UCI	2,829	(2595/234)	1.58	(1.07, 2.34)	0.02
Persistent bacteraemia	3,053	(2803/250)	2.40	(1.46, 3.95)	0.00
PCR	2,922	(2681/241)	1.02	(1.01, 1.04)	0.00
Serum sodium	3,058	(2808/250)	0.98	(0.96, 1.01)	0.27
Serum potassium	3,006	(2764/242)	1.43	(1.19, 1.72)	0.00
Creatinine	3,057	(2806/251)	1.23	(1.13, 1.33)	0.00
Shock	3,113	(2855/258)	6.01	(4.61, 7.83)	0.00
Bilirrubin	2,398	(2182/216	1.07	(1.04, 1.09)	0.00
DIC	3,044	(2787/257)	8.60	(4.88, 15.15)	0.00
ARDS	3,103	(2843/260)	11.73	(7.20, 19.11)	0.00
Drainage of source	2,971	(2728/243)	0.38	(0.26, 0.57)	0.00
Metastasis	2,982	(2739/243)	2.03	(0.78, 5.32)	0.00
Surgery	3,068	(2811/257)	0.37	(0.23, 0.60)	0.00
Medical manipulation	3,058	(2801/257)	0.64	(0.44, 0.93)	0.02
Appropriate empirical antibiotic treatment	3,030	(2809/221)	0.84	(0.58, 1.21)	0.35
Source of infection					
Urinary tract (reference)	1,270	(1211/59)			
Abdominal	847	(780/67)	2.35	(1.67, 3.31)	0.00
Catheter	314	(297/17)	1.17	(0.67, 2.04)	0.57
Gynecological	17	(17/0)	1		
Unknown	468	(402/66)	3.37	(2.33, 4.87)	0.00
Iatrogenic	54	(54/0)	1		
Cutaneous	61	(53/8)	3.10	(1.41, 6.81)	0.01
Pulmonary	77	(53/24)	9.29	(5.37, 16.09)	0.00

Others	21	(20/1)	1.03	(0.14, 7.78)	0.98
Comorbidities					
HIV	3,129	(2867/262)	1.08	(0.49, 2.37)	0.85
Cardiovascular disease	3,129	(2867/262)	0.74	(0.57, 0.97)	0.03
Abdominal disease	3,129	(2867/262)	1.75	(1.31, 2.33)	0.00
Gastrointestinal disease	3,129	(2867/262)	0.78	(0.39, 1.54)	0.47
Cutaneous disease	3,129	(2867/262)	1		
Genitourinary disease	3,129	(2867/262)	0.89	(0.65, 1.23)	0.48
Diabetes	3,129	(2867/262)	0.85	(0.62, 1.16)	0.31
Respiratory disease	3,129	(2867/262)	1.30	(0.86, 1.96)	0.22
Haematological malignancy	3,129	(2867/262)	2.50	(1.92, 3.26)	0.00
Transplanted	3,129	(2867/262)	0.50	(0.31, 0.82)	0.01
Autoimmune disease	3,129	(2867/262)	0.22	(0.03, 1.57)	0.13
Neurological disease	3,129	(2867/262)	1.70	(1.08, 2.66)	0.02
Osteoarticular disease	3,129	(2867/262)	0.33	(0.12, 0.91)	0.03
Other Conditions	3,129	(2867/262)	1.38	(0.87, 2.20)	0.17
Microbiological features					
Antibiotic resistance					
No resistance (reference)	2,447	(2234/213)			
ESBL	500	(462/38)	0.86	(0.60, 1.24)	0.42
Cefamicinase/AmpC	103	(98/5)	0.54	(0.22, 1.33)	0.18
Multirresistant	79	(73/6)	0.86	(0.37, 2.01)	0.73
Time to blood culture positivity	3,129	(2867/262)	0.99	(0.97, 1.00)	0.11
(hours)					

415 Table 4: Multivariate analysis of informative predictors of 30-day mortality in patients

416 with bacteraemia caused by *Enterobacteriaceae*.

			418
	OR (N 2 (00)	(95% CI)	P-va4u0 420
- / / /	(N = 2,609)		40.1
Delayed information	2.22	(1.50, 3.30)	< 0.001
Shock	5.20	(3.61, 7.51)	<0.0013
Disseminated intravascular coagulation	4.08	(1.88, 8.83)	< 0.001
Source of infection (reference:			
UTI)			425
Abdominal	4.17	(2.70, 6.47)	< 0.001
Catheter	2.44	(1.22, 4.90)	0.0426
Gynecological	1		
Unknown	3.83	(2.40, 6.11)	<0.0027
Iatrogenic	1		
Cutaneous	4.04	(1.43, 11.42)	0.008^{8}
Pulmonary	6.85	(3.12, 15.00)	< 0.001
Other sources	1		$< 0.0 \vec{1} \vec{1}_{0}$
Drainage of source of infection	0.24	(0.14, 0.39)	< 0.001
Persistent bacteraemia	2.73	(1.41, 5.30)	0.003_{2}
Potassium	1.37	(1.10, 1.71)	0.005
Acute renal failure	1.92	(1.33, 2.77)	<0.004334
Haematological malignancy	2.44	(1.75, 3.42)	< 0.001
Age (5 quantiles), years	1.28	(1.13, 1.45)	<0.0 03 6
			437

439 OR: odds ratio; CI: confidence interval: C-statistic: 0.84; UTI: urinary tract
440 infection

443	
444	SUPPLEMENTARY MATERIAL
445	
446	
447	
448	Information delay of significant bloodstream isolates and patient mortality: A
449	retrospective analysis of 6,225 adult patients with bloodstream infection
450	
451	Berta Fidalgo ¹ , Laura Morata ^{3,4} , Celia Cardozo ^{3,4} , Ana del Río ^{3,4} , Javier Morales ¹ , Mariana
452	Fernández-Pittol ¹ , José Antonio Martínez ^{3,4,5} , Josep Mensa ^{3,4} , Jordi Vila ^{1,2,5} , Alex Soriano
453	^{3,4,5} , Climent Casals-Pascual ^{1,2,5}
454	

- **sFigure 1.** Time to positivity (in hours) of the most frequently isolated microorganisms
- 457 using an automated blood culture system. Staph: includes *S. aureus* and other Staphylococci;
- 458 GNB: Gram-negative bacteria (including *E.coli*); Strep: includes all significant bacteraemia
- 459 caused by Streptococci. Vertical dotted lines represent: 12h and 24h.

465 sFigure2. Explanatory model for the introduction of clinical features significantly associated
466 with 30-day mortality. C-statistic (Harrel's C) is equivalent to the area under the curve for the
467 model. AIC: Akaike's information criterion; BIC: Bayesian information criterion.

476	sTable 1. Microorganisms causing BSI in the population described.
477	

Microorganisms	All patients N/Total	Real-time information N/Total	Delayed information N/Total	P- value
Escherichia coli	1808/6225	593/2130	1215/4095	0.13
<i>Klebsiella</i> spp	849/6225	260/2130	589/3611	0.02
Staphylococcus au	reus 487/6225	158/2130	344/3611	0.18
Enterococcus spp	719/6225	263/2130	456/3611	0.16
Pseudomonas aeru	ginosa 531/6225	177/2130	354/3611	0.65
Other	609/6225	201/2130	408/3611	0.51
Enterobacteriaceae				
Other Gram Negat	tive 156/6225	74/2130	82/3611	0.00
bacteria (no				
enterobacteriaceae				
Other Gram Positi	ive 1126/6225	410/2130	716/3611	0.09
cocci (no Staphyloc	coccus			
aureus, no Enterod	coccus			
spp)				
Candida spp	212/6225	64/2130	148/3611	0.21
Polymicrobial*	530/6225	159/2130	371/3611	0.03
•				
478	*Polymicrobial bacteraemia: E.	.coli +Enterococcus spp (5	2/530; 9.8%); E.coli+	
	<i>Klebsiella spp</i> (47/530; 8,9%);			
	other (391/530; 73,7%).	11	•• ` ' ''	
101				

483	sTable 2. Time-to-positivity and clinical outcome.
484	

Bacteraemia aetiology	N	*Time to positivity (all episodes) median (q1,q3)	N	Time to positivity (death episodes) median (q1,q3)	N	Time to positivity (alive episodes) median (q1,q3)	§P- value
All	6225	11.3(8.9, 16)	625	11.4 (8.3, 16.7)	5600	11.3 (9, 15.9)	0.27
Enterobacteriaceae	3129	9.8 (8.1, 11.6)	262	8.9 (6.9, 10.8)	2867	9.9 (8.2, 11.7)	0.00
Escherichia coli	1808	9.6 (8.1, 11.2)	148	8.4 (6.2, 10.2)	1660	9.7 (8.2, 11.2)	0.00
Klebsiella	781	9.7 (7.7, 11.5)	73	8.8 (6.9, 10.9)	708	9.8 (7.8, 11.6)	0.06
pneumoniae complex							
Pseudomonas	531	14.8 (11.2,	65	14.9 (12.3,	466	14.7 (11, 17.9)	0.75
aeruginosa		17.8)		17.3)			
Staphylococcus	502	12.4 (9.5,	72	11.7 (8.2, 14.8)	430	12.5 (9.6, 15.9)	0.23
aureus		15.8)					
Enterococcus spp	719	12.1 (9.4,	94	12.5 (10.1,	625	12.1 (9.3, 14.8)	0.37
(E.faecalis and		14.9)		15.2)			
E.faecium)							

485 *All blood cultures where incubated for 120 hours or until positivity. Time to positivity was

486 calculated from the time elapsed between the blood culture bottle was introduced into the

487 automatic system until the first bottle became positive. § P values were calculated using the
488 Mann-Whitney test.

490 sTable 3: Multivariate analysis of informative predictors of 14-day mortality in patients

491 with bacteraemia caused by *Enterobacteriaceae*.

			493
	OR	(95% CI)	P-value
	(N = 2,609)		495
Delayed information	2.05	(1.27, 3.32)	0.00
Shock	6.84	(4.40, 10.63)	0. QQ 7
Disseminated intravascular	4.29	(1.89, 9.72)	0.00
coagulation			
Source of infection (reference:			500
UTI)			501
Abdominal	3.59	(2.16, 5.99)	0.00
Catheter	0.81	(0.23, 2.87)	0.3403
Gynecological	1		
Unknown	2.84	(1.64, 4.90)	0. 50 5
Iatrogenic	1		
Cutaneous	2.24	(0.52, 8.87)	0.29^{7}
Pulmonary	4.75	(1.95, 11.57)	0.00
Other sources	1		509 510
Drainage of source of infection	0.11	(0.05, 0.24)	0.00
Persistent bacteraemia	1.14	(0.40, 3.34)	0.802
Potassium	1.33	(1.03, 1.71)	0.03
Acute renal failure	2.00	(1.28, 3.12)	0.604
Haematological malignancy	2.58	(1.70, 3.92)	0.00
Age (5 quantiles), years	1.38	(1.18, 1.62)	0. 60 6
			517

- 518 OR: odds ratio; CI: confidence interval; UTI: urinary tract
- 519 infection
- 520 521

522 sTable 4: Multivariate analysis of informative predictors of 7-day mortality in patients

523 with bacteraemia caused by *Enterobacteriaceae*.

	OR	(95% CI)	P-va
	(N = 2,609)		526
Delayed information	1.92	(1.09, 3.40)	0.02
Shock	11.28	(6.53, 19.47)	0.00528
Disseminated intravascular coagulation	5.13	(2.20, 11.98)	0.00
Source of infection (reference: UTI)			531
Abdominal	307	(1.68, 5.63)	0.00
Catheter	0.90	(0.19, 4.20)	0.90
Gynecological	1		571
Unknown	2.94	(1.55, 5.57)	0.00
Iatrogenic	1		576
Cutaneous	1.50	(0.24, 9.40)	0.67
Pulmonary	2.78	(0.94, 8.22)	0.07
Other sources	1		צכנ
Drainage of source of infection	0.11	(0.05, 0.28)	0.00
Persistent bacteraemia	0.85	(0.23,3.22)	0.82 341
Potassium	1.51	(1.13, 2.02)	0.01
Acute renal failure	2.03	(1.18, 3.48)	0.00 343
Haematological malignancy	2.16	(1.32, 3.53)	0.00
Age (5 quantiles), years	1.44	(1.19, 1.74)	0.00 ³⁴³

550 OR: odds ratio; CI: confidence interval; UTI: urinary tract infection

sTable 5: Evolution of mortality (Enterobacteriaceae) from 2013 to 2019 553

		2013 (%)	2014 (%)	2015 (%)	2016 (%)	2017 (%)	2018 (%)	2019 (%)
Real time	Death	6/112	6/111	5/93	15/200	11/168	9/167	6/164
information		(5.4)	(5.4)	(5.4)	(7.5)	(6.5)	(5.4)	(3.7)
	Alive	106/112	105/111	88/93	185/200	157/168	158/167	158/164
		(94.6)	(94.5)	(94.6)	(92.5)	(93.5)	(94.6)	(96.3)
Delayed	Death	37/333	37/351	33/355	25/314	21/268	24/232	27/261
information		(11.1)	(10.5)	(9.2)	(8)	(7.8)	(10.3)	(10.3)
	Alive	296/333	314/351	256/282	289/314	247/268	208/232	234/261
		(88.9)	(89.5)	(90.8)	(92)	(92.2)	(89.7)	(89.7)
Overall		43/445	43/462	38/448	40/514	32/436	33/399	33/425
mortality		(9.7)	(9.3)	(8.5)	(7.8)	(7.3)	(8.3)	(7.8)