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Abstract
The present work is an attempt to introduce a novel axiomatic formulation of Quantum Field

Theory proposed by Kevin Costello in [Cos11]. Far from being exhaustive, we aim to present the main
results and constructions, followed by calculations in this formalism that match the physics literature.
We try to give a pedagogical introduction, providing all the definitions that an undergraduate student
would need to understand the key concepts. We start by defining the simplest kinds of quantum field
theories and how to make sense of divergent quantities. As we move forward, we try to generalize these
definitions to more and more general classes of theories. The endpoint of this work is to use Costello’s
machinery to define the Yang-Mills theory on R4 and prove that it is perturbatively renormalizable.
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Chapter 1

Introduction

Quantum Field Theory not only has been extremely successful as a framework to describe particle
physics, but also had profound influence in the development of mathematics. However, there is still
no consensus, at least in the mathematics community, as to what a quantum field theory actually is.
Many attempts to axiomatize QFT arise from the Hamiltonian formulation of field theory, such as
the Segal axioms [Seg99] or the Haag-Kastler axioms [Haa92]. In this work, we aim to present Kevin
Costello’s novel approach to formalizing perturbative quantum field theory, based on the Lagrangian
formulation of field theory and the Wilsonian philosophy of effective field theory. The goal of this text
is to prove in this framework that the Yang-Mills theory with semi-simple Lie algebra g is perturbative
renormalizable in R4.

In physics, a classical (field) theory with space of fields ℰ is given by an action functional 𝑆 : ℰ → R.
All one wishes to know about that particular theory is encoded in the action 𝑆. For instance, the
equations of motion are just a submanifold 𝐸𝐿(𝑆) := {𝜑 ∈ ℰ

⃒⃒
𝑑𝑆(𝜑) = 0}. Some requirements are

imposed on the action, such as it has to be local, i.e. the integral of a Lagrangian (density). It is also
imposed that is invariant under the action of some Lie group 𝐺, which is regarded as the symmetry
group of the theory. A quantization 𝑆𝑞 of a classical theory 𝑆𝑐𝑙 is just another theory involving a
parameter ℏ, such that lim

ℏ→0
𝑆𝑞 = 𝑆𝑐𝑙. We will work in the perturbative regime, which means that

we are working with quantizations which are infinitesimal deformations of the classical theory. This
translates into treating ℏ as a formal parameter. The action 𝑆𝑞 will take values in R[[ℏ]], where R[[ℏ]]
denotes the ring of formal power series in ℏ. It is defined as 𝐼−adic completion of the ring R[ℏ] with
respect to the ideal (ℏ), i.e. R[[ℏ]] = lim

←
R[ℏ]/(ℏ)𝑛.

The idea behind effective field theory is to think that we are limited by our detectors to measure
phenomena that occur at energies below some energy Λ. All the phenomena that occur at energies
equal or lower than Λ can be described by a scale Λ effective action 𝑆𝑒𝑓𝑓 [Λ]. If we want to restrict
ourselves to even lower energies Λ′ < Λ, we can infer a scale Λ′ effective action from the knowledge of
the scale Λ effective action. Given a process that occurs at energies lower than Λ′ we should obtain
the same predictions by doing calculations either with 𝑆𝑒𝑓𝑓 [Λ] or with 𝑆𝑒𝑓𝑓 [Λ′]. This will guide us
to the renormalization group equation, which relates 𝑆𝑒𝑓𝑓 [Λ] with 𝑆𝑒𝑓𝑓 [Λ′] for all Λ′ < Λ. More
specifically, observables can be thought of as the possible measurements one can make at a point 𝑥.
In the perturbative regime, they are modelled as formal series on the fields and their derivatives at a
point 𝑥. They form a rich structure known as a factorization algebra, which is the main topic of the
sequels of this work [CG16] and [CG17].

The Feynman sum over-histories approach, tells us that given a quantum action 𝑆𝑞, the possible
states our system can be in are superpositions of the fields weighted by 𝑒𝑖𝑆𝑞/ℏ. Moreover, one can
only measure expectation values of any observable, so 𝑒𝑖𝑆/ℏ may be thought of as some complex
probability measure. The fundamental quantities one wants to compute are correlation functions of
observables 𝑂𝑖, ⟨𝑂1 . . . 𝑂𝑛⟩ =

∫︀
𝑒𝑖𝑆/ℏ𝑂1 . . . 𝑂𝑛𝒟𝜑. We encounter the problem that there is no (non-

zero) Lebesgue measure 𝒟𝜑 in an infinite-dimensional vector space. This is where the effective field
philosophy comes into play. By restricting to phenomena below certain energies Λ, the integral above
becomes finite-dimensional and we can therefore compute the expectation values as desired. Take for
example the scalar field theory over a compact manifold 𝑀 with space of fields 𝐶∞(𝑀) and action
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2 CHAPTER 1. INTRODUCTION

𝑆(𝜑) = −1
2
∫︀

𝜑(𝐷 + 𝑚2)𝜑 + 𝐼[𝜑], where 𝐷 denote the positive-definite Laplacian, 𝜑 ∈ 𝐶∞(𝑀) and
𝐼[𝜑] is a function of the fields which is at least cubic in 𝜑. Restricting ourselves to energies below
Λ, the action functional describing our theory will be 𝑆𝑒𝑓𝑓 [Λ](𝜑), and the correlation functions will
read ⟨𝑂1 . . . 𝑂𝑛⟩ =

∫︀
𝐶∞(𝑀)≤Λ

𝑒𝑖𝑆𝑒𝑓𝑓 /ℏ𝑂1 . . . 𝑂𝑛𝒟𝜑, where 𝐶∞(𝑀)≤Λ denotes the subspace of 𝐶∞(𝑀)
of fields which are sums of eigenfunctions of the Laplacian whose eigenvalues are less than or equal
to Λ. The requirement that we can describe a theory of energy Λ′ < Λ either with the 𝑆𝑒𝑓𝑓 [Λ] or the
𝑆𝑒𝑓𝑓 [Λ′] effective action, translates into

⟨𝑂1 . . . 𝑂𝑛⟩ =
∫︁

𝐶∞(𝑀)≤Λ

𝑒𝑖𝑆𝑒𝑓𝑓 [Λ]/ℏ𝑂1 . . . 𝑂𝑛𝒟𝜑 =
∫︁

𝐶∞(𝑀)≤Λ′
𝑒𝑖𝑆𝑒𝑓𝑓 [Λ′]/ℏ𝑂1 . . . 𝑂𝑛𝒟𝜑,

which allows us to relate both effective actions through the renormalization group equation:

𝑆𝑒𝑓𝑓 [Λ′](𝑎) =
∫︁

𝜑∈𝐶∞(𝑀)(Λ′,Λ]

𝑒𝑖𝑆𝑒𝑓𝑓 [Λ](𝜑+𝑎)/ℏ.

The infamous infinities in QFT arise when trying to describe physics at every scale, that is, trying
to define the 𝑆𝑒𝑓𝑓 [∞] scale effective action. With this interpretation, infinities are actually to be
expected, since there is no reason to believe we could describe particles with infinite energy.

We will also require that the effective actions 𝑆𝑒𝑓𝑓 [Λ] become more and more local as Λ → ∞,
such that in the limit, interactions occur at points.

The definition of QFT given in this work tries to be as general as possible, since our only assump-
tions are:

1. The action principle: Physics at each scale is described by a Lagrangian, according to Feynman
sum-over-histories approach

2. Locality

In Chapter 2 we will give a rigorous introduction to the ideas presented here, and we will prove
that using this definition, there are as many QFT as there are Lagrangians. We will make this
statement more precise. Throughout this project, we will work with a length scale cut-off based on
the heat kernel, instead of the more intuitive energy picture given here. This is because locality is
much simpler in the length scale picture, where the length 𝐿 effective action 𝑆𝑒𝑓𝑓 [𝐿] describes all the
physics that occur at scales greater or equal than 𝐿. We will also work in Euclidean (Riemannian)
signature, instead of the more physical Lorentzian signature, for the sake of simplicity. This means
that our integrals will be ordinary decaying exponentials instead of oscillatory complex exponentials
𝑒𝑖𝑆/ℏ by performing what is known as a Wick rotation 𝑆 → −𝑖𝑆. This gives quantum field theories an
interpretation as statistical field theories, but we will not go into detail, see [Cos11, Chapter 1.2] for
further discussion. One would need to analytically continue the results we will obtain to the Lorentzian
signature.

In Chapter 3 we will see that for theories defined on R𝑛 there is an action of R>0 on the space of
theories, called the local renormalization group flow. This action allows us to talk about (perturbative)
renormalizability, which is a very rich concept, leading to concepts such as universality, the 𝛽-function,
asymptotic freedom etc. We don’t have the time to introduce all of this, so for us, renormalizable
theories will just be a natural way of picking a finite-dimensional subspace of “well-behaved” theories
out of the infinite-dimensional space of possible theories.

In Chapter 4 we will see how to deal with theories that possess gauge symmetry. We will present
the Batalin-Vilkovisky formalism to quantize gauge theories and sketch the principal results on this
behalf. We will see that given a classical theory described by a classical action 𝑆𝑐𝑙 there may be
obstructions to quantizing this theory, which will lie in certain cohomology groups. This will turn the
problem of the existence of quantization of a given classical theory into an obstruction-deformation
problem.

Finally, in Chapter 5, we will use all the machinery we have constructed to prove that Yang-Mills
theory defined on R4 is perturbative renormalizable. We will sketch Costello’s proof which relies only
on the calculation of certain cohomology groups, without any Feynman graph manipulations. As
Costello points out, the core of the proof relies on the fortuitous vanishing of 𝐻5(su(3))Out(su(3)).



Chapter 2

Quantum Field Theory generalities

A Quantum Field Theory, as presented above consists of two elements: a free theory and an interaction,
which deforms the free theory. In order to model a quantum field theory we will make extensive use
of the following definitions:

Definition 2.0.1 (Fibre bundle). Let 𝜋 : 𝐸 → 𝑀 be a smooth map from a smooth manifold 𝐸 to
a smooth manifold 𝑀 . We say that (𝐸, 𝜋) is a fibre bundle with typical fibre 𝐹 over 𝑀 if there is a
covering of 𝑀 by open sets 𝑈𝑖 and diffeomorphisms 𝜑𝑖 : 𝜋−1(𝑈𝑖) → 𝑈𝑖 ×𝐹 , such that 𝜋 : 𝜋−1(𝑈𝑖) → 𝑈𝑖

is the composition of 𝜑𝑖 with the projection onto the first factor 𝑈𝑖 in 𝑈𝑖 × 𝐹 . The space 𝐸 is called
the total space and 𝑀 is called the base.

Definition 2.0.2 (Vector bundle). A fibre bundle 𝜋 : 𝐸 → 𝑀 is a vector bundle if its typical fibre is
a vector space 𝐹 , and if the diffeomorphisms 𝜑𝑖 may be chosen in such a way that the diffeomorphisms
𝜑𝑗 ∘ 𝜑−1

𝑖 : {𝑥} × 𝐹 → {𝑥} × 𝐹 are invertible linear maps of 𝐹 for all 𝑥 ∈ 𝑈𝑖 ∩ 𝑈𝑗 .

A section 𝑠 of a vector bundle 𝐸 over 𝑀 is a map 𝑠 : 𝑀 → 𝐸, such that 𝜋 ∘ 𝑠 = id𝑀 . The space
of smooth sections is denoted Γ(𝑀, 𝐸).

Definition 2.0.3 (Metric). A metric on a vector bundle 𝐸 → 𝑀 is a smooth family of positive definite
inner products on the fibres of 𝐸. This means that for every 𝑥 ∈ 𝑀 , there is a positive definite inner
product on the fibre 𝐸𝑥 over 𝑥, ⟨−, −⟩ : 𝐸𝑥 ×𝐸𝑥 → R, such that for each smooth section 𝑀 ⊃ 𝑈

𝑠−→ 𝐸,
the map 𝑥 ↦→ ⟨𝑠(𝑥), 𝑠(𝑥)⟩ ∈ R is a smooth function on 𝑈 .

The free theory defines the particle(s) we are describing, together with its evolution in time when
there is no interaction. We model it as a pair (𝐵, 𝑆𝑞𝑢𝑎𝑑), where 𝐵 is the space of fields, which we
regard as the space of sections of some vector bundle 𝐵 = Γ(𝑀, 𝐸) over a manifold 𝑀 , and 𝑆𝑞𝑢𝑎𝑑 is an
action functional which is quadratic in the fields. The quantization of a free theory is a well-defined
concept, and it can be made totally rigorous using the tools of functional analysis developed in the
20th century. In this theory, fields evolve under linear partial differential equations. As examples of
free theories, consider

1. The scalar field theory on a Riemannian manifold (𝑀, 𝑔), with space of fields 𝐵 = Γ(𝑀, 𝑀 ×R) =
𝐶∞(𝑀) and action 𝑆𝑞𝑢𝑎𝑑 = −

∫︀
𝑀

1
2𝜑(𝐷 + 𝑚2)𝜑, where 𝑚 > 0 is the mass and 𝐷 the positive-

definite Laplacian for the metric 𝑔.

2. Chern-Simons theory over an oriented 3−manifold 𝑀 , with Lie algebra g, space of fields Ω1(𝑀)⊗
g and quadratic action 𝑆𝑞𝑢𝑎𝑑 =

∫︀
𝑀 ⟨𝐴, 𝑑𝐴⟩g, where ⟨−, −⟩g is some invariant pairing on g.

3. Yang-Mills theory over a 4−manifold 𝑀 , with Lie algebra g, space of fields Ω1(𝑀)⊗g and action
𝑆𝑞𝑢𝑎𝑑 =

∫︀
𝑀 ⟨𝑑𝐴, ⋆𝑑𝐴⟩g, where ⟨−, −⟩g is some invariant pairing on g.

The propagator of a theory is the integral kernel for the operator of 𝑆𝑞𝑢𝑎𝑑, so the kernel of (𝐷 +
𝑚2)−1 in the case of scalar field theory, and it allows us to describe completely the behaviour of the
fields in the free theory. In section 2.3 we will see how it has the interpretation as the probability
amplitude of a particle which travels from two spacetime points.
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4 CHAPTER 2. QUANTUM FIELD THEORY GENERALITIES

The interaction is what allows particles to affect each other (and even themself). With interactions,
one can model scattering of particles, particle decays etc. It is where the complications of QFT arise,
as it is not as well defined as the free theory. Since we will only work with interactions viewed as
deformations of the free theory, we model interactions as formal series on the space of fields 𝐵, that
is, interactions will be elements of the completed symmetric algebra over the dual space ̂︂Sym

*
(𝐵∨) =∏︀

𝑛≥0 Hom(𝐵⊗𝑛,K)𝑆𝑛 . Elements of this algebra have as their Taylor components, continuous, 𝑆𝑛-
invariant functionals 𝐵⊗𝑛 → K, where 𝑆𝑛 denotes the symmetric group with 𝑛 elements.

Feynman graphs appear as a combinatorial tool for evaluating integrals. In particular, they ap-
pear because in QFT, the Feynman sum-over-histories approach, tells us that in order to compute
expectation values of an observable, one must use the measure given by the exponential of the action:
⟨𝒪⟩ ∼

∫︀
exp(𝑖𝑆/ℏ)𝒪. Computing this integral is equivalent, in finite dimensions, to summing over

Feynman graphs. In infinite dimensions, we will see that the integral is ill-defined, but there is still
an expansion into Feynman graphs, which will allow us to do computations.

2.1 Quantum Field Theory in finite dimensions
The famous problems that make it difficult to properly define QFTs arise only when dealing with spaces
of fields of infinite dimension. Unluckily, every interesting field theory has an infinite-dimensional space
of fields. Despite not being physically important, we will first define quantum field theories and all
the objects we will need in finite dimensions, where everything is well defined. We will present the
partition function, and how to calculate expectation values with combinatoric tricks and Feynman
graphs expansions. We will then try to generalize this to the simplest quantum field theory: the scalar
field theory on a compact manifold, where we will learn how to deal with divergent quantities and how
to make sense of them. Finally, we will define QFT in the greatest generality we will need to properly
define the Yang-Mills theory on R4.

The partition function is an essential quantity in QFT. The probabilistic nature of quantum me-
chanics introduces the need to compute expectation values of the quantities we want to know, as that
is all we can expect to measure. All these expected values, computed through the Feynman sum-over
histories approach, need to be normalized by the partition function 𝑍 :=

∫︀
exp (𝑖𝑆/ℏ), for the answer

to have a probabilistic interpretation. This means that for any observable, we will define its expected
value as 𝒪,

⟨𝒪⟩ := 1
𝑍

∫︁
exp (𝑖𝑆/ℏ) 𝒪.

In finite dimensions one has the following data: A finite-dimensional vector space 𝑈 over R,
a negative-definite quadratic form Φ on 𝑈 and a function 𝐼 ∈ ̂︂Sym

*
(𝑈∨), such that the action is

𝑆(x) = 1
2Φ(x, x) + 𝐼(x), where x ∈ 𝑈 .

In this setting, the partition function reads:

∫︁
x∈𝑈

exp (Φ(x, x)/ℏ + 𝐼(x)/ℏ) . (2.1)

We will use the convention that the “measure”
∫︀

𝑈 exp Φ(x, x)/ℏ is normalised to 1. If 𝑈 = R𝑛,
x = (𝑥1, . . . , 𝑥𝑛) and Φ(x, x) = −1

2
∑︀

𝑖,𝑗 𝑥𝑖𝐴𝑖𝑗𝑥𝑗 , where 𝐴𝑖𝑗 is a positive definite symmetric matrix,
then this means we are using the measure √︃

det 𝐴

(2𝜋)𝑛
𝑑𝑛x.

One typical approach when calculating the partition function is to expand the exponential exp 𝐼(x)/ℏ
as its power series so that it can be computed as an infinite sum

𝑍 =
∞∑︁

𝑛=0

∫︁
exp

(︂ 1
2ℏΦ(x, x)

)︂
𝐼𝑛(x)/ℏ𝑛.

Therefore, we will also be interested in computing integrals of the form,
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∫︁
𝑈

exp
(︂

−1
2Φ(x, x)

)︂
𝐹 (x),

where 𝐹 (x) ∈ ̂︂Sym
*
(𝑈∨).

In the following section, we will see how to calculate these integrals using combinatorial methods
through Feynman expansion.

2.1.1 Feynman Graphs

Feynman graphs are a nice graphical way of encoding integrals. They also have a natural interpretation
as the trajectories taken by interacting particles. The idea is to define a graph with vertices, tails
and edges, and attach fields to the tails, interactions to the vertices and propagators to the edges.
Therefore, each Feynman graph will be encoding a way of contracting these three objects. The two
main results of this section are that we can express the partition function as an infinite sum of Feynman
graphs and that these Feynman graphs can be computed through combinatorial differentiation. Let’s
start by defining the type of graphs we will be using.

Definition 2.1.1 (Stable1 graph). A stable graph is a graph 𝛾, possibly with external edges (or tails);
and for each vertex 𝑣 of 𝛾 and element 𝑔(𝑣) ∈ Z≥0, called the genus of the vertex 𝑣; with the property
that every vertex of genus 0 is at least trivalent, and every vertex of genus 1 is at least 1-valent.

If 𝛾 is a stable graph, the genus 𝑔(𝛾) if 𝛾 is defined by:

𝑔(𝛾) = 𝑏1(𝛾) +
∑︁

𝑣∈𝑉 (𝛾)
𝑔(𝑣)

where 𝑏1(𝛾) = |𝐸(𝛾)| − |𝑉 (𝛾)| + #connected components, is the first Betti number of 𝛾.

It is determined by the following data:

i) A finite set 𝐻(𝛾) of half-edges of 𝛾

ii) A finite set 𝑉 (𝛾) of vertices of 𝛾.

iii) An involution 𝜎 : 𝐻(𝛾) → 𝐻(𝛾). The set of fixed points of this involution is denoted 𝑇 (𝛾), and
is called the set of tails of 𝛾. The set of two elements orbits is denoted 𝐸(𝛾), and is called the
set of edges.

iv) A map 𝜋 : 𝐻(𝛾) → 𝑉 (𝛾), which sends a half-edge to the vertex to which is attached.

v) A map 𝑔 : 𝑉 (𝛾) → Z≥0.

From this, we construct a topological space |𝛾| := 𝑉 (𝛾) ⨿
(︁
𝐻(𝛾) × [0, 1

2 ])
)︁

/ ∼, where ∼ is the
equivalence relation that identifies (ℎ, 0) ∈ 𝐻(𝛾) × [0, 1

2 ] with 𝜋(ℎ) ∈ 𝑉 (𝛾), and (ℎ, 1
2) with (𝜎(ℎ), 1

2).
We say 𝛾 is connected if |𝛾| is.

We will be interested in automorphisms 𝑔 ∈ Aut(𝛾) of stable graphs, which consist of a pair of
maps 𝐻(𝑔) : 𝐻(𝛾) → 𝐻(𝛾) and 𝑉 (𝑔) : 𝑉 (𝛾) → 𝑉 (𝛾), such that 𝐻(𝑔) commutes with 𝜎 and the
following diagram

𝐻(𝛾) 𝐻(𝛾)

𝑉 (𝛾) 𝑉 (𝛾)

𝐻(𝑔)

𝑉 (𝑔)

commutes.
The involution allows us to distinguish between half-edges and tails, while the projection 𝜋 tells

us which half-edges (and tails) are attached to each vertex.
1The name stable comes from algebraic geometry, where this types of graphs are also considered.
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Our objective is to expand the divergent integrals in terms of these graphs, so need to show how
to attach to each graph operators and fields.

Let 𝑈 be a finite-dimensional (super2) vector space, over the field K = R or C. Let O(𝑈) denote
de completed symmetric algebra over the dual, that is O(𝑈) := ̂︂Sym

*
𝑈∨, and let O+(𝑈)[[ℏ]] denote

those functionals which are at least cubic modulo ℏ. Each element 𝐼 ∈ O+(𝑈)[[ℏ]] can be expressed
as 𝐼 =

∑︀
𝑖,𝑘 ℏ𝑖𝐼𝑖,𝑘, where 𝐼𝑖,𝑘 is homogeneous of degree 𝑘 in the variable 𝑢 ∈ 𝑈 .

Each 𝐼𝑖,𝑘 defines an 𝑆𝑘−invariant linear map, 𝐷𝑘𝐼𝑖,𝑘 ∈ (𝑈∨)⊗𝑘:

𝐷𝑘𝐼𝑖,𝑘 : 𝑈⊗𝑘 → K

𝑢1 ⊗ · · · ⊗ 𝑢𝑘 →
(︂

𝜕

𝜕𝑢1
. . .

𝜕

𝜕𝑢𝑘
𝐼𝑖,𝑘

)︂
(0)

Suppose we are given 𝑛 fields 𝑎1, . . . , 𝑎𝑛 ∈ 𝑈 , a propagator 𝑃 ∈ Sym2𝑈 , an interaction 𝐼 ∈
O+(𝑈)[[ℏ]], and an ordering of the set of tails 𝑇 (𝛾). Assigning to every stable graph with 𝑛 tails, a
propagator 𝑃 on each internal edge and 𝑎𝑖 on the 𝑖-th tail, gives an element of 𝑈⊗𝐻(𝛾) and putting
𝐷𝑘𝐼𝑖,𝑘 on each vertex of valency 𝑘 and genus 𝑖 gives an element of Hom(𝑈⊗𝐻(𝛾),K). Define the weight
𝜔𝛾,𝜑(𝑃, 𝐼)(𝑎1, . . . , 𝑎𝑛) as the contraction of these two elements.

We also define 𝜔𝛾(𝑃, 𝐼) ∈ O(𝑈) by 𝜔𝛾(𝑃, 𝐼)(𝑎) = 𝜔𝛾,𝜑(𝑃, 𝐼)(𝑎, . . . , 𝑎), so that(︂
𝜕

𝜕𝑎1
. . .

𝜕

𝜕𝑎𝑛
𝜔𝛾(𝑃, 𝐼)

)︂
(0) =

∑︁
𝜑

𝜔𝛾,𝜑(𝑎1, . . . , 𝑎𝑛).

Where the sum runs over all possible orderings of the set of tails 𝑇 (𝛾). Arranging these functions into
a formal power series we obtain

𝑊 (𝑃, 𝐼) =
∑︁

𝛾

1
|Aut(𝛾)|ℏ

𝑔(𝛾)𝜔𝛾(𝑃, 𝐼) ∈ O+(𝑈)[[ℏ]].

To illustrate, here are the first few terms that appear in the expansion:

ℏ0

3!
𝐼0,3

Order ℏ0 and valency 3.

ℏ0

4!
𝐼0,4 + ℏ0

4!
𝐼0,3 𝐼0,3

Order ℏ0 and valency 4.

ℏ 𝐼0,3
𝑃 + ℏ 𝐼1,1

Order ℏ and valency 1.

We will see that this contraction on graphs reduces to just combinatoric differentiation. Given a
propagator 𝑃 ∈ Sym2𝑈 , let us write it in a basis 𝑃 =

∑︀
𝑃 ′ ⊗ 𝑃 ′′. Define an order two differential

operator 𝜕𝑃 : O(𝑈) → O(𝑈) associated to 𝑃 by 𝜕𝑃 = 1
2
∑︀ 𝜕

𝜕𝑃 ′ ⊗ 𝜕
𝜕𝑃 ′′ . Then,

Lemma 2.1.1.
𝑊 (𝑃, 𝐼)(𝑎) = ℏ log {exp (ℏ𝜕𝑃 ) exp (𝐼/ℏ)(𝑎)}

2As usual, the adjective super will refer to a Z2−graded space
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Proof. First note that the identity holds for 𝑃 = 0. The right-hand side is clearly equal to 𝐼. Now,
the sum 𝑊 (0, 𝐼) will only have terms coming from graphs with no edges,

𝑊 (0, 𝐼) =
∑︁
𝑖,𝑘

1
|Aut(𝑣𝑖, 𝑘)|𝜔𝑣𝑖,𝑘

(0, 𝐼),

where 𝑣𝑖,𝑘 denotes the graph with 1 vertex, genus 𝑖, valency 𝑘 and no internal edges. The automorphism
group of the graph 𝑣𝑖,𝑘 is the symmetric group 𝑆𝑘 which has 𝑘! elements and the weight is simply
𝜔𝑣𝑖,𝑘

(0, 𝐼) = 𝑘!𝐼𝑖,𝑘. That is because

𝐷𝑘𝜔𝑣𝑖,𝑘
(𝑎1, . . . , 𝑎𝑘) =

(︂
𝜕

𝜕𝑎1
. . .

𝜕

𝜕𝑎𝑘
𝜔𝑣𝑖,𝑘

)︂
(0) =

∑︁
𝜑

𝜔𝑣𝑖,𝑘,𝜑(𝑎1, . . . , 𝑎𝑘) = 𝑘!𝜔𝑣𝑖,𝑘,𝜑(𝑎1, . . . , 𝑎𝑘)

= 𝑘!𝐷𝑘𝐼𝑖,𝑘(𝑎1, . . . , 𝑎𝑘).

Thus, 𝑊 (0, 𝐼) =
∑︀

𝑖,𝑘
ℏ𝑖

𝑘! 𝑘!𝐼𝑖,𝑘 = 𝐼 by definition.
We will prove that both sides satisfy the same differential equation. Given a parameter of square

zero 𝜀 and 𝑃 ′ ∈ Sym2𝑈 , it is clear that:

exp (ℏ𝜕𝑃 +𝜀𝑃 ′) exp(𝐼/ℏ) = (1 + 𝜀ℏ𝜕𝑃 ′) exp(ℏ𝜕𝑃 ) exp(𝐼/ℏ).

To verify that exp (𝑊 (𝑃 + 𝜀𝑃 ′, 𝐼)/ℏ) = (1 + 𝜀ℏ𝜕𝑃 ′) exp (𝑊 (𝑃, 𝐼)/ℏ), we will consider, for 𝑎1, . . . , 𝑎𝑘 ∈
𝑈 : (︂

𝜕

𝜕𝑎1
. . .

𝜕

𝜕𝑎𝑘
exp(𝑊 (𝑃, 𝐼)/ℏ)

)︂
(0) =

∑︁
𝛾,𝜑

ℏ𝑔(𝛾)

|Aut(𝛾, 𝜑)|𝜔𝛾,𝜑(𝑎1, . . . , 𝑎𝑘),

where the sum is over all possible disconnected stable graphs with an ordering 𝜑 : {1, . . . , 𝑘} ≡ 𝑇 (𝛾)
and the automorphism group preserves the ordering. When varying 𝑃 to 𝑃 + 𝜀𝑃 ′ we note that

𝑑

𝑑𝜀

(︂
𝜕

𝜕𝑎1
. . .

𝜕

𝜕𝑎𝑘
exp(𝑊 (𝑃, 𝐼)/ℏ)

)︂
(0) =

∑︁
𝛾,𝜑

ℏ𝑔(𝛾)

|Aut(𝛾, 𝑒, 𝜑)|𝜔𝛾,𝑒,𝜑(𝑎1, . . . , 𝑎𝑘),

where the sum is over possibly disconnected stable graphs with a distinguished edge 𝑒 ∈ 𝐸(𝛾).
The weight is defined as usual, except for the distinguished edge, which is labelled by 𝑃 ′ instead of 𝑃
and the automorphism group now also preserves this distinguished edge.

Cutting this edge 𝑒 in two, we obtain a stable graph with two more tails. If 𝑃 ′ =
∑︀

𝑢′⊗ 𝑢′′, where
𝑢′, 𝑢′′ ∈ 𝑈 , the new tails are labelled by 𝑢′ and 𝑢′′. Thus,

𝑑

𝑑𝜀

(︂
𝜕

𝜕𝑎1
. . .

𝜕

𝜕𝑎𝑘
exp(𝑊 (𝑃, 𝐼)/ℏ)

)︂
(0) = 1

2
∑︁
𝛾,𝜑

ℏ𝑔(𝛾)

|Aut(𝛾, 𝜑)|𝜔𝛾,𝜑(𝑎1, . . . , 𝑎𝑘)

= 1
2

𝜕

𝜕𝑎1
. . .

𝜕

𝜕𝑎𝑘

𝜕

𝜕𝑢′
𝜕

𝜕𝑢′′
exp (𝑊 (𝑃, 𝐼)/ℏ) (0)

= 𝜕

𝜕𝑎1
. . .

𝜕

𝜕𝑎𝑘
𝜕𝑃 ′ exp (𝑊 (𝑃, 𝐼)/ℏ) (0),

where the sum is now over graphs with 𝑘 + 2 tails.

The following lemma will prove our desired result of expressing our integrals as a sum of Feynman
graphs. We will investigate only the case where K = R for simplicity. Let 𝑈 be a finite-dimensional
vector space over R equipped with a negative defined, non-degenerate quadratic form, and let 𝑃 ∈
Sym2𝑈 be its inverse. Then,

Lemma 2.1.2.
𝑊 (𝑃, 𝐼)(𝑎) = ℏ log

∫︁
𝑈

exp
(︂ 1

2ℏΦ(x, x) + 1
ℏ

𝐼(x + 𝑎)
)︂
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where the integral is thought of as an asymptotic expansion in ℏ and the measure is normalized
such that

∫︀
𝑈 exp

(︁
Φ(x,x)

2ℏ

)︁
= 1.

Proof. First, we will define the Laplace transform of a function 𝑓 on 𝑉 as:

ℒ(𝑓)(𝑠) =
∫︁

𝑈
𝑑𝑥 exp(𝑠x)𝑓(x)

where 𝑠 ∈ 𝑈∨. Note that the Laplace transform relates the bilinear form Φ with its dual 𝑃 via:

ℒ(exp (−Φ(x, x)/2ℏ)) = exp (ℏ𝑃 (𝑠, 𝑠)/2)

This can be seen by completing the square. Next, note that, for 𝑓, 𝐹 polynomial functions on 𝑈 ,

ℒ(𝑓𝐹 ) = 𝑓(ℒ𝐹 )

where 𝑓 denote the constant coefficient differential operator on 𝑈∨ associated to 𝑓 . If 𝑓 is ex-
pressed as 𝑓 =

∑︀
𝐼 𝑐𝐼𝑥𝐼 where 𝐼 = (𝑖1, . . . , 𝑖𝑛) is a multi-index, then 𝑓 is defined as

∑︀
𝐼 𝑐𝐼𝜕𝐼 =

𝑐𝑖1,...,𝑖𝑛

(︁
𝜕

𝜕𝑠1

)︁𝑖1
. . .
(︁

𝜕
𝜕𝑠𝑛

)︁𝑖𝑛

. This is a direct computation.
Finally, we will prove that

∫︀
𝑈 𝑑𝑥ℒ−1(𝑓)𝐹 = (𝑓𝐹 )(0).∫︁

𝑈
𝑑𝑥ℒ−1(𝑓)𝐹 = ℒ

[︁
𝐹ℒ−1(𝑓)

]︁
(0) = 𝐹ℒℒ−1(𝑓)(0) = 𝐹𝑓(0) = 𝑓𝐹 (0)

Now

∫︁
𝑈

exp
(︂ 1

2ℏΦ(𝑥, 𝑥)
)︂

exp
(︂1
ℏ

𝐼(𝑥 + 𝑎)
)︂

=
∫︁

𝑈
ℒ−1ℒ

[︂
exp

(︂ 1
2ℏΦ(𝑥, 𝑥)

)︂]︂
exp

(︂1
ℏ

𝐼(𝑥 + 𝑎)
)︂

=
∫︁

𝑈
ℒ−1

[︂
exp

(︂ 1
2ℏ𝑃 (𝑠, 𝑠)

)︂]︂
exp

(︂1
ℏ

𝐼(𝑥 + 𝑎)
)︂

= exp
(︂ℏ

2𝑃 (𝑠, 𝑠)
)︂

exp
(︂1
ℏ

𝐼(𝑥)
)︂

(𝑎)

= exp (ℏ𝜕𝑃 ) exp (𝐼(𝑥)/ℏ) (𝑎)

Example 1. . Let 𝑈 = R and let 𝐼(𝑥) = 𝑥3

3! ∈ O(R). Our quadratic form will simply be Φ(𝑥, 𝑥) = −𝑥2,
and the operator associated to the propagator will be 𝜕𝑃 = 1

2𝜕2
𝑥. We will try to compute

∫︁
R

exp
(︂

− 1
2ℏ𝑥2

)︂
exp

(︃
𝑥3

3!ℏ

)︃
= exp (ℏ𝜕𝑃 ) exp

(︃
𝑥3

3!ℏ

)︃ ⃒⃒⃒⃒
𝑥=0

.

First, we associate a vertex with 3 tails for each 𝑥3 I

Therefore, exp(𝑥3/(3!ℏ)) will be an infinite sum of the form:

1 + 1
6ℏ I + 1

72ℏ2 I I + . . .

The operator 1
2ℏ𝜕2

𝑥 acts by contracting a pair of tails. Applying it to the sum above we get:
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1
2 I + 1

16ℏ I I + 1
12ℏ I I + . . .

The next step is to act with 1
4ℏ

2𝜕4
𝑥, which contracts two pairs of tails, etc.

When computing exp(ℏ𝜕𝑃 ) exp(𝑥3/(3!ℏ)), we get a factor of ℏ for each pair of tails contracted, that
is, for each edge, and a factor of 1/ℏ for each vertex. Furthermore, the factorial in the denominator of
exp(ℏ𝜕𝑃 ) will count the number of possible edges permutations and the factorial from exp(𝑥3/(3!ℏ))
will count the number of tail permutation. When multiplying both we get the number of graph
automorphisms. We see that we end up with

exp(ℏ𝜕𝑃 ) exp(𝑥3/(3!ℏ)) =
∑︁

trivalent graphs 𝛾

ℏ−𝜒(𝛾) 𝑥# tails

|Aut(𝛾)|

where the sum is over all connected trivalent graphs and 𝜒(𝛾) denotes the Euler characteristic.
When evaluating at 𝑥 = 0 we end up only with graphs with all its tails contracted. The asymptotic
expansion of the integral

∫︀
R exp

(︁
− 1

2ℏ𝑥2 + 𝑥3

6ℏ

)︁
is, expanding the second exponential and integrating

term by term,
∫︀
R exp

(︁
− 1

2ℏ𝑥2 + 𝑥3

6ℏ

)︁
∼ 1 + 5

24ℏ + 385
1152ℏ

2 + . . . . To reproduce the coefficient in ℏ we
would need to add all the contributions from all trivalent graphs with 𝜒(𝛾) = −1, that is, the graphs

I I I II
I
I

I

I

I

I

And so on. We see that in finite dimensions, obtaining asymptotic expansions with Feynman
graphs is not very useful.

2.2 Quantum Field Theory in infinite dimensions
When one tries to generalise this to the case where the space of fields is infinite-dimensional, like
𝐶∞(𝑀) for example, one encounters several barriers. The first one is that there is no (translational
invariant) Lebesgue measure on any infinite-dimensional vector space, so we cannot define the integral
2.1 directly. Luckily, one can still define the expression 𝑊 (𝑃, 𝐼), since one can still contract tensors if
we are careful3

2.2.1 Nuclear spaces

In order to define properly theories in infinite dimensions, we need to introduce the type of spaces we
will be using. We would like to have some notion of tensor product and to be able to define spaces of

3Singularities in Feynman graphs arise because the inverse of the quadratic forms we consider in infinite dimensions
do not lie in the correct completed tensor product.
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functions over these spaces ̂︂Sym
*
(𝑈∨). This is the topic of [Cos11, Appendix 2], which we will briefly

review. A nice complete review on this can be found in [Trè67].
It turns out that the spaces we will need are called Nuclear spaces. As Banach spaces, they are also

a generalization of vector spaces, but in a completely different manner. In fact, an infinite-dimensional
Banach space is never Nuclear.

We will start by recalling the definition of topological vector space.

Definition 2.2.1. A Topological Vector Space (or TVS) over R or C is a vector space equipped with
a topology which makes scalar multiplication and addition continuous.

We will consider only Hausdorff topological vector spaces. A particularly important class of TVS,
which contains both Banach and Nuclear spaces are locally convex spaces. Such a space has a basis for
its topology given by convex sets. Finally, a Fréchet space is a complete, metrizable, locally convex
space, that is, a locally convex space 𝑋 whose topology can be induced by a metric, and which is
complete with respect to any metric that defines its topology.

Subtleties in functional analysis often arise from the freedom to choose different topologies on the
dual space. Let V be a TVS, we will denote 𝑉 ∨ the space of all continuous linear functionals equipped
with the strong topology, also known as the topology of bounded convergence, which is the topology
defined by the seminorms |𝑦|𝐵 := sup𝑥∈𝐵 |𝑦(𝑥)|, for every bounded subset 𝐵 ⊂ 𝑉 and 𝑦 ∈ 𝑉 ∨. A
basis of neighbourhoods of zero is then given by {𝑦 ∈ 𝑉 ∨

⃒⃒
|𝑦|𝐵 < 𝑟} for all bounded subsets 𝐵 and

𝑟 > 0. We will give the space Hom(𝐸, 𝐹 ) of continuous linear maps from 𝐸 to 𝐹 the topology of
bounded convergence, which given an open subset 𝑈 of 𝐹 and a bounded subset 𝐵 of 𝐸, the basis of
neighbourhood of zero is given by {𝑓 : 𝐸 → 𝐹

⃒⃒
𝑓(𝑉 ) ⊂ 𝑈}. As long as 𝐸 and 𝐹 are locally convex

Hausdorff spaces, so is Hom(𝐸, 𝐹 ).
For tensor products, we will define the projective topology on 𝑉 ⊗𝑎𝑙𝑔 𝑊 , where ⊗𝑎𝑙𝑔 denotes the

algebraic tensor product, as the finest, locally convex topology such that the canonical map

𝑉 × 𝑊 → 𝑉 ⊗𝑎𝑙𝑔 𝑊

is continuous.
We will denote simply by 𝑉 ⊗𝑊 the completion of 𝑉 ⊗𝑎𝑙𝑔 𝑊with respect to the projective topology.
There is also a coarser topology on 𝑉 ⊗𝑎𝑙𝑔 𝑊 , known as the injective topology. Denote the

completion of 𝑉 ⊗𝑎𝑙𝑔 𝑊 with respect to the injective topology as 𝑉 ⊗𝑖 𝑊 . We will not recall the
definition of injective topology as it is technical and not even Costello defines it. We will refer to
[Trè67, Chapter 43] for details. A space 𝑉 is said to be Nuclear if the canonical map 𝑉 ⊗𝑊 → 𝑉 ⊗𝑖 𝑊
is an isomorphism for any locally convex Hausdorff space 𝑊 . The importance of Nuclear spaces comes
because most of the spaces we will consider are nuclear and they enjoy the properties we were looking
for. Namely, examples of Nuclear spaces are:

i) The space of smooth functions on an open subset 𝑈 in R𝑛, 𝐶∞(𝑈), with the topology given by
a set of neighbourhoods of 0 {𝑓 ∈ 𝐶∞(𝑈)

⃒⃒
for any 𝐾 ⊂ 𝑈, ∀𝑚 ∈ N, |𝑓 |𝑚,𝐾 < 𝑟}, as 𝑟 > 0, where

|𝑓 |𝑚,𝐾 := sup|𝑝|≤𝑚

(︁
sup𝑥∈𝐾

⃒⃒⃒(︁
𝜕

𝜕𝑥

)︁𝑝
𝑓
⃒⃒⃒)︁

, 𝑝 = (𝑝1, . . . , 𝑝𝑛) ∈ N𝑛 and |𝑝| = 𝑝1 + · · · + 𝑝𝑛.

ii) The space of functions with compact support on an open set or in a compact set, in R𝑛 𝐶∞𝑐 (𝑈),
with a similar topology as before.

iii) The space of distributions (the continuous dual space to compactly-supported smooth functions)
on an open set 𝑈 of R𝑛, 𝒟(𝑈), equipped with the strong topology.

iv) Distributions with compact support on a open set in R𝑛, with the induced topology from iii).

v) Schwartz functions in R𝑛 (we will define them in Chapter 3), S (R𝑛), with the topology induced
by the seminorms |𝑓 |𝑚,𝑘 := sup|𝑝|≤𝑚

(︁
sup𝑥∈R𝑛 (1 + |𝑥|)𝑘

⃒⃒⃒(︁
𝜕

𝜕𝑥

)︁𝑝
𝑓
⃒⃒⃒)︁

.

vi) Schwartz distributions on R𝑛, with the strong topology.
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vii) Formal power series in 𝑛 variables, with the topology induced by |𝑢|𝑚 := sup|𝑝|≤𝑚 |𝑢𝑝| for 𝑚 ∈ N,
where 𝑢 =

∑︀
𝑝=(𝑝1,...,𝑝𝑛)

𝑢𝑝𝑋𝑝.

viii) Polynomials in 𝑛 variables, with the topology of vii) but for 𝑚 = 𝑛.

ix) Smooth sections of a vector bundle 𝐸 over a compact manifold 𝑀 , Γ(𝑀, 𝐸). The topology is
defined by a basis of neighbourhoods of zero {𝑓 ∈ Γ(𝑀, 𝐸)

⃒⃒
∀𝑥 ∈ 𝑈 ⊂ 𝑀, 𝑓(𝑥) ∈ 𝑉𝑥 ⊂ 𝐸𝑥}, for

all open subsets 𝑈 of 𝑀 and neighbourhoods of zero 𝑉𝑥 in 𝐸𝑥, where 𝐸𝑥 denotes the fibre over
𝑥 ∈ 𝑀 .

And they satisfy the following properties:

1. A closed linear subspace of a nuclear space is nuclear.

2. The quotient of a nuclear space by a closed linear subspace is nuclear.

3. A countable direct sum of nuclear spaces (equipped with the finest locally convex topology) is
nuclear.

4. A direct product of nuclear spaces is nuclear.

5. The completed tensor product is nuclear.

6. If 𝐸 is a nuclear Fréchet space, then O(𝐸) =
∏︀

𝑛 Sym𝑛𝐸∨ is nuclear.

7. Let 𝐸 and 𝐹 be nuclear Fréchet spaces, the following equalities hold:

(a) 𝐸 ⊗ 𝐹 = Hom(𝐸∨, 𝐹 )
(b) 𝐸∨ ⊗ 𝐹 = Hom(𝐸, 𝐹 )
(c) 𝐸∨ ⊗ 𝐹∨ = (𝐸 ⊗ 𝐹 )∨

(d) 𝐸∨ ⊗ 𝐹∨ = Hom(𝐸, 𝐹∨)

2.2.2 Feynman expansion

Let K = R or C, 𝑀 a manifold, and 𝐸 a (super) vector bundle on 𝑀 over K. Let ℰ = Γ(𝑀, 𝐸) denote
the super nuclear Fréchet space of global sections of 𝐸. Let ⊗ be the completed projective tensor
product, such that ℰ ⊗ ℰ = Γ(𝑀2, 𝐸 ⊠ 𝐸). Here 𝐸 ⊠ 𝐸 refers to the vector bundle pr*1𝐸 ⊗ pr*2𝐸 over
𝑀 × 𝑀 , where pr1 (pr2) represents the projection of 𝑀 × 𝑀 onto the first (second) factor.

Let O(ℰ) = ̂︂Sym
*
(ℰ∨) be the completed symmetric algebra over the (strong) dual space. Note

that the structure of algebra is given by the direct product of distributions, which defines a map:

Hom(ℰ⊗𝑛,K) × Hom(ℰ⊗𝑚,K) −→ Hom(ℰ⊗𝑚+𝑛,K)

As before, let O+(ℰ)[[ℏ]] ⊂ O(ℰ)[[ℏ]] denote the subspace of functionals which are at least cubic
modulo ℏ.

The construction is the same as before. The tensor products of interactions at vertices define
an element of Hom(ℰ⊗𝐻(𝛾),K), while tensor products of propagators at edges define an element of
ℰ⊗2𝐸(𝛾). The weight 𝜔𝛾(𝑃, 𝐼) ∈ O(ℰ) is defined as the contraction of these two elements, and arranging
them in a formal power series we get:

𝑊 (𝑃, 𝐼) =
∑︁

𝛾

ℏ𝑔(𝛾)

|Aut(𝛾)|𝜔𝛾(𝑃, 𝐼) ∈ O+(ℰ)[[ℏ]].

Again, define the differential operator 𝜕𝑃 : O(ℰ) −→ O(ℰ), which acts on each direct factor by
contraction with 𝑃 ∈ Sym2ℰ : Hom(ℰ⊗𝑛,K) −→ Hom(ℰ⊗𝑛−2,K).

As before, we have
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Lemma 2.2.1.
𝑊 (𝑃, 𝐼) = ℏ log {exp (ℏ𝜕𝑃 ) exp (𝐼/ℏ)}

.

By analogy with the finite-dimensional case, one may attempt to define the formal identity:

𝑊 (𝑃, 𝐼)(𝑎) = ℏ log
∫︁

x∈ℰ
exp

(︂ 1
2ℏΦ(x, x) + 1

ℏ
𝐼(x + 𝑎)

)︂
The problem is that neither side of the equation is well-defined, since the propagator will not be

in general smooth along the diagonal 𝑀 × 𝑀 and the integral is infinite-dimensional.
The key idea here is the effective theory philosophy explained in the Introduction. Infinities arise

because we are trying to describe physics at infinite energy scales, so we will need to impose some
cut-offs on the energy scales that we will like our theory to describe.

We use a regularization based on the heat kernel, which we will define shortly but first, we need
some preliminary definitions.

Definition 2.2.2 (𝑠−density bundle). Given a Riemannian manifold (𝑀, 𝑔), with atlas given by
{𝑉𝛼, 𝜑𝛼}, define the 𝑠−density bundle |Λ|𝑠(𝑀)→𝑀 as the vector bundle such that for every 𝑝 ∈ 𝑀 ,
there is an open neighbourhood 𝑈𝛼 ⊂ 𝑀 of 𝑝 such that there is a local trivialization map,

𝑡𝛼 : |Λ|𝑠(𝑀)
⃒⃒
𝑈𝛼

→ 𝜑𝛼(𝑈𝛼) × R,

and whose transition functions 𝑡𝛼𝛽 : 𝑈𝛼 ∩ 𝑈𝛽 → R× are given by:

𝑡𝛼𝛽 = | det(𝑑𝜑𝛼 ∘ 𝑑𝜑−1
𝛽 )|−𝑠

When 𝑠 = 1 we will denote |Λ|(𝑀) simply by Dens(𝑀).

Definition 2.2.3 (Generalised Laplacian). Let 𝐸 ve a vector bundle over a Riemannian manifold
(𝑀, 𝑔). A generalized Laplacian on 𝐸 is a second-order differential operator, 𝐻 such that its principal
symbol 𝜎(𝐻) is 𝜎(𝐻)(𝑥, 𝜉) = |𝜉|2. An equivalent way of saying this is that on any local coordinate
system, with local coordinates x = (𝑥1, . . . , 𝑥𝑛) and basis for the tangent bundle 𝜕1

⃒⃒
x, . . . , 𝜕𝑛

⃒⃒
x

𝐻 = −
∑︁
𝑖,𝑗

𝑔𝑖𝑗(x)𝜕𝑖𝜕𝑗 + first-order terms

where 𝑔𝑖𝑗(x) = (𝑑x𝑖, 𝑑x𝑗)𝑥 is the metric on the cotangent bundle 𝑇 *𝑀 .

Now, given a Riemannian manifold (𝑀, 𝑔) and vector bundle 𝐸 over 𝑀 equipped with a generalised
Laplacian 𝐻,

Definition 2.2.4 (Heat Kernel). A heat kernel for a (generalised) Laplacian 𝐻 is a continuous section
𝐾𝑡(𝑥, 𝑦) of the bundle (𝐸 ⊗ |Λ|1/2) ⊠ (𝐸* ⊗ |Λ|1/2) over R+ × 𝑀 × 𝑀 , satisfying:

1. 𝐾𝑡(𝑥, 𝑦) is 𝐶1 with respect to 𝑡.

2. 𝐾𝑡(𝑥, 𝑦) is 𝐶2 with respect to 𝑥.

3. 𝐾𝑡(𝑥, 𝑦) satisfies the heat equation:

(𝜕𝑡 + 𝐻𝑥)𝐾𝑡(𝑥, 𝑦) = 0.

4. It satisfies the boundary condition at 𝑡 = 0 :

lim
𝑡→0

𝐾𝑡(𝑥, 𝑦) = 𝛿(𝑥, 𝑦).

Where 𝛿(𝑥.𝑦) is the Dirac delta. More precisely, if 𝑠 is a smooth section of 𝐸 ⊗ |Λ|1/2 then,

lim
𝑡→0

∫︁
𝑦∈𝑀

𝐾𝑡(𝑥, 𝑦)𝑠(𝑦) = 𝑠(𝑥), ∀𝑥 ∈ 𝑀

where the limit is meant in the uniform norm, ||𝑠||0 = sup𝑥∈𝑀 ||𝑠(𝑥)||.
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The motivation for using the heat kernel is threefold. First, it allows us to express the propagator
as a one-dimensional integral

Proposition 2.2.1. If the free term is 𝐻 +𝑚2, the propagator, 𝑃 (𝑥, 𝑥′) := (𝐻 +𝑚2)−1, which satisfies
(𝐻 + 𝑚2)𝑃 (𝑥, 𝑥′) = 𝛿(𝑥, 𝑥′) is expressed in terms of the heat kernel as

𝑃 (𝑥, 𝑥′) =
∫︁ ∞

0
𝑒−𝑡𝑚2

𝐾𝑡(𝑥, 𝑥′)𝑑𝑡

Proof.

(︁
𝐻 + 𝑚2

)︁ ∫︁ ∞
0

𝑒−𝑡𝑚2
𝐾𝑡(𝑥, 𝑥′)𝑑𝑡 = 𝑚2

∫︁ ∞
0

𝑒−𝑡𝑚2
𝐾𝑡(𝑥, 𝑥′)𝑑𝑡 −

∫︁ ∞
0

𝑒−𝑡𝑚2
𝜕𝑡𝐾𝑡(𝑥, 𝑥′)𝑑𝑡

= 𝑚2
∫︁ ∞

0
𝑒−𝑡𝑚2

𝐾𝑡(𝑥, 𝑥′)𝑑𝑡 − 𝑒−𝑡𝑚2
𝐾𝑡(𝑥, 𝑥′)

⃒⃒∞
0 − 𝑚2

∫︁ ∞
0

𝑒−𝑡𝑚2
𝐾𝑡(𝑥, 𝑥′)𝑑𝑡

= lim
𝑡→0

𝐾𝑡(𝑥, 𝑥′)

= 𝛿(𝑥, 𝑥′)

Therefore, we can impose cut-offs in a natural manner, by restricting the limits of integration by
𝜀 and 𝐿. Define the approximate or regularized propagator as 𝑃 (𝜀, 𝐿) :=

∫︀ 𝐿
𝜀 𝐾𝑡𝑑𝑡, where 𝜀 will be

referred to as the ultra-violet cut-off, and 𝐿 will be referred to as the infrared cut-off. We note that 𝐾𝑡

is a smooth function on 𝑀 × 𝑀 as long as 𝑡 > 0. Letting 𝜀 → 0 we will obtain the same singularities
as before, and we will see in the next section see how to deal with them.

The second crucial aspect of the heat kernel is that it possesses an asymptotic expansion.

Proposition 2.2.2. In R𝑛, with the usual (negative-definite) Laplacian, 𝐷 = −
∑︀

𝑖
𝜕2

𝜕𝑥2
𝑖
, the heat

kernel is given by:
𝐾𝑡(𝑥, 𝑦) = (4𝜋𝑡)−𝑛/2 𝑒−||𝑥−𝑦||2/4𝑡.

Proof. This is a direct computation.

Proposition 2.2.3. Let (𝑀, 𝑔) be a Riemannian manifold, where 𝑀 is a compact manifold. Let 𝐸
be a vector bundle over 𝑀 and 𝐻 be a generalized Laplacian for 𝐸. The heat kernel, 𝐾𝑡(𝑥, 𝑦) has a
small 𝑡 asymptotic expansion:

𝐾𝑡(𝑥, 𝑦) ≃ (4𝜋𝑡)−𝑛/2 𝑒−𝑑(𝑥,𝑦)2/4𝑡
∞∑︁

𝑖=0
𝑡𝑖𝑓𝑖(𝑥, 𝑦).

Where 𝑑(𝑥, 𝑦) denotes the geodesic distance between 𝑥 and 𝑦 and 𝑓𝑖(𝑥, 𝑦) are smooth sections of the
bundle 𝐸 ⊠ 𝐸*, which depend on the generalized Laplacian.

The third one is that the heat kernel has an interpretation as the transition probability for a
random path between two space-time points. Therefore, the propagator can be rewritten as

𝑃 (𝑥, 𝑦) =
∫︁ ∞

0
𝑒−𝑡𝑚2

∫︁
𝑓 :[0,𝑡]→𝑀

𝑓(0)=𝑥,𝑓(𝑡)=𝑦

exp
(︂

−
∫︁ 𝑡

0
||𝑑𝑓 ||2

)︂

This gives the interpretation that the propagator represents the probability that a particle starts at a
point 𝑥 in space-time and transitions to 𝑦 through a random path.

The existence and unicity of the heat kernel is a non-trivial matter. Luckily, in compact manifolds
and in R𝑛 a unique heat kernel exists [BGV92, Chapter 2]. For general non-compact manifolds,
uniqueness is not guaranteed.
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Example 2. Let’s see for example the case of a free scalar field theory compact manifold with kinetic
term −1

2(𝐷 + 𝑚2), where 𝐷 denotes the non-negative Laplacian. In a compact manifold, there is a
collection of eigenvalues, 𝑚2 = 𝜆0 ≤ 𝜆1 ≤ 𝜆2 ≤ . . . , and an orthonormal basis {𝜑𝑛}𝑛≥0 of 𝐿2(𝑀),
such that

𝐷𝜑𝑛 = 𝜆𝑛𝜑𝑛.

The heat kernel4𝐾𝑡(𝑥, 𝑦) ∈ 𝐶∞(𝑀) ⊗ 𝐶∞(𝑀) then reads:

𝐾𝑡(𝑥, 𝑦) = 𝑒−𝑡𝑚2 ∑︁
𝑛≥0

𝑒−𝜆𝑛𝑡𝜑𝑛(𝑥) ⊗ 𝜑𝑛(𝑦).

Given 𝜀, 𝐿 > 0, the propagator reads:

𝑃 (𝜀, 𝐿) =
∑︁
𝑛≥0

𝑒−𝜀(𝜆𝑛+𝑚2) − 𝑒−𝐿(𝜆𝑛+𝑚2)

𝜆𝑛 + 𝑚2 𝜑𝑛(𝑥) ⊗ 𝜑𝑛(𝑦)

We see that the regularized propagator damps down the high energy modes of the total propagator.
These cut-offs together with the regularized propagators will allow us to define, by analogy with

the energy picture, “effective” interactions at each scale 𝐿 which are related by the renormalization
group equation.

Definition 2.2.5 (Renormalization group flow from length scale 𝜀 to 𝐿). Is defined as the map:

O+(𝐶∞(𝑀))[[ℏ]] → O+(𝐶∞(𝑀))[[ℏ]]
𝐼 → 𝑊 (𝑃 (𝜀, 𝐿), 𝐼)

This definition has a nice physical interpretation. The scales 𝜀 and 𝐿 are length scales and effective
interactions at scale 𝐿 encode all the physics that happens at scales smaller than 𝐿. Trying to describe
interactions at all scales amounts to taking the limit 𝜀 → 0 which recovers the singularities we avoided
before.
Example 3. We will introduce the 𝜑3 scalar field theory as a toy model for illustrating all the definitions
and machinery we have been building. The action for this theory is given by the usual free part
𝑆𝑞𝑢𝑎𝑑(𝜑) =

∫︀
𝑀 −1

2𝜑(𝐷 + 𝑚2)𝜑 and the interaction term is given by: 𝐼(𝜑) =
∫︀

𝑀
1
3!𝜑

3

Our Feynman graph expansion will have vertices, labelled by the linear map:

𝐶∞(𝑀)⊗3 → R

𝜑1 ⊗ 𝜑2 ⊗ 𝜑3 ↦→ 𝜕

𝜕𝜑1

𝜕

𝜕𝜑2

𝜕

𝜕𝜑3
𝐼

=
∫︁

𝑀
𝜑1(𝑥)𝜑2(𝑥)𝜑3(𝑥)

Consider the following graphs:
.

The weight associated to the first graph will be

𝜔𝛾1(𝑃 (𝜀, 𝐿), 𝐼)(𝑎) =
∫︁ 𝐿

𝜀

∫︁
𝑀

𝑎(𝑥)2𝐾𝑡(𝑥, 𝑥)𝑑Vol𝑀 𝑑𝑡,

where 𝑎 ∈ 𝐶∞(𝑀) and 𝑑Vol𝑀 is the volume form associated to the metric on 𝑀 .
The heat kernel on the diagonal has the following form when 𝑡 is small: 𝐾𝑡(𝑥, 𝑥) ∼ 𝑡−𝑛/2 +

higher order terms, where 𝑛 = dim 𝑀 . We see that the limit as 𝜀 → 0 doesn’t exist.
For 𝛾2, we have

𝜔𝛾2(𝑃 (𝜀, 𝐿), 𝐼) =
∫︁

𝑡1,𝑡2,𝑡3∈[𝜀,𝐿]

∫︁
𝑥,𝑦∈𝑀

𝐾𝑡1(𝑥, 𝑦)𝐾𝑡2(𝑥, 𝑦)𝐾𝑡3(𝑥, 𝑦)𝑑Vol𝑀×𝑀 𝑑𝑡1𝑑𝑡2𝑑𝑡3.

4We will omit the half-density notation for simplicity and to match notation from [Cos11]
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𝐼0,4 𝑃 (𝜀, 𝐿)

𝛾1

𝐼0,3 𝐼0,3
𝑃 (𝜀, 𝐿)
𝑃 (𝜀, 𝐿)
𝑃 (𝜀, 𝐿)

𝛾2

𝐼0,3 𝐼0,3
𝑃 (𝜀, 𝐿)

𝛾3

Again, using the small 𝑡 asymptotic expansion, 𝑘𝑡(𝑥, 𝑦) ≃ 𝑡−𝑛/2𝑒−𝑑(𝑥,𝑦)2/4𝑡, at lowest order,∫︁
𝑡1,𝑡2,𝑡3∈[𝜀,𝐿]

∫︁
𝑥,𝑦∈𝑀

𝑡
−𝑛/2
1 𝑡

−𝑛/2
2 𝑡

−𝑛/2
3 𝑒−𝑑(𝑥,𝑦)2/𝑡1−𝑑(𝑥,𝑦)2/𝑡2−𝑑(𝑥,𝑦)2/𝑡3𝑑Vol𝑀×𝑀 𝑑𝑡1𝑑𝑡2𝑑𝑡3,

which is again divergent for 𝜀 → 0. For the third example, we have

𝜔𝛾3(𝑃 (𝜀, 𝐿), 𝐼)(𝑎) =
∫︁ 𝐿

𝑡=𝜀

∫︁
𝑥,𝑦∈𝑀

𝑎(𝑥)2𝐾𝑡(𝑥, 𝑦)𝑎(𝑦)2𝑑Vol𝑀×𝑀 𝑑𝑡

=
∫︁

𝑥∈𝑀
𝑎(𝑥)2

∫︁
𝑦∈𝑀

∫︁ 𝐿

𝜀
𝑒−𝑡(𝐷+𝑚2)𝑎(𝑦)2𝑑Vol𝑀×𝑀 𝑑𝑡

Which admits a limit 𝜀 → 0. This is in fact a general property of Feynman graphs without loops.
We are now prepared to give our first definition of QFT, which will be of a scalar field theory

on a compact manifold. The core ideas are that we want our theory to be defined by a collection
of interactions at each length scale 𝐿 and that we can pass from one length scale to another by the
renormalization group flow. Moreover, we want our interactions to become more and more local as
𝐿 → 0.

2.2.3 Scalar field theory on a compact manifold

Definition 2.2.6 (Perturbative scalar field theory for a compact manifold 𝑀). A perturbative quan-
tum field theory on a compact Riemannian manifold (𝑀, 𝑔), with space of fields 𝐶∞(𝑀) and kinetic
action −1

2
∫︀

𝑀 𝜑(𝐷 + 𝑚2)𝜑, is given by a set of effective interactions 𝐼[𝐿] ∈ O+(𝐶∞(𝑀))[[ℏ]] for all
𝐿 ∈ (0, ∞], such that:

1. The renormalization group equation,

𝐼[𝐿] = 𝑊 (𝑃 (𝜀, 𝐿), 𝐼[𝜀])

is satisfied, for all 𝜀, 𝐿 ∈ (0, ∞]

2. For each 𝑖, 𝑘 there is a small 𝐿 asymptotic expansion

𝐼𝑖,𝑘[𝐿] ≃
∑︁

𝑟∈Z≥0
𝑔𝑟(𝐿)Φ𝑟

where 𝑔𝑟(𝐿) ∈ 𝐶∞(0, ∞)𝐿 and Φ𝑟 ∈ O𝑙𝑜𝑐(𝐶∞(𝑀)).

Let T (∞)(𝑀) denote the set of scalar quantum field theories and let T (𝑛)(𝑀) denote the set of
theories defined modulo ℏ𝑛+1.

Here O𝑙𝑜𝑐(𝐶∞(𝑀)) is the subspace of O(𝐶∞(𝑀)) of functionals that are the integral of some
local Lagrangian. That is, if we decompose 𝐼 ∈ O𝑙𝑜𝑐(𝐶∞(𝑀)) as 𝐼 =

∑︀
𝑘 𝐼𝑘, where each 𝐼𝑘(𝑎) is

homogeneous of degree 𝑘 in the variable 𝑎 ∈ 𝐶∞(𝑀) then, each 𝐼𝑘 must be the integral of some finite
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sum of differential operators: 𝐼𝑘(𝑎) =
∑︀

𝑗

∫︀
𝑀 𝐷1,𝑗𝑎 . . . 𝐷𝑘,𝑗𝑎, where 𝐷𝑖,𝑗 are differential operators on

𝑀 .
Without loss of generality, one can assume that the local functionals Φ𝑟 are homogeneous of degree

𝑘 in the field 𝑎 ∈ 𝐶∞(𝑀). Then, the small 𝐿 asymptotic expansion translates into the statement that
there is a non-decreasing sequence 𝑑𝑅 ∈ Z, tending to infinity, such that for all 𝑅 ∈ Z>0, and for all
fields 𝑎 ∈ 𝐶∞(𝑀),

lim
𝐿→0

𝐼𝑖,𝑘[𝐿](𝑎) −
∑︀𝑅

𝑟=0 𝑔𝑟(𝐿)Φ𝑟(𝑎)
𝐿𝑑𝑅

= 0

in the TVS O𝑙𝑜𝑐(𝐶∞(𝑀)).

2.2.4 Removing singularities

One may ask why did we define a theory which involves singularities. The answer is that there is no
canonical way of removing the singularities and therefore we regard their removal as an extra choice
not part of the theory itself. All measurable quantities are independent of this choice, so it is merely
an artefact to deal with infinite integrals.

The idea behind removing singularities is that given the space of functions 𝐶∞((0, 1)𝜀), where the
subscript refers to the name of the variable on which the functions take values, consider the subspace
of functions which do have a limit when 𝜀 → 0. We want to choose a complementary subspace of
functions in 𝐶∞((0, 1)𝜀), called the renormalization scheme RS, consisting of functions which don’t
have an 𝜀 → 0 limit and consider them as our purely singular functions. We could then decompose the
results of our calculations into the component which has a nice 𝜀 → 0 limit and the purely singular
component. Removing this purely singular component would yield a finite, measurable answer. With
this idea we see that there is no canonical answer, each choice of complementary subspace will be
equally valid.

Technical details show that the space of functions 𝐶∞((0, 1)) is not suitable. Costello works instead
in the linear subspace 𝒫((0, 1)) ⊂ 𝐶∞((0, 1)) of periods.

The definition of period is rather technical, and we refer to [Cos11] Definition 2.9.1 for further
details. Naively, a period is an integral of an algebraic differential form over an algebraic variety, and
a period function 𝑓 ∈ 𝒫((0, 1)) is just a smooth function 𝑓 ∈ 𝐶∞((0, 1)) whose values are periods.
The restriction to the space of period functions is justified by Theorem 2.2.2, which shows that all
Feynman weights have an asymptotic expansion in terms of periods.

Definition 2.2.7 (Renormalization Scheme). Let 𝒫((0, 1)𝜀) ⊂ 𝐶∞((0, 1)𝜀) be the subalgebra of func-
tions which are periods. A renormalization scheme is a complementary subspace 𝒫((0, 1)𝜀)<0, such
that we have a direct sum decomposition: 𝒫((0, 1)𝜀) = 𝒫((0, 1)𝜀)<0 ⊕ 𝒫((0, 1)𝜀)≥0, where 𝒫((0, 1)𝜀)≥0
denotes the subspace of periods which wave a 𝜀 → 0 limit.

The need for periods and the ability to remove the singular part of functionals is encapsulated in
the following theorem:

Theorem 2.2.2. Let 𝐼 ∈ O𝑙𝑜𝑐(𝐶∞(𝑀))[[ℏ]] be a local functional and let 𝛾 be a connected stable graph.

1. There is a small 𝜀 asymptotic expansion

𝜔𝛾(𝑃 (𝜀, 𝐿), 𝐼) ≃
∞∑︁

𝑖=0
𝑔𝑖(𝜀)Ψ𝑖

where 𝑔𝑖 ∈ 𝒫((0, 1)𝜀) are periods, and Ψ𝑖 ∈ O(𝐶∞(𝑀), 𝐶∞(0, ∞)𝐿)5. Again, the small 𝜀 asymp-
totic expansions means that there is a non-decreasing sequence 𝑑𝑅 ∈ Z indexed by 𝑅 ∈ Z>0, such
that 𝑑𝑅 → ∞ as 𝑅 → ∞, and such that for all 𝑅,

lim
𝜀→0

𝜔𝛾(𝑃 (𝜀, 𝐿), 𝐼) −
∑︀𝑅

𝑖=0 𝑔𝑖(𝜀)Ψ𝑖

𝜀𝑑𝑅
= 0

where the limit is taken in the TVS O(𝐶∞(𝑀), 𝐶∞(0, ∞)𝐿).
5As usual, a comma in this context means that the functions Ψ𝑖 take values on 𝐶∞(0, ∞)𝐿
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2. The 𝑔𝑖(𝜀) have a finite order pole at zero: for each 𝑖 there is an integer 𝑘 such that lim𝜀→0 𝜀𝑘𝑔𝑖(𝜀) =
0

3. Each Ψ𝑖 appearing in the asymptotic expansion above has a small 𝐿 asymptotic expansion of the
form:

Ψ𝑖 ≃
∞∑︁

𝑗=0
𝑓𝑖,𝑗(𝐿)Φ𝑖,𝑗

where the Φ𝑖,𝑗 are local action functionals, i.e. elements of O𝑙𝑜𝑐(𝐶∞(𝑀)), and each function 𝑓𝑖,𝑗

is a smooth function of 𝐿.

The proof of this theorem is the topic of the [Cos11, Appendix 1].

Definition 2.2.8 (Singular part). Let 𝑓 ∈ 𝒫((0, 1)), we define the singular part Sing(𝑓) of 𝑓 as the
projection of 𝑓 onto 𝒫((0, 1))<0.

With these definitions, we will be able to extract the singular part of the Feynman graphs. Take
𝜔𝛾(𝑃 (𝜀, 𝐿), 𝐼). Theorem 2.2.2 showed that it has a small 𝜀 asymptotic expansion: 𝜔𝛾(𝑃 (𝜀, 𝐿), 𝐼) =∑︀∞

𝑖=0 𝑔𝑖(𝜀)Φ𝑖, where 𝑔𝑖(𝜀) ∈ 𝒫((0, 1)) and Φ𝑖 ∈ O(𝐶∞(𝑀), 𝐶∞(0, ∞)𝐿). It also showed that there
exists 𝑁 ∈ Z≥0 such that 𝑔𝑛(𝜀) has a 𝜀 → 0 limit when 𝑛 > 𝑁 . We therefore define the singular part
of 𝜔𝛾((𝑃 (𝜀, 𝐿), 𝐼) as

Sing𝜀𝜔𝛾((𝑃 (𝜀, 𝐿), 𝐼) = Sing𝜀Ψ𝑁 (𝜀) =
𝑁∑︁

𝑖=0
(Sing𝜀𝑔𝑖(𝜀)) Φ𝑖,

where Ψ𝑁 (𝜀) :=
∑︀𝑁

𝑖=0 𝑔𝑖(𝜀)Φ𝑖. Clearly, this definition is independent of 𝑁 since increasing 𝑁
would only add terms that have a 𝜀 → 0 limit, so they wouldn’t contribute.

The following theorem shows that the singular part has a nice expansion and the removal of the
singular part makes the limit 𝜀 → 0 exist. More explicitly

Lemma 2.2.3. Let 𝐼 ∈ O𝑙𝑜𝑐(𝐶∞(𝑀))[[ℏ]] be a local functional, and let 𝛾 be a connected stable graph,
then:

1. Sing𝜀𝜔𝛾(𝑃 (𝜀, 𝐿), 𝐼) is a finite sum of the form

Sing𝜀𝜔𝛾(𝑃 (𝜀, 𝐿), 𝐼) =
∑︁

𝑖

𝑓𝑖(𝜀)Φ𝑖

where Φ𝑖 ∈ O𝑙𝑜𝑐(𝐶∞(𝑀), 𝐶∞(0, ∞)𝐿), and 𝑓𝑖 ∈ 𝒫((0, 1))<0 are purely singular periods.

2. The limit
lim
𝜀→0

(𝜔𝛾(𝑃 (𝜀, 𝐿), 𝐼) − Sing𝜀𝜔𝛾(𝑃 (𝜀, 𝐿), 𝐼))

exists in the TVS O𝑙𝑜𝑐(𝐶∞(𝑀), 𝐶∞(0, ∞)𝐿).

3. Each Φ𝑖 appearing in the finite sum above has a small 𝐿 asymptotic expansion.

To recap, we have shown that each term of our Feynman expansions will have an asymptotic
expansion in terms of periods and that we have a well-defined notion of singular part which we can
remove from the weights to obtain well-defined quantities which have 𝜀 → 0 limits. This procedure
involves calculating the singular part for each weight individually. Instead of this, we will show that
there is a clever way of constructing local counterterms so that the removal of the singular part of the
Feynman weights will be done by adding “corrections” to the interaction 𝐼.

Theorem 2.2.4 (Existence of local counter-terms). Given 𝐼 ∈ O𝑙𝑜𝑐(𝐶∞(𝑀))[[ℏ]], there exists a unique
series of local counter-terms 𝐼𝐶𝑇

𝑖,𝑘 (𝜀) ∈ O𝑙𝑜𝑐(𝐶∞(𝑀)) ⊗alg 𝒫((0, 1))<0, for all 𝑖 > 0, 𝑘 ≥ 0 such that
𝐼𝐶𝑇

𝑖,𝑘 is homogeneous of degree 𝑘 in the variable 𝑎 ∈ 𝐶∞(𝑀) and, for all 𝐿 ∈ (0, ∞], the limit

lim
𝜀→0

𝑊

⎛⎝𝑃 (𝜀, 𝐿), 𝐼 −
∑︁
𝑖,𝑘

ℏ𝑖𝐼𝐶𝑇
𝑖,𝑘

⎞⎠
exists.
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The first counter-term one needs to construct is from the graph with one with 1 loop and 1 external
edge. Let us define 𝐼𝐶𝑇

1,1 := Sing𝜀(𝑊1,1(𝑃 (𝜀, 𝐿), 𝐼). Let’s check that 𝑊1,1(𝑃 (𝜀, 𝐿), 𝐼 −ℏ𝐼𝐶𝑇
1,1 ) has a nice

limit and that 𝐼𝐶𝑇
1,1 is local.

Clearly,

𝑊1,1(𝑃 (𝜀, 𝐿), 𝐼 − ℏ𝐼𝐶𝑇
1,1 ) = 𝑊1,1(𝑃 (𝜀, 𝐿), 𝐼) − 𝐼𝐶𝑇

1,1

since for ℏ𝐼𝐶𝑇
1,1 only the graph with genus 0 and 1 tail will contribute. The 𝜀 → 0 limit exists by

construction.
To see that is local, we will first see that it is independent of 𝐿. By definition, 𝐼𝐶𝑇

1,1 := Sing𝜀(𝑊1,1(𝑃 (𝜀, 𝐿), 𝐼),
and 𝑑

𝑑𝐿𝑊1,1 is non-singular,

𝑑

𝑑𝐿
𝑊1,1(𝑃 (𝜀, 𝐿), 𝐼) = 𝑑

𝑑𝐿

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝐼0,3 𝑃 (𝜀, 𝐿) + 𝐼1,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝐼0,3 𝐾𝐿 .

It follows that 𝑑
𝑑𝐿𝐼𝐶𝑇

1,1 = 0. Finally, since 𝑊1,1 has a small 𝐿 asymptotic expansion by Theorem
2.2.2, we conclude that 𝐼𝐶𝑇

1,1 is local.
We will construct the rest of the counter-terms by induction. Introduce a lexicographic order in

Z≥0 × Z≥0, such that: (𝑖, 𝑘) ≺ (𝑗, 𝑙) if 𝑖 < 𝑗 or if 𝑖 = 𝑗 and 𝑘 < 𝑙.
Let us also introduce the notation: 𝑊≺(𝑖,𝑘)(𝑃, 𝐼) =

∑︀
(𝑗,𝑙)≺(𝑖,𝑘) ℏ𝑗𝑊𝑗,𝑙(𝑃, 𝐼). In terms of stable

graphs:𝑊≺(𝑖,𝑘)(𝑃, 𝐼) =
∑︀

𝛾∈Γ≺(𝑖,𝑘)

ℏ𝑔(𝛾)

|Aut(𝛾)|𝜔𝛾(𝑃, 𝐼) where Γ≺(𝑖,𝑘) denote the set of stable graphs with genus

smaller that 𝑖, or with genus equal to 𝑖 and fewer that 𝑘 external edges.
Assume we have constructed counter-terms for all (𝑗, 𝑙) ≺ (𝑖, 𝑘), and that:

i) For all 𝐿, the limit

lim
𝜀→0

𝑊≺(𝑖,𝑘)

⎛⎝𝑃 (𝜀, 𝐿), 𝐼 −
∑︁

(𝑗,𝑙)≺(𝑖,𝑘)
ℏ𝑗𝐼𝐶𝑇

𝑗,𝑙 (𝜀)

⎞⎠
exists.

ii) The counterterms 𝐼𝐶𝑇
(𝑗,𝑙) are local for (𝑗, 𝑙) ≺ (𝑖, 𝑘).

Defining the new counterterm as:

𝐼𝐶𝑇
𝑖,𝑘 (𝜀, 𝐿) = Sing𝜀𝑊𝑖,𝑘

⎛⎝𝑃 (𝜀, 𝐿), 𝐼 −
∑︁

(𝑗,𝑙)≺(𝑖,𝑘)
ℏ𝑗𝐼𝐶𝑇

(𝑗,𝑙)(𝜀)

⎞⎠ (2.2)

It is immediate that the limit,

lim
𝜀→0

𝑊≺(𝑖,𝑘)

⎛⎝𝑃 (𝜀, 𝐿), 𝐼 −
∑︁

(𝑗,𝑙)≺(𝑖,𝑘)
ℏ𝑗𝐼𝐶𝑇

𝑗,𝑙 (𝜀) − ℏ𝑖𝐼𝐶𝑇
𝑖,𝑘 (𝜀, 𝐿)

⎞⎠
exists, since

lim
𝜀→0

𝑊≺(𝑖,𝑘)

⎛⎝𝑃 (𝜀, 𝐿), 𝐼 −
∑︁

(𝑗,𝑙)≺(𝑖,𝑘)
ℏ𝑗𝐼𝐶𝑇

𝑗,𝑙 (𝜀)

⎞⎠− 𝐼𝐶𝑇
𝑖,𝑘 (𝜀, 𝐿).

We will again show that is local by first showing that it is independent of 𝐿.
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Let 𝐿′ > 𝐿, therefore:

𝐼𝐶𝑇
𝑖,𝑘 (𝜀, 𝐿′) = Sing𝜀𝑊𝑖,𝑘

⎛⎝𝑃 (𝜀, 𝐿′), 𝐼 −
∑︁

(𝑗,𝑙)≺(𝑖,𝑘)
ℏ𝑗𝐼𝐶𝑇

(𝑗,𝑙)(𝜀)

⎞⎠
= Sing𝜀𝑊𝑖,𝑘

⎛⎝𝑃 (𝐿, 𝐿′), 𝑊

⎛⎝𝑃 (𝜀, 𝐿), 𝐼 −
∑︁

(𝑗,𝑙)≺(𝑖,𝑘)
ℏ𝑗𝐼𝐶𝑇

(𝑗,𝑙)(𝜀)

⎞⎠⎞⎠
= Sing𝜀𝑊𝑖,𝑘

⎛⎝𝑃 (𝐿, 𝐿′), 𝑊≺(𝑖,𝑘)

⎛⎝𝑃 (𝜀, 𝐿), 𝐼 −
∑︁

(𝑗,𝑙)≺(𝑖,𝑘)
ℏ𝑗𝐼𝐶𝑇

(𝑗,𝑙)(𝜀)

⎞⎠
+ ℏ𝑖𝑊𝑖,𝑘

⎛⎝𝑃 (𝜀, 𝐿), 𝐼 −
∑︁

(𝑗,𝑙)≺(𝑖,𝑘)
ℏ𝑗𝐼𝐶𝑇

(𝑗,𝑙)(𝜀)

⎞⎠⎞⎠
= Sing𝜀𝑊𝑖,𝑘

⎛⎝𝑃 (𝐿, 𝐿′), 𝑊≺(𝑖,𝑘)

⎛⎝𝑃 (𝜀, 𝐿), 𝐼 −
∑︁

(𝑗,𝑙)≺(𝑖,𝑘)
ℏ𝑗𝐼𝐶𝑇

(𝑗,𝑙)(𝜀)

⎞⎠⎞⎠
+ Sing𝜀𝑊𝑖,𝑘

⎛⎝𝑃 (𝜀, 𝐿), 𝐼 −
∑︁

(𝑗,𝑙)≺(𝑖,𝑘)
ℏ𝑗𝐼𝐶𝑇

(𝑗,𝑙)(𝜀)

⎞⎠
And since we know the first term is non-singular, the equation reduces to:

𝐼𝐶𝑇
𝑖,𝑘 (𝜀, 𝐿′) = Sing𝜀𝑊𝑖,𝑘

⎛⎝𝑃 (𝜀, 𝐿), 𝐼 −
∑︁

(𝑗,𝑙)≺(𝑖,𝑘)
ℏ𝑗𝐼𝐶𝑇

(𝑗,𝑙)(𝜀)

⎞⎠
= 𝐼𝐶𝑇

𝑖,𝑘 (𝜀, 𝐿).

Using the same argument as before we can show that it is local.
We are ready to state the main theorem of this chapter. It regards the questions, How many scalar

field theories are there? Does every action functional describe a theory in the sense of Definition
2.2.12. How are quantizations at different orders in ℏ related?

To answer these questions precisely, we will need the concept of principal bundle.

Definition 2.2.9 (Principal 𝐺−bundle). A principal 𝐺−bundle , where 𝐺 denotes any Lie group, is
a fibre bundle 𝜋 : 𝑃 → 𝑋 together with a smooth right action 𝑃 × 𝐺 → 𝑃 such that 𝐺 preserve the
fibres of 𝑃 and acts freely and transitively on them in a way that for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑃𝑥, the map
𝐺 → 𝑃𝑥, sending 𝑔 to 𝑔𝑦 is a diffeomorphism.

Theorem 2.2.5. Let T (𝑛) denote the set of perturbative scalar field theories defined modulo ℏ𝑛+1.
Then T (𝑛+1) is, in a canonical way, a principal bundle over T (𝑛) for the abelian group O𝑙𝑜𝑐(𝐶∞(𝑀)).
Furthermore, T (0) is canonically isomorphic to the space O+

𝑙𝑜𝑐(𝐶∞(𝑀)) of local action functionals
which are at least cubic.

There is a less natural way of stating this theorem, which is:

Theorem 2.2.6. A choice of renormalization scheme leads to a section of each principal bundle
T (𝑛+1) −→ T (𝑛), and thus, an isomorphism between the space of theories defined modulo ℏ𝑛+1 and
O+

𝑙𝑜𝑐(𝐶∞(𝑀))[[ℏ]]/ℏ𝑛+1, and an isomorphism between T (∞) and O+
𝑙𝑜𝑐(𝐶∞(𝑀))[[ℏ]]

Even though the first theorem is more general and implies the second one, to prove them we will
first prove the second one and infer the first one by analysing the dependence on the renormalization
scheme.

Given a local action functional 𝐼 ∈ O𝑙𝑜𝑐(𝐶∞(𝑀))[[ℏ]] and a choice of renormalization scheme,
we have shown how to construct local counter-terms, which allows us to define a scale 𝐿 effective
interaction:

𝐼[𝐿] := 𝑊 𝑅(𝑃 (0, 𝐿), 𝐼) = lim
𝜀→0

𝑊 (𝑃 (𝜀, 𝐿), 𝐼 − 𝐼𝐶𝑇 (𝜀))
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The collection of these effective interactions satisfies all the axioms of Definition (2.2.6). Now we
need to show that for each theory {𝐼[𝐿]}, there is a corresponding local action functional. We will
prove it again, by induction. Let us assume that we have constructed local action functionals 𝐼𝑟,𝑠 for
(𝑟, 𝑠) ≺ (𝑖, 𝑘), such that

𝑊 𝑅
𝑎,𝑏

⎛⎝𝑃 (0, 𝐿),
∑︁

(𝑟,𝑠)≺(𝑖,𝑘)
ℏ𝑟𝐼𝑟,𝑠

⎞⎠ = 𝐼𝑎,𝑏[𝐿]

for all (𝑎, 𝑏) ≺ (𝑖, 𝑘). The infinitesimal version of the renormalization group equation (see [Cos11]
Fig.6) implies that

𝑊 𝑅
î,𝑘

⎛⎝𝑃 (0, 𝐿),
∑︁

(𝑟,𝑠)≺(𝑖,𝑘)
ℏ𝑟𝐼𝑟,𝑠

⎞⎠− 𝐼𝑖,𝑘[𝐿]

is independent of 𝐿. The locality axiom for the theory {𝐼[𝐿]} implies that this quantity is local. Thus,
defining

𝐼𝑖,𝑘 = 𝐼𝑖,𝑘[𝐿] − 𝑊 𝑅
î,𝑘

⎛⎝𝑃 (0, 𝐿),
∑︁

(𝑟,𝑠)≺(𝑖,𝑘)
ℏ𝑟𝐼𝑟,𝑠

⎞⎠
we arrive at

𝑊 𝑅
𝑎,𝑏

⎛⎝𝑃 (0, 𝐿),
∑︁

(𝑟,𝑠)⪯(𝑖,𝑘)
ℏ𝑟𝐼𝑟,𝑠

⎞⎠ = 𝐼𝑎,𝑏[𝐿]

for all (𝑎.𝑏) ⪯ (𝑖.𝑘).
Thus far, we have shown that given a renormalization scheme, there is a bijection between T (∞)

and functionals 𝐼 ∈ O+(𝐶∞(𝑀))[[ℏ]] and between T (𝑛) and functionals 𝐼 ∈ O+(𝐶∞(𝑀))[[ℏ]]/ℏ𝑛+1.
To show that T (𝑛+1) → T (𝑛) forms a principal bundle, note that the bijection constructed makes
the map T (𝑛+1) → T (𝑛) surjective. Suppose that {𝐼[𝐿]} and {𝐽 [𝐿]} are two theories defined modulo
ℏ𝑛+2 and which agree modulo ℏ𝑛+1. Denote by 𝐼0[𝐿] ∈ T (0) their classical theory. The tangent
space of T (0) at 𝐼0[𝐿] consists of all infinitesimal deformations of the classical theory, which do not
have to be at least cubic. More precisely, 𝑇𝐼0[𝐿]T

(0) is the set of 𝐻[𝐿] ∈ O(𝐶∞(𝑀)) such that 𝐻[𝐿]
has a small 𝐿 asymptotic expansion in terms of local action functionals and 𝐼0[𝐿] + 𝛿𝐻[𝐿] satisfies
the classical renormalization group equation modulo 𝛿2. We have a canonical isomorphisms of vector
spaces 𝑇𝐼0[𝐿] ∼= O𝑙𝑜𝑐(𝐶∞(𝑀)). Now note that

𝐼0[𝐿] + 1
ℏ𝑛+1 𝛿 (𝐼[𝐿] − 𝐽 [𝐿]) ∈ O(𝐶∞(𝑀))

satisfies the classical renormalization group equation modulo 𝛿2, and therefore, defines an element of
𝑇𝐼0[𝐿] ∼= O𝑙𝑜𝑐(𝐶∞(𝑀)).

2.2.5 Vector-bundle valued Quantum Field Theories

We will see that the main theorems of the previous section, which showed that there is a bijection
between local action functionals and theories hold for a more general class of theories. In this section,
we will define theories whose fields are sections of some vector bundle over a manifold. Additionally,
we will make them depend smoothly on an auxiliary supermanifold.

This additional data will be useful to include theories parametrised by 𝑛−forms over simplices, as
we will need in Chapter 4. On a first read, this additional dependence can be omitted, as it doesn’t
give any insight on the problem of defining theories for vector bundles.

First, we need a preliminary definition:

Definition 2.2.10 (Sheaf). A sheaf ℱ over a topological space 𝑀 is an assignment to each open
set 𝑈 ⊂ 𝑀 of a group ℱ(𝑈), known as the sections of ℱ over 𝑈 , which possesses the following two
properties:

i) Given two such open sets 𝑈 and 𝑉 , with 𝑈 ⊂ 𝑉 there exist restriction maps 𝑟𝑉
𝑈 : ℱ(𝑉 ) → ℱ(𝑈)

which satisfy: 𝑟𝑈
𝑈 = id𝑈 and if 𝑈 ⊂ 𝑉 ⊂ 𝑊 , then 𝑟𝑊

𝑈 = 𝑟𝑊
𝑉 ∘ 𝑟𝑉

𝑈
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ii) Let 𝑈 be expressed as a union of open sets according to 𝑈 = ∪𝑖𝑈𝑖 then, given two sections
𝑠1, 𝑠2 ∈ ℱ(𝑈), 𝑟𝑈

𝑈𝑖
(𝑠1) = 𝑟𝑈

𝑈𝑖
(𝑠2), ∀𝑖 implies 𝑠1 = 𝑠2. If 𝑟𝑈𝑖

𝑈𝑖∩𝑈𝑗
(𝑠𝑖) = 𝑟

𝑈𝑗

𝑈𝑖∩𝑈𝑗
(𝑠𝑗)∀𝑖, 𝑗 then there is

a unique 𝑠 ∈ ℱ(𝑈) such that 𝑟𝑈
𝑈𝑖

= 𝑠𝑖.

Definition 2.2.11 (Nilpotent graded manifold). A nilpotent graded manifold consists of:

i) A smooth manifold (possibly with) corners 𝑋, which means that 𝑋 is locally modelled by
[0, ∞)𝑘 × R𝑛−𝑘 instead of R𝑛.

ii) A sheaf 𝐴 of commutative super algebras over the sheaf of algebras 𝐶∞𝑋 ,

such that they satisfy:

i) 𝐴 is locally free of finite rank as a 𝐶∞𝑋 -module. In other words, 𝐴 is the sheaf of sections of
some super vector bundle on 𝑋.

ii) 𝐴 is equipped with an ideal 𝐼 such that 𝐴/𝐼 = 𝐶∞𝑋 , and 𝐼𝑘 = 0 for some 𝑘 > 0. The ideal
𝐼, its powers 𝐼 𝑙, and the quotient sheaves 𝐴/𝐼 𝑙, are all required to be locally free sheaves of
𝐶∞𝑋 -modules.

We will denote the algebra of 𝐶∞ global sections of 𝐴, Γ(𝑋, 𝐴) by A , and Γ(𝑋, 𝐼) by I .
Everything will depend on this auxiliary data A .

Definition 2.2.12 (Free theory). A free theory on a manifold 𝑀 consists of:

i) A super vector bundle 𝐸 (over the field R or C) 𝑀 , equipped with a direct sum decomposition
𝐸 = 𝐸1 ⊕ 𝐸2 into the spaces of propagating and non-propagating fields, respectively. Denote
the space of smooth global sections of 𝐸 or 𝐸𝑖 by ℰ and ℰ𝑖 respectively. Define ℰ !

1 = Γ(𝑀, 𝐸∨1 ⊗
Dens(𝑀)). Note that ℰ !

1 ⊂ ℰ∨1 .

ii) An even, A −linear, order two differential operator

𝐷ℰ1 : ℰ1 ⊗ A → ℰ1 ⊗ A

(where we are using the completed projective tensor product). 𝐷ℰ1 must be a generalized
Laplacian which means that the symbol

𝜎(𝐷ℰ1) ∈ Γ(𝑇 *𝑀, Hom(𝐸, 𝐸)) ⊗ A

must be the identity on 𝐸 times a smooth family of Riemannian metrics

𝑔 ∈ 𝐶∞(𝑇 *𝑀) ⊗ 𝐶∞(𝑋).

Recall that 𝐶∞(𝑋) ⊂ A is a subalgebra, as A is the global sections of a bundle of algebras on
X.

iii) A differential operator

𝐷′ : ℰ !
1 → ℰ1,

which is symmetric. That is, equal to its formal adjoint:

𝐷′* : ℰ !
1 → ℰ1.

iv) 𝐷′𝐷*ℰ1
= 𝐷ℰ1𝐷′, where 𝐷*ℰ1

: ℰ !
1 → ℰ !

1 is the formal adjoint of 𝐷ℰ1 .
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We will usually abuse notation and denote the entirety of the data of a free theory on 𝑀 as ℰ .
The use of graded vector bundles is essential to the Batalin-Vilkovisky formalism, and the intro-

duction of the space of non-propagating fields ℰ2 is introduced with an eye to applications on quantum
gravity. It won’t be used in the applications of this work.

A simple example is again the free scalar field theory. In this more general context, ℰ1 = 𝐶∞(𝑀),
ℰ2 = 0. The operator 𝐷ℰ1 is the usual positive-definite Laplacian, whereas 𝐷′ is the identity. The
Riemannian volume element allows us to identify ℰ ! with ℰ .

In order to introduce interactions, we need to make sense of the concept of effective interaction
in this context. In the case that 𝑀 is a compact manifold (or R𝑛), there is a unique heat kernel
𝐾𝑡 ∈ ℰ !

1 ⊗ ℰ1 ⊗ 𝐶∞(R>0) ⊗ A for the operator 𝐷ℰ1 . Composing it with 𝐷′ gives an element

𝐷′𝐾𝑡 ∈ ℰ1 ⊗ ℰ1 ⊗ 𝐶∞(R>0) ⊗ A

Which we see as an element of ℰ ⊗ ℰ ⊗ 𝐶∞(R>0) ⊗ A .
The propagator is defined as:

𝑃 (𝜀, 𝐿) =
∫︁ 𝐿

𝜀
𝐷′𝐾𝑡 ∈ ℰ ⊗ ℰ ⊗ A

We won’t impose any positivity condition on 𝐷ℰ1 so 𝐾∞ may not be defined. However, in most
examples, it will be defined.

Define again the algebra of functionals on ℰ , with values in A :

O(ℰ , A ) =
∏︁
𝑛

Hom(ℰ⊗𝑛, A )𝑆𝑛

Local action functionals in this context will be defined as:

Definition 2.2.13 (Local action functional). A functional Φ ∈ O(ℰ , A ) is said to be a local action
functional if, when we expand Φ as a sum Φ =

∑︀
Φ𝑛 of its homogeneous components, each Φ𝑛 : ℰ⊗𝑛 →

A can be written as a finite sum of the form:

Φ𝑛(𝑒1, . . . , 𝑒𝑛) =
∑︁

𝑗

∫︁
𝑀

(𝐷1,𝑗𝑒1) . . . (𝐷𝑛,𝑗𝑒𝑛)𝑑𝜇

where 𝑑𝜇 ∈ Dens(𝑀) and each 𝐷𝑖,𝑗 is an A -linear differential operator.

We want our interactions to be elements of O𝑙𝑜𝑐(ℰ , A )[[ℏ]], and if we want our interactions to have
linear and quadratic terms, we will impose that they are accompanied by elements of our nilpotent
ideal I ⊂ A .

We can now define the subset O+
𝑙𝑜𝑐(ℰ , A )[[ℏ]] of local action functionals which are at least cubic

modulo the ideal of A [[ℏ]] generated by ℏ and I .
The renormalization group operator:

𝑊 (𝑃 (𝜀, 𝐿), 𝐼) := ℏ log
(︁
exp(ℏ𝜕𝑃(𝜀,𝐿)) exp(𝐼/ℏ)

)︁
: O+

𝑙𝑜𝑐(ℰ , A ) −→ O+
𝑙𝑜𝑐(ℰ , A )

is well defined, but as we allowed for linear and quadratic terms in our interaction, we may now
encounter univalent and bivalent genus 0 vertices. This will not result in an infinite sum as they are
accompanied by the nilpotent ideal and so there will be only finitely many of such terms.

We are prepared to give the definition of a (interacting) theory:

Definition 2.2.14. Given a free theory ℰ , a (interacting) theory for this free theory is given by a
collection of even elements

𝐼[𝐿] ∈ O+(ℰ , 𝐶∞(0, ∞)𝐿 ⊗ A )[[ℏ]]

such that:

1. They satisfy the renormalization group equation:

𝐼[𝐿′] = 𝑊 (𝑃 (𝐿, 𝐿′), 𝐼[𝐿])
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2. Each 𝐼(𝑖,𝑘)[𝐿] has a small 𝐿 asymptotic expansion:

𝐼(𝑖,𝑘)[𝐿](𝑒) ≃
∑︁

Ψ𝑟(𝑒)𝑓𝑟(𝐿)

where Ψ𝑟 ∈ O𝑙𝑜𝑐(ℰ) are local action functionals and 𝑓𝑟(𝐿) ∈ 𝐶∞(0, ∞)𝐿.

Let T (∞)(ℰ) denote the space of such theories, and T (𝑛)(ℰ) denote the space of theories defined
modulo ℏ𝑛+1, such that T (∞) = lim

←−
T (𝑛)

The main theorems in this context are:

Theorem 2.2.7. The space T (𝑛+1)(ℰ) has the structure of an O𝑙𝑜𝑐(ℰ , A )-principal bundle over
T (𝑛)(ℰ), in a canonical way. Further, T (0)(ℰ) is canonically isomorphic to the space O+

𝑙𝑜𝑐(ℰ , A )
of A −valued local action functionals on ℰ which are at least cubic modulo the ideal I ⊂ A . The
choice of renormalization scheme leads to a bijection between T (∞)(ℰ) and the space O+

𝑙𝑜𝑐(ℰ , A )[[ℏ]] of
local action functionals with values in A , which are at least cubic modulo the ideal in A [[ℏ]] generated
by I ⊂ A and ℏ.

The proof is essentially the same as for the scalar field theory and won’t be presented here. We
refer to the reader to [Cos11, Chapter 2.13].

There is a further generalisation to theories defined on non-compact manifolds, where a unique
heat kernel is not guaranteed to exist. It involves choosing a fake heat kernel. We won’t go into detail
since our goal is to define Yang-Mills theory in R4 and in R𝑛 things are much simpler, as we will see.
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Chapter 3

Theories on R𝑛

Theories on R𝑛 present extra difficulties with respect to the compact manifold case. Not only we have
to deal with the previous 𝜀 → 0 singularities, which we will call ultraviolet singularities, but also with
infrared singularities, coming from the 𝐿 → ∞ limit. Luckily, theories on R𝑛 are also better behaved
than general theories on non-compact manifolds since we can use the ordinary heat kernel on R𝑛 as
long as we consider theories 𝐼[𝐿] with 𝐿 < ∞.

These infrared divergences make the renormalization group operator only well defined for func-
tionals 𝐼 which are well-behaved, that is, the components 𝐼𝑖,𝑘 are tempered distributions on R𝑛𝑘 of
rapid decay away from the small diagonal R𝑛 ⊂ R𝑛𝑘.

Again, every definition will depend on an auxiliary manifold 𝑋, a vector bundle 𝐴 on 𝑋 whose
section we will denote A , as in Definition 2.2.12.

The first definition we will need is that of Schwartz space and Schwartz function. These functions
will be the ones whose derivatives are of rapid decay.

Definition 3.0.1 (Schwartz space). The Schwartz space is the function space

S (R𝑛) = {𝑓 ∈ 𝐶∞(R𝑛,C)|∀𝛼, 𝛽 ∈ N𝑛, ||𝑓 ||𝛼,𝛽 < ∞},

where 𝐶∞(R𝑛,C) denote the space of smooth functions from R𝑛 to C, and ||𝑓 ||𝛼,𝛽 = sup𝑥∈R𝑛 |𝑥𝛼(𝐷𝛽𝑓)(𝑥)|,
where we have used multi-index notation: 𝑥𝛼 := 𝑥𝛼1

1 . . . 𝑥𝛼𝑛
𝑛 and 𝐷𝛽 := 𝜕𝛽1

1 . . . 𝜕𝛽𝑛
𝑛

Denote by 𝒟(R𝑛, A ) the space of continuous linear maps S (R𝑛) → A , that is, the space of
A −valued tempered distributions on R𝑛.

There is an A −bilinear direct product map

𝒟(R𝑛, A ) ⊠ 𝒟(R𝑘, A ) −→ 𝒟(R𝑛+𝑘, A )
(Ψ, Φ) ↦−→ Ψ ⊠ Φ.

The direct product Ψ ⊠ Φ is uniquely determined by the property that for all Schwartz functions
𝑓 ∈ S (R𝑛), 𝑔 ∈ S (R𝑘) and (Ψ ⊠ Φ) (𝑓 ⊠ 𝑔) = Ψ(𝑓)Φ(𝑔), where the product on the right is taken in
the algebra A and 𝑓 ⊠ 𝑔 ∈ S (R𝑛+𝑘) is the usual exterior product of functions.

We will be interested in distributions of rapid decay on R𝑛, more concretely we will impose that
they decay as fast as 𝑒−𝑏||𝑥||2 for some 𝑏 > 0. That will mean that they are continuous linear maps on
spaces of functions whose growth is bounded by 𝑒𝑏||𝑥||2 .

Definition 3.0.2. Let 𝑉, 𝑊 be finite-dimensional vector spaces over R. For all 𝑎 ∈ Z≥0, 𝑏 ∈ R>0 and
𝑙 ∈ Z≥0, define the norm || − ||𝑎,𝑏,𝑙 on S (𝑉 ⊕ 𝑊 ) by the formula

||𝑓 ||𝑎,𝑏,𝑙 =
∑︁
|𝐼|≤𝑙

sup
(𝑣,𝑤)∈𝑉⊕𝑊

⃒⃒⃒
(1 + ||𝑣||2)𝑎𝑒−𝑏||𝑤||2𝜕𝐼𝑓

⃒⃒⃒
.

This formula may be extended to a map 𝐶∞(𝑉 ⊕ 𝑊 ) → [0, ∞]. Let T (𝑉, 𝑊 ) ⊂ 𝐶∞(𝑉 ⊕ 𝑊 ) be
the subspace of those functions such that, for all 𝑎, 𝑏 and 𝑙, ||𝑓 ||𝑎,𝑏,𝑙 < ∞. Finally, give T (𝑉, 𝑊 ) the
topology induced by the seminorms ||𝑓 ||𝑎,𝑏,𝑙

25
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We say that a continuous linear map Φ : S (𝑉 ⊕ 𝑊 ) → A is of rapid decay along 𝑊 if it extends
to a continuous linear map Φ : T (𝑉, 𝑊 ) → A .

Let us also give A the topology induced by the seminorms || − ||𝐾,𝐷, where 𝐾 ⊂ 𝑋 is a compact
subset and 𝐷 : A → A is a differential operator, given by taking the supremum over 𝐾 of 𝐷𝑎.

From these definitions, we obtain the following properties:

1. S (𝑉 ⊕ 𝑊 ) ⊂ T (𝑉, 𝑊 ) is dense.

2. A continuous linear map Φ : S (𝑉 ⊕𝑊 ) → A extends to a continuous linear map T (𝑉, 𝑊 ) → A
if and only if, for all compact subsets 𝐾 ⊂ 𝑋 and all differential operators 𝐷 : A → A , there
exists some 𝑎, 𝑏, 𝑙 and 𝐶 such that:

||Φ(𝑓)||𝐾,𝐷 ≤ 𝐶||𝑓 ||𝑎,𝑏,𝑙

3. Let Φ : T (𝑉, 𝑊 ) → A and Ψ : T (𝑉 ′, 𝑊 ′) → A be continuous linear maps. The direct product
Ψ⊠Φ : S (𝑉 ⊕𝑉 ′⊕𝑊 ⊕𝑊 ′) → A extends to a continuous linear map T (𝑉 ⊕𝑉 ′, 𝑊 ⊕𝑊 ′) → A .

We can finally define our good distributions

Definition 3.0.3 (Good distribution). A tempered distribution Φ : S (R𝑛𝑘) → A is good if it is
translational invariant and, it satisfies the following property:

1. If we decompose R𝑛𝑘 as an orthogonal direct sum R𝑛 ⊕R𝑛(𝑘−1), where R𝑛 is the small diagonal,
then Φ is of rapid decay along R𝑛(𝑘−1). That is, Φ extends to a continuous linear map

Φ : T (R𝑛,R𝑛(𝑘−1)) → A

Denote the space of good distributions as 𝒟𝑔(R𝑛𝑘).

The importance of these definitions is that Feynman graphs still make sense when contracting
good distributions and the result is also a good distribution.

Let 𝛾 be a connected graph. Let 𝐻(𝛾), 𝑇 (𝛾), 𝑉 (𝛾) and 𝐸(𝛾) denote the set of half-edges, tails
vertices and internal edges, respectively.

For every 𝑣 ∈ 𝑉 (𝛾), denote 𝐻(𝑣) the set of half-edges adjoining 𝑣 and for every 𝑒 ∈ 𝐸(𝛾) denote
𝐻(𝑒) the pair of half-edges forming 𝑒. Suppose we have the following data:

1. For every 𝑣 ∈ 𝑉 (𝛾), we have a good distribution

𝐼𝑣 ∈ 𝒟𝑔(R𝑛𝐻(𝑣), A ).

2. For each edge 𝑒 ∈ 𝐸(𝛾), we have a function

𝑃𝑒 ∈ 𝐶∞(R𝑛𝐻(𝑒)).

Let ℎ1, ℎ2 denote the two half edges of 𝑒, and let 𝑥ℎ𝑖
: R𝑛𝐻(𝑒) −→ R𝑛 be the corresponding linear

maps. Let us assume that 𝑃𝑒 is invariant under the R𝑛 action on R𝑛𝐻(𝑒); this amount to saying
that 𝑃𝑒 is independent of 𝑥ℎ1 + 𝑥ℎ2 . Let us further assume that for any multi-index 𝐼, there
exists 𝑏 such that |𝜕𝐼𝑃𝑒| ≤ 𝑒−𝑏||𝑥ℎ1−𝑥ℎ2 ||

2 .

Therefore, we can attempt to define the weights 𝜔𝛾(𝐼𝑣, 𝑃𝑒) on R𝑛𝑇 (𝛾) by contracting the distribu-
tions 𝐼𝑣 with the functions 𝑃𝑒. The following theorem states that this procedure works.

Theorem 3.0.1. The distribution 𝜔𝛾(𝐼𝑣, 𝑃𝑒) is well-defined, and it is a good distribution on R𝑛𝑇 (𝛾).

We would like to give a definition of scalar field theory on R𝑛 in the same lines as before and state
the main theorem on the classification of theories in this context. We will define the space

O(S (R𝑛)) =
∏︁
𝑘≥1

𝒟𝑔(R𝑛𝑘)𝑆𝑘



27

as the space of formal power series on S (R𝑛) whose Taylor components are good distributions. Note
that it is not an algebra, and it doesn’t have a constant term as we are considering only translational
invariant theories.

A good distribution is local if it is supported on the small diagonal R𝑛 ⊂ R𝑛𝑘. Translational
invariance implies that a local good distribution may be written as a finite sum:

𝑓(𝑥1, . . . , 𝑥𝑘) ↦→
∑︁

𝐼

∫︁
𝑥∈R𝑛

(𝜕𝐼𝑓)(𝑥1, . . . 𝑥𝑘)

where 𝜕𝐼 : S (R𝑛𝑘) → S (R𝑛𝑘) are constant-coefficient differential operators corresponding to
multi-indices 𝐼 ∈ (Z≥0)𝑛𝑘.

Denote O𝑙𝑜𝑐(S (R𝑛)) the subspace of functionals on S (R𝑛) whose Taylor components are local
elements of 𝒟𝑔(R𝑛). Denote also by O+

𝑙𝑜𝑐(S (R𝑛))[[ℏ]] ⊂ O𝑙𝑜𝑐(S (R𝑛))[[ℏ]] the subspace of functionals
which are at least cubic modulo ℏ.

We will again assume that our kinetic term is given by −1
2
∫︀

𝜑(𝐷 + 𝑚2)𝜑, where 𝐷 is the non-
negative Laplacian and 𝑚 > 0 is the mass.

The propagator of our theory will be [BGV92]

𝑃 (𝜀, 𝐿) =
∫︁ 𝐿

𝜀
𝑒−𝑡𝑚2

𝐾𝑡𝑑𝑡 =
∫︁ 𝐿

𝜀
𝑡−𝑛/2𝑒−𝑡𝑚2

𝑒−||𝑥−𝑦||2/𝑡𝑑𝑡 ∈ 𝐶∞(R𝑛 × R𝑛)

The only differences between the definition of theory in R‘𝑛 with respect to the compact manifold
case are that we now require the effective interactions 𝐼[𝐿] to be good distributions on R𝑛𝑘 and that
we can weaken the requirement that 𝐼[𝐿] has a small 𝐿 asymptotic expansion. We only require that
𝐼[𝐿] tends to zero away from the diagonals in R𝑛𝑘, since with translational invariance this is enough
to prove the bijection between theories and Lagrangians.

More specifically:

Definition 3.0.4. A scalar field theory on R𝑛 , with mass 𝑚 > 0, is given by a collection of functionals
𝐼[𝐿] ∈ O+(S (R𝑛), 𝐶∞(0, ∞)𝐿)[[ℏ]] where 𝐿 ∈ (0, ∞), such that:

1. The renormalization group equation

𝑊 (𝑃 (𝜀, 𝐿), 𝐼[𝜀]) = 𝐼[𝐿]

holds.

2. The following locality axiom holds: Expanding 𝐼[𝐿] as
∑︀

ℏ𝑖𝐼𝑖,𝑘[𝐿], where each 𝐼𝑖,𝑘[𝐿] is a 𝑆𝑘

invariant map. Regarding 𝐼𝑖,𝑘[𝐿] as a distribution on R𝑛𝑘, let 𝐶 ⊂ R𝑛𝑘 be a compact subset
in the complement of the small diagonal. Then, for all functions 𝑓 ∈ S (R𝑛𝑘) with compact
support on 𝐶,

lim
𝐿→0

𝐼𝑖,𝑘[𝐿](𝑓) = 0.

Denote by T (∞) the set of theories and by T (𝑛) the set of theories defined modulo ℏ𝑛+1.

The main theorem in this context is as follows:

Theorem 3.0.2. The space T (𝑛+1) is a principal bundle over T (𝑛) for the group O𝑙𝑜𝑐(S (R𝑛)) in a
canonical way, and T (0) is canonically isomorphic to the subset of O𝑙𝑜𝑐(S (R𝑛)) of functionals which
are at least cubic.

The choice of renormalization scheme yields a section of each torsor T (𝑛+1) −→ T (𝑛), and there-
fore a bijection between the set T (∞) of theories and the set O+

𝑙𝑜𝑐(S (R𝑛))[[ℏ]] of ℏ-dependent transla-
tional invariant functionals on S (R𝑛) which are at least cubic modulo ℏ.
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3.1 Vector bundle theories
There is again a generalization to vector bundle theories on R𝑛. Everything will depend again on
an auxiliary manifold 𝑋, equipped with a sheaf 𝐴 of commutative graded algebras over the sheaf of
algebras 𝐶∞𝑋 . The space of global sections Γ(𝑋, 𝐴) will be denoted A . We have the following data:

i) A finite-dimensional super vector space 𝐸. Let

ℰ = 𝐸 ⊗ S (R𝑛).

Thus, ℰ is the space of Schwartz sections of the trivial vector bundle 𝐸 × R𝑛

ii) A degree zero symmetric element 𝐾𝑡 ∈ 𝐶∞(R𝑛 × R𝑛) ⊗ 𝐸 ⊗ 𝐸 ⊗ 𝐶∞((0, ∞)𝑡) ⊗ A , playing
the role of the heat kernel. We assume that in some basis 𝑒𝑖 of 𝐸, 𝐾𝑡 can be written as
𝐾𝑡 =

∑︀
𝑃𝑖,𝑗(𝑥 − 𝑦, 𝑡−1/2)𝑒−||𝑥−𝑦||2/𝑡𝑒𝑖 ⊗ 𝑒𝑗 , where 𝑃𝑖,𝑗 ∈ A

[︁
𝑥 − 𝑦, 𝑡±1/2

]︁
, are polynomials in the

variables 𝑥𝑘 − 𝑦𝑘 and 𝑡±1/2 with coefficients in A .

The relevant spaces of functions will be

𝒟𝑔(R𝑛𝑘, A ) ⊂ 𝒟(R𝑛𝑘, A )

as defined before, that is, the space of A −valued translational invariant distributions of rapid decay
away from the diagonal. Let

O(ℰ , A ) =
∏︁
𝑘>0

(︁
𝒟𝑔(R𝑛𝑘, A ) ⊗ (𝐸∨)⊗𝑘

)︁
𝑆𝑘

be the space of A −valued functionals on ℰ , whose Taylor components are given by local distribu-
tions. Since each component is required to be translational invariant, every element of O(ℰ , A ) will
be translational invariant.

Again, we will call a good distribution Φ ∈ 𝒟𝑔(R𝑛𝑘, A ) local, if it is supported on the small diagonal
R𝑛 ⊂ R𝑛𝑘. As such, it may be written as a finite sum

𝑓(𝑥1, . . . 𝑥𝑘) ↦→
∑︁

𝐼

∫︁
𝑥∈R𝑛

𝑎𝐼(𝜕𝐼𝑓)(𝑥1, . . . 𝑥𝑘)

where 𝑎𝐼 ∈ A and 𝐼 ∈ (Z≥0)𝑛𝑘 are multi-indices.
We will denote by O+(ℰ , A )[[ℏ]] ⊂ O(ℰ , A )[[ℏ]] the set of functionals which are at least cubic

modulo the ideal in A [[ℏ]] generated by I ⊂ A and ℏ. O+
𝑙𝑜𝑐(ℰ , A )[[ℏ]] is defined in the same way.

Define the renormalization group flow as:

O+
𝑙𝑜𝑐(ℰ , A )[[ℏ]] −→ O+

𝑙𝑜𝑐(ℰ , A )[[ℏ]]
𝐼 ↦−→ 𝑊 (𝑃 (𝜀, 𝐿), 𝐼)

Which is well defined due to Theorem 3.0.1.
Given the data of a free theory, a vector bundle theory on R𝑛 is defined as:

Definition 3.1.1. A family of theories on ℰ , over A , is a collection

{𝐼[𝐿] ∈ O+(ℰ , A )[[ℏ]]}

of translational invariant effective interactions such that

1. Each 𝐼[𝐿] is of degree 0.

2. The renormalization group equation

𝐼[𝐿] = 𝑊 (𝑃 (𝜀, 𝐿), 𝐼[𝜀])

is satisfied.
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3. The following locality axiom holds: Expanding 𝐼[𝐿] =
∑︀

ℏ𝑖𝐼𝑖,𝑘[𝐿], where each 𝐼𝑖,𝑘[𝐿] is a
𝑆𝑘−invariant map ℰ⊗𝑘 → A . We require that for all elements 𝑓 ∈ ℰ⊗𝑘 which are compactly
supported away from the small diagonal in R𝑛𝑘, and for all 𝑥 ∈ 𝑋:

lim
𝐿→0

𝐼𝑖,𝑘[𝐿](𝑓)𝑥 = 0.

This limit is taken in the finite-dimensional graded vector space 𝐴𝑥, where the subscript 𝑥
denotes the restriction of an element of A to its value at the fibre 𝐴𝑥 of 𝐴 above 𝑥 ∈ 𝑋.

The main theorem in this context is:

Theorem 3.1.1. The space T (𝑚+1) −→ T (𝑚) is a torsor for the space O0
𝑙𝑜𝑐(ℰ , A )[[ℏ]] of local action

functionals of degree 0 on ℰ. Furthermore, T (0) is canonically isomorphic to the space of degree 0
local action functionals on ℰ which are at least cubic.

If we choose a renormalization scheme, we find a section of each torsor T (𝑚+1) −→ T (𝑚). Thus
a renormalization scheme yields a bijection

T (∞)(ℰ , A ) ∼= O+,0
𝑙𝑜𝑐 (ℰ , A )[[ℏ]]

between the set of theories and the set of translational-invariant, local action functionals on ℰ which
are of degree 0, which are at least cubic modulo the ideal in A [[ℏ]] generated by I ⊂ A and ℏ.

3.2 Renormalizability
The main theorems above show that there is an infinite-dimensional space of theories in R𝑛. A fair
assumption is that one wants a theory to be predictive, and that means that it can only have a finite
amount of free parameters so that one can do a finite amount of experiments and be able to choose
a particular theory from the space of all possible theories. As such, one aims to select from the
infinite-dimensional moduli space of theories, a finite-dimensional subspace of well-behaved theories.

An old-fashioned definition of well-behaved theory is one that has only finitely many counterterms.
We won’t be using this definition as it relies on the renormalization scheme, which we regard as
unnatural. We will define a theory {𝐼[𝐿]} to be well-behaved or renormalizable if, roughly, it doesn’t
grow too fast as 𝐿 → 0, measured in units appropriate to the length scale 𝐿 and the space of
deformations which also satisfy this growth condition is finite-dimensional. This definition is possible
in R𝑛 as we have a natural action of R>0 on the space of theories.

Note that this definition may be regarded as a weaker, perturbative approximation of an ideal
non-perturbative definition of renormalizability. The non-perturbative definition or Kadanoff-Wilson
renormalizability, says that a theory is renormalizable if it converges to a fixed point under the local
renormalizatino group flow ℛ𝒢ℓ as ℓ → 0 and the unstable manifold of this fixed point is finite-
dimensional. Our first condition excludes theories that clearly don’t converge to a fixed point but
includes theories that don’t converge to a fixed point in a more subtle way.

3.2.1 Scalar field theories

Firstly, let’s introduce the local renormalization group flow on the space of scalar field theories on R𝑛,
which combines the renormalization group flow already introduced, a rescaling on R𝑛 and a rescaling
of the fields 𝜑.

First, define the operation

𝑅ℓ : S (R𝑛) → S (R𝑛)
𝑅ℓ(𝜑)(𝑥) = ℓ𝑛/2−1𝜑(ℓ𝑥)

for 𝑥 ∈ R𝑛. The exponent ℓ𝑛/2−1 may seem arbitrary. It is chosen for convenience so that the action
functional of the massless free field is preserved under this change of coordinates, i,e 𝑅ℓ

∫︀
𝜑𝐷𝜑𝑑Vol𝑀 =∫︀

𝜑𝐷𝜑𝑑Vol𝑀 . This action may be thought of as a change in the units of measurement.
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Let’s see how this rescaling acts on the propagator 𝑃 (𝜀, 𝐿) ∈ Sym2S (R𝑛),

𝑅ℓ𝑃 (𝜀, 𝐿) =
∑︁

𝑖

∫︁ 𝐿

𝜀
𝑡−𝑛/2𝑒−||𝑥−𝑦||2/4𝑡𝑑𝑡𝑅ℓ𝜑𝑖(𝑥) ⊗ 𝑅ℓ𝜑𝑖(𝑦)

=
∑︁

𝑖

ℓ𝑛−2
∫︁ 𝐿

𝜀
𝑡−𝑛/2𝑒−ℓ2||𝑥−𝑦||2/4𝑡𝑑𝑡𝜑𝑖(𝑥) ⊗ 𝜑𝑖(𝑦)

=
∑︁

𝑖

∫︁ ℓ−2𝐿

ℓ−2𝜀
𝑢−𝑛/2𝑒−||𝑥−𝑦||2/4𝑡𝑑𝑢𝜑𝑖(𝑥) ⊗ 𝜑𝑖(𝑦)

= 𝑃 (ℓ−2𝜀, ℓ−2𝐿).

For some eigenbasis of the Laplacian.
For functionals 𝐼 ∈ O(S (R𝑛)), define 𝑅*ℓ (𝐼)(𝜑) = 𝐼(𝑅ℓ−1𝜑), such that 𝑅*ℓ (𝐼)(𝜑(𝑥)) = 𝐼(ℓ1−𝑛/2𝜑(ℓ−1𝑥)).

Note that the pairing between functionals and fields is invariant, i.e:

(𝑅*ℓ 𝐼)(𝑅ℓ𝜑) = 𝐼(𝜑).

We are ready to define the local renormalization group flow. The idea will come again from
the energy picture, where we want to measure the effective action as Λ → ∞ measuring with units
appropriate to the scale. That is if we measure 𝑆𝑒𝑓𝑓 [1] in joules, we should measure 𝑆𝑒𝑓𝑓 [103] in
kilo-joules etc. When translating to the length scale picture, since in natural units energy is equal to
length−2 we define the local renormalization group flow as,

Definition 3.2.1 (Local renormalization group flow). Given a collection of effective interactions
defining a theory {𝐼[𝐿]}, define the local renormalization group flow on the space of theories,

ℛ𝒢ℓ : T (∞) → T (∞),

by: ℛ𝒢ℓ({𝐼[𝐿]}) = {ℛ𝒢ℓ(𝐼[𝐿])}, where ℛ𝒢ℓ(𝐼[𝐿]) = 𝑅*ℓ (𝐼[ℓ2𝐿]).
The collection of effective interaction ℛ𝒢ℓ(𝐼[𝐿]) ∈ O(S (R𝑛)), 𝐶∞((0, ∞)ℓ ⊗ 𝐶∞((0, ∞)𝐿)) defines

a smooth family of theories parametrized by ℓ.

To check that ℛ𝒢ℓ(𝐼[𝐿]) defines a theory, note that the locality axiom is immediate. For the
renormalization group equation:

𝐼[ℓ2𝐿] = ℏ log{exp
(︁
ℏ𝜕𝑃 (ℓ2𝜀,ℓ2𝐿)

)︁
exp

(︁
𝐼[ℓ2𝜀]/ℏ

)︁
}

𝑅*ℓ 𝐼[ℓ2𝐿] = 𝑅*ℓℏ log{exp
(︁
ℏ𝜕𝑃 (ℓ2𝜀,ℓ2𝐿)

)︁
exp

(︁
𝐼[ℓ2𝜀]/ℏ

)︁
}

ℛ𝒢ℓ(𝐼[𝐿]) = 𝑅*ℓℏ log{exp
(︁
ℏ𝜕𝑃 (𝜀,𝐿)

)︁
exp (ℛ𝒢ℓ(𝐼[𝜀])/ℏ)}

= 𝑊 (𝑃 (𝜀, 𝐿), ℛ𝒢ℓ(𝐼[𝜀]))

Proposition 3.2.1. Given a translational invariant theory on R𝑛, {𝐼[𝐿]}, then ℛ𝒢ℓ(𝐼[𝐿]) ∈ O+(S (R𝑛))[[ℏ]]⊗
C[log ℓ, ℓ, ℓ−1].

This allow us to classify each term in ℛ𝒢(𝐼[𝐿]) as:

i) Relevant if it varies as ℓ𝑘 log𝑟 ℓ for some 𝑘 ≥ 0 and 𝑟 ∈ Z≥0.

ii) Irrelevant if it varies as ℓ𝑘 log𝑟 ℓ for some 𝑘 < 0 and 𝑟 ∈ Z≥0.

iii) Marginal if it varies as log𝑟 ℓ for some 𝑟 ∈ Z≥0.

Definition 3.2.2. A theory {𝐼[𝐿]} is relevant if, for each 𝐿, ℛ𝒢ℓ(𝐼[𝐿]) consists entirely of relevant
terms; or in other words, if

ℛ𝒢ℓ(𝐼[𝐿]) ∈ O+(S (R𝑛))[[ℏ]] ⊗ C[log ℓ, ℓ].
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A theory {𝐼[𝐿]} is marginal if, for each 𝐿, ℛ𝒢ℓ(𝐼[𝐿]) consists entirely of marginal terms; or in other
words, if

ℛ𝒢ℓ(𝐼[𝐿]) ∈ O+(S (R𝑛))[[ℏ]] ⊗ C[log ℓ].

Let R(𝑛) ⊂ T (𝑛)
(︁
respectively M (𝑛) ⊂ T (𝑛)

)︁
denote the subset of T (𝑛) of theories consisting of rele-

vant (resp. marginal) theories defined modulo ℏ𝑛+1. Let R(∞) = lim←R(𝑛) and M (∞) = lim←M (𝑛)

be the spaces of relevant and marginal theories defined to all orders in ℏ

We are ready to define a renormalizable theory.

Definition 3.2.3. A theory on R𝑛 is renormalizable if it is relevant and, term by term in ℏ, has only
finitely any relevant deformations. That is, a theory {𝐼[𝐿]} ∈ T (∞) is renormalizable if {𝐼[𝐿]} ∈
R(∞) and for all finite 𝑛, 𝑇𝐼[𝐿]R

(𝑛) is finite-dimensional. A theory is strictly renormalizable if it is
renormalizable and it is marginal. A theory is strongly renormalizable if it is strictly renormalizable
and all its relevant deformations are marginal, i.e, if {𝐼[𝐿]} ∈ M (∞) and 𝑇𝐼[𝐿]R

(∞) = 𝑇𝐼[𝐿]M
(∞).

We know that a choice of renormalization scheme leads to a bijection between theories and local
action functionals:

T (∞) ∼= O+
𝑙𝑜𝑐 (S (R𝑛)) [[ℏ]].

Thus, the renormalization group flow translates into an R>0 action on the space of local action
functionals.

For 𝐼 ∈ O+
𝑙𝑜𝑐 (S (R𝑛)) [[ℏ]], denote by ℛ𝒢ℓ(𝐼) the family of local action functionals arising from the

action of the local renormalization group flow. It follows from the fact that ℛ𝒢ℓ({𝐼[𝐿]}) is a smooth
family of theories and Theorem 3.0.2, that ℛ𝒢ℓ(𝐼) is a smooth family of action functionals. That is

ℛ𝒢ℓ(𝐼) ∈ O+
𝑙𝑜𝑐 (S (R𝑛), 𝐶∞(0, ∞)ℓ) [[ℏ]].

A functional is said to be of dimension 𝑘 if 𝑅*ℓ 𝐼 = ℓ𝑘𝐼. As such, denote by O+
𝑙𝑜𝑐,𝑘 (S (R𝑛)) the

space of local action functionals of dimension 𝑘, and O+
𝑙𝑜𝑐,≥0 (S (R𝑛)) the subspace of functionals of

non-negative dimension. The main theorem in this context is as follows:

Theorem 3.2.1. The space R(𝑚+1) is, in a canonical way, a torsor over R(𝑚) for the abelian group
O+

𝑙𝑜𝑐,≥0 (S (R𝑛)). Also, R(0) is canonically isomorphic to the subspace of O+
𝑙𝑜𝑐,≥0 (S (R𝑛)) of functionals

which are at least cubic.
The space M (𝑚+1) is, in a canonical way, a torsor over M (𝑚) for the abelian group O+

𝑙𝑜𝑐,0 (S (R𝑛)).
Also, M (0) is canonically isomorphic to the subspace of O+

𝑙𝑜𝑐,0 (S (R𝑛)) of functionals which are at least
cubic.

The choice of renormalization scheme leads to sections of the torsors R(𝑚+1) −→ R(𝑚) and
M (𝑚+1) −→ M (𝑚) and thus, to bijections:

R(∞) ∼= O+
𝑙𝑜𝑐,≥0(S (R𝑛))[[ℏ]],

M (∞) ∼= O+
𝑙𝑜𝑐,0(S (R𝑛))[[ℏ]].

The following corollary is a known result in the physics literature.

Corollary 3.2.1.1. Let us choose a renormalization scheme. Then, we find a bijection between
(translational invariant) strictly renormalizable scalar field theories on R𝑛 and Lagrangians of the
form:

i) The 𝜑3 theory on R6.

ii) The 𝜑4 theory on R4.

iii) The 𝜑6 theory on R3.
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iv) The free field theory on R𝑛 when 𝑛 = 5 or 𝑛 > 6.

Proof. This is an immediate result after noticing that, for 𝐼 = 1
𝑘!
∫︀
R𝑛 𝜑𝑘,

𝑅*ℓ (𝐼) = ℓ𝑛+𝑘(1− 1
2 𝑛)𝐼.

Let’s study the action of the local renormalization group flow on the space of local action func-
tionals.

Start by fixing a renormalization scheme, RS0 := 𝒫((0, 1))<0, which we will use to identify T (∞)

with O+
𝑙𝑜𝑐(S (R𝑛))[[ℏ]] and define

RSℓ = {𝑓 ∈ 𝒫((0, 1))|𝑓(ℓ−2𝜀) ∈ RS0}.

There is a change of renormalization scheme map,

Φℓ,0 = ΦRSℓ→RS0 : O+
𝑙𝑜𝑐(S (R𝑛))[[ℏ]] −→ O+

𝑙𝑜𝑐(S (R𝑛))[[ℏ]]

By definition, a theory associated to the action functional 𝐼 and renormalization scheme RSℓ is
equivalent to a theory associated to the action functional Φℓ,0 and renormalization scheme RS0.

Lemma 3.2.2. The local renormalization group flow ℛ𝒢ℓ is the composition ℛ𝒢ℓ = Φℓ,0 ∘ 𝑅*ℓ .

Proof. The theory associated to a local action functional 𝐼 is defined by a collection of effective
interactions:

𝑊 𝑅(𝑃 (0, 𝐿), 𝐼) = lim
𝜀→0

𝑊 (𝑃 (𝜀, 𝐿), 𝐼 − 𝐼𝐶𝑇 (𝜀)).

By definition of the local renormalization group flow,

𝑊 𝑅(𝑃 (0, 𝐿), ℛ𝒢ℓ(𝐼)) = 𝑅*ℓ 𝑊 𝑅(𝑃 (0, ℓ2𝐿), 𝐼)
= lim

𝜀→0
𝑅*ℓ 𝑊 (𝑃 (𝜀, ℓ2𝐿), 𝐼 − 𝐼𝐶𝑇 (𝜀))

= lim
𝜀→0

𝑊 (𝑅ℓ𝑃 (𝜀, ℓ2𝐿), 𝑅*ℓ 𝐼 − 𝑅*ℓ 𝐼𝐶𝑇 (𝜀))

= lim
𝜀→0

𝑅*ℓ 𝑊 (𝑃 (ℓ−2𝜀, 𝐿), 𝑅*ℓ 𝐼 − 𝑅*ℓ 𝐼𝐶𝑇 (ℓ2𝜀))

Where in the last step we reparametrized the dummy variable 𝜀. Since 𝑅*ℓ 𝐼𝐶𝑇 (ℓ2𝜀) is purely singular
for the renormalization scheme RSℓ and the above limit exists, it follows that 𝑅*ℓ 𝐼𝐶𝑇 (ℓ2𝜀) is the
counterterm for 𝑅*ℓ 𝐼 with this renormalization scheme.

We have that the collection of effective interactions:

lim
𝜀→0

𝑅*ℓ 𝑊 (𝑃 (ℓ−2𝜀, 𝐿), 𝑅*ℓ 𝐼 − 𝑅*ℓ 𝐼𝐶𝑇 (ℓ2𝜀)),

define a theory associated to 𝑅*ℓ 𝐼 and renormalization scheme RSℓ. By definition of change of renor-
malization scheme map, this is the same as the theory associated to Φℓ,0𝑅*ℓ 𝐼 for the renormalization
scheme RS0. Thus,

𝑊 𝑅(𝑃 (0, 𝐿), ℛ𝒢ℓ(𝐼)) = 𝑊 𝑅(𝑃 (0, 𝐿), Φℓ,0𝑅*ℓ 𝐼).
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3.2.2 Vector bundle theories

Let’s see how all of this generalize to the more general context of vector bundle theories.
Let us assume that we have the data if a free theory from section 3.1. Also, assume that we have

a direct sum decomposition of 𝐸 into super vector spaces: 𝐸 =
⨁︀

𝑖∈ 1
2Z

𝐸𝑖, where 𝐸𝑖 is the space of
elements of 𝐸 of dimension 𝑖.

The direct sum decomposition induces an R>0 action on ℰ = S (R𝑛) ⊗ 𝐸, by

𝑅ℓ(𝑓(𝑥)𝑒𝑖) = 𝑓(ℓ𝑥)ℓ𝑖𝑒𝑖

where 𝑓(𝑥) ∈ S (R𝑛) and 𝑒𝑖 ∈ 𝐸𝑖.
We require that the propagator scales as 𝑅ℓ(𝑃 (𝜀, 𝐿)) = 𝑃 (ℓ−2𝜀, ℓ−2𝐿).
As seen in Theorem 3.1.1, a choice of renormalization scheme leads to a bijection

T (∞) ∼= O+,0
𝑙𝑜𝑐 (ℰ , A )[[ℏ]]

between theories and local action functionals 𝐼 ∈ O𝑙𝑜𝑐(ℰ , A )[[ℏ]] which are at least cubic modulo
ℏ. Everything depends on A .

The local renormalization group flow acts on the space of theories, ℛ𝒢ℓ : T (∞) → T (∞), and just
as for scalar field theories,

Proposition 3.2.2. For any theory {𝐼[𝐿]} ∈ T (∞)(ℰ , A ),

ℛ𝒢ℓ(𝐼[𝐿]) ∈ O+(ℰ , A )[[ℏ]] ⊗ C[ℓ, ℓ−1, log ℓ].

Which allows us to define the space of relevant R(∞)(ℰ , A ) and marginal M (∞)(ℰ , A ) theories as
those theories such that:

ℛ𝒢ℓ(𝐼[𝐿]) ∈ O+(ℰ , A )[[ℏ]] ⊗ C[ℓ, log ℓ],

ℛ𝒢ℓ(𝐼[𝐿]) ∈ O+(ℰ , A )[[ℏ]] ⊗ C[log ℓ]

respectively. Define again the subspaces O𝑙𝑜𝑐,𝑘(ℰ , A ) of local action functionals of dimension 𝑘,
and O𝑙𝑜𝑐,≥0(ℰ , A ) of local action functionals of non-negative dimension.

Theorem 3.2.3. The space R(𝑛+1)(ℰ , A ) is a torsor over R(𝑛)(ℰ , A ) for the abelian group O𝑙𝑜𝑐,≥0(ℰ , A ).
The space R(0)(ℰ , A ) is canonically isomorphic to the subspace of O𝑙𝑜𝑐,≥0(ℰ , A ) of local action func-
tionals which are at least cubic.

The space M (𝑛+1)(ℰ , A ) is a torsor over M (𝑛)(ℰ , A ) for the abelian group O𝑙𝑜𝑐,0(ℰ , A ). The space
M (0)(ℰ , A ) is canonically isomorphic to the subspace of O𝑙𝑜𝑐,0(ℰ , A ) of local action functionals which
are at least cubic.
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Chapter 4

Gauge theories

In general, a theory that possesses some kind of symmetry means that there is an action of a Lie
group 𝐺 on the space of fields such that the action is 𝐺−invariant. The elements of 𝐸𝐿(𝑆) are
regarded as physically equivalent if they are related by an element of the group. A typical example
is a relativistic point particle and the group 𝐺 is the Poincaré group. The action of the Poincaré
group is viewed as a change in inertial frame of reference, so if two solutions are related by a Poincaré
transformation it means that they are describing the same physical problem. Gauge symmetry on the
contrary is a local symmetry. A theory is said to be gauge invariant if there is a space-time-dependent
transformation of the fields which leaves the action invariant. The canonical example is classical
electromagnetism, where Maxwell equations (or the Maxwell action) expressed in terms of the electric
𝜑(x, 𝑡) and magnetic potential A(x, 𝑡) are invariant under the gauge transformations 𝜑 ↦→ 𝜑+ 𝜕

𝜕𝑡𝑓(x, 𝑡)
and A ↦→ A + grad 𝑔(x, 𝑡).

A gauge theory is mathematically modelled as a principal 𝐺−bundle, 𝑃 → 𝑀 where 𝑀 is regarded
as spacetime and 𝐺 is the structure group. A gauge field is a connection on this principal bundle and
the gauge group is the group of diffeomorphisms of the principal 𝐺−bundle 𝑃 .

It is convenient to recall the difference between gauge theories and field theories equipped with
some symmetry group. A gauge group is not a group of symmetries of the theory. The theory does
not make any sense before taking the quotient by the gauge group. More precisely, if the space of
gauge fields is 𝐵 and the structure group is 𝒢, the “physical” space of field configurations is not 𝐵
but 𝐵/𝒢. In this sense, the presence of a gauge symmetry may be regarded as a redundancy in our
description of the fields.

In order to quantize a gauge theory, one uses the Batalin-Vilkovisky formalism, which is regarded
as the most general way to quantize gauge theories. Classically, this amounts to introducing extra
fields: ghosts, anti-ghosts and anti-fields, and writing an extended classical action on the extended
space of fields, which encodes: the original action, the Lie bracket on the space of infinitesimal gauge
symmetries and the action of this algebra on the space of fields. In homological algebra, this space
describes the derived moduli space of solutions to the Euler-Lagrange equations of the theory.

One wishes to quantize this theory by imposing that the action satisfies the quantum master equa-
tion. Here one encounters the same divergences as in the non-gauge case. The Wilsonian philosophy
is needed to circumvent this problem.

When dealing with graded algebras with differentials on it, we will demand that this differential
respects the grading of the algebra, more precisely we define

Definition 4.0.1 (Differential graded algebra). A differential graded algebra (dga) is a graded algebra

A =
⨁︁
𝑘≥0

A𝑘

with differential 𝑑 : A → A of degree +1, such that

1. A is graded commutative, i.e. 𝑥 · 𝑦 = (−1)𝑘𝑙𝑦 · 𝑥 for 𝑥 ∈ A 𝑘, 𝑦 ∈ A 𝑙.

2. 𝑑 is a derivation, i,e 𝑑(𝑥 · 𝑦) = 𝑑𝑥 · 𝑦 + (−1)𝑘𝑥 · 𝑑𝑦, for 𝑥 ∈ A 𝑘.

35
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3. 𝑑2 = 0.

We also define a differential graded (dg) manifold as a smooth (graded) manifold whose algebra of
functions is a dga.

4.1 The Batalin-Vilkovisky formalism

We will start by doing a crash course on the BV formalism in the finite-dimensional case.
Given a finite-dimensional classical gauge theory, consisting of a vector space of fields 𝑉 , treated

as a formal manifold near 0 ∈ 𝑉 , a Lie algebra g acting on 𝑉 , which integrates to an action of the
formal Lie group 𝐺 associated to g, and an action functional 𝑓 ∈ O(𝑉 ), which is 𝐺−invariant and
having a critical point in 0 ∈ 𝑉 .

We would like to make sense of integrals of the form:

∫︁
𝑉/𝐺

exp (𝑓/ℏ)

over the quotient space 𝑉/𝐺.
Our first problem is that the quotient 𝑉/𝐺 is not a manifold in general, so we cannot make sense

of this integral perturbatively through a stationary phase expansion. The idea is to interpret this
quotient in a homological fashion, by considering the derived quotient instead of the naive quotient.
The derived invariants for the action of g on the algebra O(𝑉 ) is the Chevalley-Eilenberg complex:

𝐶*(g, O(𝑉 )),

whose elements are alternating R−multilinear functions HomR(
⋀︀* g, O(𝑉 )), with differential being

defined as the dual of the Lie bracket (extended by the graded Leibniz rule).
We can now define the derived quotient of 𝑉 by 𝐺 as the object whose algebra of functions is

𝐶*(g, O(𝑉 )). That is g[1] ⊕ 𝑉 , where [1] refers to a degree shift by 1, so g is in degree −1. This
is because, under the natural isomorphism Sym*𝑉 [1] ∼=

⋀︀
𝑉 , it is clear that ̂︂Sym

*
(g[1] ⊕ 𝑉 )∨ =⋀︀* g* ⊗ O(𝑉 ).

Therefore, the derived quotient is a dg manifold, where the (Chevalley-Eilenberg) differential can
be regarded as a degree 1 vector field 𝑋 on g[1] ⊕ 𝑉 , which is of square 0.

The first step, known as the BRST construction is to try and replace our original integral by∫︁
g[1]⊕𝑉

exp (𝑓/ℏ) .

We can attempt to make sense of this integral perturbatively, since we are integrating over a formal
dg manifold. However, 𝑓 is highly degenerate on g[1]⊕𝑉 since 𝑓 is independent of g[1] and is constant
along 𝐺−orbits on 𝑉 , and we can only perform the stationary phase expansion around non-degenerate
critical points.

This is the problem that the BV formalism was meant to solve, and it does so in a beautiful way.
Let 𝐸 := 𝑇 *[−1](g[1] ⊕ 𝑉 ) denote the shifted cotangent bundle of g[1] ⊕ 𝑉 , so that

𝐸 = g[1]⏟ ⏞ 
ghosts

⊕ 𝑉⏟ ⏞ 
fields

⊕ 𝑉 ∨[−1]⏟  ⏞  
anti-fields

⊕ g∨[−2]⏟  ⏞  
anti-ghosts

,

where we have named each summand according to the usual physics notation. The cotangent
bundle has a natural symplectic structure so we will need some concepts from symplectic geometry
which we will briefly review.

Definition 4.1.1 (Symplectic manifold). A symplectic manifold is a pair (𝑀, 𝜔) where 𝑀 is a smooth
manifold and 𝜔 is a closed non-degenerate two form.
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Definition 4.1.2 (Hamiltonian vector field). Given a symplectic manifold (𝑀, 𝜔), the non-degeneracy
of the symplectic form 𝜔 gives a canonical, fibre-wise linear isomorphism between the tangent and
cotangent bundle. Therefore, for each smooth function 𝐻 : 𝑀 → R there is a unique vector field 𝑋𝐻

called the Hamiltonian vector field of H satisfying 𝜔(𝑋𝐻 , 𝑌 ) = 𝑑𝐻(𝑌 ), for all vector fields 𝑌 .

Definition 4.1.3 (Poisson bracket). A Poisson bracket on a symplectic manifold (𝑀, 𝜔) is a bilinear
operation

{−, −} : 𝐶∞(𝑀) × 𝐶∞(𝑀) −→ 𝐶∞(𝑀)

defined by {𝑓, 𝑔} = 𝜔(𝑋𝑓 , 𝑋𝑔), where 𝑋𝑓 and 𝑋𝑔 are the Hamiltonian vector fields of 𝑓 and 𝑔
respectively.

Definition 4.1.4 (Lagrangian subspace). Let (𝑀, 𝜔) be a symplectic manifold. We say 𝐿 ⊂ 𝑀 is a
Lagrangian submanifold if 𝜔 |𝐿 = 0 and dim 𝐿 = 1

2 dim 𝑀 .

The function 𝑓 ∈ g[1]⊕𝑉 pulls back naturally to a function on 𝐸 via the projection 𝜋 : 𝐸 → g[1]⊕𝑉
and by abuse of notation we will still call 𝜋*𝑓 by 𝑓 . The vector field 𝑋 on g[1] ⊕ 𝑉 also induces a
vector field on 𝐸 and by inclusion , which we will also continue to call 𝑋. Since [𝑋, 𝑋] = 0 on g[1]⊕𝑉 ,
as it comes from a differential, the same holds on 𝐸, and since 𝑓 is preserved by 𝑋 in g[1] ⊕ 𝑉 , the
same is true on 𝐸.

𝐸 is a dg manifold and since it is a (shifted) cotangent bundle, it comes equipped with a (odd)
symplectic form of degree −1. Since 𝑋 preserves the symplectic form, we know from symplectic
geometry that there exists –at least locally– a unique function ℎ𝑋 on 𝐸 whose Hamiltonian vector
field is 𝑋, and which vanishes at the origin. That is, 𝜔(𝑋, ·) = 𝑑ℎ𝑋(·), which means that ℎ𝑋 is of
degree 0.

Since every symplectic manifold is a Poisson manifold, the degree −1 symplectic form induces a
degree 1 Poisson bracket, which translates the statements [𝑋, 𝑋] = 0, 𝑋𝑓 = 0 and (trivially) [𝑓, 𝑓 ] = 0
into {ℎ𝑋 , ℎ𝑋} = 0, {ℎ𝑋 , 𝑓} = 0 and {𝑓, 𝑓} = 0 respectively. These identities tells us that the function
𝑆𝐵𝑉 := 𝑓 + ℎ𝑋 , known as the BV action, satisfy the BV classical master equation:

{𝑓 + ℎ𝑋 , 𝑓 + ℎ𝑋} = 0.

As usual, the actions we will consider split into kinetic and interacting terms as 𝑆𝐵𝑉 (𝑒) = 1
2⟨𝑒, 𝑄𝑒⟩+

𝐼𝐵𝑉 (𝑒), where 𝑄 : 𝐸 → 𝐸, is a degree 1 map, skew-self adjoint for the degree −1 pairing ⟨−, −⟩, and
𝐼𝐵𝑉 a function which is at least cubic.

With this splitting, the classical master equation implies that 𝑄2 = 0 and

𝑄𝐼𝐵𝑉 + 1
2{𝐼𝐵𝑉 , 𝐼𝐵𝑉 } = 0

The BV formalism tells us to replace the original integral by:∫︁
𝑒∈𝐿

exp (𝑆𝐵𝑉 (𝑒)/ℏ) (4.1)

where 𝐿 ⊂ 𝐸 is a small generic Lagrangian perturbation of the zero section g[1] ⊕ 𝑉 ⊂ 𝐸.
If the complex (𝐸, 𝑄) has 0 cohomology, that is: 𝐻*(𝐸, 𝑄) = 0, the pairing ⟨𝑒, 𝑄𝑒⟩ will be non-

degenerate on a generic Lagrangian 𝐿, which will allow us to perform the above integral perturbatively
around 0 ∈ 𝐿. This condition may be relaxed as we will see. We would want this integral to not
depend on the Lagrangian submanifold we choose, that is, to be invariant under deformations of the
Lagrangian submanifold. This motivates the definition of the quantum master equation (QME):

𝑄𝐼 + 1
2{𝐼, 𝐼} + ℏΔ𝐼 = 0,

where Δ is the linear order two differential operator corresponding to 𝜔∨. That is, since 𝜔 provides
an isomorphism 𝐸[−1] ∼= 𝐸∨, 𝜔 will be an element of

⋀︀2 𝐸∨ ∼=
(︁
Sym2𝐸

)︁
[−2], meaning that 𝜔∨ ∈

Sym2𝐸.
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Δ : O(𝐸) → O(𝐸)

will be the order two differential operator that on Sym2𝐸∨ is given by contraction with 𝜔∨.
The following lemma tells us that the integral (4.1) is unchanged under perturbations of 𝐿 if the

action 𝑆𝐵𝑉 satisfies the QME.

Lemma 4.1.1. Let 𝐿 ⊂ 𝐸 be a Lagrangian on which the pairing ⟨𝑒, 𝑄𝑒⟩ is non-degenerate. (Such
a Lagrangian exists if and only if 𝐻*(𝐸, 𝑄) = 0). Suppose that 𝐼 ∈ O(𝐸)[[ℏ]] is an ℏ−dependent
function on 𝐸 satisfying the QME. Then, for 𝑎 ∈ 𝐸, the integral:∫︁

𝑒∈𝐿
exp

(︂ 1
2ℏ⟨𝑒, 𝑄𝑒⟩ + 1

ℏ
𝐼(𝑒 + 𝑎)

)︂
is unchanged under deformations of 𝐿.

Following the BV construction, 𝐼𝐵𝑉 automatically satisfies the classical master equation 𝑄𝐼𝐵𝑉 +
1
2{𝐼𝐵𝑉 , 𝐼𝐵𝑉 } = 0 and therefore if Δ𝐼𝐵𝑉 = 0 we can quantize the gauge theory. If not, we would try
to “correct” 𝐼 by 𝐼 +

∑︀
𝑖 ℏ𝑖𝐼𝑖 such that it satisfies the QME order by order in ℏ.

The operator Δ can be thought of as a divergence associated to a translational invariant measure
on 𝐸. Let 𝐼 ∈ O(𝐸) and let 𝑋𝐼 be the associated vector field defined by 𝑋𝐼𝑓 = {𝐼, 𝑓}. Δ satisfies:
ℒ𝑋𝐼

𝜇 = (Δ𝐼) 𝜇, where ℒ𝑋𝐼
denotes the Lie derivative. Therefore, Δ𝐼 is the infinitesimal change in

volume corresponding to 𝑋𝐼 . In this picture, the equation Δ𝐼 = 0 says that 𝑋𝐼 is measure-preserving.
The case where 𝐼 ∈ O(𝐸)[[ℏ]] is a little more involved and doesn’t have such a direct interpretation.

We now proceed to see how can we relax the condition of 𝐻*(𝐸, 𝑄) = 0 to perform the integral.
Let 𝐿 ⊂ 𝐸 be a Lagrangian subspace and let 𝑄 : 𝐿 → Im 𝑄 be an isomorphism. Let also Ann(𝐿) =
{𝑒 ∈ 𝐸|⟨𝑒, ℓ⟩ = 0, ∀ℓ ∈ 𝐿} be the set of vectors which pair to zero with any element of 𝐿. Thus, we
can identify 𝐻*(𝐸, 𝑄) = Ann(𝐿) ∩ ker 𝑄.

This allows for a direct sum decomposition: 𝐸 = 𝐿 ⊕ 𝐻*(𝐸, 𝑄) ⊕ Im 𝑄, where 𝐻*(𝐸, 𝑄) inherits
a degree −1 symplectic pairing, and thus a BV operator Δ𝐻*(𝐸,𝑄) acting on functions on 𝐻*(𝐸, 𝑄).

In this setting we have the following generalization of the BV formulation:

Lemma 4.1.2. Let 𝐼 ∈ O(𝐸)[[ℏ]] be an ℏ−dependent function on 𝐸 satisfying the QME. The function
on 𝐻*(𝐸, 𝑄) defined by:

𝑎 ↦→ ℏ log
∫︁

𝑒∈𝐿
exp

(︂ 1
2ℏ⟨𝑒, 𝑄𝑒⟩ + 1

ℏ
𝐼(𝑒 + 𝑎)

)︂
(4.2)

satisfy the QME. Furthermore, small perturbations of the isotropic subspace 𝐿 change this solution of
the QME on 𝐻*(𝐸, 𝑄) to a homotopic solution of the QME.

Note that his integral is the renormalization group flow. Let’s be precise about what we mean by
homotopy between solutions of the QME.

Definition 4.1.5 (Homotopy of solutions of QME). Given two solutions of the QME 𝑓0 and 𝑓1 on
𝐻*(𝐸, 𝑄) we say that they are homotopic if there exists an element 𝐹 ∈ O(𝐻*(𝐸, 𝑄)) ⊗ Ω*([0, 1])[[ℏ]]
which satisfies the QME: 𝑑𝑑𝑅𝐹 + 1

2{𝐹, 𝐹} +ℏΔ𝐻*(𝐸,𝑄)𝐹 = 0 and restricts to 𝑓0 and 𝑓1 when valuated
at 0 and 1. 𝑑𝑑𝑅 denotes the de Rham differential on the commutative differential algebra Ω*([0, 1]).

If we explicitly write 𝐹 ∈ O(𝐻*(𝐸, 𝑄)) ⊗ Ω*([0, 1])[[ℏ]] as 𝐹 (𝑡, 𝑑𝑡) = 𝐴(𝑡) + 𝑑𝑡𝐵(𝑡), the QME
imposed on 𝐹 is

1
2{𝐴(𝑡), 𝐴(𝑡)} + ℏΔ𝐻*(𝐸,𝑄)𝐴(𝑡) = 0

𝑑

𝑑𝑡
𝐴(𝑡) + {𝐴(𝑡), 𝐵(𝑡)} + ℏΔ𝐻*(𝐸,𝑄)𝐵(𝑡) = 0.
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4.2 Free BV theory on a compact manifold
When trying to generalize these definitions to infinite dimensions things go through little change, at
least classically, i.e. before introducing the quantum master equation. We refer to [Cos11, Chapter 5.3]
for further details.

The first example of a quantum BV theory will be in a compact manifold. As always, the free
theory will be easy to define and will be well-behaved. Issues will arise when introducing interactions.

Definition 4.2.1 (Free BV theory). A free theory on a compact manifold 𝑀 consists of the following
data.

i) A Z−graded vector bundle 𝐸 on 𝑀 , over R or C, whose space of sections is ℰ = Γ(𝑀, 𝐸).

ii) 𝐸 is equipped with anti-symmetric map of vector bundles on 𝑀 , of cohomological degree −1,

⟨−, −⟩𝑙𝑜𝑐 : 𝐸 ⊗ 𝐸 → Dens(𝑀).

Such that it is non-degenerate on each fibre. This pairing induces, by integration, a pairing in
the space of global sections:

⟨−, −⟩ : ℰ ⊗ ℰ → C

⟨𝑒1, 𝑒2⟩ =
∫︁

𝑀
⟨𝑒1, 𝑒2⟩𝑙𝑜𝑐.

iii) A differential operator 𝑄 : ℰ → ℰ of cohomological degree one, which squares to zero and is skew
self-adjoint for the pairing, i.e: ⟨𝑒1, 𝑄𝑒2⟩ = −⟨𝑄𝑒1, 𝑒2⟩. Furthermore, (ℰ , 𝑄) must be an elliptic
complex, which means that the complex of vector bundles (𝜋*𝐸, 𝜎(𝑄)) on 𝑇 *𝑀∖𝑀 is exact.

Definition 4.2.2 (Gauge fixing operator on free BV theory). A gauge fixing operator on a free BV
theory ℰ is given by an operator 𝑄𝐺𝐹 : ℰ → ℰ , such that:

i) 𝑄𝐺𝐹 is of cohomological degree −1, of square zero and self-adjoint for the pairing ⟨−, −⟩.

ii) The commutator 𝐷 = [𝑄, 𝑄𝐺𝐹 ] is required to be a generalized Laplacian.

We will now see how a free BV theory together with a choice of gauge fixing operator gives a free
theory in the sense of Definition 1.2.10.

Let ℰ ! be the space of sections of 𝐸∨ ⊗ Dens(𝑀) on 𝑀 . The pairing on 𝐸 gives rise to an
isomorphism: ℰ ! → ℰ . Composing it with 𝑄𝐺𝐹 : ℰ → ℰ define an operator 𝐷′ : ℰ ! → ℰ . This
operator, together with 𝐷 : ℰ → ℰ , define a free theory in the sense of Definition 2.2.12.

To define the heat kernel we will need a convolution operator: ⋆ : ℰ ⊗ ℰ → End(ℰ), such that, for
any 𝐾 ∈ ℰ ⊗ ℰ , and 𝑒 ∈ 𝐸, 𝐾 ⋆ 𝑒 := (−1)|𝐾|(1 ⊗ ⟨−, −⟩)(𝐾 ⊗ 𝑒), where ⟨−, −⟩ is the pairing on ℰ . The
convolution operator leaves invariant the first factor of 𝐾 and contracts the second one with 𝑒 ∈ ℰ .
The reason of the sign choice is that (𝑄𝐾) ⋆ 𝑒 = [𝑄, 𝐾⋆]𝑒. (Here 𝑄 is referring to 1 ⊗ 𝑄 + 𝑄 ⊗ 1).

There is a heat kernel 𝐾ℓ ∈ ℰ ⊗ ℰ for the operator 𝑒−ℓ𝐷 characterized by

𝐾ℓ ⋆ 𝑒 = 𝑒−ℓ𝐷𝑒.

The propagator of our free theory will be:

𝑃 (𝜀, 𝐿) =
∫︁ 𝐿

𝜀
(𝑄𝐺𝐹 ⊗ 1)𝐾ℓ𝑑ℓ.

It is immediate to see that, for any 𝑒 ∈ ℰ , 𝑃 (𝜀, 𝐿) ⋆ 𝑒 = 𝑄𝐺𝐹
∫︀ 𝐿

𝜀 𝑒−ℓ𝐷𝑒𝑑ℓ.
We see that in infinite dimensions we require an extra object, the gauge fixing operator, to define

a free theory. It allows us to define the propagator of our theory, and all the subspaces over which
we will integrate are of the form Im 𝑄𝐺𝐹 . This coincides with the notion in Physics of gauge fixing,
where an equation is imposed over the gauge fields to remove the redundancy in the description of the
fields.
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4.3 Interacting (pre-) theories on a compact manifold
We will now introduce interaction with the same philosophy of effective field theory. The notion of
theory will be reserved for those pre-theories which satisfy the QME.

Definition 4.3.1 (Pre-theory on compact manifold). A pre-theory is a collection of effective interac-
tions {𝐼[𝐿]} satisfying the renormalization group equation and the locality axiom as defined before.
More precisely:

i) Each 𝐼[𝐿] ∈ O+,0(ℰ)[[ℏ]] is of degree 0 and at least cubic modulo ℏ.

ii) The renormalization group equation

𝐼[𝐿] = 𝑊 (𝑃 (𝜀, 𝐿), 𝐼[𝜀])

is satisfied.

iii) Each 𝐼𝑖,𝑘[𝐿] has a small 𝐿 asymptotic expansion in terms of local action functionals.

Denote ̃︁T (∞)(ℰ) the set of pre-theories, and ̃︁T (𝑛)(ℰ) the set of theories defined modulo ℏ𝑛+1

Unfortunately, the QME in infinite dimensions is ill-defined. If one tries to define, naively a BV
Laplacian on the space of functionals on ℰ , by letting Δℓ = −𝜕𝐾ℓ

: O(ℰ) → O(ℰ) be the order
two differential operator associated to the heat kernel, one finds that the BV Laplacian would be
Δ0𝐼 = − lim

ℓ→0
𝜕𝐾ℓ

𝐼, which has the same singularities as the one-loop Feynman diagrams.
We will circumvent this problem as always, with the philosophy that the fundamental objects are

the effective interactions. That is, we want to impose a QME on each scale 𝐿.
This motivates the following definition:

Definition 4.3.2 (Scale 𝐿 quantum master equation). Let 𝐼 ∈ O+(ℰ)[[ℏ]]. We say it satisfy the scale
𝐿 quantum master equation if

𝑄𝐼 + 1
2{𝐼, 𝐼}𝐿 + ℏΔ𝐿𝐼 = 0,

where the scale 𝐿 BV bracket {−, −}𝐿 : O(ℰ) ⊗ O(ℰ) → O(ℰ) is defined as: {𝐼, 𝐽}𝐿 = Δ𝐿(𝐼𝐽) −
Δ𝐿(𝐼)𝐽 − (−1)|𝐼|𝐼Δ𝐿(𝐽), and Δ𝐿 := −𝜕𝐾𝐿

: O(ℰ) → O(ℰ).

In practice, it is almost always impossible to check directly given a collection of 𝐼[𝐿] if they satisfy
the QME. In the next section, we will describe how to use obstruction/deformation methods to deal
with this problem.

The compatibility condition that makes it possible to combine the BV formalism with the effective
field theory philosophy is guaranteed by the following lemma:

Lemma 4.3.1. A functional 𝐼[𝜀] ∈ O+(ℰ)[[ℏ]] satisfies the scale 𝜀 QME if and only if 𝑊 (𝑃 (𝜀, 𝐿), 𝐼[𝜀])
satisfies the scale 𝐿 QME.

That is, the renormalization group flow takes solutions of the scale 𝜀 QME to solutions of the scale
𝐿 QME. The proof may be found in [Cos11], Lemma 9.2.2.

Definition 4.3.3 (Theory in the BV formalism). A pre-theory {𝐼[𝐿]} such that each 𝐼[𝐿] satisfies
the scale 𝐿 QME is called a theory. The set of theories will be denoted T (∞) and the set of theories
defined modulo ℏ𝑛+1 will be denoted T (𝑛).

4.4 BV Theories as simplicial sets
We have seen that in order to define a theory we need a gauge fixing condition which defines the
isotropic space over which we integrate. The change of this gauge fixing condition changes the solution
of the QME into a homotopic one. We want to keep track of exactly how our notion of theory depends
on this gauge fixing condition. To do this we will make use of a useful construction, the simplicial set,
which is an abstract generalization of the simplicial complex.
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Definition 4.4.1 (Simplicial set). A simplicial set consists of a sequence of sets 𝑋0, 𝑋1, . . . and, for
each 𝑛 ≥ 0, functions 𝑑𝑖 : 𝑋𝑛 −→ 𝑋𝑛−1 and 𝑠𝑖 : 𝑋𝑛 −→ 𝑋𝑛+1 for each 𝑖 with 0 ≥ 𝑖 ≥ 𝑛 called face
maps and degeneracy maps respectively, such that:

𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑖𝑠𝑗 = 𝑠𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑗𝑠𝑗 = 𝑑𝑗+1𝑠𝑗 = id
𝑑𝑖𝑠𝑗 = 𝑠𝑗𝑑𝑖−1 if 𝑖 > 𝑗 + 1
𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 if 𝑖 ≤ 𝑗

The idea will be to define theories parametrised by the 𝑛−simplex, so that theories will be attached
to points, homotopies between theories will be attached to edges, homotopies between homotopies
will be attached to faces etc. In this way, we will keep track of the particular dependence on the
gauge fixing condition. Citing Costello and Gwilliams in [CG17]: “We forewarn the reader that our
definitions and constructions involve a heavy use of functional analysis and (perhaps more surprisingly)
simplicial sets, which is our preferred way of describing a space of field theories. Making a quantum
field theory typically requires many choices, and as mathematicians, we wish to pin down precisely
how the quantum field theory depends on these choices. The machinery we use gives us very precise
statements, but statements that can be forbidding at first sight.”

In Definition 4.1.5, we defined the notion of homotopy between solutions of the QME. For any 𝐼
satisfying the QME, the formula

𝐼𝐻(𝑎) = ℏ log
∫︁

𝑒∈𝐿
exp

(︂ 1
2ℏ⟨𝑒, 𝑄𝑒⟩ + 1

ℏ
𝐼(𝑒 + 𝑎)

)︂
(4.3)

gives us a solution of the QME on 𝐻*(ℰ , 𝑄). If we vary this isotropic space 𝐿, the solution of the
QME on 𝐻*(ℰ , 𝑄) changes by a homotopy. Conversely, if we vary 𝐼 by a homotopy, the corresponding
solution 𝐼𝐻 on 𝐻*(𝐸, 𝑄) varies by a homotopy.

This can be phrased as the set of gauge fixing conditions has an enrichment to a simplicial set,
where the 𝑛−simplices are just smooth families of isotropic subspaces 𝐿 ⊂ 𝐸 parametrized by the
𝑛−simplex, satisfying the equation 4.3.

Denote this simplicial set by G F (𝐸, 𝑄). The set of solutions of the QME also has an enrichment to
a simplicial set, whose 1−simplices are homotopies, 2−simplicies are homotopies between homotopies
etc. Denote this set by QME (𝐸, 𝑄).

The integral (4.2) defines a map of simplicial sets:

G F (𝐸, 𝑄) × QME (𝐸, 𝑄) −→ QME (𝐻, 0)

(𝑄𝐺𝐹 , 𝐼) ↦→ 𝐼𝐻 = ℏ log
∫︁

𝑒∈Im 𝑄𝐺𝐹
exp

(︂ 1
2ℏ⟨𝑒, 𝑄𝑒⟩ + 1

ℏ
𝐼(𝑒 + 𝑎)

)︂
In finite dimensions, two theories are equivalent if they are homotopic or related by non-linear

change of coordinates. More precisely,

Lemma 4.4.1. Given a finite-dimensional graded vector space 𝑉 equipped with a symplectic pairing
of degree −1 ⟨−, −⟩ and a differential 𝑄 preserving the pairing. Then, two solutions 𝐼0, 𝐼1 ∈ O(𝑉 )
of the QME are homotopic if and only if there is a symplectic diffeomorphism 𝜑 : 𝑉 → 𝑉 , in the
connected component of the identity, such that

𝑒⟨𝑣,𝑄𝑣⟩+𝐼1/ℏ𝑑𝑉 = 𝜑*
(︁
𝑒⟨𝑣,𝑄𝑣⟩+𝐼0/ℏ𝑑𝑉

)︁
Where 𝑣 ∈ 𝑉 and 𝑑𝑉 is the Lebesgue measure associated to 𝑉 .

In infinite dimensions, only the homotopy picture holds, since it is not possible to take into account
the change in the non-existent Lebesgue measure, so we will use it to talk about equivalent theories.
We will see that the dependence of the notion of theory on the choice of gauge fixing condition is only
up to homotopy so a theory will be independent of the choice of gauge fixing condition when the space
of gauge fixing condition is contractible.

Fix a Free BV theory (ℰ , 𝑄, ⟨−, −⟩) on 𝑀 .



42 CHAPTER 4. GAUGE THEORIES

Definition 4.4.2 (Family of gauge fixing conditions). A family of gauge fixing conditions for ℰ , over
Ω*(Δ𝑛), is an Ω*(Δ𝑛) linear differential operator

𝑄𝐺𝐹 : ℰ ⊗ Ω*(Δ𝑛) −→ ℰ ⊗ Ω*(Δ𝑛)

of cohomological degree −1, with the following properties:

i) 𝑄𝐺𝐹 is self-adjoint for the Ω*(Δ𝑛) linear pairing ℰ ⊗ ℰ ⊗ Ω*(Δ𝑛) → Ω*(Δ𝑛).

ii)
(︁
𝑄𝐺𝐹

)︁2
= 0.

iii) The operator 𝐷 =
[︁
𝑄 + 𝑑𝑑𝑅, 𝑄𝐺𝐹

]︁
is a generalized Laplacian. This means that the symbol of

𝐷 is a smooth family of Riemannian metrics on the bundle 𝑇 *𝑀 , parametrized by Δ𝑛.

Fixing a family of gauge fixing condition over Ω*(Δ𝑛) allows us to define families of pre-theories
over Ω*(Δ𝑛). Such a family is given by a collection of effective interactions {𝐼[𝐿]}, where 𝐼[𝐿] ∈
O+(ℰ , Ω*(Δ𝑛))[[ℏ]] is of cohomological degree 0 accounting for both the cohomological grading of ℰ
and that of Ω*(Δ𝑛). Again it is imposed that {𝐼[𝐿]} must satisfy the renormalization group equation:
𝐼[𝐿] = 𝑊 (𝑃 (𝜀, 𝐿), 𝐼[𝜀]), as well as the locality axiom.

Given any face or degeneracy maps Δ𝑚 → Δ𝑛, one can pull back a family of pre-theories or gauge
fixing conditions, making them simplicial sets. The simplicial set of pre-theories ̃︁T (∞)(ℰ , 𝑄) has as
𝑛−simplices families of gauge fixing conditions over Ω*(Δ𝑛), together with a family of pre-theories for
this family of gauge fixing conditions.

There is a natural map of simplicial sets: ̃︁T (∞)(ℰ , 𝑄) → G F (ℰ , 𝑄), which assigns to each pre-
theory, the family of gauge fixing conditions it has assigned. Once a renormalization scheme is chosen,
we find an isomorphism of simplicial sets: ̃︁T (∞)(ℰ , 𝑄) ∼= G F (ℰ , 𝑄) × O+,0

𝑙𝑜𝑐 (ℰ)[[ℏ]]
In this context, the QME is defined as:

Definition 4.4.3 (QME for interactions parametrized by Ω*(Δ𝑛)). A functional 𝐼 ∈ O(ℰ , Ω*(Δ𝑛))[[ℏ]]
satisfies the scale 𝐿 QME if

(𝑄 + 𝑑𝑑𝑅 + ℏΔ𝐿)𝑒𝐼/ℏ = 0,

where 𝑑𝑑𝑅 is the de Rham differential on Ω*(Δ𝑛), and Δ𝐿 is the operator contraction with the heat
kernel 𝐾𝐿 ∈ ℰ ⊗ ℰ ⊗ Ω*(Δ𝑛). Everything is linear over Ω*(Δ𝑛).

As before, the renormalization group equation turns solutions of the QME into solutions of the
QME. A theory is a pre-theory where each 𝐼[𝐿] satisfies the scale 𝐿 QME. The simplicial set of
theories will be denoted T (∞)(ℰ , 𝑄). A homotopy between two theories is a 1−simplex of T (∞)(ℰ , 𝑄)
connecting the two 0−simplex. This coincides with our notion that two theories are equivalent if they
are related by a homotopy, which we regard as a change of coordinates. The set of theories T (∞)(ℰ , 𝑄)
is a fibration over G F (ℰ , 𝑄). A fibration is a generalization of the concept of fibre bundle. The precise
definition is as follows.

Definition 4.4.4 (Fibration). A fibration between two topological vector spaces 𝐸 and 𝐵 is a con-
tinuous map 𝑝 : 𝐸 → 𝐵, such that the homotopy lifting property is satisfied for all spaces 𝑋. That is,
for every homotopy ℎ : 𝑋 × [0, 1] → 𝐵 and for every lift ℎ̃0 : 𝑋 → 𝐸 lifting ℎ

⃒⃒
𝑋×0 = ℎ0, there exists

a homotopy ℎ̃ : 𝑋 × [0, 1] → 𝐸 lifting ℎ with ℎ̃0 = ℎ̃𝑋×0. That is to say that the following diagram
commutes:

𝑋 × {0} 𝐸

𝑋 × [0, 1] 𝐵

𝑖

ℎ0

𝑝
ℎ̃

ℎ

The fibres over each connected component of a fibration are homotopy equivalent and in most
examples, the set of gauge fixing conditions is contractible, making the notion of theory independent
of the choice of point in G F (ℰ , 𝑄).
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Remark. These definitions motivate the need for including the auxiliary nilpotent manifold in the
previous sections. Being explicit, our manifold with corners 𝑋 is Δ𝑛, the sheaf of commutative super
algebras is 𝐴 =

⋀︀* 𝑇 *Δ𝑛, which is the sheaf of sections of the super vector bundle 𝑇 [1]Δ𝑛, and whose
sheaf of sections A = Γ(𝑋, 𝐴) = Ω*(Δ𝑛). Therefore, theories as simplicial sets are included in the
previous definitions and we can use the results obtained before.

4.5 Obstruction theory

The simplicial set of pre-theories defined modulo ℏ𝑛+1, ̃︁T (𝑛+1)(ℰ , 𝑄) forms a O0
𝑙𝑜𝑐(ℰ , Ω*(Δ𝑛))−principal

bundle over ̃︁T (𝑛)(ℰ , 𝑄). If one tries to obtain a similar result for theories, one finds that there is a
cohomological obstruction to extending a point of T (𝑛)(ℰ , 𝑄) to a point in T (𝑛+1)(ℰ , 𝑄) .

More concretely, let us fix a free BV theory (ℰ , 𝑄, ⟨−, −⟩) on a compact manifold 𝑀 and let
{𝐼[𝐿]} ∈ T (𝑛)(ℰ , 𝑄)[𝑘] denote a 𝑘−simplex in the space of theories defined modulo ℏ𝑛+1. Let us lift,
arbitrarily {𝐼[𝐿]} to an element of {̃︀𝐼[𝐿]} ∈ ̃︁T (𝑛+1)(ℰ , 𝑄)[𝑘]. Define the scale 𝐿 obstruction by

𝑂𝑛+1[𝐿] = 1
ℏ𝑛+1

(︂
𝑄̃︀𝐼[𝐿] + 1

2{̃︀𝐼[𝐿], ̃︀𝐼[𝐿]}𝐿 + ℏΔ𝐿
̃︀𝐼[𝐿]

)︂
.

This expression is independent of ℏ, since ̃︀𝐼[𝐿] satisfies the QME modulo ℏ𝑛+1. The following
lemma and corollary tell us that 𝑂𝑛+1[𝐿] is an obstruction to lifting a theory defined modulo ℏ to a
theory defined modulo ℏ𝑛+1 and that the possible lifts are those elements that kill the obstruction.

Lemma 4.5.1. Let 𝜀 be a parameter of square zero and cohomological degree −1. Let 𝐼0[𝐿] be 𝐼[𝐿]
modulo ℏ. Then, 𝐼0[𝐿] + 𝜀𝑂𝑛+1[𝐿] satisfies both the scale 𝐿 classical master equation and the classical
renormalization group equation. Thus, it defines a classical theory in the BV formalism. The set of
lifts of {𝐼[𝐿]} to a 𝑘−simplex of T (𝑛+1)(ℰ , 𝑄) is the set of degree 0 elements 𝐽 [𝐿] ∈ O𝑙𝑜𝑐(ℰ , Ω*(Δ𝑛)
such that 𝐼0[𝐿]+𝛿𝐽 [𝐿] satisfies the classical renormalization group equation and locality axiom modulo
𝛿2, and such that 𝑄𝐽 [𝐿] + {𝐼0[𝐿], 𝐽 [𝐿]} = 𝑂𝑛+1[𝐿].

Corollary 4.5.1.1. Let {𝐼[𝐿]} ∈ T (𝑛)(ℰ , 𝑄)[𝑘]. Then, there is an obstruction 𝑂𝑛+1 ∈ O𝑙𝑜𝑐(ℰ , Ω*(Δ𝑘))
which is a closed, degree 1 element, where the cochain complex has the differential 𝑄+{𝐼0, −}. The set
of lifts of {𝐼[𝐿]} to a 𝑘−simplex of T (𝑛+1)(ℰ , 𝑄) is the set of degree 0 elements 𝐽 ∈ O𝑙𝑜𝑐(ℰ , Ω*(Δ𝑘))
making 𝑂𝑛+1 exact.

The obstruction defines a map T (𝑛)(ℰ , 𝑄) → O𝑙𝑜𝑐(ℰ , 𝑄)[1], where O𝑙𝑜𝑐(ℰ , 𝑄)[1] denotes the sim-
plicial set whose elements are closed, degree 1 elements of O𝑙𝑜𝑐(ℰ , Ω*(Δ𝑘)).

Theorem 4.5.2. There is a homotopy-fibre diagram of simplicial sets:

T (𝑛+1)(ℰ , 𝑄) T (𝑛)(ℰ , 𝑄)

0 O𝑙𝑜𝑐(ℰ , 𝑄)[1]

𝑂𝑛+1

Which says that a point of T (𝑛+1)(ℰ , 𝑄) is the same as a point of T (𝑛)(ℰ , 𝑄) together with a
homotopy between the obstruction and zero. More precisely, the homotopy fibre is a way of assigning a
fibration to any topological map. Given the map 𝑂𝑛+1 : T (𝑛)(ℰ , 𝑄) → O𝑙𝑜𝑐(ℰ , 𝑄)[1], the diagram above
tells us that T (𝑛+1)(ℰ , 𝑄) = Hofibre(𝑂𝑛+1) = {(𝑇, 𝛾)|𝑇 ∈ T (𝑛)(ℰ , 𝑄), 𝛾 : [0, 1] → O𝑙𝑜𝑐(ℰ , 𝑄)[1], 𝛾(0) =
𝑂𝑛+1(𝑇 ), 𝛾(1) = 0}.
Example 4. Let’s introduce Chern-Simons theory on an oriented 3−manifold 𝑀 with a compact Lie
group 𝐺. Let us denote g its Lie algebra and fix an invariant pairing ⟨−, −⟩g on g. Note that this is
not the same as the Lie algebra in section 4.1, i.e. the Lie algebra that acts on the space of fields. The
Chern-Simons field is a g-valued 1 form. Assuming we are perturbing around the trivial flat connection
on the trivial g−bundle on 𝑀 we can identify the space of fields with Ω1(𝑀) ⊗ g. The gauge group
is, as usual, G = Maps(𝑀, 𝐺) of smooth maps from 𝑀 to 𝐺. The Lie algebra of infinitesimal gauge
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symmetries will be Ω0(𝑀) ⊗ g which is what we had been calling g in section 4.1. The action of the
Lie algebra on the space of fields is the usual affine-linear action:

𝐴 ↦→ [𝑋, 𝐴] + 𝑑𝑋

where 𝐴 ∈ Ω1(𝑀) ⊗ g and 𝑋 ∈ Ω0(𝑀) ⊗ g. Denote by ⟨−, −⟩ the pairing on Ω*(𝑀) ⊗ g defined by

⟨𝜔1 ⊗ 𝐸1, 𝜔2 ⊗ 𝐸2⟩ =
∫︁

𝑀
𝜔1 ∧ 𝜔2⟨𝐸1, 𝐸2⟩𝑔

The Chern-Simons action reads:

𝑆𝐶𝑆(𝐴) = 1
2

∫︁
𝑀

⟨𝐴, 𝑑𝐴⟩ + 1
6⟨𝐴, [𝐴, 𝐴]⟩.

In the BV formalism, the extended space of fields is:

Ω0(𝑀) ⊗ g ghosts, degree −1
Ω1(𝑀) ⊗ g fields, degree 0
Ω2(𝑀) ⊗ g anti-fields, degree 1
Ω3(𝑀) ⊗ g anti-ghosts, degree 2

That is, the extended space of fields may be identified with ℰ = Ω*(𝑀) ⊗ g[1].
The Batalin-Vilkovisky action 𝑆 = 𝑆𝐶𝑆 + 𝑆𝑔𝑎𝑢𝑔𝑒 reads simply:

𝑆(𝑒) = 1
2⟨𝑒, 𝑑𝑒⟩ + 1

6⟨𝑒, [𝑒, 𝑒]⟩.

A gauge fixing condition for the Chern-Simons theory is 𝑑*, which means that we integrate over the
isotropic subspace Im 𝑑* ⊂ ℰ . The choice of gauge fixing condition is equivalent to the choice of a
metric on 𝑀 , since the operator 𝑑* is uniquely characterized by a metric. Therefore the space of
gauge fixing conditions is Met(𝑀), which is contractible so Chern-Simons theory is independent of
the choice of gauge fixing condition.

We now present BV theories on R𝑛, whose main difference with respect to compact manifolds is
that we can talk about renormalizability. This requires including an extra grading by dimension.

4.6 Batalin-Vilkovisky theories on R𝑛

Definition 4.6.1 (BV free theory on R𝑛). A free theory on R𝑛 in the BV formalism consists of the
following data:

i) A bi-graded vector space 𝐸. The first grading is called the cohomological grading, and the
second is the dimension grading. We will think of 𝐸 as a trivial vector bundle on R𝑛, and let
ℰ = 𝐸 ⊗ S (R𝑛) be the space of Schwarz sections. The grading by dimension on ℰ induces an
R>0 action on ℰ = 𝐸 ⊗ S (R𝑛), by 𝑅ℓ(𝑒 ⊗ 𝑓(𝑥)) = ℓ𝑖𝑒 ⊗ 𝑓(ℓ𝑥), where 𝑓(𝑥) ∈ S (R𝑛) and 𝑒 is of
dimension 𝑖.

ii) 𝐸 is equipped with a non-degenerate degree −1 anti-symmetric pairing ⟨−, −⟩ : 𝐸 ⊗ 𝐸 −→
det(R𝑛) which respects dimension, so that 𝐸𝑖 pair with 𝐸𝑛−𝑖. The pairing on 𝐸 induces an
integrating pairing

⟨−, −⟩ : ℰ ⊗ ℰ −→ C

⟨𝑓1𝑒1, 𝑓2𝑒2⟩ =
∫︁

𝑅𝑛
𝑓1𝑓2⟨𝑒1, 𝑒2⟩

where 𝑒𝑖 ∈ 𝐸 and 𝑓𝑖 ∈ S (R𝑛). This pairing is of dimension 0.
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iii) A differential operator 𝑄 : ℰ −→ ℰ which is translation invariant, of cohomological degree one,
preservers dimension, is of square zero and is skew self-adjoint for the pairing.

Definition 4.6.2. Let (ℰ , 𝑄) be a free BV theory. A family of gauge fixing operators on ℰ , parametrized
by Ω*(Δ𝑚), is an Ω*(Δ𝑚) linear differential operator

𝑄𝐺𝐹 : ℰ ⊗ Ω*(Δ𝑚) −→ ℰ ⊗ Ω*(Δ𝑚)

such that:

i) 𝑄𝐺𝐹 is of cohomological degree −1, translational invariant, of square zero, and self-adjoint for
the pairing ⟨−, −⟩.

ii) 𝑄𝐺𝐹 is of dimension −2.

iii) The commutator 𝐷 = [𝑄 + 𝑑𝑑𝑅, 𝑄𝐺𝐹 ] is a sum of two terms 𝐷 = 𝐷′ + 𝐷′′, where 𝐷′ is the
tensor product of the Laplacian on R𝑛 with the identity on 𝐸 and 𝐷′′ is a nilpotent operator
commuting with 𝐷′.

Again, let
O(ℰ , Ω*(Δ𝑚)) = Π𝑘>0 Hom(𝒟𝑔(R𝑛𝑘, Ω*(Δ𝑚)) ⊗ 𝐸𝑘)𝑆𝑘

,

where 𝒟𝑔(R𝑛𝑘, Ω*(Δ𝑚)) refers to the space of Ω*(Δ𝑚)−valued distributions on R𝑛𝑘, which are invari-
ant under the action of R𝑛 by translation, and of rapid decay away from the diagonal.

There is a heat kernel 𝐾ℓ ∈ 𝐶∞(R𝑛 × R𝑛) ⊗ 𝐸 ⊗ 𝐸 ⊗ Ω*(Δ𝑚), for the operator exp (−ℓ𝐷). If we
pick a basis 𝑒𝑖 for 𝐸, the heat kernel is: 𝐾ℓ =

∑︀
Φ𝑖,𝑗(𝑥, 𝑦, ℓ)𝑒𝑖 ⊗ 𝑒𝑗 where, for all basis elements 𝑒𝑘 and

functions 𝑔(𝑥) ∈ S (R𝑛),

(−1)|𝑒𝑘|
∑︁
𝑖,𝑗

∫︁
𝑦∈R𝑛

Φ𝑖,𝑗(𝑥, 𝑦, ℓ)𝑔(𝑦)𝑒𝑖⟨𝑒𝑗 , 𝑒𝑘⟩ = exp (−ℓ𝐷) 𝑔(𝑥)𝑒𝑘.

Where the functions Φ𝑖,𝑗(𝑥, 𝑦, ℓ) are of the form Ψ(ℓ1/2, ℓ−1/2, 𝑥 − 𝑦)𝑒−||𝑥−𝑦||2/ℓ, and Ψ are of the
form Ψ ∈ Ω*(Δ𝑚)[ℓ1/2, ℓ−1/2, 𝑥 − 𝑦].

The propagator is then given by: 𝑃 (𝜀, 𝐿) =
∫︀ 𝐿

𝜀 (𝑄𝐺𝐹 ⊗ 1)𝐾ℓ𝑑ℓ.

Definition 4.6.3. As on a compact manifold, a pre-theory is a collection of effective interactions
{𝐼[𝐿]} satisfying the renormalization group flow and the locality axiom as defined before. Define the
simplicial set ̃︁T (∞)(ℰ , 𝑄) of pre-theories, where an 𝑚-simplex consists of:

i) An 𝑚-simplex 𝑄𝐺𝐹 of the simplicial set of gauge operators.

ii) A collection 𝐼[𝐿] ∈ O+,0(ℰ , Ω*(Δ𝑚))[[ℏ]] of effective interactions, which are of cohomological
degree 0 and at least cubic modulo ℏ.

And such that:

i) The renormalization group equation 𝐼[𝐿] = 𝑊 (𝑃 (𝜀, 𝐿), 𝐼[𝜀]) is satisfied.

ii) The locality axiom holds. If we consider 𝐼𝑖,𝑘[𝐿] as an element 𝐼𝑖,𝑘[𝐿] ∈ 𝒟𝑔(R𝑛𝑘, Ω*(Δ𝑚))⊗(ℰ∨)⊗𝑘,
then, if 𝑒 ∈ S (𝑅𝑛𝑘) ⊗ 𝐸⊗𝑘 has compact support away from the small diagonal, 𝐼𝑖,𝑘[𝐿](𝑒) → 0
as 𝐿 → 0.

Since we are working over R𝑛 there is a natural action of R>0 on families of theories over the
𝑛−simplex, thus on the simplicial set ̃︁T (∞)(ℰ , 𝑄).

If {𝐼[𝐿]} ∈ ̃︁T (∞)(ℰ , 𝑄)[𝑚] is an 𝑚−simplex in the space of pre-theories, then

ℛ𝒢ℓ(𝐼[𝐿]) ∈ O+(ℰ , Ω*(Δ𝑚))[[ℏ]] ⊗ C[ℓ, ℓ−1, log ℓ].

We will let ̃︀R(∞)(ℰ , 𝑄) and ̃︁M (∞)(ℰ , 𝑄) denote the sub simplicial sets of relevant and marginal
pre-theories respectively. As before, a 𝑚−simplex will be relevant if

ℛ𝒢ℓ(𝐼[𝐿]) ∈ O+(ℰ , Ω*(Δ𝑚))[[ℏ]] ⊗ C[ℓ, log ℓ],
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and marginal if
ℛ𝒢ℓ(𝐼[𝐿]) ∈ O+(ℰ , Ω*(Δ𝑚))[[ℏ]] ⊗ C[log ℓ].

Again, one can define the QME the same way as in the compact case, allowing us to define
the set of theories T (∞)(ℰ , 𝑄) ⊂ ̃︁T (∞)(ℰ , 𝑄) as the sub simplicial set of pre-theories where a
𝑚−simplex is a 𝑚−simplex in ̃︀R(∞)(ℰ , 𝑄), described by a collection of effective interactions {𝐼[𝐿]} ∈
O+(ℰ , Ω*(Δ𝑚))[[ℏ]], such that each 𝐼[𝐿] satisfies the scale 𝐿 QME. We will define the sets R(∞)(ℰ , 𝑄)
and M (∞)(ℰ , 𝑄) of relevant and marginal theories as:

R(∞)(ℰ , 𝑄) = ̃︀R(∞)(ℰ , 𝑄) ∩ T (∞)(ℰ , 𝑄)

M (∞)(ℰ , 𝑄) = ̃︁M (∞)(ℰ , 𝑄) ∩ T (∞)(ℰ , 𝑄)

Again, given an 𝑚−simplex {𝐼[𝐿]} in the space T (𝑛)(ℰ , 𝑄), there is an obstruction 𝑂𝑛+1({𝐼[𝐿]}) ∈
O𝑙𝑜𝑐(ℰ , Ω*(Δ𝑚)) to lifting {𝐼[𝐿]} to a 𝑚−simplex of T (𝑛+1)(ℰ , 𝑄). This obstruction is closed, 𝑄𝑂𝑛+1+
𝑑𝑑𝑅𝑂𝑛+1 + {𝐼0, 𝑂𝑛+1} = 0, and of cohomological degree 1.

Recall that the obstruction 𝑂𝑛+1({𝐼[𝐿]}) depends on a lift of {𝐼[𝐿]} to a pre-theory defined modulo
ℏ𝑛+2, whereas its cohomology is independent of this lift.

It can be shown that if {𝐼[𝐿]} is a relevant theory defined modulo ℏ𝑛+1, and we lift it to a relevant
pre-theory defined modulo ℏ𝑛+2, the obstruction 𝑂𝑛+1({𝐼[𝐿]}) associated to this lift is of dimension
≥ 0.

For the marginal case, a similar result holds, where the obstruction is of dimension zero.
From these results, it follows that a lift of an element {𝐼[𝐿]} ∈ R(𝑛)(ℰ , 𝑄) to an element of

R(𝑛+1)(ℰ , 𝑄) is equivalent as giving a local action functional 𝐽 ∈ O𝑙𝑜𝑐(ℰ , Ω*(Δ𝑚)) of cohomological
degree 0 and dimension ≥ 0, such that it kills the obstruction 𝑂𝑛+1({𝐼[𝐿]}):

(𝑄 + 𝑑𝑑𝑅) 𝐽 + {𝐼0, 𝐽} = 𝑂𝑛+1.

We get a similar result for marginal theories.
Finally, let us denote by O𝑙𝑜𝑐(ℰ , 𝑄) the simplicial abelian group whose 𝑚−simplices are closed, de-

gree 0 elements of O𝑙𝑜𝑐(ℰ , Ω*(Δ𝑚)). Similarly, denote O≥0
𝑙𝑜𝑐 (ℰ , 𝑄) and O0

𝑙𝑜𝑐(ℰ , 𝑄) the simplicial abelian
groups whose 𝑚−simplices are closed degree 0 elements of O≥0

𝑙𝑜𝑐 (ℰ , Ω*(Δ𝑚)) and O0
𝑙𝑜𝑐(ℰ , Ω*(Δ𝑚)) re-

spectively.
The obstructions are maps of simplicial sets:

𝑂𝑛+1 : T (𝑛)(ℰ , 𝑄) −→ O𝑙𝑜𝑐(ℰ , 𝑄)[1]
𝑂𝑛+1 : R(𝑛)(ℰ , 𝑄) −→ O≥0

𝑙𝑜𝑐 (ℰ , 𝑄)[1]
𝑂𝑛+1 : M (𝑛)(ℰ , 𝑄) −→ O0

𝑙𝑜𝑐(ℰ , 𝑄)[1]

And just as for the compact case,

Theorem 4.6.1. There are homotopy Cartesian diagrams:

T (𝑛+1)(ℰ , 𝑄) T (𝑛)(ℰ , 𝑄)

0 O𝑙𝑜𝑐(ℰ , 𝑄)[1]

𝑂𝑛+1

R(𝑛+1)(ℰ , 𝑄) R(𝑛)(ℰ , 𝑄)

0 O≥0
𝑙𝑜𝑐 (ℰ , 𝑄)[1]

𝑂𝑛+1

M (𝑛+1)(ℰ , 𝑄) M (𝑛)(ℰ , 𝑄)

0 O0
𝑙𝑜𝑐(ℰ , 𝑄)[1]

𝑂𝑛+1



Chapter 5

Yang-Mills in R4

Yang-Mills theory has been of great relevance in physics as well in mathematics. From the physics
point of view, it was the first gauge theory discovered and lots of phenomena can be described by
a Yang-Mills theory with different structure groups. For instance, 3 of the 4 known fundamental
interactions can be accurately described as Yang-Mills theories, namely, electromagnetism can be
described with a 𝑈(1) Yang-Mills theory, Quantum Chromodynamics by a 𝑆𝑈(3) Yang-Mills and
electroweak interaction can be modelled with 𝑈(1) × 𝑆𝑈(2). In mathematics, Yang-Mills led to a
series of developments in areas such as algebraic geometry, topology, calculus of variations etc. The
work of Atiyah, Bott, Donaldson and others led to some extremely important results, such as the
index theorem or the exotic differentiable structures on R4. It also summed great relevance to the
more general study of mathematical gauge theory, where the main topic of study is the moduli space of
connections on a principal 𝐺−bundle modulo gauge equivalence. It is one of the canonical examples
where the interplay between mathematics and physics led to great developments in both of these
fields. The usual formulation of Yang-Mills is over an oriented Riemannian 4-manifold (𝑀, 𝑔), with
semi-simple Lie algebra g and fixed invariant pairing ⟨−, −⟩g on g, . Recall that a semi-simple Lie
algebra is the sum of simple Lie algebras, i.e. non-abelian Lie algebras without any non-zero proper
ideal. The gauge group is 𝒢 = Maps(𝑀, 𝐺), where 𝐺 is the compact Lie group associated to g, and
the Lie algebra of infinitesimal gauge transformations is Ω0(𝑀) ⊗ g, acting on the fields by

𝐴 ↦→ [𝐴, 𝑋] + 𝑑𝑋

where 𝑋 ∈ Ω0(𝑀) ⊗ g and 𝐴 ∈ Ω1(𝑀) ⊗ g. The pairing on Ω*(𝑀) ⊗ g is given by

⟨𝜔1 ⊗ 𝐸1, 𝜔2 ⊗ 𝐸2⟩ =
∫︁

𝑀
𝜔1 ∧ 𝜔2⟨𝐸1, 𝐸2⟩g

The Yang-Mills action is just 𝑆𝑌 𝑀 (𝐴) = ⟨⋆𝐹 (𝐴), 𝐹 (𝐴)⟩, where ⋆ denotes the Hodge stars operator
⋆ : Ω2(𝑀) → Ω2(𝑀) and 𝐹 (𝐴) = 𝑑𝐴 + 𝐴 ∧ 𝐴 is the curvature (g−valued) two-form. We will call this
formulation the second-order formulation of Yang-Mills. In this formulation, there is no clear gauge
fixing condition that allows us to use the results previously presented. Instead, we will use a different,
but equivalent formulation of Yang-Mills.

5.1 Yang-Mills in the BV formalism

The drawback of the second-order formulation is that the quadratic part is second-order, and there is
no clear gauge fixing operator which makes the operator 𝐷 defined in Definition 2.2.12 a generalized
Laplacian. Therefore, by performing a change of variables, Costello shows in Chapter 6.3 that one can
make an equivalent formulation of Yang-Mills with the quadratic part of the action being first-order.
This is the formulation of Yang-Mills we will use to prove renormalizability.

Let g be a Lie algebra equipped with an invariant pairing ⟨−, −⟩g and let Ω𝑖(R𝑛) denote the
Schwartz 𝑖−forms on R𝑛. The first-order formulation has two fields: a connection 𝐴 ∈ Ω1(R4) ⊗ g,
which under the action of the infinitesimal Lie algebra of gauge symmetries Ω0(R4) ⊗ g transforms as

47
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𝐴 ↦→ [𝑋, 𝐴] + 𝑑𝑋, where 𝑋 ∈ Ω0(R4) ⊗ g, and a self-dual two form 𝐵 ∈ Ω2
+(R4) ⊗ g, which transforms

as 𝐵 ↦→ [𝑋, 𝐵].
The action reads: 𝑆(𝐴, 𝐵) = ⟨𝐹 (𝐴), 𝐵⟩ + 𝑐⟨𝐵, 𝐵⟩, where 𝐹 (𝐴) is the curvature and ⟨−, −⟩ is the

inner product on Ω*(R4) ⊗ g defined above.
We want to integrate over the quotient space Ω1(R4) ⊗ g ⊕ Ω2

+(R4) ⊗ g over G , where G =
Maps(R4, 𝐺) is the gauge group.

Applying the BV formalism described before we arrive at the following extended space of fields ℰ :

Ω0(R4) ⊗ g ghosts, degree −1
Ω1(R4) ⊗ g ⊕ Ω2

+(R4) ⊗ g fields, degree 0
Ω2

+(R4) ⊗ g ⊕ Ω3(R4) ⊗ g anti-fields, degree 1
Ω4(R4) ⊗ g anti-ghosts, degree 2

There is a natural odd symplectic structure, where ghosts pair with anti-ghosts and fields with
anti-fields.

Let us denote by 𝑋 ∈ Ω0(R4) ⊗ g a ghost variable, 𝐴 ∈ Ω1(R4) ⊗ g and 𝐵 ∈ Ω2
+(R4) ⊗ g the field

variables, 𝐴∨ ∈ Ω3(R4) ⊗ g and 𝐵∨ ∈ Ω2(R4) ⊗ g the anti-field variables, and 𝑋∨ ∈ Ω4(R4) ⊗ g the
anti-ghosts.

The extended action reads:

𝑆𝐹 𝑂(𝑐) = 1
2⟨[𝑋, 𝑋], 𝑋∨⟩ + ⟨[𝑋, 𝐵], 𝐵∨⟩ + ⟨𝑑𝑋, 𝐴∨⟩ + ⟨[𝑋, 𝐴], 𝐴∨⟩ + ⟨𝐹 (𝐴), 𝐵∨⟩ + 𝑐⟨𝐵, 𝐵⟩. (5.1)

Where the first term encodes the Lie bracket on the Lie algebra of infinitesimal symmetries, the next
three encode the action of this Lie algebra on the space of fields, and the last two are the original
first-order Yang-Mills action. The auxiliary dga manifold used in previous definitions comes into play
when working with Yang-Mills theory, where it is convenient to describe the BV space of fields with
the auxiliary dga:

Y 0 Y 1 Y 2 Y 3

Ω0(R4) Ω1(R4) Ω2
+(R4)

⊕ ⊕

Ω2
+(R4) Ω3(R4) Ω4(R4)

𝑑 𝑑+

𝑑

2𝑐 Id

𝑑

where 𝑑+ : Ω1(R4) −→ Ω2
+(R4) denotes the de Rham differential composed with the projection onto

the self-dual subspace of Ω2(R4).
Y = Y0 ⊕ Y1 ⊕ Y2 ⊕ Y3 is a dga algebra, which has a trace Tr : Y → R of degree −3 defined by

Tr(𝑎) =
∫︁
R4

𝑎

if 𝑎 ∈ Y 3 = Ω4(R4) and 0 otherwise. Identifying Y ⊗ g[1] with the BV space of fields, we note that
the trace map gives Y ⊗ g[1] an odd symplectic pairing, given by

⟨𝑎 ⊗ 𝐸, 𝑎′ ⊗ 𝐸′⟩ = Tr(𝑎𝑎′)⟨𝐸, 𝐸′⟩g.

Thus, we are in the setting of the Batalin-Vilkovisky formalism. Applying the procedure presented
before, we arrive at the following action for the first-order formulation of the Yang-Mills theory.
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Lemma 5.1.1. The Batalin-Vilkovisky action for the first-order Yang-Mills theory is a Chern-Simons-
type action

𝑆𝐹 𝑂(𝑎 ⊗ 𝐸) = 1
2⟨𝑎 ⊗ 𝐸, 𝑄𝑎 ⊗ 𝐸⟩ + 1

6⟨𝑎 ⊗ 𝐸, [𝑎 ⊗ 𝐸, 𝑎 ⊗ 𝐸]⟩

Proof. This is a direct computation. In local coordinates (𝑥1, . . . , 𝑥𝑛), given a basis 𝑇𝑎 for the Lie
algebra g and using Einstein summation convention, we find that 𝑋 = 𝑐𝑎𝑇𝑎, 𝐴 = 𝐴𝑎𝑇𝑎, 𝐵 = 𝐵𝑎𝑇𝑎,
𝐴∨ = 𝐴∨𝑎𝑇𝑎 , 𝐵∨ = 𝐵∨𝑎𝑇𝑎 and 𝑋∨ = 𝑋∨𝑎𝑇𝑎, where

𝐴𝑎 = 𝐴𝑎
𝜇𝑑𝑥𝜇 𝐵𝑎 = 1

2𝐵𝑎
𝜇𝜈𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 𝐵∨𝑎 = 1

2𝜖𝜇𝜈𝜆𝜎𝐵𝑎𝜇𝜈𝑑𝑥𝜆 ∧ 𝑑𝑥𝜎

𝐴∨𝑎 = 1
6𝜖𝜇𝜈𝜆𝜎𝐴𝑎𝜇𝑑𝑥𝜈 ∧ 𝑑𝑥𝜆 ∧ 𝑑𝑥𝜎 𝑋∨𝑎 = 1

24𝜖𝜇𝜈𝜆𝜎𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 ∧ 𝑑𝑥𝜆 ∧ 𝑑𝑥𝜎

For the quadratic part,

1
2⟨𝑒, 𝑑𝑒⟩ = 1

2⟨𝑋, 𝑑𝐴∨⟩ + 1
2⟨𝐴, 𝑑𝐵∨⟩ + 1

2⟨𝐵, 𝑑𝐴⟩ + 1
2⟨𝐵, 2𝑐𝐵⟩

plus permutations. Firstly

⟨𝑋, 𝑑𝐴∨⟩ =
∫︁

𝑋𝑎𝑑𝐴∨𝑏⟨𝑇𝑎, 𝑇𝑏⟩g = −
∫︁

𝑑𝐴∨𝑏𝑋𝑎⟨𝑇𝑎, 𝑇𝑏⟩g =
∫︁

𝑑
(︁
𝐴∨𝑏𝑋𝑎

)︁
⟨𝑇𝑎, 𝑇𝑏⟩g+

∫︁
𝐴∨𝑏𝑑𝑋𝑎⟨𝑇𝑎, 𝑇𝑏⟩g,

where we are having into account both the cohomological degree and the form degree. Therefore
⟨𝑋, 𝑑𝐴∨⟩ = ⟨𝐴∨, 𝑋⟩ up to total derivatives. The same argument holds for ⟨𝑑𝐴, 𝐵⟩.

For ⟨𝐵∨, 𝑑𝐴⟩ =
∫︀

𝐵∨𝑎𝑑𝐴𝑏⟨𝑇𝑎, 𝑇𝑏⟩g = −
∫︀

𝑑𝐴𝑏𝐵∨𝑎⟨𝑇𝑎, 𝑇𝑏⟩g =
∫︀

𝑑
(︁
𝐴𝑏𝐵∨𝑎

)︁
⟨𝑇𝑎, 𝑇𝑏⟩g−

∫︀
𝐴𝑏𝑑𝐵∨𝑎⟨𝑇𝑎, 𝑇𝑏⟩g.

We see that ⟨𝐵∨, 𝑑𝐴⟩ = −⟨𝐴, 𝑑𝐵∨⟩ up to total derivatives.
The quadratic part is therefore, ⟨𝑑𝑋, 𝐴∨⟩ + ⟨𝑑+𝐴, 𝐵⟩ + 𝑐⟨𝐵.𝐵⟩.
For the cubic term, we have

⟨𝑋∨, [𝑋, 𝑋]⟩ + ⟨𝐵, [𝐴, 𝐴]⟩ + ⟨𝐵∨, [𝐴, 𝐴]⟩ + ⟨𝑋, [𝐴, 𝐴∨]⟩ + ⟨𝑋, [𝐵, 𝐵]⟩ + ⟨𝑋, [𝐵, 𝐵∨]⟩ + ⟨𝑋, [𝐵∨, 𝐵∨]⟩

plus permutations.
Note that

⟨𝑋, [𝐵, 𝐵]⟩ =
∫︁

𝑋𝑎𝐵𝑏𝐵𝑐⟨𝑇𝑎, [𝑇𝑏, 𝑇𝑐]⟩g =
∫︁

𝑋𝑎𝐵𝑐𝐵𝑏⟨𝑇𝑎, [𝑇𝑐, 𝑇𝑏]⟩g = −
∫︁

𝑋𝑎𝐵𝑏𝐵𝑐⟨𝑇𝑎, [𝑇𝑏, 𝑇𝑐]⟩g = 0.

Also, the other permutations ⟨𝐵, [𝑋, 𝐵]⟩ = −⟨𝐵, [𝐵, 𝑋]⟩, therefore the contribution of this term and
its permutations is zero.

A similar argument shows that the contributions from ⟨𝑋, [𝐵∨, 𝐵∨]⟩ and ⟨𝐵∨, [𝐴, 𝐴]⟩ is zero.
Now for terms such as ⟨𝑋∨, [𝑋, 𝑋]⟩, they all three give the same contribution∫︁

𝑋∨𝑎𝑋𝑏𝑋𝑐⟨𝑇𝑎, [𝑇𝑏, 𝑇𝑐]⟩g = −
∫︁

𝑋𝑏𝑋∨𝑎𝑋𝑐⟨𝑇𝑎, [𝑇𝑏, 𝑇𝑐]⟩g =
∫︁

𝑋𝑏𝑋∨𝑎𝑋𝑐⟨𝑇𝑏, [𝑇𝑎, 𝑇𝑐]⟩g = ⟨𝑋, [𝑋∨, 𝑋]⟩.

A similar argument shows that ⟨𝑋, [𝐴∨, 𝐴]⟩, ⟨𝐵, [𝐴, 𝐴]⟩ and ⟨𝑋, [𝐵∨, 𝐵]⟩ have the same value for
all its permutations. Dividing by 6 and counting all the permutations, we see that the interaction part
is: 1

2⟨𝑋∨, [𝑋, 𝑋]⟩ + ⟨𝐴∨, [𝑋, 𝐴]⟩ + ⟨𝐵∨, [𝐴, 𝐴]⟩ + ⟨𝐵∨, [𝑋, 𝐵]⟩.

The gauge fixing for our first-order Yang-Mills theory 𝑄𝐺𝐹 : Y → Y will be defined by the
following diagram:

Ω0(R4) Ω1(R4) Ω2
+(R4)

⊕ ⊕

Ω2
+(R4) Ω3(R4) Ω4(R4)

𝑑* 2𝑑*

2𝑑*
+ 𝑑*
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The Laplacian-type operator will be 𝐷 = [𝑄, 𝑄𝐺𝐹 ], which is clearly of order two. Note that 𝐷 can be
decomposed as 𝐷 = 𝐷′ + 4𝑐𝐷′′, where both 𝐷′ and 𝐷′′ are independent of the coupling constant. 𝐷′

is the Laplacian in the space of forms 𝑑𝑑* + 𝑑*𝑑, while 𝐷′′ is given by the following diagram:

Ω0(R4) Ω1(R4) Ω2
+(R4)

Ω2
+(R4) Ω3(R4) Ω4(R4)

𝑑* 𝑑*
+

They satisfy
[𝐷′, 𝐷′′] = 0 and (𝐷′′)2 = 0

Both of these properties assure that it satisfies the technical conditions from Definition 4.2.1, and
therefore we know that there is a propagator given by the integral of a heat kernel, satisfying various
properties.

5.2 Renormalizability

In this section, we will sketch Costello’s proof of the following theorem

Theorem 5.2.1. Pure Yang-Mills theory on R4 or on any compact four manifold with flat metric,
and coefficients in any semi-simple Lie algebra g is perturbatively renormalizable.

First, split the classical action 𝑆𝐹 𝑂 in quadratic and interacting terms:

𝑆𝐹 𝑂(𝑎 ⊗ 𝐸) = ⟨𝑎 ⊗ 𝐸, 𝑄𝑎 ⊗ 𝐸⟩ + 𝐼(0)(𝑎 ⊗ 𝐸),

The interaction term 𝐼(0) ∈ O𝑙𝑜𝑐(Y ⊗ g[1]) is cubic, of cohomological degree zero, and satisfies the
classical master equation: 𝑄𝐼(0) + 1

2{𝐼(0), 𝐼(0)} = 0.
At the classical level, Yang-Mills is conformally invariant, which means that 𝐼(0) ∈ M (0). Our goal

is to classify all lifts of 𝐼(0) to elements of R(∞).
Define the complex (︁

O𝑙𝑜𝑐(Y ⊗ g[1])R4
, 𝑄 + {𝐼(0), −}

)︁
of translational invariant local action functionals, with differential 𝑄 + {𝐼(0), −}. Let

𝐻 𝑖,𝑗
(︁
O𝑙𝑜𝑐(Y ⊗ g[1])R4)︁

denote the cohomology of this complex, in cohomological degree 𝑖 and scaling dimension 𝑗.
Suppose we have already lifted our theory to an element 𝐼(𝑛) ∈ R(𝑛) of relevant theories defined

modulo ℏ𝑛+1. In Chapter 4.6, we saw that the obstruction to lifting 𝐼(𝑛) to R(𝑛+1) is an element of

𝐻1,≥0
(︁
O𝑙𝑜𝑐(Y ⊗ g[1])R4)︁

.

If the obstruction vanishes, the moduli space of lifts up to equivalence is a quotient of 𝐻0,≥0
(︁
O𝑙𝑜𝑐(Y ⊗ g[1])R4

)︁
by some action of the space 𝐻−1,≥0

(︁
O𝑙𝑜𝑐(Y ⊗ g[1])R4

)︁
, which is thought of as the space of sym-

metries. If the latter also vanishes the space of lifts up to equivalence will be parametrized by
𝐻0,≥0

(︁
O𝑙𝑜𝑐(Y ⊗ g[1])R4

)︁
.

Therefore, renormalizability of Yang-Mills in R4 reduces to the study of the cohomology groups
𝐻 𝑖,𝑗

(︁
O𝑙𝑜𝑐(Y ⊗ g[1])R4

)︁
for 𝑖 = −1, 0, 1 and 𝑗 ≥ 0. In fact, as the classical theory is also 𝑆𝑂(4)−invariant,

we will restrict ourselves to study quantizations which are also 𝑆𝑂(4)−invariant.
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Theorem 5.2.2. Let g be a semi-simple Lie algebra. For any non-zero value of the coupling constant
𝑐, there are natural isomorphisms

𝐻 𝑖,0
(︁
O𝑙𝑜𝑐(Y ⊗ g[1])R4⋉𝑆𝑂(4)

)︁
∼=

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑖 < 0
𝐻0

(︁
g, Sym2g

)︁
if 𝑖 = 0

𝐻5(g) if 𝑖 = 1

Furthermore,
𝐻 𝑖,𝑗

(︁
O𝑙𝑜𝑐(Y ⊗ g[1])R4⋉𝑆𝑂(4)

)︁
∼= 0 if 𝑗 > 0 and 𝑖 ≤ 2

We see that the cohomology groups 𝐻0,𝑗
(︁
O𝑙𝑜𝑐(Y ⊗ g[1])R4⋉𝑆𝑂(4)

)︁
vanish for 𝑗 > 0, which implies

that any relevant lift is equivalent to a marginal lift. The potential obstructions to constructing a
marginal lift lie in the cohomology group 𝐻5(g). Unluckily, this group is non-zero if the semi-simple
Lie algebra contains a factor of su(𝑛) for 𝑛 ≥ 3.

The key idea is to note that the classical Yang-Mills action is invariant under another symmetry,
so we will restrict ourselves to quantizations which also have this symmetry.

Let g = g1 ⊕ · · · ⊕ g𝑘 be the decomposition of g into simple factors, and let 𝐻 ⊂ Outg be the
subset of outer automorphisms, i.e. automorphisms that don’t come from conjugation, which respect
the decomposition. 𝐼(0) is 𝐻−invariant and if a quantization 𝐼(𝑛) ∈ M (∞) is 𝐻−invariant then, the
obstruction 𝑂𝑛+1(𝐼(𝑛)) will also be 𝐻−invariant. We have the following result.

Lemma 5.2.3. For any semi-simple Lie algebra g,

𝐻5(g)𝐻 = 0.

Thus, if 𝐼(𝑛) is 𝐻−invariant, the obstruction 𝑂𝑛+1(𝐼(𝑛)) vanishes.

With this, it is concluded that renormalizable quantizations of pure Yang-Mills theory on R4 exist
at any level since the obstructions vanish at every level. The set of renormalizable quantizations of
pure Yang-Mills is characterized by the following corollary.

Corollary 5.2.3.1. Let M
(∞)
𝑌 𝑀 and R

(∞)
𝑌 𝑀 denote the sub-simplicial set of marginal (respectively, rele-

vant) theories which coincide at the classical level with Yang-Mills theory. The inclusion

M
(∞)
𝑌 𝑀 →˓ R

(∞)
𝑌 𝑀

is an isomorphism on 𝜋0 where 𝜋0 denotes connected components. In particular, there is a (non-
canonical) bijection

𝜋0
(︁
M

(∞)
𝑌 𝑀

)︁
∼= 𝐻0

(︁
g, Sym2g

)︁
⊗ ℏR[[ℏ]].

Thus, the set of renormalizable quantizations of pure Yang-Mills is the set of deformations of the
chosen pairing on g to a symmetric invariant pairing

g ⊗ g → R[[ℏ]]

which, modulo ℏ, is the original pairing.

Furthermore, Costello continues and proves that these quantizations are universal, that is, every
quantization of Yang-Mills is equivalent, in the low-energy limit. We see that the proof of the Renor-
malizability of Yang-Mills didn’t rely on any Feynman graph manipulation as is usual. The key result
is the fortuitous vanishing of the cohomology group 𝐻5(su(3))Out(su(3)). As Costello points out, a more
direct or intuitive proof is desirable.
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Conclusion

In this work we have introduced a novel formulation of quantum field theory, presenting the
main results and reproducing some well-known results in the physics literature. Far from being
far-fetched, this formalism has proven to be successful for obtaining new mathematical structures
[CLL15][GGW16],[LL16], and also for obtaining physics results from the mathematical point of view
[EWY17] for example.

It also led to the construction of the notion of factorization algebra, a very rich concept for which
two volumes have been dedicated[CG16],[CG17].

It remains to translate rigorously all these results to Lorentzian signature. In these lines, we remark
that the results, as usual in physics, are obtained as infinitesimal deformations of the classical theory.
A complete, rigorous formulation of non-perturbative QFT is desirable.

53
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