
GRAU DE MATEMÀTIQUES

Treball final de grau

ARIMA processes for EEG
modeling

Autor: Gabriel Vayá Abad

Director: Dr. Josep Vives i Dr. Ignasi Cos

Realitzat a: Departament de

Matemàtiques i Informàtica

Barcelona, 11 de juny de 2023

Abstract

The main goal of this work is to find a suitable model for EEGs. This model
has to be appropriate for the performing of classification of subjects based on the
level of social pressure, and has to preserve time variability.

2020 Mathematics Subject Classification. 37M10, 62H12, 62M10, 62P10, 92-10, 92C55

Agraïments

En primer lloc li vull agraïr el suport i comprensió durant els moments de
més estrés a la meva família, als meus pares i al meu germà, així com a la meva
parella, que han estat al meu costat tot el procés. En segon lloc, li vull agraïr als
meus amics Jon i al Miki per l’ajuda brindada en aquest treball, a més del Guillem.
També vull mencionar a la Clàudia, amb qui he pogut compartir maldecaps i pre-
ocupacions, i ha donat una gran ajuda. Finalment agraïr als dos tutors d’aquest
treball; l’Ignasi, que m’ha acompanyat en cada passa del camí i m’ha motivat per
extreure el màxim del treball, i el Josep, qui ha aportat un coneixement i expèri-
encia valuosíssimes.

Moltes gràcies a tots.

Contents

Introduction

1 Preliminaries 1
1.1 Initial concepts . 1
1.2 Stationary time series . 1
1.3 AR processes . 5
1.4 Examples . 8

2 ARIMA models 11
2.1 MA processes . 11
2.2 ARMA(p,q) processes . 13
2.3 Time series differencing . 14
2.4 ARIMA(p,d,q) processes . 15

3 Model Estimation 17
3.1 AR(1) parameter estimation: Maximum Likelihood Estimation . . . 17
3.2 AR(p) Maximum Likelihood Estimation 20
3.3 Model comparison: Akaike Information Criterion 22
3.4 Source selection: Independent Component Analysis 23

4 EEG fit 25
4.1 Experiment description . 25
4.2 Preliminary observations . 26
4.3 Model choice . 29
4.4 Model evaluation . 38
4.5 Code . 41

5 Discussion 45

Bibliography 49

i

ii Introduction

Introduction

Time series analysis is a field that has been around since the 1970’s, and has
been used to tackle numerous problems, especially in fields like Finances and
Econometrics. However, it has not been since recently that has entered the med-
ical domain. In this case, we had a data-set of electroencephalograms (EEG)
taken from an experiment performed by Dr. Ignasi Cos and his colleagues, which
worked on the effect of social pressure on motor behavior and decision-making.
The underlying objective is to find the particularities of the EEG readings in every
defined state of social pressure: no social pressure, reaffirming social pressure and
discouraging social pressure.

In our work, we explored the modeling of the EEG gathered in the state of no
social pressure using time series analysis, hoping to find a process able to capture
the time variability of the readings, not yet tried in this particular experiment.
Nevertheless, we had a delusive advantage, which is not recurrent in traditional
time series analysis: we had more than one sample of the same process, in par-
ticular, 432 of them. Hence, the challenge was to, using small twists on known
methods, find a model that explains the underlying process, observed 432 times.

For that, we read about time series and deepened into ARIMA models, espe-
cially into auto-regressive processes. Since nowadays we count on the support
of computers, we explored the classical parameter estimating techniques used by
today’s software, to understand as detailed as possible the process of fit of our
data. Finally, we researched model information criteria, thus we intended to use
an exhaustive process of model comparison to find the most suitable one.

Having reached a vast understanding of time series analysis and the data itself,
and after a lot of disappointing trials, we found a way to fit the totality of the
observations into a single process, and later demonstrated that this process was
suitable for modeling all data in this particular state of social pressure. With
that, we proved that time series analysis can be used, mixed with some modern
data science techniques, in a much more extensive repertoire of situations as it is
commonly believed, and gives unique tools to face today’s challenges.

Chapter 1

Preliminaries

1.1 Initial concepts

Definition 1.1. A time series is a set of observations {xt} recorded at specific
times t = 1, . . . , T.

The difference between time series and model is worth noting.

Definition 1.2. A time series model for an observed data {xt} is a specification
of the joint distributions of a sequence of random variables {Xt} of which {xt} is
postulated to be a realization.

Notation: Once specified the difference, we will use time series for both time
series and models.

1.2 Stationary time series

In order to give the definition for stationary time series, a few preliminary
definitions have to be stated.

Definition 1.3. Let {Xt} be a time series with E(Xt)2 < ∞. The mean function of
{Xt} is

µX(t) = E(Xt).

The covariance function of {Xt} is

γX(r, s) = Cov(Xr, Xs) = E[(Xr − µX(r))(Xs − µX(s))].

for all times r and s.

Now we can define what we mean by stationary time series.

1

2 Preliminaries

Definition 1.4. We say that {Xt} is (weakly) stationary if

(a) µX(t) is independent of t.

(b) γX(t + h, t) is independent of t for each h.

Definition 1.5. We say that {Xt} is (strictly) stationary under the condition that
(X1, ..., Xn) has the same distribution as (X1+h, ..., Xn+h).

Proposition 1.6. Let {Xt} be a strictly stationary time series such that E(X2
t) < ∞.

Then {Xt} is weakly stationary.

Proof. First we observe that E(X2
t) < ∞ implies that E(Xt) is constant, it doesn’t

depend on t, we have (a). Now for the existence of the covariance function, we
need Cauchy-Schwarz inequality. Indeed we have

Cov(Xr, Xs) = E(XrXs)− E(Xr)E(Xs)

≤
√

E(X2
r)E(X2

s)− E(Xr)E(Xs) < ∞.

Now, using the definition of strictly stationary we have that the variables (X1, ..., Xn)

and (X1+h, ..., Xn+h) have the same distribution. Then we have

Cov(X1, X1+h) = Cov(Xt, Xt+h)

which also does not depend on t.

Remark 1: From now on, when we use the term stationary we will refer to
weakly stationary.

Remark 2: As for the covariance function, whenever we are referring to a sta-
tionary time series, we can look at it as a one variable function defined by

γX(h) := γX(h, 0) = γX(t + h, t)

where we used condition (b) of the definition in the second equality.

Definition 1.7. We refer as lag h to the difference between times t and t+h.

Definition 1.8. We refer to the previous function as the autocovariance function
(ACVF) at lag h. We can express it as:

γX(h) = Cov(Xt+h, Xt).

The autocorrelation function (ACF) at lag h is

ρX(h) =
γX(h)
γX(0)

= Cor(Xt+h, Xt).

1.2 Stationary time series 3

This are functions for models. However, in our case we are not working directly
with models, but with observations at a time t. For that matter, we will now see how
to assess the degree of dependence in our observations.

Definition 1.9. Let x1, . . . , xn be observations of a time series. The sample mean
of x1, . . . , xn is

x =
1
n

n

∑
t=1

xt.

The sample autocovariance function at lag h is

γ̂(h) =
1
n

n−h

∑
t=1

(xt+h − x)(xt − x) − n < h < n.

The sample autocorrelation function at lag h is

ρ̂(h) =
γ̂(h)
γ̂(0)

− n < h < n.

However, when modeling observed data, whenever we say autocorrelation func-
tion (ACF) we are referring to the sample autocorrelation function

Now for finding the best model for observed data, there exist many indicators
that can be evaluated. Apart from the ACF, we can look at the Partial Autocorrela-
tion Function.

Definition 1.10. Let {Xt} be a stationary time series. We define the partial auto-
correlation function (PACF) at lag h as the following:

α(h) = ρ(X1 − P(X1|X2, . . . , Xh), Xh+1|P(Xh+1|X2, . . . , Xh))

where P(X1|X2, . . . , Xh) is the linear projection of X1 in the subspace generated by
X2, . . . , Xh.

The information that the Partial Autocorrelation Function gathers is about the
correlation between two variables, having taken into account the values of other
set of variables. For instances, in the model:

Xt = β0 + β1Xt−1

β1 can be interpreted as the linear relationship between Xt and Xt−1. Now let’s
have a look at this other model:

Xt = β0 + β1Xt−1 + β2Xt−2.

4 Preliminaries

In this case, β2 is the linear dependency between Xt and Xt−2 having taken
into account the linear correlation between Xt and Xt−1.

Now that we have assessed the dependence in the observations of one time
series, we can now give some notions on dependence between multiple time series,
which is a crucial factor in multivariate time series analysis.

Definition 1.11. Let {Xt} and {Yt} be two time series with finite variance. The
Cross-covariance function at lag h between the two series is given by:

γXY(s, t) = Cov(Xs, Yt) = E((Xs − µxs)(Yt − µyt)).

Now we can give the notion for two time series presenting stationarity features
together, which as we will now see, it is similar to the condition for one time series.

Definition 1.12. Let {Xt} and {Yt} be two time series. We say that they are jointly
stationary if they are both stationary, and the cross-covariance function can be
written as a one variable function as such:

γXY(h) = Cov(Xt+h, Yt) = E((Xt+h − µx)(Yt − µy)) ∀t.

Definition 1.13. The Cross-correlation function (CCF) of two jointly stationary
time series is:

ρXY(h) =
γXY(h)√

γX(0)γY(0)
.

In a similar fashion as with the autocovariance and autocorrelation functions,
for computing the codependece between two sets of observations instead of two
models.

Definition 1.14. The sample autocovariance function of two sets of observations
{xt} and {yt} is given by:

γ̂xy(h) =
1
n

n−h

∑
t=1

(xt+h − x)(yt − y) − n < h < n.

The sample autocorrelation function is:

ρ̂xy(h) =
γ̂xy(h)

γ̂x(0)γ̂y(0)
− n < h < n.

The (sample) Cross-correlation function is often examined graphically as a
function of lag h to search for lagging relations in data. To illustrate the point:

1.3 AR processes 5

Example 1.15. Let’s assume that we have to sets of data xt and yt that happen to
be outputs of the following model:

Yt = AXt−l + zt

where Xt and Yt are jointly stationary time series, and zt is random noise uncorre-
lated with Xt. Then the cross-covariance function would look like so:

γXY(h) = Cov(Yt+h, Xt) = Cov(AXt+h−l + zt+h, Xt) = Cov(AXt+h−l , Xt)

= Aγx(h− l).

At the same time it is clear that:

γY(h) = Cov(Yt+h, Yt) = Cov(AXt+h−l + zt+h, AXt−l + zt)

= Cov(AXt+h−l , AXt−l) = A2γX(h)

where we used that Xt and zt are uncorrelated. Now we can compute what would
be the cross-correlation function:

ρXY(h) =
γXY(h)√

γX(0)γY(0)
=

AγX(h− l)√
γX(0)A2γX(0)

=
AγX(h− l)

AγX(0)

= ρX(h− l).

This way, if we want to check if two sets of observations are correlated, we can
compute the sample cross-correlation function, and if it looks like the correlation
function of the first set xt with a peak on the positive side, then xt leads yt, and if
the peak is on the negative side, yt leads xt.

1.3 AR processes

Now we will give some inside on Autoregressive Models (AR), which represent
a major role on Time Series Analysis, not only because of their simplicity, but also
for a making a very sensible and logical assumption, which is that the observation
at time t is related in some way to the previous observations at times t − 1, t −
2, . . . , t− p.

First of all we will present the notation to refer to these previous observations
t− h.

Definition 1.16. We define the backwards shift operator B as

BYj := Yj−1.

6 Preliminaries

We can also talk about the powers of the backwards shift operator B. Being k
an integer, the kth power of B would be

Bk(Yj) = Yj−k.

This is specially useful in order to simplify the notation around auto-regressive and
differentiating models as well.

Definition 1.17. Let {Xt} be a time series. {Xt} is an auto-regressive process of
order p (AR(p)) if it is a stationary process which complies with the expression:

Xt = ϕ1Xt−1 − · · · − ϕpXt−p + Zt

where Zt is a centered (0 mean) Gaussian white noise with variance σ2 > 0, so let
us write it:

Z ∼ GWN(0, σ2).

Using the notation for the backwards shift operator we can define a polynomial
of degree p: Φ(x) = 1− ϕ1z− ...− ϕpzp with ϕi ∈ R. Now we can rewrite an AR(p)
as following

Φ(B)Xt = Zt.

Definition 1.18. Let Φ(x) be a polynomial of degree d with x ∈ C. We say that
Φ(x) is invertible if it exists a square integrable series ∑∞

i=0 ψixi such that

Φ(x)
∞

∑
i=0

ψixi = 1.

Now if we express the model in the proper manner

Xt = Φ−1(B)Zt

we see that a necessary condition for a degree p polynomial to generate an AR(p)
model, is for it to be invertible. A sufficient condition for this is given in the
following result.

Theorem 1.19. Let Φ(B) be a lag polynomial of degree p, and let Φ(z) be its associated
polynomial with z ∈ C. Then it is invertible if and only if all its roots {z : Φ(z) = 0} ⊆
{z : |z| > 1}.

Proof. To start with, we need to define the space in which time series live, station-
ary time series in particular. Let’s consider the space X of sequences of random
variables {Xt} for t ∈ Z defined in some probability space (Ω,F , P), that has the
property that supt E|Xt| < ∞. Then we can see that X is a normed space with the
norm ||X||∞ = supt E|Xt|. We can see that any stationary time series as previously
defined belongs to this space X. Now let us define what a Banach space is.

1.3 AR processes 7

Definition 1.20. We say that (X, || · ||) is a Banach space if is a complete normed space.
Equivalently, it is a normed space where every Cauchy sequence {Xn},

lim
n←∞

Xn = x

with x ∈ (X, || · ||).

With the following lemma, we ensure that X is in fact a Banach space.

Lemma 1.21. The space X with the norm previously defined is a Banach space.

Next, we will prove the invertibility of order one lag polynomials. For that, the
following result will be used later on, which is proved in [8] on page 111.

Proposition 1.22. Let B be a Banach space, and let T be an operator T : B → B. If it is
true that ||I − T|| < 1 (where I is the identity), then T is invertible with inverse

T−1 =
∞

∑
k=0

(I − T)k.

Now, we attempt to determine what would be the lag operator norm. As the
lag operator B is a linear operator in a normed space, we have that ||B|| =

sup||X||≤1 ||BX||, and with the fact that supt E|Xt| = supt E|Xt−1|, we can write

||B|| = sup
||X||≤1

||BX|| = sup
{Xt}∈X:supt ||X||≤1

(sup
t

E|Xt−1|) = 1.

Now that we have that ||B|| = 1 (and conversely ||B−1|| = 1), we can prove the
condition of invertibility for first order lag polynomials. Consider the polynomial
ϕ(B) = I − ϕ1B. We have

||I − ϕ(B)|| = ||ϕ1B|| = |ϕ1|||B|| = |ϕ1|,

where we used the previous equality. Now we can apply proposition 1.22 and we
get that ϕ(B) is invertible if only if |ϕ1| < 1 with inverse:

ϕ−1(B) =
∞

∑
k=0

(I − ϕ1)
k.

Before finishing the proof, we are going to make use of the following result, proved
in [4] in page 5.

Lemma 1.23. Let B be a Banach space and suppose that the operators Ti for i ∈ (1, . . . , p)
commute. Let T = T1T2 · · · Tp. Then T is invertible if only if all of Ti are invertible.

8 Preliminaries

Next, we can now consider the order p lag polynomial:

Φ(B) = I − ϕ1B− ϕ2B2 − · · · − ϕpBp,

which we can decompose in the following manner

Φ(B) = (I − 1
ρ1

B)(I − 1
ρ2

B) · · · (I − 1
ρp

B),

where {ρi : i = 1, . . . , p} are the roots of the equivalent complex polynomial Φ(z)
for z ∈ C. Having written that, we can consider the operator ϕi(B) = I − 1

ρi
B

inside of the space X. By proposition 1.22 this operator is invertible for |ρ| > 1
and has inverse

ϕ−1
i (B) =

∞

∑
k=0

(
1
ρi
)kBk.

Finally, because the operators ϕi(B) commute, therefore, using lemma 1.23 we can
say that the lag polynomial Φ(B) is indeed invertible as we wanted.

1.4 Examples

Example 1.24. The AR(1) model. Let’s consider the following model:

Xt = ϕXt−1 + Zt ϕ ∈ (−1, 1).

What we want to see is that the model is a well defined second order stationary
process. Notice that we can write Xt−1 as:

Xt−1 = ϕXt−2 + Zt

which, if we iterate, gives us a recursive expression for the AR(1) model:

Xt = ϕXt−1 + Zt = ϕ(ϕXt−2 + Zt) + Zt

= ϕ2Xt−2 + ϕZt−1 + Zt

= . . .

=
k

∑
i=0

ϕiZt−i + ϕk+1Xt−k−1.

With this expression we have written the model as a two-part. As far as the noise
part is concerned, we can see that while {Zi} for i ∈ I are all centered, pairwise
uncorrelated random variables, ϕiZt−i are as well, and we now that the expression

1.4 Examples 9

∑k
i=0 ϕiZt−i doesn’t diverge if only if the sum of it’s variance doesn’t as well, for

which we write:

k

∑
i=0

Var(ϕiZt−i) =
k

∑
i=0

ϕ2iσ2 ≤ σ2

1− ϕ2 < ∞

as k ↑ ∞ given that |ϕ| < 1 which has been stated as a hypothesis. On the other
hand, we have that Xt−k−1 is a stationary process by definition, which means that
E(Xt−k−1) is a constant expression non-dependent of t. Now we can write:

E|Xt −
k

∑
i=0

ϕ2iσ2|2 = ϕ2k+2E(X2
t−k−1)

and we can see that, using one more time the fact that |ϕ| < 1, this expression con-
verges to 0 as k ↑ ∞, which means that we can state that E(Xt) is non-dependent
of t. Let us compute the auto-covariance function of our AR(1) model:

γ(t, t + h) = Cov(Yt, Yt+h)

= Cov(
∞

∑
i=0

ϕiZt−i,
∞

∑
j=0

ϕjZt+h−j)

=
∞

∑
i,j=0

ϕiϕjCov(Zt−i, Zt+h−j)

=
∞

∑
i,j=0

ϕi+jσ21{i=j−h}

=
∞

∑
i=0

ϕ2i+hσ2 =
σ2ϕh

1− ϕ2

which we can see that doesn’t depend on t. With all of these we can say that
the AR(1) model is indeed a well defined, second order stationary process as we
wanted.

Finally, we can compute the auto-correlation function which we will use fur-
ther along this work:

ρX(h) =
γX(h)
γX(0)

=

σ2ϕh

1−ϕ2

σ2ϕ0

1−ϕ2

= ϕh,

and state that whenever we want to see if a set of observation can be adjusted into
an AR(1), we will look for the ACF function to be a decreasing function which
converges to 0 as the lags tend to ∞.

10 Preliminaries

Example 1.25. The AR(p) model. As stated previously, the AR(p) process can be
written as follows:

Φ(B)Xt = Zt.

First of all, as we explained previously, it is necessary for the polynomial Φ(B) to
be invertible in order for it to define an AR(p) process. Let’s suppose that Φ(B) is
in fact invertible, and following Definition 1.18, we will write

Φ(B)−1 =
∞

∑
i=0

ψiBi,

and express the AR(p) model as such

Xt =
∞

∑
i=0

ψiBiZt.

Looking at this expression, and given the invertibility condition in Theorem 1.19,
it is clear that the AR(p) model is stationary and well defined. Now we can give
it’s auto-covariance function, which is immediately given by

γ(h) = Cov(Xt, Xt+h) = σ2
∞

∑
i=0

ψiψi+h.

Finally, for the auto-correlation function we can write:

Cov(Xt, Xt+h = Cov(Xt, ϕ1Xt+h−1 + · · ·+ ϕpXt+h−p + Zt+h)

= ϕ1γ(h− 1) + ϕ2γ(h− 2) + · · ·+ ϕpγ(h− p) = γ(h),

and if we divide the whole expression by γ(0), we get:

ρ(h) = ϕ1ρ(h− 1) + ϕ2ρ(h− 2) + · · ·+ ϕpρ(h− p) h > 0.

With this expression in mind, and using that ρ(0) = 1 and the symmetry of the
auto-correlation function we get the following system of equations

ρ(h) = ϕ1ρ(h− 1) + ϕ2ρ(h− 2) + · · ·+ ϕpρ(h− p)

ρ(0) = 1

ρ(−h) = ρ(h)

which is solvable, and its solution is the expression for the auto-correlation func-
tion of the AR(p) process.

Chapter 2

ARIMA models

Most of the data in time series study is non-stationary, which means that dif-
ferencing is needed. If that was the case, ARIMA models would be used to fit
our data. However, in our case, the data generated by EEGs is supposed to be
stationary, which means that we can use ARMA models instead. However, before
talking about ARMA models, we should give some notions about moving-average
models.

2.1 MA processes

Whenever we construct a time series, we can think of it as a filtering of white
noise. What we mean by that is by taking a linear combination of white noise
variables, we necessarily obtain as a result a time series that is in fact stationary.
Let Zt be a white noise variable, and let (Zt, Zt−1, ..., Zt−q) a random vector of
white noise variables. Then, if we take a linear real-valued function g = (·, . . . , ·),
and consider

Xt = g(Zt, Zt−1, ..., Zt−q),

we would get a stationary time series. We also can infer from the equation, that
Xt and Xs are independent if only if |t− s| > q. We refer to this dependence as
being q-dependent. Additionally, a stationary time series is q-correlated if γ(h) = 0
for |h| > q.

Definition 2.1. Let {Xt} be a time series. {Xt} is a moving-average process of
order q (MA(q)) if

Xt = Zt + θ1Zt−1 + ... + θqZt−q

where {Zt} ∼WN(0, σ2) and θ1, ..., θq are constants.

Let’s now look at a few properties of MA(q) processes:

11

12 ARIMA models

(a) It is a second order process.

(b) It is a centered process because

E(Xt) = E(
q

∑
i=0

θiZt−i)

=
q

∑
i=0

θiE(Zt−i)

= 0,

where we used that E(Zt−i) = 0 ∀i ∈ 0, ..., q.

(c) The autocovariance function at lag h is

γX(h) = Cov(Xt, Xt+h = σ2
q−|h|

∑
i=0

θiθi+|h|, |h| ≤ q.

(d) The autocorrelation function at lag h is

ρX(h) =
∑

q−h
i=0 θiθi+h

∑
q
i=0 θ2

r
0 ≤ h ≤ q.

Now we can express it in terms of the previously defined backwards shift
operator as such

Xt = Zj + θ1BZj + θ2B2Zj + ... + θqBqZj.

If we define the polynomial Θq(z) = 1 + θ1z + ... + θqzq as we did with AR(p),
we can simplify the notation and write

Xt = Θq(B)Zj.

Notice that this time, no invertibilty condition is required. Additionally, we
should mention that the importance of MA(q) processes is that it describes all
q-correlated processes. We state this in the following proposition:

Proposition 2.2. Let {Xt} be a stationary q-correlated time series with 0 mean. Then it
can be represented as the previous MA(q) process.

Proof. See [2], page 50.

2.2 ARMA(p,q) processes 13

Example 2.3. The MA(1) process. Let’s write the expression for the MA(1) model,
which is given by

Xt = Zt + θZt−1,

where Zt ∼WN(0, σ2). First of all we want to compute the variance of the process,
which is

Var(Xt) = Var(Zt + θZt−1)

= Var(Zt) + θ2Var(Zt−1) = σ2(1 + θ2).

Now, we can give the auto-covariance function. For lags 0 and 1 we have:

γ(0) = Var(Xt) = σ2(1 + θ2)

γ(1) = Cov(Xt, Xt + 1) = σ2θ

and we can see that for any other lag the auto-covariance function is 0 (indeed, just
by looking at the expression of the MA(1) process, Cov(Xt, Xt+c = 0) for c > 1.
Finally, we can compute the auto-correlation function for lags 0 and 1:

ρ(0) = 1

ρ(1) =
θ

1 + θ2 .

We can deduce that for lags bigger than one, the correlation is 0.

2.2 ARMA(p,q) processes

Once stated what moving-average (MA(q)) and auto-regressive (AR(p)) pro-
cesses are, we can now define what an auto-regressive moving-average model is.

Definition 2.4. Let {Xt} be a time series. Xt is an ARMA(p,q) if it is stationary
and satisfies

Xt − ϕ1Xt−1 − ...− ϕpXt−p = Zt + θ1Zt−1 + ... + θqZt−q

where Zt ∼ WN(0, σ2) and (1 + θ1x + ... + θqxq) and (1 − ϕ1x − ... − ϕqxp) are
polynomials with no common factors, being the second invertible.

It is worth noting that a crucial condition for the definition is that the series
has to be stationary

Notation: Using the backward shift operator we can express an ARMA(p,q)
process as following:

ϕ(B)Xt = θ(B)Zt,

and using the invertibility of ϕ(B) we can write

Xt = ϕ(B)−1θ(B)Zt.

14 ARIMA models

2.3 Time series differencing

Let {Xt} be a random walk

Xt = Xt−1 + Zj

with Z ∼ WN(0, σ2) and X0 = Z0 = 0. We can see that this is not a stationary
process as defined early on. To see that we can compute the covariance function of
{Xt}. We have

γX(h) = Cov(Xt, Xt+h).

Since Xt = ∑t
i=1 Zi where Zi are iid random variables, we can express

Xt+h = Xt +
t+h

∑
i=t+1

Zi = Xt + W.

Now we let us write

Cov(Xt, Xt+h) = Cov(Xt, Xt + W)

= Cov(Xt, Xt) + Cov(Xt, W)

= Var(Xt) + 0

= Var(
t

∑
i=1

Zi)

=
t

∑
i=1

Var(Zi) = tσ2.

Because the covariance function depends of t, we can not call the random
walk a stationary process. In order to "make" it stationary, we can differentiate it.
Looking at the previous example:

Yt := Xt − Xt−1 = Zt.

We can clearly see that the differentiated series Yt is now stationary since Zt is.
Let’s generalize a definition for every differentiable time series.

Definition 2.5. Let Xt and Yt be two time series. Then, if we have

Yt = (Id− B)Xt,

we say that Yt is process Xt differentiated.

We also can talk about multiple times differentiating, which is the result of the
consecutive powers of the previous expression. This way, we say that process Yt is
process Xt d times differentiated if we have

Yt = (Id− B)dXt.

2.4 ARIMA(p,d,q) processes 15

2.4 ARIMA(p,d,q) processes

Once defined what differentiating means for time series, we can now define
auto-regressive integrated moving-average (ARIMA) models.

Definition 2.6. Let {Xt} be a time series. We say that {Xt} is ARIMA(p,d,q) if
Yt := (1− B)dXt is an ARMA(p,q) process.

Using the previous notations for both AR(p) and MA(q) processes, we can
write our ARIMA model using the operator B as such:

Φp(B)(Id− B)dXt = Θq(B)Zt t ∈ Z.

Following the definition, is obvious that an ARIMA(p,0,q) is a 0 times integrated
ARMA(p,q) process, which is the same as an ARMA(p,q) process itself. It is also
worth noting that the previously discussed random walk

Xt = Xt−1 + Zt

is in fact an ARIMA(0,1,0) process.
Finally, ARIMA processes can have trend, in which case we would write

Φp(B)(Id− B)dXt = δ + Θq(B)Zt

where δ is the trend, and can also have seasonality factors in them, in which case
are called SARIMAX processes.

16 ARIMA models

Chapter 3

Model Estimation

In this chapter we will give practical methods to preform a fit of an observed
data, as well as briefly define the proper metrics to evaluate the fit. Finally, since it
is implicitly used in the initial data-set treatment used in this work, we will make a
quick mention of what Independent Component Analysis is and in what contexts
can be used.

3.1 AR(1) parameter estimation: Maximum Likelihood Es-
timation

Let us consider the auto-regressive model of order p AR(p) as previously defined:

Xt = ϕ1Xt−1 − ...− ϕpXt−p + Zt Zt ∼WN(0, σ2).

Given a set of observations {xt} for t = 1, 2, ..., T, our objective is to estimate the
vector of parameters ϕ = (ϕ1, ..., ϕp) as well as the parameter σ2 of the Gaussian
White Noise, that makes the model as true as possible to {xt}. There are numerous
ways to tackle this problem, however, in our work, since it is the method used by
the vast majority of the software, we will explain in depth Maximum Likelihood
Estimation.

Definition 3.1. Let {xt} for t = 1, ..., T be a set of observations, and let p(x, θ) be
the density function of the random variable Xt. Then, we define the Likelihood
function of the set of observations {xt} as:

L(x, θ) =
T

∏
i=1

p(xi, θ).

To start with, let’s try to compute the Likelihood Function of an AR(1) model.
Given our set of observations {xt}, we first need the density function of the data
{xt}, which can be written as p(x1, x2, ..., xT|ϕ, σ2).

17

18 Model Estimation

Definition 3.2. We say that a random variable Xn is a Markov Chain if

p(Xn+1|X0, ..., Xn) = p(Xn+1|Xn).

Now, since the observation are co-independent, let’s factor the previous ex-
pression into the product of the marginal densities:

p(x1, x2, ..., xT|ϕ, σ2) = p(xT|xT−1, ..., x1, ϕ, σ2)p(x1, ..., xT−1, ϕ, σ2)

= p(xT|xT−1, ..., x1, ϕ, σ2)p(xT−1|xT−2, ..., x1, ϕ, σ2)p(x1, ..., xT−2, ϕ, σ2)

= · · ·

=
T

∏
t=1

p(xt|xt−1, ..., x1, ϕ, σ2)p(x1|ϕ, σ2).

But since we know that the AR(1) process is in fact a Markovian Chain, for every
t we can write

p(xt|xt−1, ..., x1, ϕ, σ2) = p(xt|xt−1, ϕ, σ2),

and our expression becomes

p(x1, x2, ..., xT|ϕ, σ2) =
T

∏
t=1

p(xt|xt−1, ϕ, σ2)p(x1|ϕ, σ2).

From this point, let us again write the expression of an AR(1) process:

Xt = ϕXt−1 + Zt Zt ∼WN(0, σ2).

It is clear by looking at the expression of the process that, given an observation of
the process xt, we have

xt|xt−1 ∼ N(E(xt|xt−1), Var(xt|xt−1)),

moreover, we have

E(xt|xt−1) = ϕxt−1 Var(xt|xt−1) = σ2,

so we have now an explicit expression for the previous marginal densities

p(xt|xt−1, ϕ, σ2) =
1√

2πVar(xt|xt−1)2
exp(− (xt − E(xt|xt−1)

2

2Var(xt|xt−1)2)

=
1√

2πσ2
exp(− (xt − ϕxt−1)

2

2σ2).

3.1 AR(1) parameter estimation: Maximum Likelihood Estimation 19

From this point, there are multiple paths to be taken. If we come back to the
expression of the Likelihood Function of the AR(1) process we have

L(ϕ, σ2) = p(x1, x2, ..., xT|ϕ, σ2) =
T

∏
t=1

p(xt|xt−1, ϕ, σ2)p(x1|ϕ, σ2).

In Maximum Likelihood Estimation, the objective is to find the values of param-
eters ϕ and σ2 that maximizes L(ϕ, σ2). However, a usual practice is to maximize
the so-called log Likelihood Function, which means to maximize the expression:

L(ϕ, σ2) = log p(x1|ϕ, σ2) +
T

∑
t=1

log p(xt|xt−1, ϕ, σ2),

in which case we would be dealing with sums instead of products, which can be
less difficult.

Now we want to differentiate between two ways to proceed to maximize the
Likelihood Function. The first one would be to maximize the whole previous ex-
pression, which is called Exact Maximum Likelihood Estimation. It is what is broadly
used in today’s time series software, in particular by statsmodels python library,
which is the one used in this particular work. Firstly we have to note that the first
term p(x1|ϕ, σ2) is known. Indeed we have:

E(x1) =
1

1− ϕ

Var(x1) =
σ2

1− ϕ2

and we can write

p(x1|ϕ, σ2) =
1√

2πσ2
exp(− (x1 − (1/1− ϕ)2)

2σ2/(1− ϕ2)
).

Finally, we can give the explicit expression of the log Likelihood Function which
has to be maximized.

L(ϕ, σ2) = −1
2

log 2π − 1
2

log(σ2/(1− ϕ2))− (x1 − [1/(1− ϕ)])2

2σ2/(1− ϕ2)

−((T − 1)/2) log 2π − ((T − 1)/2) log σ2 −
T

∑
t=2

(xt − ϕxt−1)
2

2σ2 .

In Exact Maximum Likelihood Estimation the values {ϕ̂, σ̂2} that maximize the pre-
vious function are usually found with help of iterative or numerical procedures,
which is why it is mostly exclusively used by computer software.

20 Model Estimation

The other path consists of considering the Likelihood of p(x1|ϕ, σ2) as deter-
ministic, and maximizing the likelihood conditioned on the first observation:

L(ϕ, σ2) = p(x2, ..., xT|x1, ϕ, σ2)
T

∏
t=1

p(xt|xt−1, ϕ, σ2),

which is referred to by the name of Conditional Maximum Likelihood Estimation. We
can also give explicit expression for ϕ̂ and σ̂:

ϕ̂ =
1
T ∑T

t=1 xt−1xt
1
T ∑T

t=1 x2
t−1

σ̂2 =
1
T

T

∑
t=1

(xt − ϕ̂xt−1)

which, as we can easily see, they both coincide with the Ordinary Least Squares
(OLS) estimator.

3.2 AR(p) Maximum Likelihood Estimation

In this section we will generalize what was explained in the previous section,
as well as give explicit values for the Maximum Likelihood estimators for AR(p)
models.

Let us write the AR(p) model once again

Xt = ϕ1Xt−1 − ...− ϕpXt−p + Zt Zt ∼ GWN(0, σ2),

where we write Φ = {ϕ1, . . . , ϕp} and let {xp} = {x1, x2, ..., xp} our vector with the
first p-observation, which we consider it to have mean vector {µp} = {µ1, µ2, ..., µp}
with

µi =
1

1− ϕ1 − · · · − ϕi
i ∈ {1, . . . , p}

and variance-covariance matrix as following

σ2Varp =

γ0 γ1 γ2 . . . γp−1

γ1 γ0 γ1 . . . γp−2

γ2 γ1 γ0 . . . γp−3
...

...
...

. . .
...

γp−1 γp−2 γp−3 . . . γ0

 ,

where γi is the sample auto-covariance function at lag i for i ∈ {0, . . . , p− 1}. Let
us compute in this case the density function of the first p observations:

3.2 AR(p) Maximum Likelihood Estimation 21

p(xp, . . . , x1|Φ, σ2) =
1√
(2π)p

√
|σ−2Var−1

p | exp (− 1
2σ2 (xp − µp)

tVar−1
p (xp − µp)).

Now let us consider the rest of the observations at times p + 1, . . . , T. In this
case we would have that the observation at time t, by definition of the AR(p) pro-
cess, conditioned to the first t− 1 observations would have a Gaussian distribution
with mean ϕixt−1 + · · ·+ ϕpxt−p and variance σ2. Now let us write the joint den-
sity of the observations with t > p, which is decomposed into the product of the
marginal densities in the same manner as for the AR(1) process (all observations
in the AR(1) process comply with t > p, except for the first one):

p(xT, . . . , xp+1|Φ, σ2) =
T

∏
t=p+1

p(xt|xt−1, . . . , xt−p, Φ, σ2),

where every marginal density is given by the expression

p(xt|xt−1, . . . , xt−p, Φ, σ2) =
1√

2πσ2
exp(

−(xt − ϕ1xt−1 − · · · − ϕpxt−p)2

2σ2).

At this stage, we can compute the log Likelihood Function of the whole sample
of an AR(p) model

L(Φ, σ2) = log p(xT, . . . , x1|Φ, σ2)

= log p(xp, . . . , x1|Φ, σ2)
T

∑
t=p+1

log p(xt|xt−1, . . . , xt−p, Φ, σ2)

= − p
2

log(2π)− p
2

log(σ2) +
1
2

log|Var−1
p | −

1
2σ2 (xp − µp)

tVar−1
p (xp − µp)

−T − p
2

log(2π)− T − p
2

log(σ2)−
T

∑
t=p+1

(xt − ϕ1xt−1 − · · · − ϕpxt−p)2

2σ2 .

As far as Conditional Maximum Likelihood Estimation goes, we can rewrite the
previous expression but, similarly to the AR(1) model, considering the first p ob-
servations as deterministic and we would get the log Likelihood Function condi-
tional those p observations

L∗(Φ, σ2) = log p(xT, . . . , xp+1|xp, . . . , x1, Φ, σ2)

= −T − p
2

log(2π)− T − p
2

log(σ2)−
T

∑
t=p+1

(xt − ϕ1xt−1 − · · · − ϕpxt−p)2

2σ2 .

22 Model Estimation

We can see that the value of {Φ, σ2} that maximizes this expression is the same
that minimize

T

∑
t=p+1

(xt − ϕ1xt−1 − · · · − ϕpxt−p)
2,

so once again we get that the CMLE estimator for Φ is in fact the same as the OLS
estimator. Finally, we see that the MLE estimator for σ2 is

σ̂2 =
1

T − p

T

∑
t=p+1

(xt − ϕ̂1xt−1 − · · · − ϕ̂pxt−p)
2

which is the residual from the previous regression.
The case for Exact Maximum Likelihood Estimation requires numerical methods

and is most common on computer software as well as mentioned in the AR(1)
section.

3.3 Model comparison: Akaike Information Criterion

In cases involving "imperfect" data, meaning data that comes with weird noises
or values from real experiments, it can be sometimes difficult to choose a model
only by looking at its sample auto-correlation or sample partial auto-correlation
functions. In this case, and counting on today’s software support, a path forward
is to simply estimate the parameters of more than one model, and compare the
goodness of fit for every model.

However, there are times were goodness of fit is not the only factor that makes
one model better than the other. Usually simpler models are easier to understand,
which also makes it easier to understand the process behind it, even if they not
adjust to the data as well as more complex models do. To solve this problem in
comparing multiple models, the Akaike Information Criterion (AIC) estimates the
relative amount of information lost by a model.

Definition 3.3. Let Xt be a model, with a number K of estimated parameters. Let
L̂ be the maximized value of the Likelihood Function during MLE. Then the Akaike
Information Criterion is given by

AIC = 2K− 2 ln L̂.

Remark 1: The objective is to minimize the AIC between the pool of models.

3.4 Source selection: Independent Component Analysis 23

Remark 2: Let n be the size of the sample. For small n, it is standard to use
the second-order AIC, given by

AICc = 2K +
2K(K + 1)
n− K− 1

− 2 ln L̂.

Minimizing the AIC at the end of the day means optimizing the relationship
between the goodness of fit of the model and the simplicity of it.

3.4 Source selection: Independent Component Analysis

Here we attempt to give a brief explanation of what Independent Component
Analysis (ICA) is, as it is used implicitly in this work, in a quite simplified manner.

Let (s1,t, . . . , sm,t) be m independent time series or source signals, and now let
(x1,t, . . . , xn,t) be n different linear mixtures of our source signals (s1,t, . . . , sm,t)

which are observed in a determined environment. Here we have an instance of
the Blind Source Problem, so we have to find the source signals (s1,t, . . . , sm,t) only
given the mixture (x1,t, . . . , xn,t). Hence, the objective of ICA is to find A and x
such as the following expression is verified:

x = As,

where a is A ∈ MR(n, m), x = (x1,t, . . . , xn,t) and s = (s1,t, . . . , sm,t).

The first we want to do is to center and sphere our vector of correlated obser-
vations x, which has mean µ = E(X) and covariance matrix Σxx = Cov(x, x). The
main objective while centering is to make the process have mean 0, and the only
step needed is to subtract µ from x. Sphering, on the other hand, aims to trans-
form the correlated data into a vector of uncorrelated observations. For that, we
have that we can decompose our covariance matrix as Σxx = UΛUt where U is an
orthogonal matrix with the eigenvectors of Σxx and Λ is a diagonal matrix with
its eigenvalues. In case µ and Σxx are known, the sphered version of x would be
given by

x← Λ−1/2Ut(x− µ).

However, in the case of the general ICA problem, µ = x and Σxx = 1
n ∑n

i=1(xi −
x)(xi − x)t, so to center and sphere the data we will use the following transforma-
tion

xi ← Λ−1/2Ut(xi − x), i = 1, . . . , n.

24 Model Estimation

Coming back to our original problem, we have x = As and our objective is
to recover A and s. For a given A with full rank, there exists what it is called a
separating matrix W with which the sources are extracted from the original mix,
hence s = Wx, where in general we can write W = (At A)−1At. In particular, if the
number of observations on the mix is the same as the number of sources (n = m,
not the case in this work), we would have W = A−1. Moreover, if the data has
been centered and sphered, A is orthogonal and W = At. In practice, we attempt
to get an approximation of Ŵ, the separating matrix to give an approximation y
of the source given by

y = Ŵx.

Now that the problem has been stated, we can talk about the algorithms used
to solve it numerically. Particularly we will briefly explain the most broadly used
by software (and more efficient), the FastICA Algorithm.

Let Y be a projection of x such that Y = wtx. The goal would be to find a vector
w that optimizes a given objective function. For instances, if the objective function
were to be the variance of the projection, we would have Var(Y) = wtΣxxw where
we suppose ||w|| = 1. Then, maximizing this would give us the first principal
component of X, which would be the eigenvector corresponding to the largest
eigenvalue of Σxx. Then, by maximizing the variance of the projection of the same
space within the orthogonal compliment of the subspace generated by the first
principal component of X, we would get the next principal component and so
on. However, while the objective function to be maximized can be chosen, the
procedure by which the independent components arise will always be similar.

Chapter 4

EEG fit

4.1 Experiment description

The experiment was held by Dr. Ignasi Cos at the Center for Brain and Cog-
nition of the Pompeu Fabra University of Barcelona (Cos et al. 2021). The main
purpose of the experiment was to characterize the influence of social pressure on
the participant’s movements and choices, as well as its associated neuromodula-
tion.

During the experiment, the participant was sat in front of a blank digital tablet,
which at its time showed an point of origin and two targets. The aim of the subject
was to draw a line from the origin to the nearest point from the center of the target,
whichever direction they chose to draw towards. Then a bar plot was displayed,
which gave feedback on their accuracy, as well on their opponent’s. This oppo-
nent was not a real person competing against the subject, hence the bar showing
the accuracy of the opponent was conveniently shown to the subject to induce the
effects of social pressure. The procedure is graphically represented in figure 4.1.

In order to test the changes in the motor control of the subjects, they were
tested while playing multiple trials in 3 states (randomly shuffled): solo, easy
and hard. In the first state, no opponent was shown, so they had no notion of
competition, which would reflect the state of social pressure 0. In the next state,
a weaker opponent was brought up against, which would come to describe a
positive kind of social pressure. Finally, in the hard state, which corresponds to
a negative or constraining social pressure, the bar displayed the accuracy of a
stronger player than the subject. A total number of 60 electrodes were placed in
every subject scalp, so, for every trial, 60 EEG samples were generated.

The hypothesis was that with a proper analysis of the EEG generated in each

25

26 EEG fit

Figure 4.1: Experiment procedure

state, some classification criteria would arise with which the different states of
social pressure undergone by a subject could be detected just with the EEG infor-
mation.

The generated data-set for a single subject can be regarded as a set of time
series that can be looked at as a matrix of dimensions (6 x 2 x 60 x 108 x 1200).
The data was aggregated into 6 groups, 2 for each state defined previously. For
each group, 2 sessions of experiments were made. For each session, the data was
gathered by 60 receptors placed in the scalp of the patient, each one of whom was
made to repeat the experiment 108 times per session. Finally, the EEG readings
were cut out to be exactly 1200ms of time lenght.

This data-set can be divided into 3 subsets of dimensions (60 x 432 x 1200),
each one corresponding with the data gathered with each level of social pressure
(solo, easy and hard). At this stage an Independent Component Analysis (ICA)
was performed by the researchers in order to determine which combination of the
60 channels captured the more information. After the mentioned ICA, 18 of those
60 where ruled out, which left 42 for the analysis of the data, leaving us with a
data-set of dimensions (42 x 432 x 1200).

4.2 Preliminary observations

The first thing to do with such a large data-set is to separate the data into
channels, so only one of them would be considered at a time. This leaves us with
42 data-sets of dimensions (432 x 1200), in other words, with 432 time series of
1200ms of length. In the case of this work, subject 25 of the study was used, and
the first fit was performed in its channel 1 while playing in "Solo" state. The data

4.2 Preliminary observations 27

at this stage is plotted in figure 4.2.

Figure 4.2: Subject 25 Solo

Having such a dense set of observations in each time series, it was convenient
to perform some kind of down-sampling, not only to lighten qualitative work, but
also to make the fit easier for the computer. The ratio that seemed adequate to not
loose to much information in the process was a 1:3 ratio, so the dimension of the
data-set became (432 x 400). In figure 4.3 we can see a plot of the data-set after the
1:3 down-sampling.

Now let’s have a look at two particular samples in figure 4.4. As it can be
easily appreciated, the variability in them is too high. We are not interested in the
complete frequency spectrum, we will only focus on the frequencies with the most
variability.

In order for us to constrict the sampling frequencies up to 40.000 Hz, we had
to make use of a frequency filtering algorithm (Infinite Impulse Response), which
would break down the signal into frequency bands, and then rearrange the signal
into three separate signals which would correspond to the low frequencies (alpha,
from 8 to 12 Hz), the mid frequencies (beta, from 15 to 30 Hz), and the high fre-
quencies (gamma, from 40 to 80 Hz). Figure 4.5 is a plot of the decomposition into
band frequencies of sample 0.

28 EEG fit

Figure 4.3: Subject 25 after down-sampling

(a) Sample 0 (b) Sample 100

Figure 4.4: Subject 25 individual samples

(a) Alpha (b) Beta (c) Gamma

Figure 4.5: Sample 0 frequency breakdown

4.3 Model choice 29

Observing the plots, as for the alpha frequencies, not very much variability is
appreciated, nor in the beta frequencies. That is the reason that following steps
were made with the gamma frequencies of the 432 samples of subject 25 on "Solo".

4.3 Model choice

As stated before, the goal of this work is to find a model that captures the time
variability of the EEG readings of Dr. Ignasi Cos’ experiment. Let us express the
structure of our data so far, which can be looked at as a matrix like so:

x1
1 x1

2 x1
3 . . . x1

400
x2

1 x2
2 x2

3 . . . x2
400

...
...

...
. . .

...
x432

1 x432
2 x432

3 . . . x432
400

where each row of the matrix is the n-th sample out of the 432 from the data-

set, and every column is the observation at time t ∈ (0, 400).

The way that seems more productive is for us to look at our data as a set
of 432 samples of the same process, each one of which has 400 observations. A
reasonable first step would be to try to fit each one of the samples separately into
independent processes, being a AR(1) model a also reasonable starting point. We
would have processes like:

X1,t = ϕ1X1,t−1 + Z1,t

X2,t = ϕ2X2,t−1 + Z2,t

...

X432,t = ϕ432X432,t−1 + Z432,t.

Once every fit is performed and every ϕi and σi for i ∈ (1, 432) is estimated,
we could compute the arithmetic mean Φ and Σ of the sets {ϕ1, ..., ϕ432} and
{σ1, ..., σ432} to finally get a suitable model for all observations:

Xt = ΦXt−1 + Zt Zt ∼ GWN(0, Σ2).

AR(p) models, as previously discussed, seem intuitively appropriated for this
kind of fits because, while keeping a relatively simple structure, they are making a
strong claim that each observation will depend on a combination of previous ones.
Perhaps this assumption is not as strong in this particular case as it would be in
Econometrics or other fields were sets of observations are modeled. However, we

30 EEG fit

are considering them as a starting point in this particular work.

While the previous option was a fair way to compute a model suitable enough
for our 432 samples, the ideal scenario would be to perform a single fit for all 432
samples simultaneously. A way to tackle the problem is to artificially construct
a single time series that contains all the information of the independent samples.
Making a time series of length 400 in which every observation is the mean of
the 432 observation at the same time is a way forward. This would look like
computing the series x̄t = {x̄1, ..., x̄400}, and fitting it into a model that would look
like:

X̄t = Φ̂X̄t−1 + Z̄t.

However, an alternative to construct a single time series in a way that the
minimum information is lost, is to concatenate all 432 samples one after the other
in the following manner:

x̂t = {x1,1, x1,2, ..., x1,400, x2,1, ..., x2,400, ..., x432,1, ..., x432,400}.

In the figure 4.6 we can see a plot of the previous time series:

Figure 4.6: 432 samples concatenation

Although it cannot be appreciated in the figure due to the density of the obser-
vations, it is true that sudden discontinuities are generated at times 400t because
of the jump from the sample xi to xi+1. However, being this every 400 observations
we consider the impact of this phenomena to the overall fit to be negligible.

The only thing left to be discussed before starting the fit is the optimal number
of parameters for the model to have, which in the auto-regressive model case
would correspond to the order (p) of the model AR(p).

4.3 Model choice 31

For that, no conclusive number can be extracted from the current neurological
knowledge, so there is no obvious starting point. The only reasonable procedure
is to, by the use brute force, perform a fit of or set {x̂t} using an increasing num-
ber of parameters iteratively, and compare the goodness of each fit with the others
(up to a reasonable number of parameters, say 20). This way, the optimal auto-
regressive model should arise. In figure 4.7 we can see a plot of the errors in each
AR(i) model i ∈ {1, ..., 20}.

(a)
√

SSE AR(i) fit (b) Sample 100

Figure 4.7: MSE AR(i) fit

In (a) we are computing, for every number of parameters, the squared root of
the sum of the squared errors, or what is to say:√√√√432

∑
i=1

(x̂i − Xi)2,

where Xi is the value predicted by the model. In (b) we can see the Mean Squared
Error of the fit, which can be written as

1
432

432

∑
i=1

(x̂i − Xi)
2.

From looking at the errors, we can see that the difference in goodness of fit
between all AR(i) models is not substantial. Indeed, it would be fair to say that
to accumulate an error of little over 38 in a set {x̂t} of 172.800 observations with
|x̂i| ≤ 1 for every i is not a considerable error. Furthermore, the MSE is of the
order of 10−3, which for the described set is not a very high measure. What that
means for us is that we have reasons to choose whatever model we like, and the
standard procedure in this case is to choose the simplest one, hence the one with
the least parameters. In our case would be to choose the AR(1) model.

32 EEG fit

Having a reduced measure of error means that the model is well adjusted to
the data, which means that is good for "explaining" our data-set. However, for this
work, this is not the only criterion to be followed in order to determine a suitable
model for the data. Once the model is chosen, it will be used in a classifier, which
has to be able to differentiate between EEG sampled during the "Solo" state, the
"Easy" state and the "Hard" state. Capturing the behavior of the samples only
explains us the past, what we need is a tool that helps us to classify future data.
In order to test the model in this context, it is necessary to evaluate its forecasting
capabilities and, for that, acceptable performance in in-sample and out-of-sample
predictions are required from it.

Figure 4.8: Sample (blue) vs. Prediction (orange) in AR(1) fit

In figure 4.8 we can see the in-sample prediction performance of our model.
As it can be easily appreciated, it is not as good as expected. In figure 4.9, 100
steps of out-of-sample prediction are plotted, and the performance is as bad, if
not worse, that in-sample prediction. What you would expect, is that the forecast
presents something with a similar behavior than the sample, but in our case (not
only in the case of the AR(1) model, as the same procedure was followed with
AR(p) models, as well as with ARMA(p,1) models) the forecasting had a tendency
of going to zero in the 20th step more or less instead of oscillating around the
x = 0 axis as the sample does.

At this point, the characteristics of the data-set had to be reassessed in order to
find the reason why the fits are that poor. Although it has been already regarded
as a erratic procedure, individual fits for every one of the 432 samples were made,
point being that in this manner we could be able to analyze the behavior of every
sample on its own, to see if the data-set had to be altered or polished in order to
get a good fit.

In figure 4.10 we can see the plots for the 432 individual fits, using an AR(1)
model and a AR(3) model. The deviation in the parameters is not considerable
(0.1 in the worst of cases), as for all 432 samples it would seem that the model
that suits them has similar parameters (a). However, we can appreciate severe

4.3 Model choice 33

Figure 4.9: 100-step forecast in AR(1) model fit

(a) AR(1) fit of 432 samples (b) AR(3) fit of 432 samples

Figure 4.10: Individual fits

discontinuities in the sigmas plot (b), which it is not supposed to be the case. The
conclusion drawn from this exercise, is that the modeling of the data is not ade-
quate because of the high variability in the samples. Hence, the series resulting
of the concatenation of the samples is too volatile to be fitted into one single pro-
cess.

This point can be proved if we look at each sample individually. If we observe
the two samples in figure 4.11, we see that the first one is oscillating between 0.6
and −0.6, while the second one is doing so between 0.03 and −0.03. The data-set
is indeed to variate.

That phenomena is not only happening in channel 1 of the data, but in every
of the 42. The data of this experiment, as previously mentioned, is separated into
2 sessions. Discussing this point with Dr. Cos, the reason behind the variance
in the amplitude of the waves arose, which is that between the 2 sessions, the
electrical impedance of the electrode of every channel was different, which made
the readings live in two completely different scales.

This is a recurrent problem while working with data gathered with real exper-

34 EEG fit

(a) Sample 100 (b) Sample 200

Figure 4.11: Sample comparison

iments, which are often full of imprecision and measuring errors, that have to be
taken into account while modeling. In fact, the inconsistency in the variance of
the samples, even within the same session, can be due to the simple fact that some
more gel was applied to the equipment between trials.

In light of the above, a similar procedure as before was applied. The idea from
this point forward is to still concatenate the samples to make a simultaneous fit,
but this time two concatenations were made, one for each session. This means that
for every channel, two fits will be made, so two models will be generated from
two sets of observations x̂1

t and x̂2
t . One of them will be containing samples 1 to

108 and 217 to 324, and the second one samples 109 to 216 and 325 to 432, so we
can write

x̂1
t = {x1,t, x2,t, . . . , x108,t, x217,t, . . . , x324,t},

x̂2
t = {x109,t, x110,t, . . . , x216,t, x325,t, . . . , x432,t}.

The two sets of observations x̂1
t and x̂2

t for channel 1 are plotted in figure 4.12,
where the difference in the amplitude between the two can be clearly appreciated.

Now, we want to find a suitable model for each session. For that, being con-
fident that we were on the right track, we computed an estimation of parameters
for every ARIMA(p,i,q) process with p, q ∈ (0, . . . , 9) and i = 0, 1 iteratively us-
ing computer software. After that, the best model is regarded to be the one that
minimizes the Akaike Information Criterion previously explained. This procedure is
known in the Data Science community as "grid search".

To start with, we wanted to see how the modeling using AR(p) for p ∈ (1, . . . , 9)
processes behaved. In both cases, we observed that the model that was better ad-

4.3 Model choice 35

(a) Sample concatenation for session 1 (b) Sample concatenation for session 2

Figure 4.12: Sample concatenations by sessions, channel 1

justed to the data was the one with more parameters. We can see that in figure
4.13, where we plotted the respective AICs for every model tested for the two
sessions. A very similar (not equal, as the differentiated data is slightly different)
tendency downwards is appreciated, which suggests that the best model will be
the one with the most parameters, at least inside the bounds where we aim to an-
alyze. Hence, if we wanted to choose an AR(p) model for our data from our pool,
we would choose an AR(9) process. However, given the shy difference between
the relative information loss in models AR(5) to AR(9), it would be fair to choose
the AR(5) model, which is much more simple. In this case, the respective AICs
would be −480035.17488654243 and −868454.1562824219.

(a) AIC for session 1 (b) AIC for session 2

Figure 4.13: AIC for models AR(p) for p ∈ (1, . . . , 9)

Next, as we advanced into more complex models, we looked at ARMA(p,q)
for p, q ∈ (0, . . . , 9), where we obviously will revisit AR(p) models, nevertheless it
is considered worth the effort. In figure 4.14 it represented in a color-map the AIC

36 EEG fit

values of all ARMA processes as previously mentioned. Along the y-axis are the
autoregressive terms p, and along the x-axis the moving average terms q. Whilst
it is true that the computed minimum corresponds to the ARMA(9,9) process, it
can be apreciated from the plot that the ARMA(4,3) is relatively low in terms of
relative information loss, in both cases. In session 1, the computed minimum is
−491493.71172786, and the value for (p, q) = (4, 3) is −487040.21370961, and for
session 2 is −878602.57134095 as optimal versus −874654.65132153. With a similar
argument as in the AR process, we could consider as the best ARMA model the
ARMA(4,3) process.

Figure 4.14: AIC for ARMA(p,q) with p, q ∈ (0, . . . , 9)

Finally, we considered the most complex model in our work, ARIMA models.
Although the data is supposed to be stationary by hypothesis, we wanted to see
if by any chance we could bring some better fits for our data. We fitted the data
using models ARIMA(p,1,q) for p, q ∈ (0, . . . , 9), and, as in the previous cases,
the AICs are plotted in figure 4.15. In this particular case, the results are not as
conclusive as with AR and ARMA models. The process with the least relative
information loss in session 1 is the ARIMA(7,1,7) process, and in session 2 is the
ARIMA(6,1,9) process, which, for starters, are surprisingly not the same.

No apparent reason why this discrepancy when it comes to integrated models
immediately arises. Not only the best model for the two sessions is not the same,
but also the AICs of the models with different parameters are also quite far apart,
much more that in the other cases. There is no clear candidate for both sessions
with similar relative information loss, and for this reason, no ARIMA models have
been considered in this work.

4.3 Model choice 37

Figure 4.15: AIC for ARIMA(p,1,q) with p, q ∈ (0, . . . , 9)

Additionally, it was though to be worth analysing not only channel 1, but to
see if the same models that seem appropriate for this channel are also suitable for
other channels. In figures 4.16 and 4.17 we can see the AIC of the models in the
same manner as we recently explained for the data of channels 2 and 11.

Figure 4.16: AIC for ARMA(p,q) with p, q ∈ (0, . . . , 9) in channel 2

If we look at the first column of both plots (except for the (0,0) coordinate),
we will see that it corresponds to the models ARMA(p,0), i.e. the AR(p), and we
can identify the same behavior as in channel 1. The best model to choose would
be the AR(9) process, but we can see that the AR(5) has almost the same AIC,
and is much simpler. Furthermore, looking at the whole plot, the coordinate (4,3)
has a relatively low information loss in its surroundings in both session of both

38 EEG fit

Figure 4.17: AIC for ARMA(p,q) with p, q ∈ (0, . . . , 9) in channel 11

channels, and the corresponding value is close to the AIC of the best model, in
all cases the ARMA(9,9) process. We have seen that the AR(5) and ARMA(4,3)
processes are acceptable choices to fit the data in channel 2 and channel 11. Not
only that, if we follow the same reasoning as we did previously in channel 1,
we would end up choosing the same two models.

4.4 Model evaluation

In this section we will give the specifics of the chosen models for channel 1,
as well as evaluate them using various previously mentioned metrics and some
standard practices in time series analysis.

To begin with, let’s have a look at the fit using the AR(5) process. In the
table below we can see the estimated parameters of the model, as well as the
corresponding values for the Mean Squared Error and the squared root of the Sum
of Squared Errors, which have been both previously defined.

First thing that stands out is the similarity between the estimated parameters
in both of the session, which brings up reasons for regarding the both sessions two
as samples of the same process. The values for both of the in-sample prediction
error metrics are very positive, bearing in mind the characteristics of both data-
sets. In session 1 we have a total of 86400 observations oscillating between 1 and
−1. Taking this into account, accumulating an error of roughly 4.4 with a mean
error per-observation of 0.0002 is believed to be an acceptable goodness of fit. In
case of the second session, the we have the same 86400 observations, this time
oscillating between 0.06 and −0.06, and we are accumulating a total error of 0.4

4.4 Model evaluation 39

AR(5) Session 1 Session 2

ϕ1 2.09827819e+00 2.07595737e+00
ϕ2 -2.00439529e+00 -1.98658612e+00
ϕ3 3.26459451e-01 3.45353728e-01
ϕ4 6.14852964e-01 5.69482153e-01
ϕ5 -4.86164323e-01 -4.65846264e-01
σ2 2.26192001e-04 2.52335608e-06

MSE 0.00022621754595701047 2.5384481812761144e-06√
SSE 4.420994907335419 0.46831818549171916

distributed with a mean of 2.5 ∗ 10−6. Furthermore, in figure 4.16 we can see that
in both cases, the predicted in-sample values and the observed values overlap at
almost all times.

Figure 4.18: In-sample prediction using AR(5) process

Now, as far as out-of-sample prediction goes (or forecasting), we performed
a fit for the first 86300 observations, and plotted a 100 step forecast over the last
100 values of the data-set. We can see the results in figure 4.18. The forecasting
of the first 15 steps is pretty accurate in both cases, considering the amount of
observations of the sample, but it can be appreciated more accuracy in the first
session. Afterwards, we can see that the model predicts towards the mean of the
sample (0) as expected from this type of fits.

Next, let’s analyze in the same manner the fit with the ARMA(4,3) process.
In the table below we can see the estimated parameters and the values for the
respective MSE and SSE.

Looking at the auto-regressive estimated parameters of the two sessions, we
can see the same phenomena as in the previous model. However, there is a slight
discrepancy between the moving-average parameters. In terms of goodness of fit
compared to the AR(5) model, we can see a shy improvement looking at the com-

40 EEG fit

Figure 4.19: Out-of-sample prediction using AR(5) process

ARMA(4,3) Session 1 Session 2

ϕ1 2.74608509e+00 2.71910915e+00
ϕ2 -3.67224744e+00 -3.60760427e+00
ϕ3 2.50365423e+00 2.43897829e+00
ϕ4 -8.29655358e-01 -8.05111152e-01
θ1 -8.02708706e-01 -7.44607674e-01
θ2 3.15417712e-01 2.42185565e-01
θ3 -2.24779511e-01 -1.85984067e-01
σ2 2.08490538e-04 2.34945091e-06

MSE 0.00020859290382794764 2.363592298323305e-06√
SSE 4.245282898787155 0.4519008459553197

puted error values. This is not as easily appreciated when you plot the predicted
values over the sample, as we can see in figure 4.20.

Figure 4.20: In-sample prediction using ARMA(4,3) process

Moving on towards the forecasting performance of the fit, we followed the
same procedure as before and plotted the results in figure 4.21. The immediate
conclusion is that the forecasting is very similar in the AR(5) and ARMA(4,3) mod-
els, for both session 1 and session 2.

4.5 Code 41

Figure 4.21: Out-of-sample prediction using ARMA(4,3) process

Finally, we wanted to see if the models’ behavior was the same in other chan-
nels, so in figures 4.22 and 4.23 we add plots for in-sample and out-of-sample
performance of the same models while fitting data of channel 11. We can see that
the performance is quite similar between sessions, as well as between processes.
In-sample performance is as good as expected, and we still maintain about 10
steps of accurate out-of-sample forecasting. Now, we can say that the fit as well
suited to channel 11 as it is to channel 1.

(a) AR(5) in-sample performance (b) ARMA(4,3) in-sample performance

Figure 4.22: In-sample performance in channel 11

(a) AR(5) out-of-sample performance (b) ARMA(4,3) out-of-sample performance

Figure 4.23: Out-of-sample performance in channel 11

4.5 Code

Here we leave the specifics of the code that was written in order to get the fit
for the model previously discussed, as well as the metrics that were used to test
its goodness of fit. The import of libraries used is the following.

42 EEG fit

1 import numpy as np
2 import scipy.io
3 import pandas as pd
4 import matplotlib.pyplot as plt
5 import scipy.signal as spsg
6 from statsmodels.tsa.arima.model import ARIMA
7 from statsmodels.tsa.stattools import acf , pacf
8 from statsmodels.graphics.tsaplots import plot_acf , plot_pacf

To start with, we give the code used for the initial treatment of the raw data-set
provided by Dr. Ignasi Cos, which as stated before, used the data of subject 25 of
the study.

1 mat = scipy.io.loadmat(’dataClean -ICA3 -25-T1.mat’) #Load data
2 mat = mat[’ic_data3 ’]
3 dades_dz = mat[:,:,:,:]
4

5 dades_solo = dades_dz [:,:,:,[0,1,6,7]] #Separate data by state
6 dades_easy = dades_dz [:,:,:,[2,3,8,9]]
7 dades_hard = dades_dz [:,:,:,[4,5,10,11]]
8

9

10 ch1_solo = dades_solo [0,:,:,:] #channel 1 -> (400, 108, 4)
11

12 #agregate data from 3D to 2D separaing by session -> 2 x
(216 ,1200)

13 ag_data_solo_ch_1_s1 = np.array(ch1_solo [:,:,0])
14 ag_data_solo_ch_1_s2 = np.array(ch1_solo [:,:,1])
15 ag_data_solo_ch_1_s1 = np.append(ag_data_solo_ch_1_s1 , ch1_solo

[:,:,2], axis =1)
16 agrupated_data_solo_ch_1_s2 = np.append(ag_data_solo_ch_1_s2 ,

ch1_solo [:,:,3], axis =1)
17

18 #down -sampling -> 2 x (216 ,400)
19 agrupated_data_solo_ch_1_s1 = agrupated_data_solo_ch_1_s1 [::3 ,:]
20 agrupated_data_solo_ch_1_s2 = agrupated_data_solo_ch_1_s2 [::3 ,:]

Then the frequency filter was applied as follows, and, after that, the concate-
nation of the samples by session, which will be fitted afterwards.

1 n_order = 3
2 sampling_freq = 500. #Sampling rate
3 nyquist_freq = sampling_freq / 2.
4 freq_band = ’gamma’ #In our case we work with gamma frequencies
5

6 if freq_band ==’alpha ’:
7 low_f = 8./ nyquist_freq
8 high_f = 12./ nyquist_freq
9 elif freq_band ==’beta’:

10 low_f = 15./ nyquist_freq

4.5 Code 43

11 high_f = 30./ nyquist_freq
12 elif freq_band ==’gamma ’:
13 low_f = 40./ nyquist_freq
14 high_f = 80./ nyquist_freq
15 else:
16 raise NameError(’unknown filter ’)
17

18 #Apply filter
19 b,a = spsg.iirfilter(n_order , [low_f ,high_f], btype=’bandpass ’,

ftype=’butter ’)
20 filtered_ch1_s1 = spsg.filtfilt(b, a, agrupated_data_solo_ch_1_s1 ,

axis =0)
21 filtered_ch1_s2 = spsg.filtfilt(b, a, agrupated_data_solo_ch_1_s2 ,

axis =0)
22

23 filtered_ch1_400_s1 = filtered_ch1_s1 [:,0]
24 filtered_ch1_400_s2 = filtered_ch1_s2 [:,0]
25

26 #Concatenation
27 for i in range (1 ,216):
28 filtered_ch1_400_s1 = np.append(filtered_ch1_400_s1 ,

filtered_ch1_s1 [:,i])
29 filtered_ch1_400_s2 = np.append(filtered_ch1_400_s2 ,

filtered_ch1_s2 [:,i])

Now we will give the code for one of the multiple model test, in particular, the
one performed to compare ARMA models.

1 aic_s1 = np.empty ((10 ,10))
2 aic_s2 = np.empty ((10 ,10))
3 for i in range (0,10):
4 for j in range (0,10):
5 if (i+j == 0): #Case ARMA (0,0) process
6 aic_s1[i][j] = 0
7 continue
8 model_s1 = ARIMA(filtered_ch1_400_s1 ,order=[i,0,j])
9 model_s2 = ARIMA(filtered_ch1_400_s2 ,order=[i,0,j])

10 model_fit_s1 = model_s1.fit()
11 model_fit_s2 = model_s2.fit()
12 aic_s1[i][j] = model_fit_s1.aic
13 aic_s1[i][j] = model_fit_s1.aic
14 print(np.argmin(aic_s1))
15 print(np.argmin(aic_s2))

The mean execution time for codes like the previous one, which was performed
over data from multiple channels was 4 hours, which is considered to be inside
what is expected for this kind of procedures. Besides, one way to optimize the
code would be to, as we have already seen that the estimated AR parameters for
both sessions are very similar, use the parameters estimated for session 1 as the

44 EEG fit

starting parameters in the fit for session 2, which is believed to save us some
execution time.

Chapter 5

Discussion

As stated in the abstract, the main goal of this work was to find a suitable time
model for the EEG data gathered during the experiment on social pressure. More
specifically, though, the challenge presented to do so was to find a way to fit more
than one sample of the same process using time series. In time series studies, the
standard methods described in the relevant literature are for finding a model for
one single sample of T-observations of one given process, such as wine sales in
Australia or Lake Huron’s water level. For that, you can analyze the plot of the
ACF or PACF previously presented in this work, and qualitatively estimate what
model would suit best the data before fitting it to the model and estimating its
parameters.

However, the application of these resources was not that straightforward. In
our data-set we had 432 repetitions of the same process, because it was gathered
from the same subject performing the same action under the same level of social
pressure. Theoretically, the fact of having multiple repetitions means having more
information and, subsequently, having more tools to do a better fit, which can be
regarded as an advantage. Nevertheless, we had to find a way to use this infor-
mation, which could not be accommodated using standard time series methods.

At first, multiple approaches were considered. Some of them were supposed
to give us good fits, but were unable to capture the totality of the information that
was available to us. Later on, once we thought that we found a way to take advan-
tage of the data-set using the concatenation of the 432, we were disappointed with
the results. But as oftentimes working with real data, it was not the methodology
that failed us, it was us that failed to treat the data correctly for the methodology
to work properly. This is a lesson that we take, when working with data gath-
ered from real experiments; the importance of understanding the physical process
behind it in order to provide intelligence to the modeling of the data, which is

45

46 Discussion

impossible to get from the plain application of standard methods.

Once a fitting strategy was figured out, we had to find the best process to
model our data. In most situations in time series analysis, plotting the ACF and
PACF you can get a pool of two or three models to fit the data, estimate the
corresponding parameters, and finally compare them using multiple Information
Criteria, such as Akaike or Bayes. Once again, our case was different. Having a
process with so many observations and high variability (result of human and mea-
suring errors) no useful information can be gathered from the previous method.
In our case, making use of the massive impact that software resources have on
Data Science, by use of the so-called "grid search", which at the end of the day
means using brute force computing to fit and compare multiple models, we were
able to choose our model from a much bigger pool of processes.

The most similar procedure that was followed by this work compared to stan-
dard time series methods was the testing of the chosen models, the AR(5) and the
ARMA(4,3) processes. Thus, in-sample and out-of-sample prediction was tested.
Although both were satisfactory enough, it has to be said that we were much hap-
pier with the former. If we had to choose between one of the two models, it would
be fair to choose the AR(5) process, because, while it is true that the ARMA(4,3)
has a smaller relative information loss as the AIC suggests, the improvement is
not substantial. Moreover, in-sample prediction is very similar (obviously being
a little better in the ARMA(4,3) process), and the same can be stated as far as
out-of-sample prediction goes.

With all of that in mind, it can be stated that the improvement that the ARMA(4,3)
process brings to the table is not enough to compensate the complexity added by
the model over the AR(5) process. Moreover, with the tests conducted on multiple
channels, we extend this choice to the totality of the data in "Solo" state.

To conclude this work, we consider that the objective that was set at its be-
ginning has been accomplished. We found a suitable model for our data, able to
capture time variability, as we aimed to do. In the process, we have been able to,
by making little twists on known methods, perform a successful fit of multiple
samples of the same process using time series.

On a personal level, I have learned more than I expected about time series
analysis, both in abstract terms and its applications. In order to perform the fit of
the data, I believe that a deep understanding of time series models and parameter
estimation was needed, and I had to push myself to be able to tackle the problems
presented during the process. Furthermore, I have gathered an immensely valu-
able experience in managing data-sets and the tools available to do so, as well as

47

facing the troubles that come with data gathered from real experiments. Some of
the programs used in the "grid search" took more than 3 hours to run, which has
made me develop the notion of resource optimization, a very concurrent limitation
in this type of work.

Finally, this work has taught me a very important lesson about not being con-
tented with disappointing results, and always trusting in one’s capabilities to ex-
tract the best out of the situation.

48 Discussion

Bibliography

[1] Paul S.P. Cowpertwait, Andrew V. Mercalfe, Introductory Time Series with R,
Springer, (2008), 1–42, 67–87.

[2] Peter J. Brockwell, Richard A. Davis, Introduction to Time Series and Forecast-
ing, Second Edition, Springer, (2002), 1–108, 179–219.

[3] Robert H. Shumway, David S. Stoffer, Time Series Analysis and its Aplications,
Springer, (2011), 1–162.

[4] Ioannis Kasparis, A simple proof for the invertibility of the lag polynomial opera-
tor, Research Institute for Econometrics, (2016).

[5] Alan Julian Izenman, Modern Multivariate Statistical Techniques, Springer,
(2013), 553–575.

[6] James D. Hamilton, Time Series Analysis, Princeton Univ. Press, (1994), 1–72.

[7] Peter J. Brockwell, Richard A. Davis, Time Series: Theory and Methods, Second
Edition, Springer, (1991), 1–39, 77–110.

[8] Bryan P. Rynne, Martin A. Youngson, Linear Funtional Analysis, Second Edi-
tion, Springer, (2000), 104–111.

[9] Pennstate University STAT 510: Applied Time Series Analysis
https://online.stat.psu.edu/stat510/

[10] Josep Vives i Santa Eulalia Notes of the course in Time Series, (2023).

49

