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In the Mediterranean basins, rice is mainly cultivated in wetland protracted areas such as deltas and marshlands, 

where it is the prevailing crop due to the high soil salinity. This salinity is continuously increasing for reasons 

such as the soil subsidence, the rising sea level, the reduction in yearly precipitations and the increase of 

temperatures, which are intensified due to the effects of climate change. Rice is one of the most salt sensitive 

crops (Horie et al. 2012;  Munns and Tester 2008). Spain is the second European country in terms of rice 

production (30%) just after Italy (FAOSTAT 2023). Andalucia represents the main Spanish rice production área 

(38,997 ha, 336,154 t, 8,620 kg/ha), followed by Extremadura (19,038 ha, 155,559 t, 8,171 kg/ha), Catalonia 

(20,769 ha, 151,157 t, 7,278 kg/ha), Valencia (15,769 ha, 118,425 t, 7,510 kg/ha), Aragón (6,083 ha, 32,969 t, 

5,420 kg/ha), Navarra (3,382 ha, 18,902 t, 5,589 kg/ha), Murcia (96 ha, not available) and Baleares (61 ha, 317 

t, 5,200 kg/ha) (MAPA 2020). In Spain, the main yield-limiting factors in organic rice production is weed control 

(Delmotte et al. 2011a;  Reddy et al. 2023), blast rice control (Agbowuro et al. 2020a;  Hoosain et al. 2013) and 

organic fertilization (Maimunah et al. 2021).  

Weed control is one of the major challenges for sustainable rice cultivation (Farooq et al. 2023;  Liu et al. 2023;  

Rajkhowa et al. 2023). Weeds proliferate in cultivated paddy fields, this happens because they are created by 

converting drylands to artificially flooded wetlands, which therefore lack native flora adapted to flooding (Osuna 

et al., 2012). With Echinochloa spp., Leptochloa spp., Oryza sativa f. spontanea (red rice), Cyperus spp., 

Heteranthera spp. and Alisma plantago-aquatica are the main weeds in Spanish paddy fields (Osuna et al. 2012). 

Culture rotations would help reducing weed problems in organic rice cultivation, although not successfully 

achieved in salinized paddy fields.  

Rice blast disease (Magnaporthe grisea (Herbert) Barr, anamorph Pyricularia grisea Sacc., synonym P. oryzae 

Carava) represents one of the worst rice diseases (Ebbole 2007;  Nalley et al. 2016;  Sakulkoo et al. 2018;  Tan et 

al. 2023b). Introducing management strategies using synthetic fungicides has proven to be ineffective under 

field conditions for long-term blast control (Deng and Naqvi 2019). Sulphur is a common and highly effective 

fungicide that has been in use in one form or another for a long time (Khandagave 2023). Silica is known as an 

essential element for rice plants and is effective in controlling rice blast (Nakashima et al. 2001). 

Nitrogen is an important factor that affects soil ecology and limits the availability of nitrogenous organic matter 

in agroecological systems (Hu et al. 2023). Optimized N fertilizer management achieved delayed senescence, 

higher canopy photo assimilation, higher N fertilizer use efficiency, and less N loss (Ma et al. 2023).  

The main objective of this Thesis is to study the feasibility of organic rice cultivation in the Ebro Delta.  The 

specific objectives are to investigate which non-chemical strategies can be used to reduce the number of weeds 

in paddy fields (chapter I), to assess the effectiveness of Sulphur or Silicon-based fungicides in controlling blast 

disease in different rice cultivars in Ebro Delta conditions (chapter II), and to evaluate the efficiency of organic 

fertilizers for organic rice production systems (chapter III): 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/soil-ecology
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Chapter I, reports some of the non-chemical weed control methods which can reduce weed pressure to levels 

similar to chemical herbicide treatments. Simple dry seeding was the best treatment for dry seeding, while stale 

seed bed and best performing planting conditions was the underwater seeding. Our findings demonstrated that 

dry seeding favoured grasses weeds such as E. crus-galli, E. oryzoides, while discouraging sedges and aquatic 

weeds. On the On the contrary, in water-seeding treatments, sedges and aquatic weeds (S. maritimus, C. 

difformis and H. reniformis) are favoured and grasses are still a problem in the paddy fields. Chapter II reports 

the effect of non-chemical fungicide treatments on different rice cultivars. The most blast-sensitive cultivar is 

Bomba.  Rice cultivars with low blast sensitivity does not require the application of fungicides as varietal 

tolerance is enough. On the On the contrary, Sulphur treatments are effective in medium blast sensitivity 

varieties such as Argila, Guara or J. Sendra.  We conclude that Sulphur (Thiopron, 82.5 % a.i. L-1, SC, UPL Iberica) 

at a 7.5 l·ha-1 dose has potential to help organic farmers control rice blast. In Chapter III, the chemical fertilizer 

showed the best results on grain yield and tillering, followed by the organic fertilizer named OPF.  An organic 

fertilizer (OPF) has been tested for organic rice cultivation resulting only in a 17% yield reduction in front of 

chemical fertilization. This fertilizer formulation is granulated and adapts to the farmers equipment.   

In conclusion, in this thesis we have demonstrated, for the first time, the feasibility of organic rice cultivation 

and added knowledge to weed management, fungus diseases and organic fertilization. The outcome of these 

study is important since it will contribute efficiently to organic rice cultivation in Ebro Delta. 
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En l’àrea mediterrània, l’arròs és principalment cultivat en zones humides protegides com deltes i aiguamolls, 

on és el cultiu predominant degut a l’elevada salinitat del sòl. L‘arròs és un dels cultius més sensible a la salinitat 

(Horie et al. 2012;  Munns and Tester 2008). La salinitat del sòl, continua augmentant per moltes raons; la 

subsidència de la plataforma deltaica, l’augment del nivell del mar, la reducció anual de les precipitacions i 

l’augment mitjà de les temperatures, que es veuen intensificats per l’efecte del canvi climàtic. Espanya és el 

segon país europeu pel que fa a la producció d’arròs (30%), només darrera d’Itàlia (FAOSTAT 2023). Andalusia 

representa la principal zona productora (38,997 ha, 336,154 t, 8,620 kg/ha), seguida d’Extremadura (19,038 ha, 

155,559 t, 8,171 kg/ha), Catalunya (20,769 ha, 151,157 t, 7,278 kg/ha), València (15,769 ha, 118,425 t, 7,510 

kg/ha), Aragó (6,083 ha, 32,969 t, 5,420 kg/ha), Navarra (3,382 ha, 18,902 t, 5,589 kg/ha), Múrcia (96 ha, no 

disponible) i Balears (61 ha, 317 t, 5,200 kg/ha) (MAPA 2020). Els principals problemes que limiten la producció 

orgànica d’arròs són les adventícies (Delmotte et al. 2011a; Reddy et al. 2023), les malalties fúngiques 

(Agbowuro et al. 2020a;  Hoosain et al. 2013) i la fertilització orgànica (Maimunah et al. 2021).  

Les adventícies és un dels majors reptes de la producció sostenible d’arròs (Farooq et al. 2023;  Liu et al. 2023;  

Rajkhowa et al. 2023). Les adventícies proliferen als arrossars conreats perquè aquests es creen normalment 

convertint les terres seques, en aiguamolls inundats artificialment, i no tenen flora autòctona adaptada a les 

inundacions (Osuna et al., 2012). Les principals adventícies als arrossars espanyols són: Echinochloa spp., 

Leptochloa spp., Oryza sativa f. spontanea (red rice), Cyperus spp., Heteranthera spp. i Alisma plantago-aquatica 

(Osuna et al. 2012). Les rotacions de cultius ajudarien a reduir les adventícies al cultiu ecològic de l’arròs, tot i 

que no s’ha aconseguit una rotació de cultius exitosa als camps salinitzats.  

La Piriculariosis (Magnaporthe grisea (Herbert) Barr, anamorph Pyricularia grisea Sacc., synonym P. oryzae 

Carava) representa la pitjor malaltia que afecta a l’arròs a nivell mundial (Ebbole 2007;  Nalley et al. 2016;  

Sakulkoo et al. 2018;  Tan et al. 2023b). A demés, la gestió amb fungicides químics ha demostrat ser una 

estratègia ineficaç pel control de la malaltia a llarg termini en condicions de camp (Deng and Naqvi 2019). El 

sofre és un fungicida comú i mostra eficàcia durant molt de temps (Khandagave 2023). El silici és conegut com 

un element essencial de les plantes d’arròs i alhora, és efectiu pel control de la malaltia de la piriculariosis 

(Nakashima et al. 2001). 

El nitrogen és un factor important que afecta l’ecologia del sòl i limita la disponibilitat de matèria orgànica en 

els sistemes agroecològics (Hu et al. 2023). La gestió optimitzada dels fertilitzants nitrogenats retarda la 

senescència, millora l’assimilació i eficiència de l’ús del nitrogen, així com una menor pèrdua (Ma et al. 2023).  

L’objectiu principal d’aquesta Tesi doctoral és estudiar la viabilitat de la producció ecològica d’arròs al Delta de 

l’Ebre. Els objectius específics de la Tesi son investigar quines estratègies no químiques redueixen el nombre 

d’adventícies als arrossars (capítol I), l’avaluació de l’eficàcia dels fungicides amb una base de sofre o silici pel 
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control de la malaltia de la piriculariosis en diferents varietats d’arròs del Delta de l’Ebre (capítol II) i l’avaluació 

de l’eficiència de fertilitzants orgànics per sistemes de producció ecològica d’arròs (capítol III): 

El capítol I informa dels mètodes no químics pel control d’adventícies que poden reduir el nombre de plantes a 

nivells similars als herbicides. La sembra en sec simple, va ser el millor tractament per la sembra en sec, mentre 

que la falsa sembra acompanyada del trasplant, va mostrar el millor rendiment de gra en condicions de sembra 

en aigua. La sembra en sec afavoreix les adventícies de la família gramineae: E. crus-galli, E. oryzoides, mentre 

reprimeix altres de les famílies cyperaceae i pontederiaceae. Oposadament, les condicions de la sembra en aigua 

afavoreixen les adventícies de les famílies cyperaceae i pontederiaceae (S. maritimus, C. difformis i H. 

reniformis), mentre que la família gramineae contínua sent un problema als arrossars. El capítol II informa de 

l’efecte dels fungicides no químics en diferents varietats d’arròs. La varietat de major sensibilitat a piriculariosis 

és el Bomba. Les varietats amb menor sensibilitat, no requereixen fungicides ja que la tolerància varietal és 

suficient. Per altra banda, els tractaments amb sofre són efectius en varietats de mitja sensibilitat com Argila, 

Guara o J. Sendra. Concloem que el sofre (Thiopron, 82.5 % a.i. L-1, SC, UPL Iberica) aplicat a una dosi de 7.5 l·ha-

1, és una eina potencial per ajudar als agricultors de producció ecològica d’arròs. El capítol III informa que el 

fertilitzant químic ha mostrat els millors resultats en producció i número de fillols, seguit del fertilitzant orgànic 

OPF. El fertilitzant orgànic OPF ha sigut l’únic a mostrar una reducció de producció del 17% en comparació amb 

el químic. La formulació en pellet del fertilitzant OPF, s’adapta als equips actuals d’aplicació dels arrossers.  

Es conclou que s’ha demostrat per primera vegada la viabilitat de la producció ecològica d’arròs i s’afegeix 

coneixement del maneig de les adventícies, les malalties fúngiques i la fertilització orgànica. Els resultats son 

rellevants per que contribueixen a la sostenibilitat del Delta de l’Ebre. 
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1 Rice crop 

Rice is one of the most important cereals and food staple for more than half of the world. Climate change and 

diminishing resources are the major challenges in the sustainable rice production (Farooq et al. 2023). Rice 

belongs to the monophyletic group of Phanerogams or Spermatophytes, Angiosperm subtype, Monocotyledon 

class, Poaceae (Gramineae) family and Oryza genus (Degiovanni Beltramo et al. 2010;  Kellogg 2009;  Strasburger 

et al. 2004). Although having a wide genetic diversity with more than 20 species, only two of those are cultivated: 

Oryza sativa L. and Oryza glaberrima Steud. (Ito and Lacerda 2019;  Londo et al. 2006).  

Several studies suggest that rice domestication begun 9.000 years ago from wild ancestor O. rufipogon, under 

both natural and human selective pressure initially in tropical and subtropical areas of Asia (Londo et al. 2006;  

Wei and Huang 2019;  Yang et al. 2012).   O. sativa species was originated in South-East Asia but cultivated in all 

continents except Antarctica. On the contrary,  O. glaberrima  is native to West Africa and grown solely in Niger 

river delta (Roma-Burgos et al. 2021;  Samyor et al. 2017). 

 O. sativa has two main subspecies, Indica and Japonica. Generally, Indica varieties have long grains with low 

stickiness, However, high tillering capacity, tall stature, weak stems, droopy leaves, slow germination,  blast-

sensitiveness, have long and dense glume pubescence and long awn in some varieties (Chauhan et al. 2017;  

Degiovanni Beltramo et al. 2010;  Wei and Huang 2019), being cultivated in tropical and equatorial latitudes 

(Agrama et al. 2010). On the contrary, Japonica varieties have shorter grains and preferentially grown and 

consumed in temperate regions such as Europe, Japan, Korea, northern China, California and Australia (Hori et 

al. 2017;  Hu et al. 2014). Traditional Japonica varieties are characterized by stronger cold tolerance, shorter 

plant height, shaper leaf shape, light leaf colour, stronger lodging resistance and poor shattering. They are highly 

responsive to nutrient inputs and are limited to temperate zones.  

1.1 Rice morphology and crop traits 

The vegetative organs of the rice plant consist of roots, culms, and leaves. The floral or reproductive organs are 

arranged in panicles. It has round, hollow, jointed culms, rather flat, sessile leaf blades, a terminal panicle and is 

adapted to an aquatic habitat. It is a pluriannual grass, although cultivated as an annual grass. In Europe it can 

only be grown once a year in the spring-summer season. The plant height of the Mediterranean cultivated 

varieties can range from 50 to 150 centimetres (Degiovanni Beltramo et al. 2010;  Pérez Lotz 2016).  It is a very 

demanding crop in both temperature and water, tolerating the water saturation of soil. In flooding rice crops, 

the land may remain submerged for as long as 5 months at a time with water depth from 0.5 to 4.0 meters 

(Chauhan et al. 2017).  The temperature must be high and constant, being sensitive to abrupt temperature 

oscillations. It can be grown on loamy sands to heavy clay loams or clays and in acid to basic soils. These different 
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crop conditions have varying plant nutrition problems, weed species and pest problems, thus demanding 

different rice crop management strategies (Chauhan et al. 2017).   

When the stem grows, it divides into internodal sections bounded by nodes. Depending on the genotype, soil, 

climate conditions and crop management, the tillering is variable. The reproduction of rice is anemophilous and 

mostly autogamous, by self-fertilization, gives a rise to the rice grain, formed by the fruit in caryopsis and 

covered by the integuments of ear (Chang and Bardenas 1965;  Osca Lluch and Gómez De Barreda Ferraz 2016;  

Pérez Lotz 2016). The development of the fertilized egg and endosperm becomes visible a few days after the 

fertilization. Grain development is a continuous process, although agronomic terms such as the milky stage, soft 

dough stage, hard dough stage and fully ripe stage are often used to describe the different maturation stages. 

In the Mediterranean region, the rice cycle usually lasts between 125 and 150 days depending on the cultivated 

variety and climatic conditions of the campaign (Pérez Lotz 2016). The BBCH scale is generally used to define 

their phenological stages. These divide the crop cycle into 10 main stages and 100 phenological stages (BBCH 00 

– BBCH 99) (Lancashire et al. 1991).  

 

 

    

 

 

 

 

 

 

 

                            Figure 1: Rice phenological states BBCH. Since BBCH 09 – BBCH 80 

 

1.2 Rice production and consumption worldwide 

Rice is a major cereal crop and one of the most widely grown crops in the world, being the main food staple for 

over 3000 million people, almost half of the world’s population (Ito and Lacerda 2019;  Pérez Lotz 2016).  It is 

estimated that each year 408,661 million metric tons of rice is consumed worldwide, supplying 20% of the 

world’s total caloric intake (Figure 2) (Londo et al. 2006). Asia is the main continent in terms of rice consumption 

and production (McLean et al., 2013). 

BBCH 10 BBCH 09 BBCH 20 - 29 

BBCH 50 BBCH 60 BBCH 80 
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Figure 2:  Percentage of calories supplied by rice in the diet. Retrieved from (Maclean et al. 2013). 

In the regions of South Asia and Southeast Asia, Indica varieties are mainly cultivated due to the abundance of 

submerged regions. In contrast, Japonica varieties are grown in areas with less water, like northern latitudes of 

East Asia, elevations in South Asia and upland areas in Southeast Asia (Wei & Huang, 2019). In 2021, 

approximately 787 million tons of paddy rice were produced worldwide (FAOSTAT 2023), with the top seven 

producers placed in Asia and accumulating 80% of the production (Figure 3). 

            

Figure 3: Rice production (paddy) worldwide in 2010-2021. Data retrieved from FAOSTAT database 
online. 
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China and India are the main rice producing countries worldwide. Although India possesses more hectares of 

paddy fields than China, China is the main producer due to its higher yields (Figure 4). This is because China has 

almost all fields irrigated in opposition to India, whose irrigation only gets to half of the paddy fields (McLean et 

al., 2013).  

      

Figure 4: Top 20 paddy rice-producing countries in 2021. Spain would be placed at the 44th position 
with 0.62 million tons produced in 2021. Data retrieved from FAOSTAT database online. 

Although rice yields are still growing, the growth rate has slowed down significantly in recent years. At global 

level, the rice sharing represents about 20% total cereal production (Chauhan et al. 2017;  Pandey et al. 2010).  

According to the Food and Agriculture Organization (FAOSTAT), rice-harvested area in the year 2021 was about 

165 million hectares (M ha) with a production of 787 million tons of paddy rice approximately (FAOSTAT 2023), 

and it is expected not to change much by the year 2023. About 89.98% of this rice production is from Asia. 

Around 80% of worldwide area under rice is gathered in eight Asian countries: China, India, Indonesia, 

Bangladesh, the Philippines, Vietnam, Thailand and Myanmar (Fig. 3); they hold 46.6% of the world’s population 

approximately (Chauhan et al. 2017) (FAOSTAT 2023).   

Since the time of its initial domestication, Asian cultivated rice has been moved around the world with migrating 

human populations. Thus, rice cultivation is nowadays cultivated on all continents except for Antarctica (Londo 

et al. 2006) .It is widely distributed from tropical to temperate zones and grows in various conditions of water 

availability (Figure 5) (Yang et al. 2012).  
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Figure 5: Rice Atlas, a spatial data base of global rice calendars and production (Laborte et al. 2017) 

 

Irrigated lands cover about half of the world’s rice lands and produce about 75% of the world’s rice. The largest 

rice importing regions are Middle East and sub-Saharan and Western Africa (Chauhan et al. 2017).   

1.3 Rice in the Mediterranean basin  

Rice is cultivated in the European Union mainly on submerged land in the coastal plains, rivers basins and deltas. 

All paddy fields in Europe are irrigated. The climate ranges from tropical to sub-tropical (Kraehmer et al. 2017) 

and the total rice crop area is about 400,000 km2, mostly located in the southern-Europe Mediterranean basins. 

Per capita rice consumption in Europe ranges 4.6 to 5 kg·year-1 (OECD et al. 2022). Long grain is the most 

consumed rice in northern countries, while short to medium grain rice is mainly consumed in the southern 

Mediterranean countries.  Short to medium rice is cultivated on two-thirds of European acreage, while long grain 

rice on one-third (Garris et al. 2005;  Kraehmer et al. 2017).  

The rice production and consumption in Europe discrete when compared to the Asian production. Despite of 

that, rice in Europe holds an important sociocultural meaning since it is one of the basic foods of the 

Mediterranean diet. Some regions have developed famous rice dishes, like risotto in Italy or paella in Spain. Rice 

in Europe also has a ecological importance, due to the great biodiversity that lives and benefits from the paddy 

fields. The average crop yields range between 2.75 and 7.29 t·ha-1, according to the water availability and 

environmental conditions of the campaign (Table 1) (FAOSTAT 2016).  
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Table 1: Rice production (paddy), area harvested and yield in 2021 in Europe. Data retrieved from 
FAOSTAT database online. 

Country Production (tn) Area harvested (ha) Yield (hg/ha) 

Italy 1.459 227.040 6.428 

Spain 617 84.680 7.288 

Greece 242 34.890 6.926 

Portugal 176 29.360 5.991 

France 62 12.290 5.072 

Bulgaria 58 12.050 4.823 

Ukraine 49 10.100 4.899 

Romania 15 5.440 2.754 

 

Italy and Spain are the two leading rice-producing countries in Europe with more than 75% of acreage (Kraehmer 

et al. 2017). Italy is the largest rice production country in Europe (227,000 hectares of cultivation area and 1.46 

million tons of total grain production in 2021). Followed by Spain that has about 84,680 hectares of rice crop 

and produces about 617,000 tons of paddy rice (FAOSTAT 2023) (Table 1, Figure 6). 

 

 

      Figure 6: Harvested rice production 2001-2010 average in Europe (Masseroni et al. 2018). 

Rice production in Spain is very restricted due to saline zones with important environmental restrictions, such 

as deltas or marshlands. The main producing areas are Andalusia, Extremadura, Catalonia, Valencia, and Aragón 
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(MAPAMA 2018;  Morillo 2023;  Rodrigo and Ribeiro 2023). In 2021, the rice crop has been at its lowest in 18 

years (61,909 ha), as a consequence of the pressing drought suffered in the campaign (MAPA 2021b). 

In Italy, fields are placed in the Po valley, in the regions of Piedmont, Venetia, Lombardy and Romagna 

(Gharsallah et al. 2023). Other regions that contribute in lesser quantity to the production are Tuscany, Latium 

or Sardinia. Greece production is focused in Thessaloniki (Ntantos and Karpouzos 2010). Portugal production 

comes from three regions, Coimbra, the Tagus plain, and the Sado and Guadiana valleys (Fraga et al. 2019). 

France obtains rice from the Rhône delta, placed in the Camargue region (Mouret et al. 2004). Bulgaria produces 

rice in the Plovdiv and the Pazardzhik regions, while Romania cultures rice in the counties of Ialomiţa, Brăila, Olt 

and Dolj. In Hungary, paddy fields are placed in the Great Hungarian Plain (Kraehmer et al., 2017; McLean et al., 

2013).  

All the cultivated rice varieties fall into the Japonica subspecies and long-grained varieties show a certain degree 

of Indica introgressions but being more predominate the Japonica varieties by about 70-80% (short to 

intermediate) (Ferrero 2005;  Franquet Bernis and Borràs Pàmies 2004). Spain has a relative higher production 

of Indica rice in comparison to the European average. The average yield of Japonica varieties ranges between 

7.57 t/ha, meanwhile is 7.86 t/ha for Indica varieties (MAPA 2021a;  MAPAMA 2017). This fact could explain why 

Spain holds the highest yield of all the European producing countries (Kraehmer et al. 2017). The European 

Union legislation (CEE Regulation No. 1785/2003) considers four types of grains: long A, long B, medium and 

round (Table 2). 

                                        Table 2: Rice commercial criteria produced in Europe Union. 

Kind of grain  Round Medium Long (A) Long (B) 

Lenght (cm) ≤ 5.2 5.2 < L ≤ 6.0 > 6.0 > 6.0 

Lenght / wide (cm) < 2.0 < 3.0 2.0 < L/w ≤ 3.0 ≥ 3.0 

 

The most popular rice varieties cultivated in Spain are Puntal, Bomba, Balilla x Sollana, Montsianell, Gleva, 

Guadiamar, J. Sendra, Argila, and Sirio (Sales et al. 2023). Long-grain varieties (Oryza sativa var. Indica) are mainly 

cultivated in rice areas located in southern Spain (Extremadura and Marismas del Guadalquivir), while in the 

other four areas located in northeastern Spain, short–medium-grain (Oryza sativa var. Japonica) rice are 

cultivated (Gómez de Barreda et al. 2021). In Italy, the main cultured varieties are Arborio, Carnaroli, Roma, 

Baldo, Thaibonnet, Loto, Augusto, Sant’ Andrea, Luna, Balilla, Centauro, Vialone nano, Padano, Lido, Crono, Sole 

and Selenio (Volpe et al. 2023).  
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1.4 Rice production in Ebro delta 

Ebro Delta is in the north-east coast of Spain, facing the Mediterranean Sea, between 40º38’ and 40º48’ N 

parallels and 4º16’ and 4º34’ E meridians. Rice crop began to expand in 19th century mainly thanks to the 

construction of the two Ebro River canals. The total surface of Ebro Delta is 32,059 ha approximately. The rice 

crop area corresponds to 20.400 ha, which represents 83% of the total cultivated land. Rice cultivation 

contributes to the conservation of the environment, since it maintains an extensive layer of water for many 

months that serves as a habitat for birds, aquatic plants and invertebrates (Egea-Fernández and Egea-Sánchez 

2006;  Primack et al. 2001). In 1998, a promotion of agricultural production methods compatible with 

environmental protection in wetlands included the Ebro Delta in the list of the Ramsar Convention (Bartual 

Figueras and Pareja Eastaway 2015).  

The yield is around 7 t·ha-1 in average, depending on the cultivated variety and the campaign. Rice production 

in the Ebro Delta corresponds to 98% of the total Catalan production (140 million kg·year-1), although less than 

100 ha are devoted to organic rice cultivation. About 70% of the paddy fields are subjected to Denominació 

d'Origen Protegida (DOP) ‘’Arròs del Delta de l’Ebre’’ (Franquet Bernis and Borràs Pàmies 2004;  Navarro 2007). 

The Ebro Delta has been developed in the last 5,000-7,000 years and has been originated as a consequence of 

the sedimentary progradation that took place from the last stabilization of the sea level (Casals et al. 2013). The 

development of rice cultivation in the Ebro Delta is related to the special characteristics of the area where the 

maximum altitude is 4 m above sea level. Its soil salinity and the height of the water level, do not allow any other 

type of crop exploitation further than rice (Eixarch 2010). The geological and hydrological dynamics of the delta 

is controlled by the flow and the channelling of the river. In the absence of natural floodings, irrigation is the 

only alternative where sediment can be transported and deposited on the surface, to offset the effects of 

subsidence and marine intrusion (Ibáñez et al. 1999;  Torres Herrero 2021). The future projections regarding soil 

salinity are not favourable to rice production in this region. The models predicts a rise of 1 – 8 ds/m mean soil 

salinity, depending on distance from ricer and delta sea shores, clay presence and surface elevation (Figure 7 

and 8) (Ramos de Fuentes 2018).  
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Figure 7 (Left): Location of the Ebro Delta (a); Ebro Delta Digital Elevation Model (DEM) map (b); 
distribution of paddy fields along with soil salinity sampling points (c); soil salinity (d); and rice 
production index maps (e) in the reference state (2010) (Genua-Olmedo et al. 2016). Figure 8: 
Distribution of estimated soil salinity in the Ebro Delta under different SLR scenarios (SLR). Modeled 
scenarios shown in the figure are the mean RCP 4.5 (AR5 IPCC) and the upper RCP 8.5 (Genua-
Olmedo et al. 2016). 

The orographic situation of the Ebro Delta involves a series of environmental characteristics of humidity that are 

especially favourable for fungal diseases in rice cultivation (Blast rice, Brown spot rice, Rice spikelet rot disease). 

The dominance winds in the summer season come from the sea towards the land and bring more humidity to 

the environment, on the other hand, in the rice cultivation phase, the presence of dry winds are anecdotal and 

helps to lower the percentage of humidity (Cierzo or Tramontana). All this makes this rice area a hot spot for 

common pathologies for crops. 
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2. Organic food in the world and Europe 

The absence of pesticides and the decrease in heavy metals may be the main reasons for the possible health 

effects of organic food (Vigar et al. 2019).  According to the latest FiBL-IFOAM survey on the certification of 

organic agriculture worldwide, there are 72.3 million hectares (Mha) of organic agricultural land, including areas 

in conversion (Willer et al. 2021). The regions with the largest areas of organic agricultural land are Oceania, 

Europe, Latin America, Asia, and Africa (Figure 9). The countries with the largest agricultural area are Argentina, 

Australia, and the USA (FiBL-IFOAM 2022).  

 

Figure 9: Organic agriculture land and non-agricultural areas in 2019. Source: FiBL-IFOAM 

Currently, 1.5% of agriculture worldwide is organic and an increase in organic agricultural area have been taken 

place in Asia, Europe, North America, and Oceania. The region with the highest percentages are found in Oceania 

(9.6%) and Europe (3.3%) (Table 3) (FiBL-IFOAM 2022).  

Table 3: World: Organic Agriculture land (including in conversion areas) and organic share of total 
agriculture land by region 2019. 

Region      Organic agri. Land (ha)             Share of total agri. land 

Africa 2,030,830 0.2 % 

Asia 5,911,622 0,40% 

Europe 16,528,677 3.3 % 

Latin America 8,292,139 1.2 % 

North America 3,647,623 0.8 % 

Oceania 35,881,053 9.6 % 

World 72,285,656 1.5 % 
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The organic agriculture production land of the total agricultural area and the number of organic farms continues 

to grow and are represented in Figure 10. Spain is the third country in the world in terms of certified organic 

agricultural area 2,354,916 ha. The growth of the organic sectors are also due to various political support 

measures such as funding in rural development programs, legal protection and action plans, research support 

and advisory services (FiBL-IFOAM 2022). 

 

Figure 10: Growth of the organic agricultural land and organic share 1999-2019. Source: FiBL-
IFOAM-SOEL-Surveys 2001-2021 

The European Union (EU) is the second-biggest organic agri-food products market. In 2019, the EU imported a 

total of 3.2 million tonnes of organic agri-food products. Imports of tropical fruit (fresh os dried), nuts and spices 

represented the single biggest category, totalling 885,930 tonnes or 27.3 percent of total imports, followed by 

oilcakes, cereals other than wheat, as well as rice and wheat. The People’s Republic of China is the biggest 

supplier of organic agri-food products to the EU, with 433,705 tonnes; 13.4 percent of the total organic import 

volume. Ukraine, the Dominican Republic, and Eucador represent  the 10 percent of the total organic import 

volume (Willer et al. 2021). In the European Union, 5.4% of farmland is organic. Although, some countries reach 

higher percentages, for example, Falkland Islands (35.9%), Liechtenstein (27.3%) and Austria (19.7%) (Figure 11) 

(FiBL-IFOAM 2022). 
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Figure 11: World: Countries with an organic share of the total agriculture land of at least 10 percent 
2019.                                Source: FiBL survey 2021 

In Spain, since 1997 the agrarian surface holding organic certification reached a positive increase, and from 2008 

it is exceeded for the first time one million of hectares (Figure 12), and in 2020 it exceeded more than 2 million 

hectares (FiBL-IFOAM 2022;  MAPA 2021a). 

 

                  Figure 12: Changes in the certified agricultural area in Spain (1991-2020). Source: MAPA 

The evolution of operators in primary and secondary activities (farmers, industrialists, and marketers) has been 

growing in the last decade. The number of registered organic operators exceeds 44,000, with nearly 42,000 

agricultural producers and more than 5,500 processors/processors, employing around 85,000 workers, with a 

high participation of the female sector (Figure 13) (MAPA 2021a).  



 

45 

 

 

Figure 13: Changes in the operators in primary and secondary activities (farmers, industrialists, and 
marketers) in Spain (1991-2020). Source: MAPA. 

The organic rice surface production in Spain (1,476 ha) under organic certification, it represents less 2 % of total 

rice surface (84,680 ha) in 2021 (MAPA 2021a). On average, each Spanish individual consumed an average 

amount of 3.83 kilograms of rice during the year 2022. The average price of rice increases with respect to the 

year 2021, in a very notable way, 13.4% and stands at 1.99 €/kg (MAPA 2022). 

2.1 Organic rice in the Ebro Delta  

Ebro delta has a low Organic production at 0.6% of the certified area according to CCPAE (CCPAE 2020a). The 

main factors that limits the growth and expansion are: (i) the lack of knowledge, (ii) the lack of practical 

experience, (iii) the lack of mechanized weeding options and (iv) a general belief among the rice sector that 

"nothing can be done". On the contrary, the main factor boosting the organic production is the price perceived 

by farmers, which is 250% compared to the conventional rice.  

Extracting a viable and sustained organic yield is challenging. The main limitations for organic rice production at 

the agronomic level are the competition caused by weeds in rice cultivation, which in the worst cases can reduce 

organic rice production by up to 100%. At the same time, the rice industry is not able to cover the growing 

demand of the market where the sensitivity of consumers towards products from organic farming is increasing. 

This scenario forces the industry to import organic rice from other rice-growing areas, paradoxically increasing 

the impact of greenhouse gas emissions and the carbon footprint that exacerbate the effects of climate change. 

2.2 Regulations of Organic rice in Ebro Delta 

The European Commission has approved a series of specific regulations for organic farming (UE Regulation 

2018/848). The general requirements of the legislation are as follows:  

o Genetically modified organisms (GMOs) cannot be used. 
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o Renewable resources, such as waste and by-products of plant origin, must be recycled, thus 

contributing to soil nutrition.  

o All stages during the production chain must guarantee ecological integrity.  

o Nitrogenous mineral fertilizers cannot be used.  

o All production techniques must prevent or minimize any damage to the environment. 

o Authorized phytosanitary products will only be used in the event of an emergency. 

 

The regulations at the Ministry level can be found in the General Registry of Ecological Operators, which is 

governed by Real Decreto 833/2014. In Catalonia, the control system for organic agricultural production is 

delegated to the Catalan Council for Organic Agricultural Production (CCPAE in catalan), Low 2/2014, CCAA CAT.  

For the organic production, transformation and distribution, Law 14/2003 of June 13 on agri-food quality applies. 

At regional level, the Ebro Delta is considered one of the most sensitive wetlands in Europe:  

o Delta del Ebro Natural Park (Law 357/1983 of the Catalan Government and Law 332/1986 of the 

Spanish government).  

o Special Protection Area for birds (1987) according to the European Bird Conservation Directive 

(79/408/EEC).  

o The area is also included in the Ramsar list of wetlands of international importance Natural Area 

Interest (PEIN) 1992.  

o Biosphere Reserve by UNESCO (2013). 

 

The Catalan government is already implementing a quality certification called Producció Agrària Sostenible (PAS, 

Sustainable Agricultural Production). The objective of this certification is to visualize, assess and quantify the 

sustainability of organic farms, being focused on these three arguments:  environmental, economic, and social 

sustainability. One of the main objectives of the PAS is the self-improvement of the farms. The PAS is a 

semaphoric picture of environmental sustainability: sources, soil, water, air, biodiversity, materials, fertilization, 

renewable energies. This PAS certifies will be free and able to everyone improving their sustainability. PAS is 

ongoing a process that will guarantee quality for Catalonia, Spain and Europe. This certification is based on the 

farmer production process and not on the final product. However, organic and integrated certifications are not 

obliged to be used.  

The PAS certification is in line with the green deal (Fetting 2020), “from farm to fork” (Schebesta et al. 2020) and 

biodiversity (Hermoso et al. 2022) strategies. PAS is an inspiration for the European commission to help to 

compose new laws, which in turn is inspired by FAO’s SAFA (SAFA 2023). The strong point of the PAS is that they 
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group three aspects: environmental, economic, and social and that plays on their favour. The PAS certificate will 

be compatible with Catalan Council for Organic Agricultural Production.  

In this sense, this doctoral thesis contributes, for the first time, to generate the necessary knowledge on organic 

techniques and products in order to accelerate the agro-organic transition of the Ebro Delta rice sector for the 

year 2030. 

 

3. Integrated pest management in paddy fields 

3.1 Weeds in paddy fields 

Weed control is one of the major challenges for sustainable rice cultivation (Farooq et al. 2023;  Liu et al. 2023;  

Rajkhowa et al. 2023). Weed competition was the main factor affecting yield for both conventional and organic 

systems (Delmotte et al. 2011b;  Reddy et al. 2023). Weeds proliferate in cultivated paddy fields because rice 

paddies are usually created by converting drylands to artificially flooded wetlands, which therefore lack native 

flora adapted to flooding (Osuna et al., 2012). With Echinochloa spp., Leptochloa spp., Oryza sativa f. spontanea 

(red rice), Cyperus spp., Heteranthera spp. and Alisma plantago-aquatica are the main weeds in Spanish paddy 

fields (Osuna et al. 2012) Figure 14.  

The main problem in the management of the paddy rice in conventional production in Ebro Delta is the weed 

control. There is a wide diversity of weed species and ecotypes, and the abusive use of pesticides have resulted 

in herbicide weed-resistant problems. The main families of weeds that are present in the fields are grasses, 

aquatic weeds, and sedge weeds. The biology of each family condition the methods and strategies to be used 

for their control. The conventional rice production system has problems controlling weeds with the aid of 

herbicides, the control in organic rice production is even harder.  
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Figure 14: Main weeds in Spanish paddy fields: a) Barnyard grass (Echinochloa crus-galli), b) Early 
barnyard grass (Echinochloa oryzoides), c) Salt meadowgrass (Leptochloa fascicularis) d) Red rice 
(Oryza sativa f. spontanea), e) Flatsedge (Cyperus difformis), f) Mud-plantin (Heteranthera 
reniformis), g) Water-plantin (Alisma plantago-aquatica) 

a b 

c d 

e f g 
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3.2 Fungal diseases 

Rice ecosystems are currently facing numerous threads, which often result in yield reductions (Kraehmer et al. 

2017).  Rice Blast is the major threat for rice crop production worldwide due to its wide distribution and yield 

reduction under favourable conditions. (Laha et al. 2017;  Ou 1985;  Pérez Lotz 2016;  Rossman et al. 1990). It is 

the major threat to rice as it reduces the rice yield by 30% globally (Fahad et al. 2019) and it can cause up to 80% 

yield losses in some varieties in endemic regions (Ou 1985).  

Rice blast is a fungal disease caused by the filamentous ascomycetous fungus Pyricularia grisea (Cooke) Sacc. on 

the anamorph form which can be found in the field, or Magnaporthe oryzae (Hebert) Barr. on the teleomorph 

form (which can be obtained in laboratory (Laha et al. 2017;  Rossman et al. 1990). Pyricularosis fungal disease, 

is the major European rice disease causing significant yield losses in some rice-growing regions such as Ebro 

Delta (Catalá Forner et al. 2003;  Kraehmer et al. 2017;  Laha et al. 2017).   

In winter, the rice blast survives as conidiophores and mycelium on the plant residues after the harvest or in the 

ground. In spring, the temperature and relative humidity increase displays the mycelium sporulation producing 

conidiophores which are the primary source of infection. However, P. oryzae can also be disseminated by 

infecting seeds or can hibernate in winter cereals or other plants like Cynodon dactilon, Phragmites communis, 

Sorghum halepense or Arundo donax. The rest of the cycle is usually found on the leaf, but it is similar in other 

tissues (Figure 15) (Talbot 2003;  Wilson and Talbot 2009).  

 

Figure 15: Life cycle of the rice blast fungus Magnaporthe oryzae. The rice blast fungus starts its 
infection cycle when a three-celled conidium lands on the rice leaf surface. The spore attaches to 
the hydrophobic cuticle and germinates, producing a narrow germ tube, which subsequently 
flattens and hooks at its before differentiating into an appressorium. The single-celled 
appressorium matures and the three-celled conidium collapses and dies in a programmed process 
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that requires autophagy. The appressorium becomes melanized and develops substantial turgor. 
This translates into physical force and a narrow penetration peg forms at the base, puncturing the 
cuticle and allowing entry to intro the rice epidermis. Plant tissue invasion by means of epidermal 
cells. Cell-to-cell movement can initially occur by plasmodesmata. Disease lesions occur between 
72 and 96 hours after infection and sporulation occurs under humid conditions; aerial 
conidiophores with sympodially arrayed spores are carried to new host plants by dewdrop splash 
(Wilson and Talbot 2009).  

The first symptoms are visible in the host plant four or five days after the conidia germination P. oryzae 

sporulation can reach about 20,000 conidia per day, initiating a new infection cycle. However, the dissemination 

area is small, and the spores are usually between 1 – 5 m from the source. The optimum conditions for the 

germination of conidia and most of the cycle are between 24-28 ºC of temperature and 90 – 100 % of relative 

humidity but can be triggered at 20 ºC (Castejón-Muñoz 2008;  Talbot 2003;  Wilson and Talbot 2009). The 

symptoms of infection are the appearance of 0.3 to 1.5 cm diameter spots or lesions on leaves.  The leaf spots 

are typically elliptical with more or less pointed ends. The centre of the spots are usually grey and the margins 

are usually brown or reddish-brown (Figure 16a) (Ou 1985).  The pathogen also causes brown lesions on panicle. 

In severe infections, seedlings and plants may be completely killed (Figure 16 c) (Laha et al. 2017;  Talbot 1995). 

Sulphur is a common and highly effective fungicide that has been in use in one form or another for a long time 

(Jang et al. 2015;  Khandagave 2023). 

                                                   

Figure 16: Rice blast symptoms. a) Leaf infection, b) collar infection, c) panicle infection, d) on the 
left side, blast attack                                                                

 

3.3 Organic fertilization  

Nitrogen is an important factor that affects soil ecology and limits the availability of nitrogenous organic matter 

in agroecological systems (Hu et al. 2023). Soils are very important in agriculture. Agriculture that promotes a 

healthy and quality soil (regenerative, sustainable, ecological). The soil is the basis of sustainability, the higher 

content in organic matter gives a greater capacity to retain moisture, lower risk of erosion. We allow greater 

a b c d 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/soil-ecology
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infiltration of water and therefore capture a greater amount of water that will then be available to the plants 

and that in periods of drought or irregular rainfall, it is very important to have a greater availability of water in 

the soil. Also increasing soil microbial biodiversity is very important to have quality soils. There are many 

agricultural practices that, if well focused, allow these characteristics to be increased or enhanced: minimal 

tillage, providing livestock droppings to provide more organic matter or enhancing the incorporation of waste 

in the sun that also increases the content of organic matter.  

Organic manure and compost have been available to paddy fields fertilization (Saha et al. 2007), but also 

vermicompost (Sarkar et al. 2023). Other organic matter amendments such as the rice straw (Tang et al. 2019), 

rice husk (Peyghambarzadeh et al. 2023) give result in a good carbon source but poor nitrogen source. Finally, 

cover crops protect the sun and which we then incorporate superficially in the soil with roller crimper. If we 

produce more biomass in general, we end up having more organic matter in the sun because the effect of plant 

roots enhances the quality of the soil and ultimately does not reduce the content of organic matter and the 

characteristics of a quality soil (Weinert et al. 2023).  

The technique of green manure, which consists of the winter cultivation of mixtures of leguminous seeds, 

grasses and plant species that are subsequently agitated with a mechanical tool called a roller crimper developed 

for the ecological production of horticulture as a viable alternative in the correct preparation of the fields for 

planting, while favouring the development of rice cultivation to the detriment of that of weeds and improving 

the fertility of the soil while fertilizing it ecologically while reducing fertilization costs. Legumes help increase the 

sustainability of agri-food systems. Through the insertion of legumes through different diversification strategies, 

among them rotations, the association of crops (inter cropping) or even relief cultivation. The development of 

these practices in our systems, and the limitations they currently have. The importance of valuing legumes and 

evaluating the advantages of their introduction in sustainable cropping systems must be highlighted. 

 

4. The Organic Delta Rice Project (ODR) 

The Organic Delta Rice Project raised in front of the necessity to cover the organic rice demand by the rice 

industry. Nowadays, the organic rice market demand is not covered, being necessary the creation of an R+D 

Project in organic rice production. The objectives of the project were (1) to Identify which non-chemical weeding 

strategies can be effective, (2) to assess the effectiveness of Sulphur or Silicon-based fungicides in controlling 

blast disease in different rice cultivars, and (3) to evaluate the organic fertilizers efficiency for organic rice 

production systems. 
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  The most relevant innovations will be develop in a “good practices” guide for the organic rice farmers. 

The agronomic limitations of the organic production made necessary the collaboration of the rice industry, 

research centres and public administrations to successfully reach the objectives (Figure 17).   

 

                       Figure 17: Stakeholders and structure of the Organic Delta Rice Project. 

The ODR Project grouped all the stakeholders of rice sector in Ebro Delta for the same reason (organic rice 

production). This relevant fact it is very important because helps reinforce links between them and enhances 

the competitiveness. In the other hand, ODR was a pioneer project that impulse other projects that give 

continuity like Grup Operatiu ECO-de or Vegetal ground cover for margins and drains for organic paddy fields in 

Ebro Delta. The Organic Delta Rice Project began in 2019 and last for 3 years. The trial strategy is a huge challenge 

due to (i) the big complexity of objectives and (ii) reduced timeline. The Project was divided into independent 

work package to come together at the end with an integrate organic rice production techniques (Figure 18).  

 

                       Figure 18: Work breakdown structure of Organic Delta Rice Project 
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The dissemination of Organic Delta Project included journal publications, oral communications and posters in 

congresses, open field days, technical trainings in Ebro Delta and Valencia, tv news, newspapers, and open field 

days and technical seminars to show the most relevant results (View ANNEXES III). 
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The main objective of this Thesis is to study the feasibility of organic rice cultivation in the Ebro Delta.  

The specific objectives on this Thesis are: 

o To investigate which non-chemical weeding strategies are effective under dry-seeding and water-

seeding conditions (chapter I). 

o To assess the effectiveness of Sulphur or Silicon-based fungicides in controlling blast disease in 

different rice cultivars in Ebro Delta conditions (chapter II). 

o To evaluate the efficiency of organic fertilizers for organic rice production systems (chapter III). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

57 

 

 
 

 

 

 

 

 

 

 

CHAPTER I: Non-chemical weed management for 

sustainable rice production in the Ebro Delta 

 

Alfred Palma-Guillén, Miquel Salicrú, Ariadna Nadal, Xavier 
Serrat, Salvador Nogués 

 

 

 

 

 
 

 

 

Submitted to: 

 Weed Research  

 
 

 

 



Feasibility of organic rice cultivation in the Ebro Delta 

58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

59 

 

Non-chemical weed management for sustainable rice 

production in the Ebro Delta 
 

Alfred Palma-Guillén1,2, Miquel Salicrú3, Ariadna Nadal1, Xavier Serrat2*, Salvador Nogués2 

1 AGROSERVEIS.CAT SL, Deltebre, Catalonia, Spain;  

2 Departament de Biologia Evolutiva, Ecologia i Ciències ambientals, Secció de Fisiologia Vegetal, Universitat de 

Barcelona, 08028 Barcelona, Catalonia, Spain;  

3 Departament de Genètica, Microbiologia i Estadística, Secció d’Estadística, Universitat de Barcelona, 08028 

Barcelona, Catalonia, Spain;  

 

ABSTRACT 

Weed control is one of the major challenges in rice cultivation, and the use of agrochemicals in this crop is 

severely restricted under the new European agricultural policy. Therefore, new effective non-chemical weed 

control agents are the key to sustain European rice production. We investigated four non-chemical weed 

management strategies in the Ebro Delta in north-eastern Spain, two in dry-seeded paddy fields and two in 

water-seeded paddy fields. In addition, two controls per sowing conditions were included: a positive control 

consisting in chemical herbicides treatment and a negative control consisting in no weeding and no seeding. In 

all tests but negative controls, the rice variety Argila was employed.  “Simple dry seeding” was the best 

treatment for dry seeding, while “false seeding” (stale seed bed) and planting was the best performing under 

water seeding conditions. Both mentioned treatments were as effective as chemical control in reducing the 

density of weeds and the weeding time for those species more abundant in Ebro Delta paddy fields (i.e. 

Echinochloa oryzoides, Echinochloa crus-galli, Scirpus maritimus and Heteranthera reniformis). Our results 

Indicated that some of the non-chemical weed control methods can reduce weed pressure to levels similar to 

standard chemical herbicide treatments under certain seeding conditions. 

 

 

Key words: Rice farming, weeds, integrated management, barnyard grass, herbicides. 
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1 INTRODUCTION 

Rice is the most important staple food for more than half of the world's population, providing up to 20% of total 

caloric intake. It is the most important staple food for more than half of the world's population, providing up to 

20% of total caloric intake (Das 2017;  Dass et al. 2017). In Europe, it is an important crop with a cultivated area 

of 637,872 ha and an average annual production of over 4 million tonnes of paddy rice (FAOSTAT 2022). Spain 

is the second largest European rice producer next to Italy. In 2021, Spain produced 617,180 tonnes of paddy rice 

on more than 84,680 ha, representing about 20% of European production (FAOSTAT 2022). 

Agrochemical inputs are used in conventional agricultural production systems to achieve high yields. 

Unfortunately, this practise leads to an increase in production costs, dependence on non-renewable resources, 

biodiversity loss, water pollution, chemically contaminated food, soil degradation, and risks to farmers' health 

(De Wit and Verhoog 2007;  Reganold and Wachter 2016;  Suwanmaneepong et al. 2020;  Willer et al. 2018;  

Willer et al. 2019). 

Spain is the leading European country in terms of cultivated area for organic food production (2,246,475 ha) 

(FIBL, 2020). However, only 1,300 ha of organic rice are grown in Spain (less than 1.3% of the rice area), and only 

0.8% of Spanish rice is marketed under organic certification. Thus, the current demand for organic rice in Spain 

(and all of Europe) is driven by Italy. Spanish farmers generally avoid organic rice production because of difficulty 

in managing weeds (Mañosa et al. 2001). In fact, weed control is one of the major challenges in organic rice 

production  (Hoosain et al. 2013). 

Manual weeding in direct-seeded paddy fields is not economically viable, and qualified weeding personnel are 

scarce because the work is physically demanding. Water control is an important land management tool to reduce 

the diversity and density of weed species that affect rice crop yields (Zhang et al. 2021). Farmers usually apply 

direct water-seeding technique shortly after performing the stale seed bed technique. This involves flooding the 

rice field to induce the first generation of weeds to emerge, which are then eliminated by mechanical puddling 

with a rotovator or herbicide treatment before rice sowing (Català 1995). This technique implies a delay in rice 

sowing, which jeopardises the production of long-cycle varieties due to low temperatures during rice 

maturation. In addition, the stale seedbed technique increases the risk of rice seed loss due to chironomids. 

Weed competition was the main factor affecting yield for both conventional and organic systems (Delmotte et 

al. 2011b;  Reddy et al. 2023). Weed proliferation during rice cultivation is determined by climatic and edaphic 

conditions, as well as the quality of the irrigation water (Ampong-Nyarko and De Datta 1991;  Crafts and Robbins 

1963;  Kendig et al. 2003;  Labrada et al. 1996;  Scott et al. 2013;  Smith 1977). Weeds proliferate in cultivated 

paddy fields because rice paddies are usually created by converting drylands to artificially flooded wetlands, 

which therefore lack native flora adapted to flooding (Osuna et al., 2012). With Echinochloa spp., Leptochloa 
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spp., Oryza sativa f. spontanea (red rice), Cyperus spp., Heteranthera spp. and Alisma plantago-aquatica are the 

main weeds in Spanish paddy fields (Osuna et al. 2012). In addition,  E. crus-galli and E. oryzoides are the most 

problematic weeds in the Ebro Delta, (Lillebø et al. 2003) as spontaneous herbicide-resistant populations have 

emerged due to repeated applications of herbicides with the same modes of action (Barreda 2021). In fact, 

misuse of herbicide treatments and a reduction in the chemical modes of action targeted by commercially 

available herbicides have led to increased diversification of herbicide-resistant weeds (Osuna et al. 2012) and 

overpopulations of apple snails (Martínez-Eixarch et al. 2017;  Zhiyu et al. 2011).  

Maintaining weed density at a level low enough to avoid the threshold for herbicide treatment is difficult even 

in conventional rice production (Barreda 2021). Therefore, new weed control methods need to be developed, 

not only for conventional rice production, and especially for organic rice production, where the use of synthetic 

herbicides is explicitly prohibited. Innovations in seeding and mechanical weed control or planting represent 

opportunities for both organic and conventional rice production. In addition, organic agrochemical products and 

organic farming technologies are more sustainable, even though they require greater inputs, knowledge, and 

skills (Hoosain et al. 2013). 

It is worth noting that rice is the most salt-sensitive cereal crop (Negrão et al. 2011) and its cultivation is 

particularly vulnerable to salt stress. In the Ebro Delta, some farmers have experimented with dry seeding and 

cultivated heavily salinized fields. Farmers were forced to use dry seeding to prevent infestation by apple snails, 

which invaded the Ebro Delta in 2009 (Català et al. 2010;  Lopez et al. 2010;  Pérez Pons 2012). The apple snail 

remains underground during the winter until the fields are flooded in the spring, at which time it becomes active 

and can completely scavenge a field seeded with water. In contrast, with dry seeding, the snails become active 

once the rice seedlings have grown to the point where they are less palatable than the germinating weeds 

(Franquet Bernis 2018). The same positive effect of dry seeding has been observed on chironomids (aquatic 

diptera larvae), which are considered key pests in rice cultivation and attack plant roots during the rice plantlet 

establishment phase. Early flooding combined with late seeding when soil and water temperatures are already 

warm also favours heavy chironomid infestations. The traditional puddling during the stale seed bed flooding 

destroys the first generation of weeds and interrupts up the chironomid life cycle, delaying the undesirable 

effects of chironomids (Català 2011;  Franquet Bernis 2018). However, stale seed bed flooding and puddling 

does not prevent apple snail activity and does not control chironomids to the same extent as dry seeding. 

Nowadays, dry seeding is applied to about 10% of the paddy fields in the Ebro Delta (about 2,000 ha) specially 

in less-saline paddy fields, using the same technique used for other cereals, since rice seed can germinate 

without flooding, simply using the moisture present in the soil. In addition, dry seeding allows seedlings to be 

sown in rows, which is not possible with water-seeding rice (Franquet Bernis 2018). 
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Seedlings growing in rows create corridors where the first generation of weeds (mainly grassy weeds) can be 

easily weeded manually or mechanically  (Ma Xu 2011). For mechanical weeding, a harrow can be used, although 

a rotovator or even a roller are alternative tools for weeding between rows. Harrows can be easily adapted to 

dry seeding in rows while the rotovator commonly used in the stale seed bed would be more difficult to work 

with among rice seedlings already growing in rows. Roller weeders or power weeders are useful weeding tools 

in planted (non-seeded) or in row-seeded crops. A grass harrow (with flexible tines) could be useful after dry 

seeding, although these are useless when fields are flooded. 

In this work, we analyse the dynamics of weed species in different plots subjected to different treatments for 

weed control in rice cropping systems in the Ebro Delta. The objective of this work is to investigate which non-

chemical strategies can be used to reduce the number of weeds in paddy fields, using both dry-seeding and 

water-seeding, since the conditions for grass emergence are very different.  

2 MATERIALS AND METHODS 

2.1 Experiment design 

This study was conducted in a farmer’s field in the Ebro Delta (Tarragona, Spain) with an average annual 

temperature of 18º C and an annual precipitation of 500 mm. The experimental field (40º 42' 40''N 0º 37' 41''E) 

was a loamy-textured rice field with pH 7.9, CEC 1.13 dS·m-1, 2.39% OM, 14.1 N-NO3 mg·kg-1 and 23 mg P·kg-1. 

Seeds of the temperate Japonica rice (Oryza sativa) variety Argila were provided by COPSEMAR (Valencia, Spain). 

Six different dry-seeding and water-seeding weed control treatments were applied for two consecutive years 

(Table 1) from May to October. The area of each of the plot was 8 x 30 m with independent water inlets and 

outlets and a 1.5 m wide land embankment surrounding each plot.  

The experimental fields had not been treated with herbicides in the previous two years, and there was no cross-

contamination from other adjacent fields. In addition, the weeds from the seed bank were qualitatively and 

quantitatively representative of the rice species present in the Ebro delta. 

2.2 Experimental procedures 

In our study, a total of eight weed control treatments tested during two consecutive years (Table SM1). Four 

non-chemical weed control treatments were tested. In addition, control treatments were also evaluated, two of 

which were managed as if they were dry-seeded and water-seeded plots, respectively, but without seeding rice 

(i.e., DSC dry-seeding control and WSC water-seeding control, respectively). These treatments were included to 

attain the maximum weed incidence and to determine the seed bank in each plot. The two remaining control 

treatments consisted of standard dry seeding and water seeding using herbicides commonly used by farmers in 

conventional rice production in Spain (i.e., DSH and WSH, respectively). In dry seeding, the seeding rate was 205 
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kg·ha-1 and 25 cm row spacing, while in water-seeding it was 274 kg·ha-1 to achieve optimal plant density. The 

weed control methods were named as follows: (1) dry seed control (DSC), (2) simple dry seed (SDS), (3) dry seed 

with supplemental irrigation (DSI), (4) dry seed with herbicide (DSH), (5) water seed control (WSC), (6) false 

seeding (stale seedbed) and water seeding (FSW), (7) false seeding (stale seedbed) and planting (FSP), (8) water 

seeding and herbicide (WSH) (Table SM1 in supplementary material). 

All plots in the experimental plots were fertilised with 800 kg·ha-1 POLYSOL (2-6-10) as a basal dressing 

application. Dry-seeding plots (Table SM1) were fertilised with 400 kg·ha-1 (NH4)2SO4 45 days after seeding (DAS), 

400 kg·ha-1 (NH4)2SO4 at 60 DAS, and 200 kg·ha-1 (NH4)2SO4 at 75 DAS, for a combined total of 236 kg·ha-1 total 

N. In the case of the water-seeded rice (Table 1), the basal fertilisation was supplemented with 400 kg·ha-1 

(NH4)2SO4 at 25 DAS (before flooding) and 250 kg·ha-1 (NH4)2SO4 at 50 DAS, for a combined total of 250 kg·ha-1 

total N. 

2.3 Data collection 

Weeds were identified per species and the plant densities were scored by using a 0.418 m2 quadrat at different 

stages of weed growth. A final total weed scoring was performed by a human worker that exhaustively scored 

the number of plants per plot and species during a complete manual weeding in late July. In addition, the time 

required for manual weeding per surface was scored for each treatment. 

Weed control efficacy was quantified by the percent of weeds that did not emerge per treatment compared to 

the unseeded control plot R = ((C-E)/C) x 100, where R is the percent of weed reduction, C is the number of 

emerged weeds in the control plot, and E is the number that emerged in the treatment plot (Abbott 1925). When 

evaluating the occurrence of the aquatic weed Heteranthera reniformis, it was necessary to calculate the weed 

volume in litres per square metre (l·m-2) rather than the number of seedlings per area because of its biology.  

For 2019, grain yield was estimated as follow: rice was manually mowed from placing randomly a circular surface 

of 0.418 m2 and the results obtained were proportionally estimated to a plot size equivalent to 1 Ha based on 

the potential yield of the paddy fields. The grains and straw were threshed using a Kubota SRM27 harvester 

(Osaka, Japan), and the weight was recorded using a scale.  

2.4 Statistical analysis 

A three-factor design with double interactions was used to contrast the effects of treatment, species and year 

on the number of weeds per m2 observed in the field. The Fisher-Snedecor (F) statistic was used for multiple 

comparisons of the levels of each factor. When significant differences were found for a factor, pairwise 

comparisons were made using Tukey's test and overlapping confidence intervals. The robustness of the statistics 

used was ensured by checking the validity conditions of the model or by checking the unimodality of the 
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residuals. In addition, the Durbin-Watson statistic was used to check the independence of the sample values. 

The study with this design was conducted for dry and water water-seeding. The software used was Statgraphics 

Centurion XVIII software (Statistical Graphics Corp., Rockville, MD, USA).  

3 RESULTS 

3.1 Weed occurrence in dry-seeding 

In dry seeding, statistical analysis of the results allowed the detection of significant differences between 

treatments (p<0.0001), between weed species (p<0.0001), in treatment-species interaction (p=0.0001) and in 

treatment-year interaction (p =0.0440). On the other hand, no significant differences were observed between 

years (p=0.7033) and no significant differences were observed in the species-year interaction (in the complete 

design, p=0.9949). This high p-value justifies that the species-year interaction was removed from the model. The 

comparison between treatment pairs showed that the average number of weeds per m2 (plants/m2), was 

significantly higher in the control treatment than in the other treatments (Figure 19a): 

�̅�𝐷𝑆𝐶(9.54) > �̅�𝑆𝐷𝑆(1.73) ≈ �̅�𝐷𝑆𝐼(1.54) ≈ �̅�𝐷𝑆𝐻(0.49)    (1) 

On the other hand, the number of observed plants of the grassy weed species Echinochloa oryzoides (Ard.) 

Fritsch (ECHORY) is significantly higher than that of the species Echinochloa crus-galli (L) Beauv. (ECHCRU) and 

the number of plants observed of the species Oryza sativa. spp. spontanea (L.) (red rice) (ORYSA), Cyperus 

difformis (L.) (CYPDI), Scirpus maritimus (L.) (SCPMA) and Heteranthera reniformis (Ruiz & Pavon) (HETRE) is 

almost residual (Figure 19b): 

 �̅�𝐸𝐶𝐻𝑂𝑅𝑌(11.71) > �̅�𝐸𝐶𝐻𝐶𝑅𝑈(6.68) > �̅�𝑆𝐶𝑃𝑀𝐴(1.02) ≈ �̅�𝑂𝑅𝑌𝑆𝐴(0.52) ≈ �̅�𝐻𝐸𝑇𝑅𝐸(0.02) ≈

�̅�𝐶𝑌𝑃𝐷𝐼(0.00)   (2) 

The interaction between treatments and species showed that the treatments SDS, DSI and DSH were effective 

in reducing the number of plants of the species with the highest abundance in the field (i.e. E. crus-galli and E. 

oryzoides), while they had an almost irrelevant effect when the species were present in residual form (i.e. O. 

sativa spp. spontanea, C. difformis, S. maritimus and H. reniformis). For the most abundant species in the field, 

the efficacy of the treatment relative to the control (i.e., percentage reduction of weeds) was evaluated as 

follows: 85.02% for E. crus-galli  and SDS; 94.34% for E. crus-galli  and DSI; 99.65% for E. crus-galli  and DSH; 

77.48% for E. oryzoides  and SDS; 65.39% for E. oryzoides  and DSI; and 98.62% for E. oryzoides  and DSH (Table 

5). On the other hand, the interaction between treatment and year showed the different effect of climatic 

conditions on the efficiency attributable to the treatments (Figures 19c and 19d). 
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Figure 19: Results for the dry-seeding treatments a) weed density of all species average of both 
years: Dry seeding control (DSC), simple dry seeding (SDS), dry seeding with supplemental irrigation 
(DSI) and dry seeding with herbicide (DSH). b) weed density of all treatments average of both years: 
Echinochloa crus-galli (ECHCRU), Echinochloa oryzoides (ECHORY), Oryza sativa. spp. spontanea 
(ORYSA), Cyperus difformis (CYPDI), Scirpus maritimus (SCPMA) and Heteranthera reniformis 
(HETRE). c) weed density per treatment and specie average of both years: WSC (black), FSW 
(incrementing line), FSP (grey cross line) and WSH (decreasing line) d) weed density in each 
treatment per year: 2019 (white) and 2020 (increasing line). 

3.2 Weeding time in dry-seeding 

The statistical analysis of the experimental results for weeding time (hours/Ha) has highlighted the significance 

of the treatment (p<0.0001), weed species (p<0.0001) and the treatment-species interaction (p=0.0001). On the 

other hand, no significant differences were observed between years (p=0.4663) nor in the treatment-year 

interactions (p=0.1441) and species-year interactions (p=0.2333). The contrast between pairs in weeding time 

has provided similar results to those obtained in the number of weeds. In treatments (Figure 21a),  

    �̅�𝐷𝑆𝐶(93.45) > �̅�𝑆𝐷𝑆(17.88) ≈ �̅�𝐷𝑆𝐼(15.28) ≈ �̅�𝐷𝑆𝐻(9.92)  (3) 
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and in species (Figure 21b),  

�̅�𝐸𝐶𝐻𝑂𝑅𝑌(120.64) > �̅�𝐸𝐶𝐻𝐶𝑅𝑈(60.41) > �̅�𝑂𝑅𝑌𝑆𝐴(14.38) ≈ �̅�𝑆𝐶𝑃𝑀𝐴(7.32) ≈ �̅�𝐻𝐸𝑇𝑅𝐸(2.06) ≈ �̅�𝐶𝑌𝑃𝐷𝐼(0.00)  (4) 

The treatment-species interaction has also shown that the SDS, DSI and DSH treatments are effective in reducing 

weeding time for species with more presence in the field (i.e. E. crus-galli and E. oryzoides), but treatments have 

almost an irrelevant effect when the species are present in residual form (i.e. S. maritimus, O. sativa spp. 

spontanea, H. reniformis and C. difformis) (Figures 21c).  

3.3 Weed occurrence in water-seeding 

For water seeding, significant differences have been found between treatments (p<0.0001), between weed 

species (p<0.0001), between years (p=0.0214) and in the treatment-species interaction (p=0.0001) and the 

species-years interaction (p=0.0363). On the other hand, no differences were observed in the treatment-year 

interaction (p=0.4389). The contrast between pairs of treatments has shown that the average of weeds observed 

per m2 in the control treatment is significantly higher than the average observed in the other treatments (Figure 

20a): 

           �̅�𝑊𝑆𝐶(23.67) > �̅�𝐹𝑆𝑊(5.00) ≈ �̅�𝐹𝑆𝑃(4.19) ≈ �̅�𝑊𝑆𝐻(0.48)   (5) 

The number of plants observed per m2 of S. maritimus and H. reniformis species is significantly higher than that 

of the other species. For water-seeding, the differences between S. maritimus and H. reniformis species are 

statistically significant and the number of plants observed of the E. crus-galli, E. oryzoides, O. sativa. spp. 

spontanea and C. difformis species is almost residual (Figure 20b): 

 �̅�𝑆𝐶𝑃𝑀𝐴(30.18) > �̅�𝐻𝐸𝑇𝑅𝐸(14.23) > �̅�𝐸𝐶𝐻𝐶𝑅𝑈(2.37) ≈ �̅�𝐸𝐶𝐻𝑂𝑅𝑌(1.41) ≈ �̅�𝐶𝑌𝑃𝐷𝐼(1.38) ≈ �̅�𝑂𝑅𝑌𝑆𝐴(0.46)   (6) 

Further, the number of plants observed in 2020 is significantly higher than that observed in 2019 (𝑁2020(11.41) >

𝑁2019(5.26)) and this effect occurs in all the treatments studied (Figure 20d).  

The treatment-species interaction has shown that the treatments FSW, FSP and WSH are effective in reducing 

the number of plants of the majority species (i.e. S. maritimus) and reduce or stabilize the number of the H. 

reniformis species. Regarding the most residual species (i.e. E. crus-galli, E. oryzoides, O. sativa. spp. spontanea 

and C. difformis), the effect is almost irrelevant (Figure 20c). For the species most abundant in the field, the 

efficiency per treatment in relation to the control has been evaluated as follows; 90.56% for S. maritimus and 

FSW; 85.61% for S. maritimus and FSP; 98.44% for S. maritimus and WSH; 19.31% for H. reniformis and FSW; 

59.82% for H. reniformis and FSP; and 97.71% for H. reniformis and WSH. Similarly, the species-year interaction 

showed the differences observed between the majority species and the residual species (Table 6). 
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Figure 20: Results for the water-seeding treatments a) weed density of all species average of both 
years: Water seeding control (WSC), stale seedbed followed and water seeding (FSW), stale 
seedbed and planting (FSP) and water seeding with herbicide (WSH). b) weed density of all 
treatments average of both years: Echinochloa crus-galli (ECHCRU), Echinochloa oryzoides 
(ECHORY), Oryza sativa. spp. spontanea (ORYSA), Cyperus difformis (CYPDI), Scirpus maritimus 
(SCPMA) and Heteranthera reniformis (HETRE). c) weed density per treatment and specie average 
of both years: WSC (black), FSW (incrementing line), FSP (grey cross line) and WSH (decreasing line) 
d) weed density in each treatment per year: 2019 (white) and 2020 (dashed line). 

3.4. Manual weeding costs in water-seeding 

The statistical treatment of the experimental results during the weeding time has revealed the significance of 

the treatment (p<0.0001), the weed species (p<0.0001) and the treatment-species interaction (p=0.0097). On 

the On the contrary, no significant differences were observed between the years (p=0.5263). The interactions 

treatment-year (p=0.8056) and species-year (p=0.9993) have been removed from the statistic model. The 

contrast between pairs in weeding time has provided results compatible with those obtained in the number of 

weeds. In treatments (Figure 21d),  

   �̅�𝑊𝑆𝐶(170.26) > �̅�𝐹𝑆𝑃(47.75) ≈ �̅�𝐹𝑆𝑊(36.92) ≈ �̅�𝑊𝑆𝐻(16.29)  (7) 
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and in species (Figure 21e), 

        �̅�𝐻𝐸𝑇𝑅𝐸(169.82) ≈ �̅�𝑆𝐶𝑃𝑀𝐴(149.05) > �̅�𝐸𝐶𝐻𝐶𝑅𝑈(29.43) ≈ �̅�𝐶𝑌𝑃𝐷𝐼(25.49) ≈ 𝑇𝐸𝐶𝐻𝑂𝑅𝑌(24.63) ≈

�̅�𝑂𝑅𝑌𝑆𝐴(8.41)   (8) 

The treatment-species interaction has also shown that the FSW, FSP and WSH treatments are effective in 

reducing the number of plants of the majority species (S. maritimus) and reduce or stabilize the number of plants 

of the H. reniformis species (Figure 21f). 

3.5 Potential grain yield   

For dry-seeding, the estimated (potential) yield in a commercial plot has been evaluated as follows (�̅� ± 𝑠): 

10586 ± 1741 Kg·Ha-1 for SDS; 7540 ± 537 Kg·Ha-1 for DSI; and 11899 ± 780 Kg·Ha-1 for DSH. For water-seeding, 

the estimated (potential) yield has been evaluated as follows: 11452 ± 750 Kg·Ha-1 for FSW; 11163 ± 234 Kg·Ha-

1 for FSP; and 10801 ± 659 Kg·Ha-1 for WSH.  

4 DISCUSSION 

The non-chemical treatments are very efficient in reducing the number of weeds and the weeding time. In dry-

seeding and water-seeding conditions no significant differences were observed between the chemical and non-

chemical control treatments (Figures 19a, 20a, 21a and 22a). The negative controls gave not only an idea of the 

diversity and density of all weed species in the fields, but also gave a picture of the effects of the sowing strategy 

in the weed species proliferation. In detail, E. crus-galli and E. oryzoides were the most abundant weed species 

when dry-seeding (Figures 19b and 19c), while S. maritimus and H. reniformis were the most abundant weed 

species in the case of water-seeding (Figures 20b and 20c). 

In dry-seeding, both (SDS and DSI) non-chemical weeding treatments were effective not only in reducing the 

weed densities, but also the weeding time for the most abundant weed species E. crus-galli and E. oryzoides. 

The species of this genus have high intra- and interspecific variability, with many ecotypes. Its competitiveness 

is also explained by the prolific generation of seeds and rapid vegetative growth (Masum et al. 2022). As 

expected, SDS and DSI treatments were less efficient for those residual weed species (i.e. O. sativa spp. 

spontanea, C. difformis S. maritimus and H. reniformis) (Figure 1c). Both treatments better controlled E. crus-

galli than E. oryzoides and it would be good to even improve them to better control E. oryzoides.  

Regarding the potential yield, there are significant differences between non-supplemental irrigation SDS (10,586 

kg·ha-1) and supplemental irrigation previous to dry seeding DSI (7,540 kg·ha-1). Irrigating before dry seeding 

could be a good option when the soil is too dry, and we aim display weeds emergence to later kill them 

chemically or mechanically (Català, 1995). In our case, the sudden solubilization of crystalized salt patches 
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strongly affected the rice seedlings germination and establishment. Thus, DSI better controlled the weeds 

although the potential yield was clearly lower than in SDS, due to an excess of salinity. The economic thresholds 

defined in weed management models (Das et al. 2021) could explain similar potential yields between SDS 

(10,586 kg·ha-1) and DSH (11,899 kg·ha-1) treatments. The yield is not affected under a certain weed pressure 

threshold as stated by many authors (Munnoli et al. 2023). Indeed, SDS is the common practice in dry seeding 

in Ebro Delta (Franquet Bernis, 2018). In this current work, the rotatory harrow placed in front of the seeder 

tractor effectively reduced the first generation weed.  

S. maritimus and H. reniformis were the most abundant weed species after water-seeding (Figure 2b and 2c). 

These species have been documented in paddy fields in Europe (Campagna et al. 2022;  Carretero 2004;  Gussev 

et al. 2020), Southeast Asia (Caton 2010;  Pacanoski and Mehmeti 2023) and America (Kraehmer et al. 2016). 

The high abundance of S. maritimus  in Ebro Delta flooded paddy fields can be explained by its fast sprouting 

from tubers and its high salt-tolerance, which both give an initial advantage in front of rice and other weed 

species (Lillebø et al. 2003), although its reproduction based in tubers reduces its spatial dispersion (Charpentier 

et al. 2000). On the contrary, H. reniformis competitivity can be explained by its propagation capacity based in 

high seed production with a stepwise germination specially adapted to aquatic environments (Csurhes and Zhou 

2008;  Ferrero 1996;  Zaidan et al. 2021). For weed species that are more prevalent in the field, chemical and 

non-chemical treatments are successful in reducing weed densities; however, when the species are not 

abundant, the effects of treatments are less effective. For the most abundant weed species, the efficacy of the 

FSW and FSP treatments is almost the same (Figures 20a, 20b and 20c). 

Chemical (WSH control) and non-chemical (FSW and FSP) weed control practices have negligible differences in 

water-seeded potential productions: 11452 kg·ha-1 (FSW), 11163 kg·ha-1 (FSP) and 10801 kg·ha-1 (WSH). Again, 

the weed density thresholds affecting the rice yield are high (Das et al., 2021) and can explain why there’s no 

effects in production. In India, the yield reductions derived from weeds competence in fields managed following 

FSW is higher than in FSP (Kumar et al. 2023). Mechanical planting permits mechanised weeding between rows 

and eases manual weeding (Pipeng et al. 2021), thus reducing the need of herbicides (Liu et al. 2023). In contrast, 

small weeding rollers for small tractors have been widely used in Japan for years (Shibayama 1994, 2001). 

Indeed, FSW was an old-fashioned standard water-seeding technique now replaced by pre-emergence herbicide 

treatments (Carreres 2013).  

Gloria Extratropical cyclone in 2020 increased substantially the precipitation (Amores et al. 2020) during the 

second year of the study, flooding the fields in February, March and firsts April, and delaying all the fields 

preparation tasks and sowing (Figure 22). The delayed sowing affected rice production and favoured migratory 

birds rice predation at the end of the season. This exceptional event could partly explain the differences that 

have been observed between the years 2019 and 2020. Without significant differences in the average of the 
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treatments (chemical and non-chemical), the number of weeds observed in crops with no chemical treatment 

was lower than or equal to that observed in crops with chemical treatment in 2019. In 2020, the result has been 

reversed (Figure 19d and 20d). 

5 CONCLUSIONS 

All of the non-chemical treatments were quite effective at reducing the number of weeds and the amount of 

time spent weeding. In the Ebro Delta, simple dry seeding (SDS) was the best dry-seeding treatment and could 

compete with herbicide-based common weeding method (DSH). False seeding and water seeding (FSW) and 

false seeding and planting (FSP) approaches can compete with the herbicide-based chemical method (WSH) in 

water-seeding. Our findings demonstrated that dry seeding favoured grassland weeds such as E. crus-galli, E. 

oryzoides, while discouraging sedges and aquatic weeds. On the contrary, in water-seeding treatments, 

cyperaceae and aquatic plants (S. maritimus, C. difformis and H. reniformis) are favoured and grasses are still a 

problem in the paddy fields. There are some encouraging outcomes, including the fact that non-chemical weed 

treatments increase control and produce results comparable to chemical treatments. 

We are reporting on various non-chemical weeding techniques that can effectively control weeds at close levels 

of herbicide treatments. The proposed non-chemical weeding options represent better improvement over the 

chemical ones in the case of water-seeding than in the case of dry seeding. For weeding rice crops, new precision 

instruments are being developed. For sowing in rows and weeding between rows, all of them will require GPS-

guided tractors. Smart farming for organic rice production is still being researched, and it will assist rice farmers 

in properly weeding their fields. These technological advancements will be critical in increasing organic rice 

output since they will assist both mechanized and human weeding and can be employed in either water or dry 

sowing. We improved non-chemical weed control through innovative seeding techniques and diversified 

cropping practises to contribute to the best integrated weed management. 

The outcomes of this study will benefit both conventional and organic farming methods. As a result, we believe 

that these new and innovative strategies will help to efficiently reduce weed populations in sustainable rice 

cultivation. 
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SUPPORTING INFORMATION 

Table 4: List summarizing different management treatments. DSC plots were managed in the same 
way as the following dry-seeded strategies, although this plot was neither seeded nor weeded. SDS 
plots were dry seeded while weeding with a rotary harrow placed in front of the seeder. DSI plots 
were watered twice before dry-seeding and weeding with a rotary harrow placed in front of the 
seeder. DSI was an additional weeding with a flexible tine harrow on plots. DSH plots were dry 
seeded with a rotary harrow placed in front of the seeder and an herbicide treatment was applied 
before flooding. WSC plots were managed in the same way as the following water-seeded 
strategies, although the parcel was neither weeded nor seeded. FSW plots were flooded and 
puddled using a metallic roller before water seeding. FSW plots were additionally weeded during 
the second year by using an experimental roller frame. FSP plots were flooded and puddled using 
a metallic cylinder before transplanting. WSH plots were weeded using herbicides before water-
seeding. During the first year the FSP parcel was similarly flooded and puddled but transplanted. 
During the second year, the FSP parcel was additionally weeded twice by using a roller frame 
between rows. 

       Code Seeding management treatment 
False 
seeding 

Rice seeding Weeding method 

1 DSC Dry seeding control No No seeding None 

2 SDS Dry-seeding No Dry-seeding Rotovator 

3 DSI Dry-seeding with supplemental irrigation Yes Dry-seeding Rotovator + Flexible tin harrow 

4 DSH Dry-seeding with herbicide No Dry-seeding 
Pendimenthalin (1.880 kg a.i.·ha-1) 
Penoxsulam (0.408 kg a.i.·ha-1) 

5 WSC Water-seeding control No No seeding Puddling roller 

6 FSW Stale seed bed followed by water-seeding Yes Water-seeding Roller weeder 

7 FSP 
Stale seed bed followed by water-seeding 
and planting 

Yes Water-seeding Roller weeder 

8 WSH Water-seeding with herbicide Yes Water-seeding 

Oxadiazon (0.325 kg a.i.·ha-1) 
Penoxsulam (0.410 kg a.i.·ha-1) 
Bentazona (1.150 kg a.i.·ha-1) 
MCPA (0.870 kg a.i.·ha-1) 

(1) Dry-seeding control (DSC). The parcel was tilled and neither seeded nor weeded, so it was 
possible to use this parcel to score the maximum weed incidence per species under the dry-seeding 
method. (2) Simple dry seeding (SDS). Rice was dry-seeded in rows in a tilled plot using a MASCHIO 
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GASPARDO MTR-HD seeder at a 205 kg·ha-1 seeding dose and 25 cm row spacing. A rotary harrow 
placed in front of the seeder was used during seeding. (3) Dry seeding with supplemental irrigation 
(DSI). The tilled plot was watered twice to promote weed germination. Then, dry-seeding of the 
rice in rows using a MASCHIO GASPARDO MTR-HD seeder at a 205 kg·ha-1 seed rate, 25 cm row 
spacing, and a rotary harrow placed in front of the seeder. Dry seeding with flexible tine harrow 
weeding during the second year, the DSI treatment was similarly tilled and dry seeded in rows, but 
an extra weeding with a flexible tine harrow was performed at eight and 15 DAS to remove weeds 
while breaking down the crusted soil that resulted from strong precipitation after seeding. (4) Dry 
seeding with herbicide (DSH). A tilled parcel was dry seeded using a MASCHIO GASPARDO MTR-HD 
seeder at a 205 kg·ha-1 seed rate, 25 cm cm row spacing, and a rotary harrow placed in front of the 
seeder. Before flooding the field, 1.88 kg a.i.·ha-1 Pendimethalin (Pendinova 330 g a.i.·L-1, LAINCO) 
+ 40.8 g a.i.·ha-1 Penoxsulam (Viper 20.4 g a.i.·L-1, CORTEVA AGRISCIENCE) were applied using a 
KUBOTA SPD8 tractor before flooding the field, 41 DAS using 8 m width bars and yellow ALBUZ AXI-
0.15 spray nozzles, 1.4 atm., spray volume 200 l·ha-1, and a 2.5 km·h-1 application speed. The field 
was flooded 4 days later (45 DAS) and the water depth was maintained at 10-15 cm. (5) Water-
seeding control (WSC). The parcel was tilled, and the water was managed in the same way as the 
following water-seeded treatments, although the parcel was neither weeded nor seeded at all, so 
it was possible to use this parcel to score the maximum weed incidence per species under the 
water-seeding method. (6) False seeding (stale seed bed) followed by direct water-seeding (FSW). 
A tilled parcel was flooded to induce weed emergence and puddled using a metallic roller 30 days 
after flooding (DAF). After four days (34 DAF), the parcel was direct water-seeded using a KUBOTA 
SPD8 seeder at an increased 274 kg·ha-1 seed rate. During the second year, the parcel was 
mechanically weeded at 15 and 30 DAS by using an experimental 3m roller frame capable of 
weeding between rows. (7) False seeding (stale seed bed) and planting (FSP). A tilled parcel was 
flooded and puddled using a metallic cylinder 40 DAF. Then a YANMAR YR8D was used to transplant 
rice seedlings 42 DAF. During the second year, the parcel was weeded twice between rows by using 
a 3m roller frame at 15 and 30 DAS. (8) Water-seeding and herbicide (WSH). Ten days before 
seeding, 0.325 kg·ha-1 Oxadiazon (Ronstar 250 g a.i. L-1, BAYER) was applied and the parcel was 
direct water-seeded using a KUBOTA SPD8 seeder at an increased 274 kg·ha-1 seed rate. Then, 40.8 
g a.i.·ha-1 Penoxsulam was applied 30 DAS, both treatments using a KUBOTA SPD8 tractor having 8 
m width bars and yellow ALBUZ AXI-0.15 spray nozzles, 1.4 atm., spray volume 200 l·ha-1, and 2.5 
km·h-1 application speed. During the second-year assay, a supplemental herbicidal treatment 
consisting of 1.15 kg a.i.·ha-1 of Bentazona (Basagran 870 g a.i.·kg-1, BASF), 0.2 kg a.i.·ha-1 of MCPA 
(MCPA DMA SL, 500 g a.i. L-1, NUFARM) and 34.8 g a.i.·ha-1 of methyl oleate and methyl palmitate 
mixture (DASH HC, 34.8 g a.i.·L-1, BASF) was applied 50 DAS. 

Table 5: Efficacies in reduction weed plants of dry-seeding treatments compared with dry seeded 
control during both years: Dry seeding (SDS), dry seeding with supplemental irrigation (DSI) and 
dry seeding with herbicide (DSH). The efficiency calculation does not apply (n.a.) when the number 
of weeds of the species in the control is 0. 

DS treatments SDS-19 SDS-20 DSI-19 DSI-20 DSH-19 DSH-20 

ECHCRU 99.7 70.3 99.2 89.5 99.9 99.3 

ECHORY 82.7 62.3 98.7 32.0 99.8 97.4 

ORYSA 84.7 n.a. 88.9 n.a 87.4 n.a 

CYPDI n.a n.a n.a n.a n.a n.a 

SCPMA n.a n.a n.a n.a n.a n.a 

HETRE n.a n.a n.a n.a n.a n.a 

 

Table 6: Efficacies in reduction weed plants of water-seeding treatments compared with water 
seeded control during both years: Stale seed bed (false seeding) followed by water seeding (FSW), 
stale seed bed and planting (FSP) and water seeding with herbicide (WSH). The efficiency 
calculation does not apply (n.a.) when the number of weeds of the species in the control is 0. 
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WS treatments FSW-19 FSW-20 FSP-19 FSP-20 WSH-19 WSH-20 

ECHCRU 99.6 100 99.8 96.0 100 95.0 

ECHORY 95.0 100 82.1 86.4 88.1 82.9 

ORYSA 86.8 n.a 91.4 n.a 100 n.a 

CYPDI 98.3 100 95.8 100 100 100 

SCPMA 95.4 87.9 99.7 77.7 98.6 98.4 

HETRE 79.0 -5.6 36.7 69.4 100 96.7 
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Figure 21: Results for the dry-seeding treatments a) weeding time of all species average of both 
years: Dry seeding control (DSC), simple dry seeding (SDS), dry seeding with supplemental irrigation 
(DSI) and dry seeding with herbicide (DSH). b) weed incidence of all treatments average of both 
years: Echinochloa crus-galli (ECHCRU), Echinochloa oryzoides (ECHORY), Oryza sativa. spp. 
spontanea (ORYSA), Cyperus difformis (CYPDI), Scirpus maritimus (SCPMA) and Heteranthera 
reniformis (HETRE). c) weed incidence per treatment and specie average of both years: WSC 
(black), FSW (incrementing line), FSP (grey cross line) and WSH (decreasing line).  Results for the 
water-seeding treatments d) weeding time of all species average of both years: Water seeding 
control (WSC), stale seedbed followed and water seeding (FSW), stale seedbed and planting (FSP) 
and water seeding with herbicide (WSH). e) weed incidence of all treatments average of both years: 
f) weed incidence per treatment and specie average of both years: WSC (black), FSW (incrementing 
line), FSP (grey cross line) and WSH (decreasing line). 

              

Figure 22: Data of climate conditions in Amposta station for years 2019 and 2020: (Left) 
temperature in ºC and relative humidity in percentage, (right) precipitation in mm. 
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Screening of rice cultivars and non-synthetic 

phytosanitaries to control blast in Ebro Delta paddies 
 

Alfred Palma-Guillén1,2*, Ariadna Nadal1, Néstor Pérez-Méndez3, Maria del Mar Català-Forner3, Salvador 

Nogués2, and Xavier Serrat 2. 

1 AGROSERVEIS.CAT SL, Polígon Industrial Les Molines, Parcel·la 2.1, 43580 Deltebre, Tarragona, Spain; 

2 Departament de Biologia Evolutiva, Ecologia i Ciències ambientals, Secció de Fisiologia Vegetal, Universitat de 

Barcelona, 08028 Barcelona, Spain  

3 IRTA-Amposta, Ctra. Balada Km1, 43870, Amposta, Tarragona, Spain 

ABSTRACT 

Rice blast (Magnaporthe grisea (Herbert) Barr, anamorph Pyricularia grisea Sacc., synonym P. oryzae Carava) 

represents one of the worst rice diseases (Ebbole 2007). The application of synthetic fungicides is the main 

method for blast control, yet not allowed for organic rice farming. As alternative, Sulphur and silica-based 

commercial fungicides might effectively control rice blast in organic farming without contributing to adverse 

effects on rice growth, yet evidence on their efficacy across a broad range of Japonica rice cultivars is still scarce. 

The objective of this work is to screen blast tolerance in six temperate Japonica rice cultivars while assessing the 

efficacy of Sulphur and silica-based non-synthetic fungicides for blast control. The experiment was performed 

during both two years (2019-2020), with a Completely Randomized Block Design (CRBD) arranged in a single 

factor with 4 replications. The most blast-sensitive cultivar was Bomba, followed by Argila, Guara, J. Sendra and 

Montanelli, while V.exp.1 was exceptionally blast tolerant. The only effective non-synthetic fungicide was 

Sulphur at high doses for cultivars with medium blast sensitivity. In contrast, none of the treatments resulted in 

blast-tolerance improvement in either the most blast-tolerant (V.Exp.1) or the most blast-sensitive (Bomba) 

cultivars. We conclude that Sulphur (Thiopron, 82.5 % a.i. L-1, SC, UPL Iberica) at a 7.5 l·ha-1 dose has potential 

to help organic farmers control rice blast. Thiopron fungicide yet being registered and commercialized in Spain 

for rice cultivation. 

 

 

Keywords: Oryza sativa, organic production, fungicides, rice blast, Spain. 
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1 INTRODUCTION 

Globally, there is increasing pressure for a transition towards organic farming systems, but it has been limited 

by certain factors. The control of blast rice is one of the majors constrains because affected directly to rice grain 

yields. Thus, it is necessary the assessment of the strategies available with an organic production that allows 

fungus disease control efficiency. This work analyses a wide class of the Japonica cultivars and non-synthetic 

products blast control in paddy fields.  

The world's growing population is expected to exceed nine billion people by 2050, which poses a critical 

challenge to the conservation of global biodiversity while maintaining food security (Godfray et al. 2010). Rice is 

an important staple food consumed by more than half of the global population. It is cultivated in more than 100 

countries, in which over 1 billion people depend on it for their livelihood, particularly in Asia. Based on the rice 

production quantity data (2020) estimated by the Food and Agriculture Organization of the United Nations 

(FAO), the world production of paddy rice in 2020 was about 758 million tons (Tan et al. 2023a). Rice is not just 

a grain; it is the lifeline and the second most important crop next to wheat at a global level (Tony Cisse 2005). 

Rice can be grown under varying climatic conditions but widely affected by many diseases caused by fungi, 

bacteria, viruses, and mycoplasmas that can results in significant yield losses (Ou 1985).  

The Ebro delta, in northeast Spain is a 320 km2 area with 199 km2 of paddy fields in 2021, representing 62% of 

the Ebro Delta’s surface area (Catalunya, Spain). Rice cultivation is the main economic activity in the delta 

(Genua-Olmedo et al. 2022). Organic food production has been steadily increasing in Catalunya over the past 10 

years (CCPAE 2020b), although organic rice production has not been increasing at the same rate. Production of 

organic crops is characterised by irregular yield and substantial productivity gaps with respect to conventional 

systems (Delmotte et al. 2011a). Unfortunately, transitioning rice to organic production is risky for two main 

reasons: weeds and blast (Agbowuro et al. 2020b;  Hoosain et al. 2013). In the Ebro Delta, rice blast represents 

one of the priorities for farmers due to annual yield losses, but especially the potential yield losses during the 

high blast-incidence years (Català et al. 2008;  Galimany et al. 2006;  Marín et al. 1992).  

The application of synthetic fungicides is currently the main blast control method in use. Although they are 

effective, synthetic fungicides affects to human and environmental health, while driving fungal populations to 

gradually become resistant to the fungicides (Agbowuro et al. 2020b;  Bartlett et al. 2002;  Sella et al. 2021). 

Several molecules with diverse modes of action against rice blast have been developed and registered since the 

1960s (Amoghavarsha et al. 2021). (Kongcharoen et al. 2020;  Lobo 2008;  Mohiddin et al. 2021;  Pak et al. 2017). 

However, management strategies using synthetic fungicides has proven to be ineffective for long-term blast 

control under field conditions (Deng and Naqvi 2019).  
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Additional management strategies relying on more cultural inputs such as the use of blast-resistant cultivars or 

reductions in nitrogen fertilization and plant densities have previously been used. Non-synthetic synthetic 

fungicides such as Sulphur have been used for organic crop cultivation (Khandagave 2023;  van Bruggen et al. 

2016). Sulphur is a common and highly effective fungicide that has been in use in one form or another for a long 

time (Khandagave 2023) Silica is known as an essential element for rice plants and is effective in controlling rice 

blasts (Nakashima et al. 2001). Many researchers have demonstrated that applying Silicon to the soil causes 

greater Silicon concentrations in rice, and as a consequence, an increase in blast resistance (Ishiguro 2001). 

Adequate Silicon fertilization can increase rice yield and mitigates biotic and abiotic stress and improves grain 

quality by lowering the content of cadmium and inorganic arsenic. Silicon is incorporated into structural 

components of rice cell walls where it increases cell and tissue rigidity in the plant (Meharg and Meharg 2015).  

The objective of this work is to assess the efficacy of Sulphur or Silicon-based fungicides in controlling rice blast 

in different rice cultivars in Ebro Delta conditions. The experimental design consisted in a Completely 

Randomized Block Design arranged in a single factor with 4 replications. The cultivar and treatments as fixed 

factors to assess the efficacy of treatments and both percentage of failed panicles and grain yield as variables of 

interest.   

“The combination of Japonica rice cultivars with grain yield potential and non-synthetic phytosanitary will be 

integrated blast management in the organic paddy fields in Ebro Delta”. (1) We expect found Japonica rice 

cultivars with potential grain yield in organic production system. (2) We expect found non-synthetic 

phytosanitaries to control blast failed panicles. (3) We expect found positive interactions between both factors 

Japonica rice cultivars and non-synthetic phytosanitaries.  

2 MATERIAL AND METHODS 

2.1 Fungicide applications 

The first application was performed before the flag leaf sheath opening stage BBCH 32-45 (Lancashire et al. 

1991), the second application was performed at the end of the panicle emergence stage (BBCH 49-59), and the 

last application was carried out at the early dough stage (BBCH 55-71). Thiopron was applied at two different 

doses: 7.5 litres ·ha-1 (high dose) and 6 litres ·ha-1 (low dose). In turn, diatomaceous earth was applied at a 20 

kg·ha-1 dose. We used a combination of synthetic fungicides as the positive control, which represents the 

maximum potential control for rice blast. Specifically, this strategy included a first application of Amistar top 

(Azoxistrobin 20% a.i. litre-1 + Difenoconazol 12.5% a.i. litre -1, WP, Syngenta), a second application of Flint 

(Trifloxistrobin 50% a.i. litre-1, WG, Bayer Crop Science) and a third application of Ortiva (Azoxistrobin 25% a.i. 

litre-1, WP, Syngenta) at commercial doses. We additionally used a negative control treatment, resulting from 

the no application of fungicide products, which can be used to assess the susceptibility of the different cultivars 
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to rice blast. The application of synthetic fungicide and both Sulphur doses was achieved using a Kubota SPD8 

tractor having 4 m wide booms adapted to the plot and yellow Albuz AXI-0.15 spray nozzles, 2.2 atm., spray 

volume 300 litre·ha-1 and 2.5 km·h-1 application speed. The application of diatomaceous earth was achieved 

using Stihl SR-450 motorized backpack sprayer (Stihl, Inc., Virginia Beach, VA) on setting ensure complete leaf 

coverage, with a flow rate of 1.30 m3·h and 2,5 km·h-1 application speed.  

2.2 Experimental design 

The research was performed in the Delta del Ebro (Tarragona, Spain), having an 18º C average yearly 

temperature and 500 mm precipitation. The experimental field was a rice paddy with silty clay loam texture, pH 

7.9, CEC 1.13 dS·m-1, 2.39% OM, 14.1 N-NO3 mg·kg-1 and 23 mg P·kg-1. The experiment was performed during 

two consecutive years (2019-2020), including six of the most widely used temperate Japonica rice cultivars in 

the Ebro Delta: Argila - Nº 10866 – Semillas certificadas Castells S.L. – Tarragona (Spain), Bomba – free license, 

Guara – free license, J.Sendra – Nº 12627 – Coop. Productores semillas de arroz SCL Copsemar – Valencia – 

(Spain), Montsianell – Nº 14420 – Coop. Productores semillas de arroz SCL Copsemar – Valencia – (Spain) and 

V.Exp 1 – Confidential (the latter deidentified for confidentiality). The non-synthetic fungicides were Thiopron, 

(Sulphur 82.5 % a.i.  litre -1, SC, UPL Iberica) and diatomaceous earth (15,5% Silicon, DP) 

The experimental design consisted in a Completely Randomized Block Design arranged in a single factor with 4 

replications. We overall established 120 experimental plots (6 x 5 m) with 4 replicates, resulting from the 

combination of 6 Japonica rice cultivars, 4 fungicide treatments and non-treated plot. Experimental plots were 

spaced by a 1 m buffer zone to avoid fungicide run-offs. We used a water seeding strategy by using a commercial 

seeder (Kubota SPD8). The sowing density was 205 kg·ha-1 for all cultivars except for Bomba 103 kg·ha-1.  

2.3 Other applications 

All plots were fertilized using 800 kg·ha-1 Polysol (2-6-10) basic dressing supplemented with 400 kg·ha-1 (NH4)2SO4 

25 days after sowing (before flooding) and 250 kg·ha-1 (NH4)2SO4 50 days after sowing, which represents 217 

kg·ha-1 total nitrogen.  A standard 1.3 litres·ha-1 pre-emergence herbicide treatment with oxadiazon (Ronstar 25 

EC, 250 g a.i. litre-1, EC, Bayer) was applied ten days before seeding and 2 l·ha-1 pre-emergence herbicide 

treatment with penoxsulam (Viper, 2.04 g a.i. litre-1, OD, Dow Agroscience Iberica) was applied 20 days before 

seeding using a Kubota SPD8 tractor having 8 m wide booms adapted to the plot and yellow Albuz AXI-0.15 spray 

nozzles, 1.4 atm., spray volume 200 litre·ha-1 and 2.5 km·h-1 application speed. Manual weeding was also 

necessary 45-50 days after seeding using sickle to remove weed.    

2.4 Data collection 
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The incidence was calculated by scoring the number of blast-affected panicles with blast disease symptoms 

(necrosis) in collar or/and neck. While the severity of the panicle blast attack was recorded based in four-

category scale: 25, 50, 75 and 100% severity. All assessments were set up in the total area of each plot following 

visual estimation. The number of relative failed panicles was calculated by multiplying the incidence by the 

severity. The efficacy of fungicides was scored on the basis of the reduction in failed panicles between non-

treated and treated plots.  

The grain yield (kg·ha-1) was estimated for each experimental plot by manually harvesting panicles from four 1 

m2 circles per plot. A Kubota RX 1050AD thresher was used to clean up the grain from the straw. Percentage 

grain moisture content was recorded for all the rice samples at harvest during October, with the use of John 

Deere MCXFA1873 grain moisture tester (Manufactured by AgraTronixTM Moisture Chek PlusTM, Deere and 

Company; Batch SW08122, U.S.A.). The rice yield at 14% moisture content was corrected in samples over 14% 

by subtracting 1.2% of the grain weight per 1% excess moisture above 14%. Rice impurities were also scored by 

running two 200 g replicates from each sample through a high-performance AEG grain sorting machine twice 

and weighing the discarded broken grains manually on a scale. 

2.5 Statistical analysis 

To assess the effect of each strategy on the percentage of panicle failure and rice yield across the different rice 

cultivars we applied a set of generalized linear models (GLM) for each of these response variables. Specifically, 

we applied a GLM for each rice cultivar that included the treatment strategy and the experimental year as 

interacting fixed factors to assess whether the efficiency of treatments was consistent between years. In general, 

we used a gaussian distribution of errors in all applied models except for the failed panicle models where the 

number of zeros was disproportionally high. In these models (Montsianell and V. Exp.1) we used a tweedy 

distribution with a log link function, which is intended to deal with data distribution with clustered zeros in 

response variables (Foster and Bravington 2013). Then we applied a poshoc Tukey test to evaluate statistical 

differences among levels of the treatment strategies and years. We used R software (v4.1.2) (R Core Team 2022) 

and the glmm TMB R package to perform all the GLMMs (Brooks et al. 2017). In addition, the DHARMa package 

was used to check for potential patterns in model residuals (Hartig 2020), emmeans for computing contrast 

between factor levels (Lenth et al. 2020), and tydiverse for both data management and visualization (Wickham 

et al. 2019). 

3 RESULTS  

3.1 Cultivar screening 
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Bomba showed the highest percentage of failed panicles 52% in 2019, and 74% in 2020. In contrast, V.Exp.1 was 

the most blast-resistant cultivar in terms of failed panicles, recording less than 1% panicle failure. Argila showed 

a lower percentage of panicle failed than Bomba and higher than V.Exp.1 in both years. Guara, J. Sendra and 

Montsianell showed a similar panicle failure in both years, although Guara tended to perform worse and 

Montsianell better. This group of three cultivars did not show statistically significant differences in failed panicles 

when compared to V.Exp.1 (Figure 23a and 23b). 

3.2 Non-synthetic fungicide screening 

Synthetic fungicide control was the only strategy resulting in a statistically significant reduction in the percentage 

of failed panicles during both years. Even though the high Sulphur treatment also showed a tendency for a 

reduction in the percentage of failed panicles in front of non-treated plot in all cultivars during both years (Figure 

23c and 23d). 

    

        

Figure 23: Blast failed panicles per cultivar in non-treated plot (Control): Argila (white); Bomba 
(lines increasing); Guara (lines decreasing); J. Sendra (cross hatch); Montsianell (horizontal lines) 
and V.Exp.1 (vertical lines) during the first (a) and second (b) years. Blast failed panicles per 
treatment in six Japonica rice cultivars during the first year (c) and second year (d): Chemical 
fungicide (white); high-dose Sulphur (lines increasing); low-dose Sulphur (lines decreasing); 
diatomaceous earth (mixed lines) and non-treated (horizontal lines). Different letters represent 
significant differences at the 95% confidence interval according to the Anova LSD test. 
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3.3 Interactions between non-synthetic fungicides and rice cultivars  

The synthetic fungicide control treatment was the only one that reduced the incidence of blast-affected panicles 

in Bomba (Tables 7 and 8). The blast panicles affected of the non-treated plots were 68-95% for Bomba, 28-75% 

for Argila, 5-21% for Guara, 3-13% for J. Sendra, 3-5% for Montsianell and 1-4% for V.Exp.1 during 2019 and 

2020, respectively (Figure 23a and 23b). High-dose Sulphur had the lowest blast incidence from 22 to 82% for 

the highly blast-sensitive cultivars, from 5% to 75% in the medium blast-sensitive ones and from 0.2 to 2% in the 

low blast-sensitive ones. Diatomaceous earth did not result in a clear reduction in blast incidence when 

compared to the non-treated plots (Tables 7 and 8). 

Table 7: Panicle blast incidence per cultivar and treatment during the first year. Different letters 
represent significant differences at the 95% confidence interval according to the ANOVA LSD test. 

S/No. Treatments Argila Bomba Guara J. Sendra Montsianell V.Exp.1 

1 Chemical Fungicide 4 ± 4 a 30 ± 17 a 2 ± 0.7 a 1 ± 0.5 a 0.4 ± 0.4 a 0.1 ± 0.2 a 

2 High-dose Sulphur 11 ± 6.5 a 22 ± 81.5 ab 5 ± 3.1 ab 1.6 ± 0.3 a 0.8 ± 0.5 a 0.2 ± 0.3 a 

3 Low-dose Sulphur 29 ± 47.1 a 32 ± 91 ab 10 ± 12.3 ab 2 ± 1.3 a 2 ± 1.3 a 0.3 ± 0.4 a 

4 Diatomaceous earth 43 ± 44 a 52 ± 30.7 ab 24 ± 26.8 b 16 ± 24.5 a 14 ± 23 a 0.9 ± 0.3 b 

5 Non-treated  28 ± 23.1 a 68 ± 30.2 b 5 ± 1.8 ab 3 ± 1.4 a 5 ± 4.2 a 1 ± 0.3 ab 

 F 1.71 5.13 1.76 1.05 1.18 2.41 

 CV (%) 120 34 138 234 236 74 

 P-value 0.1974 0.0068 0.185 0.4468 0.3823 0.0861 

 

Table 8: Panicle blast incidence per cultivar and treatment during the second year. Different letters 
represent significant differences at the 95% confidence interval according to the ANOVA LSD test. 

S/No. Treatments Argila Bomba Guara J.Sendra Montsianell V. Exp.1 

1 Chemical Fungicide 25 ± 23.6 a 31 ± 11.1 a 9 ± 6.6 a 3 ± 1 a 1 ± 0.6 ab 1 ± 0.2 a 

2 High-dose Sulphur  42 ± 25.7 ab 82 ± 14.8 b 14 ± 5.8 a 6 ± 1.8 b 1 ± 0.6 ab 2 ± 1.2 ab 

3 Low-dose Sulphur  59 ± 32.9 bc 91 ± 6.8 b 19 ± 8.9 ab 5 ± 1.1 b 1 ± 0.9 ab 2 ± 1 bc 

4 Diatomaceous earth 68 ± 36.8 c 95 ± 3.3 b 40 ± 34.3 b 12 ± 1.2 c 2 ± 0.7 bc 4 ± 1.6 cd 

5 Non-treated 75 ± 39 c 95 ± 3.7 b 21 ± 3.8 ab 13 ± 1.8 c 3 ± 1.2 c 4 ± 2.5 d 

 F 13.47 21.29 2.78 22.02 5.90 6.24 

 CV (%) 26.96 11.40 69.56 18.88 34.38 46.09 

  P-value 0.0001 <0.0001 0.0576 <0.0001 0.0038 0.003 

 

Statically significant differences in blast severity were detected in Argila and Guara panicles between the 

synthetic fungicide and the Sulphur and diatomaceous earth treated and the non-treated plots. Bomba showed 

the highest blast severity, with 100% during the first year and 34-94% in the second year. Both the synthetic 
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fungicide and the high-dose Sulphur resulted in the lowest severity in Montsianell during the first year but not 

in the second year. The high-dose Sulphur showed statistically significant reduced panicle severity in Argila and 

J. Sendra, while low-dose Sulphur showed statistically significant reduced panicle severity in Guara and J. Sendra 

(Tables 9 and 10).  

Table 9: Panicle blast severity per cultivar and treatment during the first year. Different letters 
represent significant differences at the 95% confidence interval according to the ANOVA LSD test. 

S/No. Treatments Argila Bomba Guara J. Sendra Montsianell V.Exp.1 

1 Chemical Fungicide 54 ± 10.7 a 100 ± 0 36 ± 7.4 a 48 ± 16.3 a 44 ± 31.5 a 25 ± 28.9 ab 

2 High-dose Sulphur  86 ± 9.9 b 100 ± 0 78 ± 8.5 bc 63 ± 12.3 ab 44 ± 20.3 a 1 ± 1 a 

3 Low-dose Sulphur  84 ± 8.2 b 100 ± 0 70 ± 13.9 b 63 ± 24.1 ab 59 ± 13.4 ab 16 ± 18.9 a 

4 Diatomaceous earth 81 ± 13.2 b 100 ± 0 70 ± 9.7 b 60 ± 15.9 ab 77 ± 26.3 b 63 ± 39 b 

5 Non-treated  81 ± 7.8 b 100 ± 0 86 ± 7.1 c 77 ± 12.9 b 62 ± 13.7 ab 20 ± 23.2 a 

 F 4.10 sd 9.98 1.42 2.88 1.65 

 CV (%) 13.28 0.00 13.94 26.43 31.67 112.55 

  P-value 0.0159 sd 0.0004 0.2813 0.0518 0.2137 

 

Table 10: Panicle blast severity per cultivar and treatment during the second year. Different letters 
represent significant differences at the 95% confidence interval according to the ANOVA LSD test. 

 

  

 

 

 

 

Bomba showed the highest percentage of failed panicles at 30-68% in 2019 and 12-96% in 2020, showing 

statistically significant differences when compared to the non-treated and synthetic fungicide treated plots. For 

Guara, J. Sendra and Montsianell there were low percentages of failed panicles during the first year, while during 

the second year this percentage slightly increased. The V.Exp.1 cultivar exhibited the lowest proportion of failed 

panicles, with values close to zero. There was a lower number of panicle failure in Argila, Guara and Montsianell 

varieties when Sulphur was applied at any dose (Figure 24).  

S/No. Treatments Argila Bomba Guara J. Sendra Montsianell V. Exp.1 

1 Chemical Fungicide 37 ± 28.5 a 34 ± 13.8 a 36 ± 4 a 35 ± 5 a 58 ± 29 a 27 ± 4.2 a 

2 High-dose Sulphur  68 ± 21.8 b 76 ± 24.4 b 61 ± 21.3 bc 42 ± 11.7 ab 75 ± 20.4 a 41 ± 17.2 ab 

3 Low-dose Sulphur  77 ± 15.8 bc 88 ± 10.4 b 59 ± 16.8 b 44 ± 7 b 53 ± 17.8 a 44 ± 3.3 b 

4 Diatomaceous earth 80 ± 14.1 bc 94 ± 3.4 b 72 ± 11.5 c 60 ± 13.6 c 57 ± 22.6 a 42 ± 5.7 ab 

5 Non-treated 88 ± 10.7 c 93 ± 3.9 b 70 ± 20.9 bc 57 ± 12 c 60 ± 18.9 a 47 ± 15.8 b 

 F 16.45 8.88 15.26 17.38 1.39 2.16 

 CV (%) 13.73 17.16 13.00 10.41 32.57 25.29 

  P-value <0.0001 0.0006 <0.0001 <0.0001 0.2947 0.1152 
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Figure 24: Percentage of rice blast failed panicles per treatment and cultivars during the first year 
and second year: (T1) Chemical fungicide-azoxistrobin 20 % + difenoconazol 12.5 %; (T2) high-dose 
Sulphur; (T3) low-dose Sulphur; (T4) diatomaceous earth and (T5) non-treated. Different letters 
represent significant differences at the 95% confidence interval according to the Anova LSD test. 

Generally, the first-year yield was higher than the second year in all cultivars. Bomba produced the lowest yield, 

ranging from 538 kg·ha-1 with the diatomaceous earth treatment during the second year up to 4,819 kg·ha-1 with 

the synthetic fungicide control during the first year. In contrast, Argila, Guara, J. Sendra and Montsianell were 

the most productive, ranging from around 6,000 to 10,000 kg·ha-1, while the yield of V.Exp.1 was intermediate, 

from 6,599 to 7,736 kg·ha-1, despite it being the most blast resistant cultivar. Similar yield results were obtained 

from both Sulphur doses for all rice cultivars and in both years, although a trend towards increased yield was 

observed under higher Sulphur treatments during the second year for all the cultivars, except for the cultivar 

with the lowest blast sensitivity, V.Exp.1 (Figure 25).  
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Figure 25: Grain yield (kg·ha-1) per treatment and cultivars during the first year and second year: 
(T1) Chemical fungicide-azoxistrobin 20 % + difenoconazol 12.5 %; (T2) high-dose Sulphur; (T3) low-
dose Sulphur; (T4) diatomaceous earth and (T5) non-treated. Different letters represent significant 
differences at the 95% confidence interval according to the Anova LSD test. 

The yield was improved in the synthetic fungicide control treatment in comparison to all other strategies for all 

cultivars except for the second-year yield in V.Exp.1. In other words, the synthetic fungicide did not significantly 

improve V.Exp.1’s yield relative to high-dose Sulphur during the first year. In contrast, the yield differences 

between the synthetic fungicide treatment and non-treated in the first year was higher than the second year. 

The lowest yield values were observed with the diatomaceous treatment in all cultivars and both years, except 

for Montsianell during the second year, where the lowest yield value occurred in the non-treated control, 

although there were no significant differences from the diatomaceous earth treatment (Figure 25).   

4. DISCUSSION 

Is it possible control de blast disease in Japonica rice with non-synthetic fungicides in Ebro Delta conditions?  The 

most blast-sensitive cultivar was Bomba, followed by Argila, Guara, J. Sendra and Montsianell, while V.exp.1 

showed the lowest blast sensibility. We conclude that Sulphur (Thiopron, 82.5 % a.i. L-1, SC, UPL Iberica) at a 7.5 

l·ha-1 dose has potential to help organic and conventional farmers to control rice blast and the Thiopron 

phytosanitary yet being registered and commercialized in Spain for rice cultivation since 2022. 
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Our results showed differences between cultivars in the efficacy of fungicide treatments to control of rice blast. 

To assess the blast sensibility of the rice cultivars we focus in the non-treated plots: Bomba-Argila-Guara-J. 

Sendra-Montsianell-V. Exp1 (Tables 7 and 8). This factor had a high interaction with the fungicide treatment, 

since the efficacy was easily observed in cultivars with high sensitivity (Bomba) and medium sensitivity (Argila, 

Guara), being more discreetly observed in J. Sendra and practically negligible for Montsianell and V. Exp1 

(Figures 23a and 23b). The explanation was very simple, when the blast tolerance of the cultivar was high, the 

contribution of the treatment was discreet and even undetectable. In contrast, when the cultivating blast-

sensible cultivars, the treatment effect tend was more significant showing differences between non-treated and 

the other treatments. The levels of rice blast attack intensity for the V. Exp1 cultivar were the lowest of the 6 

cultivars studied. The use of blast-resistant cultivars would be key to successful organic rice production (Namai 

2011;  Yamaguchi et al. 2005). Bomba has shown the highest blast sensitivity as reported by (Pineiro et al. 2000), 

followed by Argila and Guara. The magnitude of the yield reduction was dependent on the varietals’ 

susceptibility to disease (Koutroubas et al. 2009).  

Non-synthetic treatments couldn’t protect the blast sensible Bomba cultivar in a scenario of favourable 

conditions for rice blast, despite the differences with respect to synthetic fungicide were less significant for 

Sulphur’s treatments, which comes to say that despite having insufficient control, treatments with Sulphur were 

more effective than diatomaceous earth. The high blast incidences in the Bomba cultivar in the non-treated 

controls highlight its high blast sensitivity, as reported previously (Carreres et al. 1986). The wide variation in the 

incidence of blast-affected panicles during both years can be attributed to the reported variability dependent 

on climatic conditions (Marchetti and Bonman 1989;  Muñoz 2008;  Nasruddin and Amin 2013), although the 

sowing delay imposed by the second-year climatic conditions (Figure 26) might have enhanced blast severity by 

overlapping the most sensitive plant stages with the highest presence of blast inoculum and optimal 

meteorological conditions for its infection development (Shahriar et al. 2020) and it might had overlapped the 

most blast-favourable weather conditions with the most vulnerable rice stages: the heading and milky grain 

stages (Marchetti and Bonman 1989;  Nasruddin and Amin 2013;  Sester et al. 2014). The commonly observed 

later blast attack at the end of August at the ripening stage (Bonman et al. 1991) increased the level of blast 

effects on the panicles at the end of the rice cycle during both years, and to our knowledge, the high air humidity 

and high temperature favoured inoculum pressure (Marchetti and Bonman 1989;  Muñoz 2008;  Nasruddin and 

Amin 2013). The greater yield differences between synthetic and non-synthetic fungicides treated plants in 

terms of  failed panicles were observed in Bomba due to both its varietal high blast sensitivity (Carreres et al. 

1986) and the weak blast control of the assessed organic fungicides (Chakraborty et al. 2021). 
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Figure 26: Data of climate conditions in Amposta station for years 2019 and 2020: (Left) 
temperature in ºC and relative humidity in percentage, (right) precipitation in mm. 

 

In terms of yield, graphically the trend curves between treatments were maintained for both years. This is good 

news, since Sulphur treatments are closer to synthetic fungicide than to non-treated plot, and this trend is 

maintained in cultivars with different levels of sensitivity to rice blast. The greening effect of the strobilurin could 

have also contributed towards increasing yield in the synthetic fungicide control plots due to an increase in net 

photosynthesis, and not so much the fungicidal effect (Amaro-Blanco et al. 2021). But in the other hand, one 

hypothesis of the lack of efficacy of strobilurin treatments may be a fungicide resistance of blast rice strains 

(Valarmathi 2018). As reported in countries like India (Mohiddin et al. 2021), Italy (Kunova et al. 2021) an others 

(Kim et al. 2003). These could explain the close different in the yield between Sulphur based and synthetic 

fungicide. Indeed, other authors found that the Sulphur treatments increased the yield significantly with respect 

to the non-treated plots when using medium blast-tolerant cultivars (Malav et al. 2016). It may be necessary to 

apply four to five Sulphur or Silicon-based treatments to reach a satisfactory blast protection due to the lack of 

Sulphur’s persistence and its mode of action, as reported by (Gopi et al. 2016).  

The use of blast-resistant cultivars would be key to successful organic rice production (Namai 2011;  Yamaguchi 

et al. 2005). Bomba has shown the highest blast sensitivity as reported by (Pineiro et al. 2000), followed by Argila 

and Guara. The magnitude of the yield reduction was dependent on the varietals’ susceptibility to disease 

(Koutroubas et al. 2009).  

Sulphur fungicides can be effective in blast control for moderate blast-resistant rice cultivars when applied 

preventively and regularly, due to their low persistence. Generally, the non-synthetic fungicide treatments are 

more preventive than curative, and it is important to apply those few days ahead of the synthetic fungicides. In 

contrast, other commercialized products could result in null or ineffective blast control for most of the rice 

cultivars grown under the environmental conditions of the Ebro Delta 
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Abstract   

Rice is the primary staple food for more than half of the world’s population. Wetland rice systems make a major 

contribution to Mediterranean rice supply. Organic fertilization is a promising way to improve soil quality and 

sustain high yields. The main objective of this work is to find organic fertilizers for the cultivation of organic rice. 

Field experiments were conducted to examine the effect of organic fertilizers on the grain yield, tillering and 

relative chlorophyll content rates on paddy fields during years 2019 and 2020. The experimental design of the 

trials used a cross design of three factors arranged in a single factor with 3 replications with 6 plots. The results 

from chemical fertilizer control on grain yield and tillering showed the best results, followed by the organic 

fertilizer named OPF. The application of Plant Grow Promoting Mechanism PGPM in anaerobic conditions did 

not improve rice yields. The study concludes that OPF is an efficient organic fertilizer for rice cultivation in Ebro 

Delta, only reducing the yield by 17% when compared with the chemical fertilization control while it adapts to 

the application equipment’s of the farmers. The outcome of these study is important since it will contribute 

efficiently to organic rice cultivation in Ebro Delta. 

 

 

Key words: organic fertilizer, organic rice, Ebro delta, PGPM 
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1 INTRODUCTION 

Rice (Oryza sativa L.) is the primary staple food for more than half of the world’s population, providing up to 

20% of the total calorie intake (Das 2017;  Dass et al. 2017). The world's growing population is expected to 

exceed 9,000 million people by 2050, which poses a critical challenge to the conservation of global biodiversity 

while maintaining food security (Godfray et al. 2010). Rice is an important crop contributing approximately 23% 

of the total calories per capita for 6,000 million people worldwide. In Europe, it is an important crop covering 

637,872 ha with a yearly averaged production exceeding 4 million tonnes of paddy rice (FAOSTAT 2022). Spain 

is the second largest European rice producer after Italy. In 2021, Spain produced 617,180 tonnes of paddy rice 

in more than 84,680 ha, representing about 20% of the European production (FAOSTAT 2022). However, Spain 

only cultivates 1,476 ha of organic rice (less than 1.8 % of paddy rice area) under organic certification in 2021 

(MAPA 2021a).  

Rice paddies are a major source of anthropogenic CH4 emissions due to the severe anaerobic conditions that 

typically follow inundation with water (Ma et al. 2010;  Zhao et al. 2023). Paddy fields account for approximately 

10 % of worldwide CH4 emissions, a number that is likely to increase in the future as the demand for rice 

increases along with the world's population (Naylor et al. 2005;  Nazaries et al. 2013;  Organization 2002).  

The conventional agricultural production systems use agrochemical inputs to produce high yields. 

Unfortunately, this practice produces increases in costs production, dependency on non-renewable resources, 

biodiversity loss, water contamination, chemical-contaminated food, land degradation and risks to farmers 

health (De Wit and Verhoog 2007;  Reganold and Wachter 2016;  Suwanmaneepong et al. 2020;  Willer et al. 

2018;  Willer et al. 2019). Agricultural intensification, at field and landscape scales, has caused a decrease in 

weed diversity and changes in species composition (José‐María et al. 2010). The interest of organic farmers in 

adopting conservation agriculture principles, including minimal soil disturbance, permanent soil cover and crop 

rotation has been growing since the early 2000s (Peigné et al. 2016). 

Organic products and organic farming technologies are more environmentally friendly (He et al. 2018) and are 

a move towards sustainable agriculture, but this production system requires different inputs and advanced 

knowledge and skills.  

The Ebro Delta (NE Spain) is a 320 km2 area with 199 km2 of paddy fields in 2021 (Sanchez-Arcilla et al. 2023), 

representing 62% of the Ebro Delta’s surface area (Catalonia, Spain), being the rice cultivation the main 

economic activity (Genua-Olmedo et al. 2022). Organic food production has been steadily increasing in Catalonia 

during the last 10 years (CCPAE 2020a), although organic rice production has not been increasing at the same 

rate. Organic production  is characterised by irregular yields and substantial productivity gaps with respect to 

conventional systems (Delmotte et al. 2011a). In organic production system, a set of constraints including 
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nitrogen stress at critical growth stages, unavailability of rapidly mineralizable organic amendments, lack of 

appropriate varieties and intense crop–weed competition pose major challenges to realize the potential yield 

(Hazra et al. 2018). 

Some carbon sources have been available for paddy fields fertilization: organic manure, compost (Saha et al. 

2007), vermicompost (Sarkar et al. 2023), rice straw (Tang et al. 2019), rice husk (Peyghambarzadeh et al. 2023), 

and cover crops (Weinert et al. 2023). Crop diversification (cultivar mixtures and cover crops) have been 

proposed as a sustainable strategy for pest control in organic cereal fields (Fandos et al. 2023). However, 

agricultural practices may alter the stability of the soil organic carbon stocks and thereby increase carbon 

mobilization in the topsoil and subsoil (Belenguer-Manzanedo et al. 2023).  

Nitrogen is an important factor that affects soil ecology and limits the availability of nitrogenous organic matter 

in agroecological systems (Hu et al. 2023). Delayed sowing could reduce annual yield from 6.14% to 13.72%, 

while appropriate N application can mitigate this reduction (Fu et al. 2023). The application of 60 kg N ha−1 at 

the heading stage could effectively alleviate the reduction in grain yield attributable to elevated temperatures 

(Shen et al. 2023). Optimized N fertilizer management delays senescence, increasing canopy photo assimilation, 

higher N fertilizer use efficiency, and less N loss (Ma et al. 2023).  

The main objective of this work is to find organic fertilizers for the cultivation of organic rice in paddies of the 

Ebro Delta. 

2 MATERIALS AND METHODS 

2.1 Experiment design 

This study was performed in an experimental field in Ebro Delta (Tarragona, Spain), with an average annual 

temperature of 18º C and an annual precipitation of 500 mm. The experimental field (40º 42’ 40’’N 0º 37’ 41’’E) 

was a rice field with loamy texture, pH 7.9, CEC 1.13 dS·m-1, 2.39% organic matter (OM), 14.1 N-NO3 mg·kg-1 and 

23 P mg·kg-1. Seeds of Argila Mediterranean temperate Japonica rice variety were provided by COPSEMAR 

(Valencia, Spain).  

Three organic fertilizers systems (OPF, B+OPF and OPF+N) were compared with mineral fertilizer and non-

treated plot. The size of the experimental unit was 6x15m (90m2), without divisions between plots. The weeds 

and fungus management of the plots were done with conventional rice agriculture herbicides and fungicides. 

The soil levelling was performed 53 days before seeding using a Maschio MDE 50T, (Maschio Gaspardo, Padova, 

Italy) laser levelling. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/topsoil
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/subsoil
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/soil-ecology
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Chemical fertilizer POLYSOL 10N-6P-10K was applied 4 days before seeding (DBS) at a concentration of 800 kg·ha-

1. The fertilizer incorporated 3 DBS by using a rotovator. First top-dressing application was performed manually 

60 days after sowing (DAS) by using ammonium sulphate 21% 214 kg·ha-1, equivalent to 45 NFU·ha-1. Second 

top-dressing application was realized manually with ammonium sulphate 21% at 105 DAS, the doses of the 

fertilizer was 214 kg/hectare at 21% of richness the nitrogen, equivalent at 45 NFU/hectare.  

In this work, the effect and interactions of organic fertilizers with rice crop in Ebro Delta was study. The organic 

pellet fertilizer (OPF) was applied in all three organic fertilizers treatments. Then other treatments (B) and (N) 

were applied over the application of (OPF) to assess their possible interactions as follows:  

Organic (pellet) fertilizer OPF 6% N nitrogen, 4% potassium and 4% phosphorus was applied manually at 

concentration 1,667 kg·ha-1 (100 NFU·ha-1) the day before seeding, simultaneously it was incorporated in the 

soil was manually with a rake. A second application (1,167 kg/hectare, equivalent to 70 NFU/hectare) was 

performed 30 days after seeding in half of the surface of the experimental plot at concentration.  

The B component in B+OPF treatment was a commercial product containing Azotobacter vinelandiï ≥ 108 ufc/ml, 

Bacillus megaterium ≥ 108 ufc/ml, Frateria aurantia ≥ 108 ufc/ml, Zinc 2.0 % p/p, Boron 0.2 % p/p and 

Molybdenum 0.05 % p/p. It was applied at concentration 5 cc/ha at 22 DBS and its incorporation was performed 

simultaneously rotovator tractor.  

The N component OPF+N treatment was a commercial product composed of: Nitrogen (N) total 2.0 % p/p, 

Organic nitrogen (N) total 1.2 % p/p, Free aminoacids and peptides 2.0 % p/p, Zinc 0.7 % p/p, Iron 0.5 % p/p, 

Potassium 6.0 / 1.2 % p/p, Alginic acid 1.5 % p/p and Manitol 0.5 % p/p. First application was applied at 

concentration 2 l/ha at 20 DAS. Second application was applied at concentration 2 l/ha at 38 DAS.  

Chemical fertilizer, B, and N component was applied with gas back package of wide 4 meters with 8 nozzle ST-

001 Albuz. The working pressure was at 2 atm and the volume of broth was 200 l/ha. A pre-emergence herbicide 

(oxadiazon 38%) was applied following the common agriculture practices at a concentration of 1.3 l/hectare 

using a FORTIS 4300 (Tecnoma) trailed sprayer equipped with 24 m width and 48 ST-001 Albuz nozzles at 2 atm 

working pressure. The fields were flooded 7 days after the application. The Argila rice seed was pre-hydrated 

for 24 hours before water-seeding at 205 kg/hectare seeding dose.  

Three chemical fungicide applications were conducted., First, a mix of 1 l/ha Liseo (procloraz 45%) was applied 

65 DAS. Second, a mix of the 1 l/ha Mirador (axozistrobine 25%) and 0,15 kg/ha Gazel (acetamiprid 20%) was 

applied 78 DAS. The third application was a mix of 0,25 kg/ha Flint (trifloxistrobine 50%) and 1,5 l/ha Am-Rice 

applied 101 DAS. A Maruyama Motorized Backpack Sprayer (MS735W, Maruyama, Tokio, Japan) and 4 meters 
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width having 8 ST-001 nozzles was at 2 atm. working pressure and 300 l/hectare a broth volume was used in 

both treatments. The water management was common for all plots in this assay. 

2.2 Data collection 

The leaf chlorophyll content was measured by using a Yara N-Tester tool (Konica Minolta Ltd.). The Yara N-

Tester is a handheld chlorophyll meter which measures the light across the leaf and serve as approximation of 

the leaf nitrogen content. The dimensionless data is used to compare the differences in “greenness” between 

treatments. There measurement was done after the first top-dressing 45 days after seeding.  

A 0.1225 m2 square was thrown five times randomly on each plot and number of tillers per surface was scored. 

The grain yield (kg·ha-1) was scored 140 after seeding by harvesting all the panicles using a Kubota RX 1050AD 

harvester. The grain’s percentage of moisture was recorded for all the rice samples at harvest with the use of 

John Deere MCXFA1873 grain moisture tester (Manufactured by AgraTronixTM Moisture Chek PlusTM, Deere 

and Company; Batch SW08122, U.S.A.). The rice yield at 14% moisture content was corrected in samples over 

14% by subtracting 1.2% of the grain weight per 1% excess moisture above 14%. Rice impurities were also scored 

by running twice two samples replicates of 200 g through a high-performance AEG grain sorting machine and 

weighing the discarded broken grains with a scale.  

2.3 Statistical analysis  

A three-factor crossover design was replicated to study the effect of two fixed factors (fertilizer and year), their 

interaction (fertilizer-year) and a random factor (experimental row) on three responses (grain yield, number of 

tillers and chlorophyll concentration). The F statistic was used (Fisher-Snedecor) for both, the multiple 

comparison of the factor’s levels and the estimation of the variability. The variability (variance) was estimated 

for the random factor and contrasted with the unexplained variability (residuals). Pairwise comparisons have 

been performed with the Tukey test and with the observation of the overlap of the confidence intervals when 

significant differences have been observed in the fixed factor. The robustness of the use of the statistics 

employed has been ensured by checking the validity conditions of the model or by checking the unimodality of 

the residuals. Furthermore, the Durbin-Watson statistic was used to check the independence of the sample 

values. 

The uncertainty in the estimation of the percentage decrease in grain yield with a fertilizer (Tx=OPF, B+OPF, 

OPF+N, Non-treated) in relation to the reference fertilizer or control (Tq=Chemical), 

𝐷𝐸𝐶(𝑇𝑥/𝑇𝑞) =
𝑌𝑖𝑒𝑙𝑑 (𝑇𝑞) − 𝑌𝑖𝑒𝑙𝑑 (𝑇𝑥)

𝑌𝑖𝑒𝑙𝑑(𝑇𝑞)
· 100 
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has been obtained by applying computational simulation methods. Specifically, the steps followed are detailed 

below:   

a) both the bivariate mean µxq=(µx, µq), and the bivariate variance-covariance matrix  

Σ𝑥𝑞 = (
𝜎𝑥

2 𝜌𝑥𝑞𝜎𝑥𝜎𝑞

𝜌𝑥𝑞𝜎𝑥𝜎𝑞 𝜎𝑦
2 ) 

were estimated, corresponding to grain yields with Tx and Tq;  

b) according to a bivariate normal distribution of parameters µxq and Σ𝑥𝑞, 10000 pairs of values have been 

artificially generalized (Tx, Tq) simulating production in two paired plots ((Tx-i, Tq-i), i=1, 2, ..., 10000);  

c) for each pair of artificial grain yield values, the percentage decrease in production has been calculated 

𝐷𝐸𝐶(𝑇𝑥 − 𝑖/𝑇𝑞 − 𝑖) =
𝑌𝑖𝑒𝑙𝑑 (𝑇𝑞−𝑖)−𝑌𝑖𝑒𝑙𝑑 (𝑇𝑥−𝑖)

𝑌𝑖𝑒𝑙𝑑(𝑇𝑞−𝑖)
· 100; 

and d) the 10,000 regenerated values corresponding to the decrease in production have been ordered from 

small to large and the 250 smallest values (2.5%) and the 250 largest values (2.5%) have been discarded. In this 

context, the confidence interval (α=0.05) corresponding to the percentage decrease in yield is delimited by the 

values ordered in positions 251 and 9750. 

Analysing the effect of the same factors on three response variables, it is appropriate to calculate the correlation 

between them (ρY,T, ρY,C and ρT,C being Y:Yield, T:Till and C: Chlorophyll concentration). If the correlation is 

high, the results should be very concordant and if the correlation is low, the results may be complementary. The 

software used was Statgraphics Centurion XVIII software (Statistical Graphics Corp., Rockville, MD, USA). 

3. RESULTS 

For grain yield, the statistical analysis of the experimental results has found significant differences between 

treatments (p<0.0001). No significant differences were observed between years (p=0.5688) or in the treatment-

year interaction (p=0.8529). The contrast between pairs of treatments made it possible to state that the grain 

yield average is higher when the chemical treatment has been used and thus, in relation to this treatment, grain 

yield decreases by an average of 17.3% (min95%=-5.6%, max95% =39.9%, computational confidence interval per 

α=0.05) when OPF treatment was used, grain yield decreases by an average of 30.3% (CI0.05: min95%=-9.5%, 

max95% =59.9%) when B+OPF treatment was used, grain yield decreases by an average of 33.0% (CI0.05: 

min95%=12.5%, max95% =57.6%) when B+OPF treatment was used, and finally grain yield decreases by an average 

of 64.2% (CI0.05: min95%=45.2%, max95% =79.7%) when the field was non-treated (Figure 27a),  
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  �̅�𝐶𝐻𝐸(7233.8) ≈ �̅�𝑂𝑃𝐹(5982.0) ≈ �̅�𝐵+𝑂𝑃𝐹(5044.7) ≈ �̅�𝑂𝑃𝐹+𝑁(4848.2) > �̅�𝑁𝑂𝑁(2586,2)   (1) 

It is worth noting that (i) the non-significance of the year effect and (ii) the descriptive contrast of the grain yield 

between years highlighted the stability and/or robustness of the grain yield, in relation to the treatments, at 

different climatic conditions (Figure 27b) 

                                                    �̅�2020(5234.3) ≈ �̅�2019(5043.7)   (2) 

For the number of tillers, the statistical analysis of the experimental results has also made it possible to observe 

significant differences between treatments (p<0.0001). No significant differences were observed between years 

(p=0.0638) or in the treatment-year interaction (p=0.5293). The contrast between pairs of treatments has 

allowed us to state that the average grain yield is higher when the chemical treatment has been used.  Although 

no significant differences were found, the concentration of chlorophyll decreases by an average of 23.9% when 

OPF treatment is used. Further, the number of tillers decreases by an average of 46.7% with the treatments 

B+OPF, OPF+N and non-treated, respectively, although no significant differences were found (Figure 27c)  

                �̅�𝐶𝐻𝐸(829.8) > �̅�𝑂𝑃𝐹(631.7) > 𝑇𝑁𝑂𝑁(479.2) ≈ �̅�𝐵+𝑂𝑃𝐹(428.0) ≈ �̅�𝑂𝑃𝐹+𝑁(418.5)  (3) 

Although the differences between years have not been sufficient to state that there are significant differences, 

�̅�2020(578.7) ≈ �̅�2019(536.2), the percentage difference of 7.3%, the proximity of the p-value to 0.05 and the 

used test do not allow us to ensure the stability of the number of tillers, in relation to the treatments, in different 

climatic conditions (Figure 27d). 

For chlorophyll measurements, the statistical analysis of the results has shown significant differences between 

treatments (p=0.0002) and between years (p=0.0005). On the other hand, no significant differences were 

observed in the treatment-year interaction (p=0.3342). The contrast between pairs of treatments has allowed 

us to affirm that the average chlorophyll concentration is higher when the chemical treatment has been used. 

Although no significant differences were found, the chlorophyll concentration decreases by an average of 11.3% 

when OPF is used, an average of 16.1% when OPF+N is used, an average of 19.9% when B+OPF is used, and an 

average of 20.5% when no treatment is used (Figure 27e).  

                𝐶�̅�𝐻𝐸(598.0) > 𝐶�̅�𝑃𝐹(530.50) ≈ 𝐶�̅�𝑃𝐹+𝑁(501.8) ≈ 𝐶�̅�+𝑂𝑃𝐹(478.8) ≈ 𝐶�̅�𝑂𝑁(475.3)  (4) 

Regarding the two experimental years, the significance of differences has highlighted the non-stability of 

chlorophyll concentration, in relation to the treatments, at different climatic conditions (Figure 27f) 

𝐶2̅019(546.7) > 𝐶2̅020(487.1)    (5) 
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Figure 27: Results of both years: a) Grain yield per treatment: Chemical fertilizer (Chemical), 
organic pellet fertilizer (OPF), bacteria PGPM + organic pellet fertilizer (B+OPF), organic pellet 
fertilizer + nutrients (OPF+N), and control fertilizer (non-treated). b) Grain yield per year: 2019 
(white) and 2020 (increasing line). c) Number of tillers per treatment. d) Number of tillers per year: 
2019 (white) and 2020 (increasing line). e) Chlorophyll rates per treatment. f) Chlorophyll rates per 
year: 2019 (white) and 2020 (increasing line). 
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Furthermore, the variability due to the row effect (srow, Yield=215.4, srow, Till=24.3, srow, Chlorophyll=10.4) represents 

5.4%, 14.5% and 6.7%  of the total variability yield, till and chlorophyll concentration ((𝑠𝑟𝑜𝑤
2 /𝑠𝑡𝑜𝑡𝑎𝑙 

2 )·100, on 

𝑠𝑡𝑜𝑡𝑎𝑙
2 = 𝑠𝑟𝑜𝑤

2 + 𝑠𝑟𝑒𝑠𝑖𝑑𝑢𝑒
2 ). Consequently, the effect attributable to the gradients of the field is limited. In the 

other hand, the possible experimental column gradient has been balanced with the randomization of the 

treatments in the columns. 

In general, the correlations between the response variables (ρY,T=0.67, ρY,C=0.49 i ρT,C=0.56, Figure 28) are 

compatible with the results. Regarding the treatment, significant differences are obtained for all the response 

variables. The chemical fertilizer is the one that obtains the best results, the OPF is in second place and the 

others B+OPF and OPF+N show few differences between them. Also, the treatment-year interaction is not 

significant in all cases. 

 

Figure 28: Correlations between the response variables (Yield, Till, Chlorophyll) 

 

4. DISCUSSION 

Rice organic fertilization is a challenge since nitrogen demand is high for this crop, especially at the vegetative 

stage. Further, a high percentage of inorganic nitrogen is not used by the plant due to losses (i.e., leaching and 

volatilization). As far as we know, the effects of bio-organic fertilizers for the cultivation of organic rice in Ebro 

Delta has been ever published.  

The response of the rice crop to the application of the OPF organic fertilizer has been observed both in the 

application before seeding and in the top-dressing application. The highest grain yields correspond to the 

treatment with chemical fertilizers, followed by the OPF organic fertilizer (with a decrease between 17 - 34%, 

and a very large confidence interval).  This result clearly shows the effect of inorganic nitrogen in rice (Lin et al. 

2009;  Mohaddesi et al. 2011;  Quílez y Sáez de Viteri et al. 2020;  Wang et al. 2023;  Zamora Laguna and Díaz 

Sevilla 2022).  There are other stresses that are also affecting rice yield: salinity (Català et al. 2019b;  Català et 

al. 2019a;  Català et al. 2013;  Litardo et al. 2023;  Rodríguez Coca et al. 2023;  Zheng et al. 2023), rice blast 

Chlorophyll 
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(Agbowuro et al. 2020a;  Hoosain et al. 2013), heat (Broberg et al. 2023;  Guo et al. 2023), apple snail (Jiménez 

Tapia 2020;  Rusli and Putra 2023), chironomids (Ushio et al. 2023), Chilo suppressalis rice borer (Sakib et al. 

2022), and dry winds (Vargas 2010). 

The differences between the two measuring years are not significant for grain yield and tillering, therefore the 

robustness of the results is solid. On the other hand, the N-tester values related to chlorophyll concentrations 

showed differences between years. This may be due to other factors: paddy field salinity (Zheng et al. 2023), or 

other environmental conditions (Chevuru et al. 2023),  that affect the ability to absorb and transport nitrogen 

through the plant (Chen et al. 2023), directly related to the concentration of chlorophyll in the leaves (Voisin et 

al. 2023).  

The effect of the application of the OPF fertilizer in rice cultivation has shown good results both in bottom and 

cover applications, although chemical fertilizer is assimilated much faster than organic fertilizer (Lin et al. 2019). 

Long term chemical fertilizer application leaded to the deterioration of soil fertility and environment. Partial 

replacement of organic materials to chemical fertilizers could significantly amend and buffer such negative 

effects (Gao et al. 2023). Organic fertilizer application is one of the safer alternatives with numerous benefits, 

such as supplying nutrients for plant growth (Alzain et al. 2023). The OPF product has been able to nitrify the 

organic form of nitrogen into an inorganic form so that the plant can absorb it through the root system (Xu et 

al. 2013). When organic fertilizers are applied to the field, only 20% is nitrified in inorganic form during the first 

year (i.e. urea, ammonium, ammonic) (Ishii et al. 2011). On the other hand, the "granulated pellet" formulation 

facilitates its transport and dosage for a precision application (Pocius et al. 2014). Finally, the OPF product adapts 

well to the application equipment of the Ebro Delta farmers and it is a good candidate to be chosen as organic 

fertilizer for a rice organic production but, at the same time, it can also be applied in the fields of conventional 

production (Lin et al. 2023). 

Organic fertilizers (B+OPF and OPF+N) have not increased the grain yield, compared with OPF organic fertilizer 

or with the CHE chemical fertilizer. The application of bacteria to agricultural soil is a practice known as PGPM 

(Plant Grow Promoting Mechanism) (Rajanna et al. 2023). Usually, these applications are carried out under 

aerobic conditions (Dunn and Becerra-Rivera 2023). The establishment of these colonies in anaerobic conditions, 

as in the case of flooded rice, are not the same and do not improve rice crop response (Burgos Junco and Ramos 

Remache 2022), like other crops such as horticulture (Joshi et al. 2023). It is necessary to deepen the search for 

PGPM application techniques in rice paddy fields.   

In conclusion, for the first time, an efficient bio-organic fertilizer (called OPF) for organic rice cultivation in Ebro 

Delta has been identified. This bio-organic fertilizer only reduced the yield by 17% compared with a chemical 

fertilizer. Furthermore, this OPF’s granulate pellet formulation adapts to the rice farming machinery. The 
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outcome of these study is important since it will benefit both conventional and organic systems production. 

Thus, this new organic OPF fertilizer will significantly contribute to efficiently organic rice farming in Ebro Delta.  
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This thesis is focused on the major constrains of the organic rice production: weeds, in Chapter 1 (Delmotte et 

al. 2011b;  Reddy et al. 2023); fungal diseases, in Chapter 2 (Agbowuro et al. 2020a;  Hossain et al. 2005) and 

organic fertilization, in Chapter 3 (Hazra et al. 2018). Different non-chemical weeding techniques, rice varieties 

and “organic” products were assessed in field trials. Finally, an economic study of their feasibility in organic rice 

production systems is also presented in this Thesis. 

The European policies in 2030 (The green deal) focus on the pesticides and chemical fertilizers reduction impact 

on the environment. In order to increase the agrarian surface devoted to the organic rice production, this thesis 

aims to give answers to the technical questions in relation to the new productive scenario. Other policies such 

as “From farm to fork” aim to reduce the carbon footprint between processes from the farm production to the 

consumers. The European agriculture has to be greener by consuming the lesser chemical phytosanitaries 

(Fetting 2020). Organic rice production is probably the most challenging among all the other cereals since it 

grows in flooded fields. Currently, the organic rice production in Catalonia does not reach 200 hectares, out of 

the 22,400 hectares under rice production. Consequently, the rice industry must import organic rice from other 

rice-producing areas such as Andalusia or even Italy. The COVID-19 pandemic has highlighted the importance of 

the countries' food sovereignty, as well as giving greater added value to market concepts such as proximity (km 

0) or “carbon footprint”. It makes no sense transporting organic products long distances, since they are less 

sustainable than conventional products produced nearby. 

Nowadays, the rice production is nearly close to its theoretical maximum yields, while the plant health problems 

are increasing due to pesticides resistances and new invasive pests, together with the climate change affects 

such as salinization of fields, and anthropogenic actions. Due to the consequences of the economy scale, there 

are less farmers exploiting bigger farms. In addition, the production costs are rising to the point that they 

compromise the benefits, being negative for many small producers. The lands of the Ebro Delta are in fewer 

hand of larger farmers, this produces declines of the territory. Therefore, the demand of organic rice is growing, 

and the production is low. Spanish, and specifically Catalan rice cannot compete in price with imported rice from 

Myanmar, Vietnam, or China. A viable way to differentiate the European rice products in the markets is to 

include an added value by having organic or sustainability certifications while packaging monovarietal quality 

rice avoiding the bunch. It is very important to educate the society in local and sustainable products 

consumption. 

The first rice agronomic limitation in the Ebro Delta is the salinity of the soils. Rice is the most salt-sensitive crop, 

although its cultivation in constant freshwater flooding that permits lowering the salinity in the firsts layers of 

soil so it can grow. The salinity and the soil structure of a given field determines the cultivation strategies that 

can be used, from agronomic practices to water management, tillage, weed management, type of seedings 

and/or planting strategies and even rice varieties to be used. Selecting the right rice variety and sowing strategy 
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can be decisive. Rustic varieties, such as Bomba, Bahia or Montsianell are more adapted to the conditions of the 

Ebro Delta, although they do not have the productive potential of more recent varieties such as J. Sendra, Argila 

or Copsemar 7. 

The second limiting factor is the weed control, which is the main concern for both organic and conventional rice 

farmers. The big challenge is the integrated management of weed control in organic rice production. The lack of 

rice weeding manpower aggravates the current situation of the rice paddies. Weeding the paddy fields is a very 

hard task due to the conditions of heat, humidity, and the muddy ground environment in which it occurs. 

Usually, it is carried out by groups of immigrant people from other countries (India, Pakistan, etc.) and there are 

no people willing to work and who can support the working days in the countryside. On the other hand, the 

weed’s seed bank in the rice paddies is the biggest reservoir of weeds. We can find species with a latency of up 

to 80 years in the case of the Barnyard grass weed (Papapanagiotou et al. 2023). Plant density dynamics are 

substantially determined by the first colonizing species that can constrain the other competitors, as described 

previously (Recasens et al. 2019). 

Our results showed that the “Simple dry seeding” was the best treatment for dry seeding, while “false seeding” 

(stale seed bed) and planting was the best performing under water seeding conditions. Both treatments were 

as effective as chemical control in reducing the density of weeds and the weeding time for those species more 

abundant in Ebro Delta paddy fields (i.e. Echinochloa oryzoides, Echinochloa crus-galli, Scirpus maritimus and 

Heteranthera reniformis). This unexpected result highlights the applicability and economic viability of the 

herbicide-free dry-seeding treatments in the organic rice production system, as stated by other authors (Sullivan 

2003;  Torres Herrero 2021). 

The diversification of weed management is the main important issue, since it can avoid the weed adaptation to 

the different weeding techniques in organic agriculture. In addition, if one can change the seeding system 

(water-seeding/dry seeding) every year, it would yet help controlling weed. The main problem of the farmers in 

conventional rice cultivation systems it the yearly use of the same herbicide-based strategy, displaying weeds 

resistance to inhibitors (ALS and ACCASA) herbicide in few years, especially in species of the genus Echinochloa 

spp. (Amaro-Blanco et al. 2021;  Gavilan 2011;  Gómez de Barreda et al. 2021;  Romano et al. 2018;  Torra et al. 

2022). Despite that some authors reported that Echinochloa spp. exhibited weed resistance to quinclorac and 

atrazine herbicides inhibitors (auxins and photosystem II) (Lopez-Martinez et al. 1997;  Lopez-Martinez et al. 

1998;  Lopez‐Martinez et al. 1997), propanil herbicide (Lopez‐Martinez et al. 2001) and thiocarbamates herbicide 

in Sacramento Valley, California (Osuna et al. 2011). Resistance to (ALS inhibitor) is widespread among C. 

difformis populations that has been evolved resistance to several herbicides (Merotto Jr et al. 2009;  Osuna et 

al. 2002). Some authors reported that Alisma plantago-aquatica resistant biotypes to bensulfuron-methyl (ALS 

inhibitor) in Portugal (Calha et al. 2007). 
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Indeed, O. sativa f. spontanea is particularly problematic due to the plant’s phenology and ecology, which mimics 

the rice crops that it grows alongside, and the ease with which it can acquire herbicide resistance through direct 

gene flow from herbicide-resistant rice varieties (Olofsdotter et al. 2000;  Serrat et al. 2013). 

Between-rows weeding rollers have not yet been adapted commercially for rice cultivation nor are they yet 

suited for European conditions. In contrast, small weeding rollers for small tractors have been widely used in 

Japan for years (Shibayama 1994, 2001). Unfortunately, the technique of water-seeding in rows created empty 

spaces between rows that were rapidly colonised by H. reniformis, probably due to the high soil temperature 

and the lack of competition between the stale seed bed flooding date and the planting date (Ferrero 1996).  

Weed control is the main limiting factor of organic rice production in Spain. Chemical herbicides and fungicides 

cannot be applied in organic farming, and manual weeding is very expensive and insufficient after some years 

of organic production (Katsarova 2015). Thus, it is necessary to develop new agricultural techniques and specific 

agricultural machinery for organic rice cultivation. Smart farming for organic rice cultivation is still being 

developed and will aid rice farmers in weeding their fields efficiently. New specific precision tools are being 

designed for weeding rice crops. All of them will require GPS-guided tractors for seeding in rows and weeding 

between rows. These kinds of technology innovations will be key to boosting organic rice production as they will 

facilitate both mechanized and manual weeding and can be used in either water or dry seeding. Unfortunately, 

nowadays commercial rice machinery has insufficient weed control effectiveness. The adaptation and 

installation of digital components such as GPS and auto-guidance will allow increasing the mechanical weeding 

precision while increasing the rice production. The technological development of mechanized inter-row weeding 

should enable the agronomic management of weeds in the paddy fields of the Ebro Delta, reducing their 

competition and their negative impact on organic rice production. It will mean an improvement in the energetic 

efficiency of organic rice production which should allow to increase the added value of the entire value chain 

and of the final product.  

Surprisingly, one of the strategies that has been proved to be successful is the use of allelopathy for weed control 

(Khanh et al. 2007;  Kong 2008;  Olofsdotter 1998;  Xuan et al. 2005). Specifically, very good weed controls have 

been achieved using rice bran itself (Yulianto and Xuan 2018) and rice varieties have been identified that exude 

phytoalexins that inhibit the germination and growth of different weed species (Chen et al. 2008;  Junaedi et al. 

2007;  Kong et al. 2011;  Olofsdotter 2001). As well as other cultivated plants with a high herbicidal effect on rice 

weeds (Batish et al. 2007;  Walia et al. 2021). 

Allelopathy is a biological phenomenon by which a plant produces one or more biochemicals that influence the 

germination, growth, survival, and reproduction of other organisms. Much effort has been focused on rice 

allelopathy research for more than 30 years (Khanh et al. 2007). Numerous phytotoxins such as cytokinins, 

diterpenoids, fatty acids, flavones, glucopyranosides, indoles, momilactones (A and B), oryzalexins, phenols, 

https://en.wikipedia.org/wiki/Biochemical
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phenolic acids, resorcinols and stigmastanols have been identified and determined as weeds growth inhibitors 

excreted by rice roots. And specific rice gene alleles determining them have been already reported (Khanh et al. 

2007). These alleles have been found they are excreted by some rice varieties and wild rice species at different 

levels (Song et al. 2012). Thus, a wide range of new natural herbicide compounds can be developed for 

commercialization to control weeds in organic cultivation.  

Tagetes minuta (Mexican marigold; family Asteraceae) is an aromatic essential plant with wide range of 

biological activity including medicinal properties (Vasudevan et al. 1997). A recent study was successfully 

demonstrated the potential herbicidal activity of Tagetes minuta leaf powder towards invasive weeds. It not 

only possesses excellent medicinal properties but also has strong nematicidal, insecticidal and antimicrobial 

activity (Tereschuk et al. 1997;  Tomova et al. 2005). 

Several reports have been published on rice bran allelopathy for controlling weeds in paddy fields, farmer 

association milling facilities produce rice bran as a waste that could be efficiently used for organic rice 

production. The use of rice bran compost for eco-friendly weed control in organic farming system was 

successfully evaluated by Khan et al. (2007) at Japan (Khan et al. 2007). Considering the above facts, the use of 

rice bran could be a useful way for eco-friendly and non-chemical weed control in organic farming systems 

(Bhuiyan et al. 2014). Furthermore, rice bran, derived from the outer layers of the caryopsis during milling, 

including the pericarp, seed coat, nucellus and part of the sub aleurone layer of the starchy endosperm, accounts 

for 5 to 8% of the rough rice weight. It is reported that rice bran contain valuable components such as oil, protein, 

macro and micro nutrients, vitamins some essential minerals as well as enzymes, microorganisms, natural 

toxicant constituent (Barber 1979). 

Chapter II points that the most blast-sensitive cultivar is Bomba, followed by Argila, Guara, J. Sendra and 

Montsianell, while V.exp.1 was exceptionally blast tolerant. The only effective non-synthetic fungicide was 

Sulphur at high doses for cultivars with medium blast sensitivity. Indeed, other authors found that the Sulphur 

treatments increased the yield significantly with respect to the untreated plots when using medium blast-

tolerant cultivars (Malav et al. 2016). We conclude that Sulphur (Thiopron, 82.5 % a.i. L-1, SC, UPL Iberica) at a 

7.5 l·ha-1 dose helps organic farmers to control rice blast. It may be necessary to apply four to five Sulphur or 

Silicon-based treatments to reach a satisfactory blast protection due to the lack of Sulphur’s persistence and its 

mode of action, as reported by (Gopi et al. 2016). In contrast, none of the treatments resulted in blast-tolerance 

improvement in either the most blast-tolerant (V.Exp.1) or the most blast-sensitive (Bomba) cultivars. The 

greater yield differences between synthetic and non-synthetic fungicides observed in Bomba due to both its 

varietal high blast sensitivity (Carreres et al. 1986) and the weak blast control of the assessed organic fungicides 

(Chakraborty et al. 2021). The lack of sufficiently effective blast control in Bomba when using non-synthetic 

fungicidal products needs to be complemented with other strategies such as reduced nitrogen fertiliser doses 
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and reduced plant densities (Pooja and Katoch 2014). The magnitude of the yield reduction was dependent on 

the varietals’ susceptibility to disease (Koutroubas et al. 2009).  

One hypothesis is the lack of efficacy of strobilurin treatments could be because of fungicide resistance of blast 

rice strains (Valarmathi 2018). As reported in countries like India (Mohiddin et al. 2021), Italy (Kunova et al. 

2021) an others (Kim et al. 2003). The wide variation in the incidence of blast-affected panicles during both years 

can be attributed to the reported variability dependent on climatic conditions (Marchetti and Bonman 1989;  

Muñoz 2008;  Nasruddin and Amin 2013).  

Our results showed an interannual variation in the proportion of failed panicles between 2019 and 2020. The 

delay in planting time in 2020 led to a greater intensity of rice blast attack on the panicle compared to 2019 

(Figure 24 and 25). Agronomic factors such as nitrogen fertiliser doses or sowing date could influence plant 

health and fungus conditions (Bhat et al. 2013). These variations were due to the variation of meteorological 

factors (temperature, humidity, and rainfall) that affect the epidemiology of rice blast in the Ebro Delta. Indeed, 

the 2020-trial sowing date delay could have increased the percentage of blast failed panicles because it might 

had overlapped the most blast-favourable weather conditions with the most vulnerable rice stages: the heading 

and milky grain stages (Marchetti and Bonman 1989;  Nasruddin and Amin 2013;  Sester et al. 2014). The yearly 

variation in panicle failure is known to be highly determined by meteorology (Katsantonis et al. 2017;  Shahriar 

et al. 2020). A 95% relative humidity and 26-27°C temperature are optimum for blast infection and substantially 

favour spore release (Muñoz 2008). We commonly observed later blast attack at the end of August at the 

ripening stage (Bonman et al. 1991) increased the level of blast effects on the panicles at the end of the rice 

cycle during both years, and to our knowledge, the high air humidity and high temperature favoured inoculum 

pressure (Marchetti and Bonman 1989;  Muñoz 2008;  Nasruddin and Amin 2013). Thus, one cannot directly link 

the apparent effects of blast on the panicles and grain yield because the impact on grain production strongly 

depends on the panicle stage when infection occurs (Bakar 2019). 

The Blast management to avoid resistance fungicides problems it’s ones of the most important points. The 

rotation of blast control methods can help to better results in yield. To change a cultivar every year, to change 

the seeding system, to change the active ingredients of fungicides, there are some of the examples of integrated 

pest management (Figure 29).  
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                                                    Figure 29: Integrated blast management 

The results on grain yield and tillering of the chemical fertilizer showed the best results followed of the OPF 

fertilizer. The application of PGPM in anaerobic conditions (B and N) did not improve rice yields. The article 

concludes that an efficient bio-organic fertilizer (called OPF) for organic rice cultivation in Ebro Delta has been 

identified, only reducing the yield by 17% compared with a chemical fertilizer and it adapts perfectly to the 

application equipment’s of the farmers. The outcome of these study is important as it will contribute efficiently 

to organic rice cultivation. Since organic fertilization management has been studied and it is not an limitation to 

organic rice production (Lin et al. 2011;  Pan et al. 2009), although recent studies point that applying all the 

organic manure before seeding increases methane emission when compared to chemical fertilization of 

fractionated organic fertilization (Moreno-García et al. 2020). 

Currently, rice planting is the only rice cultivation in rows that can be performed in flooded rice paddies, which 

greatly facilitates the mechanical control of weeds. This technique has high economic costs, and the rice plant 

undergoes a stress period just after transplanting, overcoming an important adaptation process. Consequently, 

the research and technological development of different in-row rice planting systems must be deepened, which 

will facilitate the subsequent mechanical weeding between rows in a more optimal and efficient way. In-rows 

planting permits mechanised weeding between rows and eases manual weeding (Pipeng et al. 2021) 

Over flooding (OF) is a common technique of water-level management common in California. It represents an 

alternative to the conventional water-seeding technique that is specifically appropriate for highly salinized 

areas. Likewise, OF was also the one that hindered grassy weeds, accordantly to other authors (Auld and Kim 

1996;  Moody 1995). Simple dry seeding is the common practice when performing dry seeding in the Ebro Delta 

(Franquet Bernis 2018). Dry seeding in saline soils is challenging, and a specific soil moisture and texture is 

needed in order to facilitate rice seedling emergence (Lee et al. 2017;  Yamane et al. 2018). In addition, when 

neighbouring fields around the experimental parcel are flooded, the saline phatic layer pushes up into the dry 
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field (Wilson et al. 2000). Unfortunately, irrigating the fields prior to dry seeding elevated the saline water layer, 

which affected rice seedlings (Genua-Olmedo 2017;  Sánchez-Arcilla et al. 2008). Consequently, it is necessary 

to isolate the field borders with drainage furrow systems to avoid this problem (Mukhopadhyay et al. 2021).  

Direct seeding is commonly practiced of agriculture conservation in cereal crops, like rice. These systems have 

productive and economic advantages for farmers, as well as environmental ones because it is associated with 

the minimum tillage of the land, which improves the soil fertility and reduces the amount of nitrogen fertilizers. 

The main difference with water seeding is the dry seeding conditions of the soil and this strategy reduce the gas 

emissions (Martínez-Eixarch et al. 2021;  Monaco et al. 2021) and water demand during the firstly 40 days 

without flooding paddies. That make them sustainable for agricultural ecosystems, in the Mediterranean region 

where the limiting factor is the availability of water (Cabangon et al. 2002;  Mahajan et al. 2013;  Zampieri et al. 

2019). 

Crop rotations in coastal paddy fields have failed due to high and rapid salinization of the fields when irrigation 

water is withdrawn. Interestingly, quinoa (Chenopodium quinoa Willdenow) can be used for rice crop rotation 

in these salinized areas, as it has shown unusually high salt tolerance; many varieties can grow in salt 

concentrations as high as those found in seawater (40 mS cm-1). Again, it’s the same problem as with the rice, 

weeds are the main problem with organic quinoa production. Crop rotation with rice would not only help to 

produce both crops in an ecological way, but would also make it possible to obtain, for the first time, two crops 

a year in the same paddy fields, since rice crop (summer) and quinoa crop (winter) do not overlap. It is likely that 

other techniques such as green mulching could also help in suppressing the weeds, as reported by Fogliatto 

(2021). 

The agriculture conservation principles, including minimal soil disturbance, permanent soil cover and crop 

rotation has been growing since the early 2000s (Peigné et al. 2016). Agriculture conservation and organic 

farming are considered as promising sustainable agricultural system for producing food, while minimizing 

environmental impacts (Casagrande et al. 2016). Agriculture conservation and organic farming are two 

alternative strategies that aim to improve soil quality and fertility in arable cropping systems through reducing 

tillage intensity, maintaining soil cover and increasing nutrient recycling, using farmyard and green manures 

(Baldivieso-Freitas et al. 2018). Non tillage mitigates net GHG emissions in subtropical paddy rice ecosystems 

(Weinert et al. 2023). 

 However, potential weed problems often tend to discourage farmers from adopting it. Reduced tillage could 

thus be useful in organic cropping systems but would require proper management of perennial and 

monocotyledonous weeds, which are often problematic for annual crops (Sans et al. 2011). The agriculture 

conservation could be candidate to synergic organic rice systems, form analogous has been other crops like spelt 

or sunflower as reported by Sans. Optimization of the nitrogen (N) inputs and minimization of nutrient losses 
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strongly affect yields in crop rotations (Diacono et al. 2019). Cover crops in winter season is ones of alternative 

technique that improve the soil fertility and the same time can reduce the weeds competence (Riemens et al. 

2022;  Vincent-Caboud et al. 2017). Agronomic practices taking into account the regeneration of the soil such as 

green manure and crop rotations, will improve the structure of the soil and their organic matter content. As far 

as weed infestations increase in organic rice production fields over the years, it will be necessary to plan fallows 

in those lands that have reached high levels of infestation, to let the land rest and be able to carry out a cultural 

control of weeds through false sowing and thus, reduce the seed bank of the soil. This way, the biodiversity and 

the rice ecosystem services will be enhanced within Ebro Delta’s wetlands ecosystems. 

The economic feasibility of organic rice is ones of the conflicted points with common farmers of Ebro Delta. As 

this we realized an economic study to know the economic sustainability of organic rice system with the increase 

of the production costs in 2022 (View ANNEXES I). The most relevant conclusion is that organic rice production 

in Ebro Delta are both agronomic and economic feasibility.  

Another conflicted point is the three years conversion process towards organic certification. The farmers must 

use both organic products and techniques during a three year period, but their product (paddy rice) will not be 

certified until the third year. It implies higher production costs, and lower benefits. This factor also discourages 

the potential farmers to change their production system towards organic rice. There are few organic farmers, 

and they don’t help each other. It is necessary to creation a figure of the federation that can assess and help 

with all problems and tramits for registration with the CCPAE.  

 

 

                Figure 30: Period of organic certification transition following European laws. 

 

The digitization of the organic rice cultivation will improve its production. It will permit taking better and faster 

technical decision. The organic production model that is proposed for the future is based on ODR (Organic + 

Diversify + Resilient). It will include elements such as agriculture precision, mechanical weeding, the use of 

organic adapted rice varieties, organic fertilizer, resistance to fungal pathologies and soil salinity. The rice 

cultivation in rows will facilitate the mechanical weeding. 

 

1st year 2nd year 3rd year 4th year 5th year

Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter

Organic Diversify Resilient Rice system
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1. We demonstrate for the first time the agronomic and economic viability of the organic rice production 

in the Ebro Delta. 

2. Simple dry seeding technique was the best weeding treatment for dry seeding, while the technique of  

false seeding (stale seed bed) and planting, was the best performed under water seeding.  

3. Dry seeding favoured grasses weeds such as E. crus-galli, E. oryzoides, while discouraging sedges and 

aquatic weeds. On the contrary, in water-seeding treatments, sedges and aquatic weeds (S. maritimus, 

C. difformis and H. reniformis) are favoured and grasses are still a problem in the paddy fields. 

4. The use of non-chemical fungicide treatments such as Sulphur on medium-blast sensitivity such as 

Argila, Guara or J. Sendra is an option for organic rice production. 

5. The application of non-synthetic fungicides in low blast sensitivity rice varieties is not effective. 

6. An efficient bio-organic fertilizer (OPF) for organic rice cultivation has been identified, only reducing 

the yield by 17% compared with a chemical fertilizer. This fertilizer formulation is granulated and 

adapts to the farmers equipment.   
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Mechanization and precision agriculture for the control of the weeds, especially in water rows seeding.  

Studies of indirect techniques to reduce the emergence of weeds in paddy fields: rice brand, allelopathy, Tagetes 

minuta. In this sense, specific rice gene alleles that regulate the excretion of these allelopathic compounds at 

different levels in some rice varieties and wild rice species have been reported (Song et al. 2012). Despite these 

extensive efforts locating genes that determine or involve rice allelopathy, the introduction of these genes into 

target rice cultivars has not yet been achieved. Thus, the successful breeding of new rice cultivars with good 

weed-suppressing ability would not only benefit farmers, but it would also play an important role in sustainable 

agricultural production (Khanh et al. 2007). 

Besides that, the applicability of rice bran for weed control in organic farming system has been successfully 

demonstrated in Japan, China, and India (Bhuiyan et al. 2014;  Hoosain et al. 2013;  Jabran 2017;  Khan et al. 

2007;  Yulianto and Xuan 2018). However, no attempts have been reported in Europe, although a higher 

potential would be expected, as it has been reported that the rice bran from Japonica subspecies, the subspecies 

cultivated in Europe, is much more effective than the one from Indica subspecies, cultivated primarily in India, 

China, and the rest of the world. Rice bran, which account for 5 to 8 % of the rough rice weight, is derived from 

the outer layers of the caryopsis during milling and includes the pericarp, seed coat, nucleus, and part of the 

sub- aleurone layer of the starchy endosperm. Rice bran is known for its contain valuable components and 

natural toxins (Barber 1979). Considering the above facts, the use of rice bran could be a useful non-chemical 

weed control (Bhuiyan et al. 2014;  Khan et al. 2007). 

On the other hand, Tagetes minuta (Mexican marigold; family Asteraceae) is an aromatic essential plant with 

wide range of biological activity including medicinal properties (Vasudevan et al. 1997). A recent study 

successfully demonstrated the potential herbicidal activity of T. minuta leaf powder towards invasive weeds. It 

possesses not only excellent medicinal properties but also strong nematocidal, insecticidal and antimicrobial 

activity (Tereschuk et al. 1997;  Tomova et al. 2005). The use of dry powder of T. minuta in India has been 

reported to be effective as bioherbicide in the main rice weed species (Batish et al. 2007), opening the gates for 

the use of this species as a bioherbicide-fertilizer cover crop, and developing new effective commercial 

bioherbicides. 

Developing high-quality rice varieties suitable for organic cultivation, including high vigour and tillering to block 

weeds by light competence and having high allelopathic activity against weeds, is the challenge. This will pave 

the way for a new concept of rice breeding, where varietal selection focusses in cooking quality and easing 

organic cultivation rather than nowadays high-yielding but low-quality, low-profit rice varieties are highly 

pesticide-dependant. 

Study of rotation of winter crops that are compatible with rice in the summer. 
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ANNEX 1. Economical study of organic rice cultivation in the Ebro Delta  

Table 1: Comparison of cost per hectare between Organic crop system and Conventional crop system. Prices for 

the Ebro Delta in 2022. 

 

 

 

 

Organic Conventional

Preparation of the soil Machinery 263 217 Organic needs more preparation 

Machinery - F1 Deep 68 34

Fertilizer - F1 Deep 108 368

Machinery - F2 Cover 41 82

Fertilizer - F2 Cover 651 364

Machinery 41 41

Seed 376 239

Non-chemical - product - -

Non-chemical - work 200 -

Chemical control - product - 347

Chemical control - work - 150

Manual weeding 900 100
Organic needs more work-hours to keep out the weeds 

manually

Non-chemical - product 146

Non-chemical - work 199

Chemical control - product 153

Chemical control - work 150

Non-chemical - product 74 74

Non-chemical - work 50 50

Crop following Worker 500 300 Organic needs more attentation 

Harvest Machinary 456 456

Post harvest Machinary 97 97

Waste 214 214

Worker 120 120

Crop insurance Taxes 75 75

ADV Taxes 48 48

Treatments book IPM Advisor 100 100

4,727 3,779

PAC 586 586

Unic payment 345 345

Agro-enviromental payment 316 316

Rice specific payment 200 200

1,447 1,447

Grain yield (Kg/Ha) 4,500 8,000

Price (€/kg) 1.30 0.48

Benefits 5,850 3,840

5,850 3,840

4,727 3,779 Organic expenses are higher than conventional

7,297 5,287 Organic has more income than conventional

3,274 2,328 Organic wins 29% more profits than conventional

  AMOUNT RICE PRODUCTION    

There are not differences between grants

Organic rice price has 270 % upper than conventionalC
R

O
P

 I
N

C
O

M
E

PROFITS (€/Ha)   

Total income   

Total expenses   

C
R

O
P

 E
X

P
E

N
S

E
S

Grant

Rice production

AMOUNT GRANT    

Booth systems needs the saponin treatments to minnor the 

apple snail pest
Pest control

Water

Weeds control

AMOUNT CROP EXPENSES    

Organic needs more seeding doses and conventional must 

to seed-treatment 
Seeding

Organic has only non-chemical techniques to weeding

Conventional needs products and three chemical-herbicides 

aplications

Diseases control

Conventional needs three chemical-fungicides applications

Organic needs four fungicides applications

Cost (€/Ha)
ConceptOperations Differences between Organic & Conventional

Fertilization

The chicken manure is cheap and it's necessary large 

quantitties

Organic fertilizers is more expensive than conventional, in 

change, the conventional needs more nitrogen quantity
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Table 2: Differences between Organic crop system and Conventional crop system. Prices for the Ebro Delta in 

2022. 

 

 

Table 3: Economical study for 5 years between Organic crop system and Conventional crop system. Prices for 

the Ebro Delta in 2022. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rice production (kg/Ha) 4,500 8,000

Price sale (€/kg) 1.30 0.48

Expenses (€/Ha) 4,727 3,779

Benefits (€/Ha) 5,850 3,840

Profits (€/Ha) 1,827 881

Ratio P/E (%) 38.65 23.31

Final price for consumers (€/Kg) 2 6

ConventionalOrganicConcept

1st year 2nd year 3rd year 4th year 5th year

4,500 0.38 1,710 1,710 1,710 - -

4,500 1.32 - - - 5,850 5,850

Conventional 8,000 0.38 3,040 1,710 3,040 3,040 3,040 15,200 18,895 3,695 10,930

Net benefits 

with grant (€)

430

Profits (€)

16,830

Expenses (€)

23,635 -6,805Organic 

Net benefits 

without grant (€)

Benefits
Price sale (€/kg)Rice production (kg/Ha)
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ANNEX 2. OTHER SUBMITTED PAPERS (Journals) 
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ANNEX 3. DISSEMINATION 

(1) XVIII Congres SEMh – April 2021   

https://semh.net/wp-content/uploads/2022/07/LibroActasSEMh2022-Meridabr.pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://semh.net/wp-content/uploads/2022/07/LibroActasSEMh2022-Meridabr.pdf
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(2) Award: The best oral communication of Doctorate student – April 2021  

https://www.phytoma.com/noticias/noticias-de-actualidad/un-estudio-sobre-control-de-malas-

hierbas-en-arroz-ecologico-xiii-premio-semh-phytoma 

https://doctoratsindustrials.gencat.cat/un-projecte-di-sobre-control-de-males-herbes-en-arros-       

ecologic-xiii-premi-semh-phytoma/ 

 

 

https://www.phytoma.com/noticias/noticias-de-actualidad/un-estudio-sobre-control-de-malas-hierbas-en-arroz-ecologico-xiii-premio-semh-phytoma
https://www.phytoma.com/noticias/noticias-de-actualidad/un-estudio-sobre-control-de-malas-hierbas-en-arroz-ecologico-xiii-premio-semh-phytoma
https://doctoratsindustrials.gencat.cat/un-projecte-di-sobre-control-de-males-herbes-en-arros-%20%20%20%20%20%20%20ecologic-xiii-premi-semh-phytoma/
https://doctoratsindustrials.gencat.cat/un-projecte-di-sobre-control-de-males-herbes-en-arros-%20%20%20%20%20%20%20ecologic-xiii-premi-semh-phytoma/
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(3) II Congres PAE and conference – May 2021  

 

https://www.youtube.com/watch?v=dNMnsNuGxOQ 
 

 

 

https://www.youtube.com/watch?v=dNMnsNuGxOQ
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(4) Journal BROTS Nº25 – September 2021  

             http://www.agrifor.org/ca/actualitat/revista   

 

 

 

http://www.agrifor.org/ca/actualitat/revista
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(5) Journal AGROCULTURA Nº89 – October 2021  

https://botiga.associaciolera.org/revista-agrocultura/683-revista-agrocultura-num-89-tardor-   

2022.html 

 

https://botiga.associaciolera.org/revista-agrocultura/683-revista-agrocultura-num-89-tardor-
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(6) Journal PHYTOMA Nº344 – December 2021  
 

https://www.phytoma.com/la-revista/phytohemeroteca/344-diciembre-2022 
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(7) Farmers training in Valencia – July, 2022 
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(8) Journal AGROECOLOGIA Nº48 – Summer, 2022  

         https://www.agroecologia.net/producto/revista-ae-no48/ 

 

 

https://www.agroecologia.net/producto/revista-ae-no48/
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(9) Journal BROTS Nº26 – September, 2022  

http://www.agrifor.org/repositori/documents/documentacio/ca/BROTS%20n%C2%BA26(MIT

JA-pagxpag).pdf   
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(10) Farmers training in Ebro Delta – November, 2022 
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(11) Newsletter EXTENSIUS.CAT – February 2023 

 

https://extensius.cat/2023/02/27/practiques-per-afavorir-la-biodiversitat-als-arrossars/ 

 

https://extensius.cat/2023/02/27/practiques-per-afavorir-la-biodiversitat-als-arrossars/
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(12)  Journal AGRICULTURA Nº1072 – May 2023  

https://archivo.revistaagricultura.com/revista/agricultura/revista-agricultura_31_1_ap.html 
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(13)  Conference in Salon Gourmets MADRID 2023 – May 2023  

     https://www.youtube.com/watch?v=v9QnK6xXb7E 
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(14) Biologists Journey’s (La Ràpita) – June 2023 

https://www.youtube.com/watch?v=XMv2wodMMJs&t=4s 
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(15) Website AGAUR – July 2023  

 

https://doctoratsindustrials.gencat.cat/en/projecte-organic-delta-rice-sostenibilitat-agricola-

delta-de-lebre/ 
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ANNEX 4. OTHER PUBLISHED PAPERS (TV and Newspapers) 

https://www.ccma.cat/tv3/alacarta/telenoticies-comarques/el-sector-arrosser-avalua-la-viabilitat-

del-conreu-ecologic-al-delta-de-lebre/video/6023356/ 

 

 

 

https://www.ccma.cat/catradio/alacarta/el-primer-sector/arros-ecologic-al-delta-de-lebre-molt-

minoritari-tot-i-que-nhi-ha-demanda-i-es-paga-be/audio/1095563/ 

 

 

 
 
 

https://www.ccma.cat/tv3/alacarta/telenoticies-comarques/el-sector-arrosser-avalua-la-viabilitat-del-conreu-ecologic-al-delta-de-lebre/video/6023356/
https://www.ccma.cat/tv3/alacarta/telenoticies-comarques/el-sector-arrosser-avalua-la-viabilitat-del-conreu-ecologic-al-delta-de-lebre/video/6023356/
https://www.ccma.cat/catradio/alacarta/el-primer-sector/arros-ecologic-al-delta-de-lebre-molt-minoritari-tot-i-que-nhi-ha-demanda-i-es-paga-be/audio/1095563/
https://www.ccma.cat/catradio/alacarta/el-primer-sector/arros-ecologic-al-delta-de-lebre-molt-minoritari-tot-i-que-nhi-ha-demanda-i-es-paga-be/audio/1095563/
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https://www.ccma.cat/tv3/alacarta/telenoticies-comarques/assagen-el-cultiu-de-quinoa-al-delta-de-
lebre/video/6034283/ 
 

 

 

 

 

https://ebredigital.cat/2021/03/16/la-rotacio-del-cultiu-darros-amb-quinoa-permetria-frenar-les-

males-herbes-i-diversificar-el-sector-al-delta/ 

 

 

 

https://www.ccma.cat/tv3/alacarta/telenoticies-comarques/assagen-el-cultiu-de-quinoa-al-delta-de-lebre/video/6034283/
https://www.ccma.cat/tv3/alacarta/telenoticies-comarques/assagen-el-cultiu-de-quinoa-al-delta-de-lebre/video/6034283/
https://ebredigital.cat/2021/03/16/la-rotacio-del-cultiu-darros-amb-quinoa-permetria-frenar-les-males-herbes-i-diversificar-el-sector-al-delta/
https://ebredigital.cat/2021/03/16/la-rotacio-del-cultiu-darros-amb-quinoa-permetria-frenar-les-males-herbes-i-diversificar-el-sector-al-delta/
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            https://www.rtve.es/alacarta/videos/linformatiu/18032021/5821849/ 

 

 

 

 

           https://www.rtve.es/play/videos/aqui-la-tierra/15-09-2021/6096362/ 

 

 

 

 

 

https://www.rtve.es/alacarta/videos/linformatiu/18032021/5821849/
https://www.rtve.es/play/videos/aqui-la-tierra/15-09-2021/6096362/
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https://doctoratsindustrials.gencat.cat/un-projecte-de-doctorat-industrial-posa-les-bases-per-a-

impulsar-la-produccio-darros-ecologic-al-delta-de-lebre/ 
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