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1. Introduction

As Douglass North writes in the very first lines of the first part of his extremely in-
fluential book “Insitutions, Institutional Change and Economic Performance”, pub-
lished in 1990 (North 1990):

Institutions are the rules of the game in a society or, more formally,
are the humanly devised constraints that shape human interaction. In
consequence they structure incentives in human exchange, whether po-
litical, social, or economic.

Given that institutions are meant to “ structure incentives”, it is of paramount
importance to understand precisely how, given a set of rules, incentives are shaped.
Here is where game theory, which aims to investigate strategic interactions between
rational agents, comes into play. Even if game theory as a field of its own was
mostly developed in the 20th century, some of its core ideas can be traced back to
works in the 18th century, such as in the Rousseau’s 1755 seminal “Discourse on
the Origin of Inequality” (Rousseau 2004) 1. Game theory studies which outcomes
might arise when several strategic agents interact, focusing on the incentives of
each agent depending on the behavior of the others. In this thesis I will make use of
the tools that game theory provides to study how the incentives certain institutions
induce might generate outcomes that are not in line with the initial purpose of the
institution itself. The three papers that make up the three chapters that follow after
this introduction, aim to investigate this issue formally in a variety of settings: from
a job market to an election.

In the second chapter, that is coauthored with Marina Núñez and published in
Games and Economic Behavior (Domènech and Núñez 2022), we focus on a job
market, in which firms and workers are to be matched with each other. Each firm
has a certain productivity with each worker, and both workers and firms have a
maximum number of partners they can be matched to. If a firm and a worker are
matched with each other, their joint productivity has to be shared among them. This

1Fudenberg and Tirole analyze as examples of games some reasoning paths and “rational anal-
ysis” of Rousseau in Fudenberg and Tirole (1991), probably the most widely used game theory
textbook.
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Introduction

model, known as multiple-partners assignment game, was firstly introduced in So-
tomayor (1992), and is a generalization of the simple assignment game, introduced
in the seminal Shapley and Shubik (1972). The model can also be read in terms of
buyers and sellers, where workers are the sellers and firms the buyers. In this frame-
work, there is a set of solutions of particular interest, the stable rules, which involve
a firms-workers matching and an allocation of the productivities such that no firm
and worker that are not matched together would prefer to drop one of their partners
in order to associate. In our work, we provide an axiomatization of two especially
relevant stable rules: the firms-optimal and the workers-optimal stable rules. The
axioms that we use allow us to discuss manipulability aspects of these rules, which
is a relevant topic in the matching literature. Focusing on the side of the firms (it
works similarly for workers), we know from Pérez-Castrillo and Sotomayor (2017)
that the firms-optimal stable rules are manipulable by any firm that is able to hire
more than one worker. However, in our work we show that manipulation is not prof-
itable if a firm can only over-report all productivities by the same amount. Hence,
we show that a firm must be able to asymmetrically manipulate the productivities
with the different workers in the market in order to gain from manipulation. This
result lets a planner better foresee, given the particularities of the market, when the
mentioned relevant stable rules can be expected to produce the desired outcome and
when they might lead to manipulation.

In the third chapter, that is product of a collaboration with Dimitrios Xefteris, we
study how an interest group might affect the outcome of an election. We consider
the case of a committee, which might be viewed as a Parliament, that must choose
whether or not to implement a socially desirable reform. The decision is taken via
an election and votes are aggregated by means of simple majority. We assume that
all the voters find the reform desirable and that there exists an interest group willing
to bribe voters in order to stop the reform from passing. The setting is in line with
Dal Bò (2007), that shows that, even if the interest group might not have to spend a
lot to buy the election, it needs a potentially huge budget in order to make credible
bribes to the voters. We inquire what an interest group with a fixed and limited
budget can do to block the reform, and we do so by considering a simple bribing
scheme: the interest group commits to giving to each voter who votes against the re-
form an equal part of the budget. We show that, if voters value the election outcome
enough, two symmetric completely mixed-strategy Nash equilibria always coexist,
one in which the reform is more likely to pass and one in which it is less likely.
Furthermore, we prove that when the size of the committee grows asymptotically
large, the reform is implement almost for sure, or almost surely not, depending on
which of the two equilibria is played. The existence of these equilibria relies on
voters’ being aware their vote might not be decisive, and hence inferring how likely
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they are to be pivotal (individually). Our results are consistent and a potential ex-
planation of the “Tullock paradox”, which states that some interest groups seem to
obtain disproportionately large political favors (Tullock, 1967; Tullock, 1997). In
addition, our work also poses doubts on the efficiency of vote trading, allowing for
a critique, in the spirit of Neeman (1999), based on the fact that the prices of votes
might not reflect its real value.

In the fourth chapter, which is the fruit of joint work with Caio Lorecchio and
Oriol Tejada, we investigate how social networks, or information groups (groups of
people that share information), might affect the incentives to acquire information
ahead of an election. Anthony Downs, in his seminal book “An Economic Theory
of Democracy” (Downs, 1957), points out that voters might not find profitable to ac-
quire costly information, since their vote is likely to not change the outcome of the
election; this is what he called “rational ignorance”. Martinelli (2006) studies this
issue formally in the context of an election in which citizens must choose between
two options but are initially unaware of which one is better for society (they have
common preferences). However, prior to voting (the decision is taken by simple
majority), citizens can individually acquire a costly signal about the right alterna-
tive to implement, the accuracy of which is increasing in the cost incurred. That
is: if a citizen wants to be more certain about which alternative should be imple-
mented, s/he has to incur a higher cost. This cost can be viewed as an effort that
citizens must undertake in order to obtain and/or process information. In this set-
ting, Martinelli (2006) shows that there is only one symmetric equilibrium; i.e. in
which all citizens acquire the same information level. Furthermore, he shows that,
even if the individual level of information goes to zero as the size of the electorate
grows large, the probability that the society as a whole chooses the right alternative
does not, and in fact, in some (not extreme) cases, it goes to one. In our work we
study what happens if we allow the possibility of communication between voters.
To be precise, we allow for voters to communicate to (some) other voters, truth-
fully or not, how much information they have individually purchased and which
is the alternative they deem more likely to be the right one to implement. Hence,
we assume the existence of an underlying communication network. We focus on
the case in which all voters can communicate between them, and prove that in this
case, truthful reporting is consistent with voters believing the messages they receive
2. Intuitively, the existence of such a communication network might have two (op-
posed) effects compared to the benchmark case without communication: i) a voter
might find beneficial to free-ride on the information acquired by the other voters,
and ii) a voter might want to acquire more information, given that it can be enjoyed

2We also show that this is not the case when the underlying network is not complete.
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Introduction

by everyone. We prove that both these effects translate into a dictator equilibrium
always existing, which is an equilibrium in which only one voter acquires infor-
mation, and the rest rely on it. We show that such equilibrium, which never exists
without communication, might provide a higher or a lower probability of choosing
the right alternative compared to the symmetric equilibrium of case of no commu-
nication. In addition, we show that if information is costly enough, the symmetric
equilibrium of the case without communication carries over to the case with com-
munication. In fact we prove that this is the only possible symmetric equilibrium
of the game and, importantly, that, whenever it exists, it provides the exact same
probability of choosing the right alternative whether there is communication or not.

After these three chapters, in Chapter 5, I address some concluding remarks.
These are meant not only to highlight the main contributions and findings of the
central chapters, but also to identify main directions for further research.

4



2. Axioms for the optimal stable
rules and fair-division rules in a
multiple-partners job market.1

Abstract

In the multiple-partners job market, introduced in Sotomayor (1992), each firm
can hire several workers and each worker can be hired by several firms, up to a given
quota. We show that, in contrast to what happens in the simple assignment game,
in this extension, the firms-optimal stable rules are neither valuation monotonic nor
pairwise monotonic. However, we show that the firms-optimal stable rules satisfy a
weaker property, what we call firm-covariance, and that this property characterizes
these rules among all stable rules. This property allows us to shed some light on
how firms can (and cannot) manipulate the firms-optimal stable rules. In particular,
we show that firms cannot manipulate them by constantly over-reporting their valu-
ations. Analogous results hold when focusing on the workers. Finally, we extend to
the multiple-partners market a known characterization of the fair-division rules on
the domain of simple assignment games.

Keywords: assignment game; stable rules; fair division.

JEL Codes: C78, D78.

2.1. Introduction

The aim of this paper is to study some allocation rules in a two-sided job market
with firms on one side and workers on the other side. Each agent has a quota that

1This chapter was published as a paper coauthored with Marina Núñez in Games and Economic
Behavior (Domènech and Núñez 2022).
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Stable rules in a multiple-partners job market

determines in how many partnerships with agents of the opposite side this agent can
enter. Each potential partnership has a value and a rule determines a matching and
an allocation of the value of each partnership between the partners. This model is
an extension of the well-known Shapley and Shubik assignment game.

The assignment game was introduced in Shapley and Shubik (1972) as a coali-
tional game model for a two-sided market, formed by buyers and sellers or firms
and workers, where each agent on one side is to be matched to at most one agent
on the opposite side. The objective is to propose a matching and an allocation of
the worth of each matched pair among the partners in such a way that no buyer-
seller pair (or firm-worker pair) blocks the proposed matching because they can get
a higher payoff by being matched together.

Shapley and Shubik prove that, for such markets, stable outcomes always exist
and form a complete lattice, which guarantees the existence of an optimal stable
outcome for each side of the market. They also prove the coincidence between the
core, the set of stable payoff vectors and the set of competitive equilibria payoff
vectors.

Many extensions of the Shapley and Shubik assignment game, that we will call
the simple assignment game, have been studied since then. The first ones allow
agents to be matched to more than one partner. Kaneko (1976) assumes that buyers
can only buy one good from one seller while each seller can sell to more than one
buyer. The core is also non-empty but (strictly) contains the set of competitive
equilibrium payoff vectors. Thompson (1981) allows that both buyers and sellers
can take part in multiple partnerships, up to a given quota exogenously determined
for each agent. This extension was also studied in Sánchez-Soriano et al. (2001)
with the name of transportation game and in Sotomayor (2002). It turns out that the
core, that also contains the set of competitive equilibrium payoff vectors, is non-
empty but has no longer a lattice structure. In this model, existence of optimal core
allocations for each side of the market is still an open question.

A different extension of the simple assignment game is introduced in Sotomayor
(1992) with the name of multiple-partners assignment game, and this is the model
that better fits with our initial job market situation. In the multiple-partners as-
signment game, each agent can also take part in multiple partnerships, as many as
the agent’s quota allows, but can trade at most one unit with each possible part-
ner. Utilities are assumed to be additively separable. Again, an outcome consists
of a matching and an allocation of the worth of each partnership between the two
partners. In this setting, a notion of (pairwise) stable outcome is similarly defined.
Sotomayor (1992) shows that the set of stable payoffs is non-empty and a subset of
the core, and that it can be strictly smaller than the core. Sotomayor (1999) adds
that the set of stable payoffs is endowed with a complete lattice structure under
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Introduction

two convenient partial order relations. Although these partial orders are not de-
fined by the preferences of the agents, all agents on the same side of the market
agree on the best stable payoff for them. The relationship with the set of compet-
itive equilibrium payoffs is analysed in Sotomayor (2007) and a mechanism that
yields the buyers-optimal competitive equilibrium payoff, which coincides with the
buyers-optimal stable payoff, is obtained in Sotomayor (2009). Pérez-Castrillo and
Sotomayor (2019) analyses how the optimal stable and competitive solutions react
to the introduction of a new agent to the market, depending on whether it is a buyer
or a seller.

The aim of our paper is to study stable allocation rules, that is, rules that given
the values of all possible partnerships select a stable outcome. In particular we will
focus on the two optimal stable rules. We first generalize some monotonicity proper-
ties: pairwise monotonicity and firm-valuation monotonicity (or worker-valuation
monotonicity), that are satisfied by optimal stable rules in the simple assignment
game. Firm-valuation monotonicity states that if the values of a firm weakly de-
crease but this does not modify the partners of this firm given by the rule, then this
firm should not receive a higher payoff in any of its partnerships. In the simple
assignment game this property characterizes the firms-optimal stable rules among
all stable rules (van den Brink et al., 2021).

We show that the optimal stable rules for the multiple-partners assignment game
do not satisfy the aforementioned monotonicity properties: the firms-optimal sta-
ble rules are neither firm-valuation monotonic nor pairwise monotonic. However,
the firms-optimal stable rules satisfy a weaker form of valuation monotonicity. We
strengthen the conditions under which a decrease of the valuations of the firm should
imply a decrease in that firm’s payoffs: we only require monotonicity when all its
valuations are decreased by the same amount. This weak firm-valuation mono-
tonicity is a consequence of what we call firm-covariance. Roughly speaking, a
rule is firm-covariant if when all valuations of a firm decrease in a constant amount
and all optimal matchings of the initial market still remain optimal, then the payoff
this firm obtains in each partnership decreases in exactly that constant amount. We
prove that firm covariance characterizes the firms-optimal stable rules among all
stable rules, and worker covariance characterizes the workers-optimal stable rules
among all stable rules.

Secondly, we focus on how agents can misrepresent their preferences to manip-
ulate a stable rule in the multiple-partners assignment game. Pérez-Castrillo and
Sotomayor (2017) analyse the manipulability of competitive equilibrium rules for
this market game (with buyers instead of firms and sellers instead of workers). They
show that (i) any agent who does not receive her/his optimal competitive equilib-
rium payoff under a competitive rule can profitably misrepresent her/his valuations,

7



Stable rules in a multiple-partners job market

assuming the others tell the truth; (ii) if the buyers-optimal (respectively, sellers-
optimal) competitive equilibrium rule is used in a market with more than one vector
of equilibrium prices, then there is a seller (respectively, buyer) who can profitably
misrepresent his (respectively, her) valuations and (iii) an agent with a quota of one
cannot manipulate a rule in a market if and only if the rule gives to this agent her/his
most preferred equilibrium payoff.

Since in multiple-partners assignment games the payoff vector of the buyers-
optimal stable rule coincides with that of the buyers-optimal competitive equilib-
rium rule (Sotomayor, 2007), only the buyers with capacity one cannot manipulate
the rule. However, we show that these stable rules that are optimal for one side of
the market have a weaker non-manipulability property: on the domain of multiple-
partner job markets where all firm-worker pairs are acceptable, no firm can manip-
ulate a firms-optimal stable rule by constantly over-reporting its valuations. Simi-
larly, no worker can manipulate the workers-optimal stable rule by under-reporting
his/her valuation.

There is some experimental evidence that bidders tend to over-report valuations
in some auctions. See for instance Kagel and Levin (1993) for second price auc-
tions, Kagel and Levin (2009) for the Vickrey multi-unit demand auction, or Kagel
et al. (2014) for some combinatorial auctions with package bidding. We see that,
although over-reporting may be profitable for firms (or buyers) if a firms-optimal
stable rule is implemented in a multiple-partners job market, the least sophisticated
form of over-reporting which consists in adding the same constant to all firm’s val-
uations, does not bring any additional profit.

Finally, we consider the fair-division rules. The payoff vector of these rules is the
midpoint between the firms-optimal and the workers-optimal payoff vectors. On the
domain of simple assignment games, these rules have been characterized in van den
Brink et al. (2021) by means of two properties: great valuation fairness and weak
derived consistency. We adapt the definition of these two properties to the domain of
multiple-partners job markets. Great valuation fairness requires that when the value
of all firm-worker pair decreases by a constant amount (up to a given threshold that
guarantees that all optimal matchings of the initial market remain optimal) then all
players suffer the same reduction in the payoff they receive from the rule. Weak
derived consistency only requires consistency of the payoffs when the market is
reduced at a firm-worker pair that have the same payoff at any stable outcome. We
show that these two properties individualize the fair-division rules among all stable
rules.

The structure of the paper is as follows. In Section 2 we introduce the multiple-
partners job market, Section 3 contains the characterizations of the two optimal
stable rules, Section 4 discusses the manipulability of these rules and Section 5

8



The multiple-partners assignment game

characterizes the fair-division rules.

2.2. The multiple-partners assignment game

Let F = { f1, f2, . . . , fm} be a finite set of firms and W = {w1,w2, . . . ,wn} a finite
set of workers. Each firm fi values in hi j ≥ 0 being matched to worker w j. Also,
each worker w j has a reservation value t j ≥ 0, that can be interpreted as how much
worker w j values each one of his available slots. If firm fi hires worker w j, then a
value ai j = max{hi j − t j,0} ≥ 0 is generated that has to be shared by both partners.
Sometimes we will normalize reservation values of workers at zero and then ai j =

hi j for all i = 1,2 . . . ,m and j = 1,2, . . . ,n. Each firm fi can hire at most ri workers
and each worker w j can work for at most s j firms.

A multiple-partners assignment market or a multiple-partners job market is then
defined by (F,W,a,r,s) where a = (ai j) i=1,...,m

j=1,...,n
, r = (ri)i=1,...,m and s = (s j) j=1,...,n.

The set of all possible valuation profiles for a set F of firms and a set W of workers
is denoted by A F×W . We add a dummy agent on each side of the market, f0 and
w0, such that a00 = ai0 = a0 j = 0 for all i = 1, . . . ,m and j = 1, . . . ,n. As for the
quotas, a dummy player may form as many partnerships as needed to fill up the
quotas of the non-dummy players. We write F0 = F ∪{ f0} and W0 =W ∪{w0}. A
dummy player may be matched to more than one player of the opposite side and
more than once to the same player. When all non-dummy agents have quota 1, this
model coincides with the one in Shapley and Shubik (1972) and we will say it is a
simple assignment game.

A matching µ is a subset of F0 ×W0, that does not violate the quotas of the
players, that is, each fi ∈ F appears in exactly ri pairs of µ and each w j ∈W appears
in exactly s j pairs of µ , since a firm that does not fill some of its positions is assumed
to be matched to the dummy worker w0 (and similarly for workers with unfilled
positions). When necessary, we denote by µ fi the set of partners of firm fi ∈ F
in matching µ , that is µ fi = { j ∈ W0 | ( fi,w j) ∈ µ}. Similarly, for all w j ∈ W ,
µw j = {i ∈ F0 | ( fi,w j) ∈ µ}.

The set of all matchings is M (F,W,r,s). A matching µ is optimal if, for any other
µ ′ ∈ M (F,W,r,s), ∑( fi,w j)∈µ ai j ≥ ∑( fi,w j)∈µ ′ ai j. The set of optimal matchings is
Ma(F,W,r,s).

From this market situation, a coalitional game (F ∪W,wa), the multiple-partners
assignment game is defined with set of agents F ∪W and coalitional function

wa(T ) = max
µ∈M (F∩T,W∩T,r,s)

∑
( fi,w j)∈µ

ai j

9



Stable rules in a multiple-partners job market

for all T ⊆ F ∪W with T ∩F ̸= 0 and T ∩W ̸= 0, and wa(T ) = 0 otherwise.
An outcome for the market (F,W,a,r,s) consists of a matching and the pay-

offs that each agent obtains from each of the partnerships he/she establishes in
this matching. That is, if firm fi hires worker w j at a salary vi j, this firm receives
ui j = ai j − vi j.

Definition 2.1. Let (F,W,a,r,s) be a multiple-partner job market. A feasible out-
come is (u,v; µ) where µ ∈ M (F,W,r,s) and for each ( fi,w j) ∈ µ ,

1. ui j + vi j = ai j,

2. ui j ≥ ai0 and vi j ≥ a0 j,

3. if fi = f0, then v0 j = a0 j,

4. if w j = w0, then ui0 = ai0.

Notice that ui j and vi j are only defined if ( fi,w j) ∈ µ . Hence, u and v contain a
list of dissagregated payoffs for each agent, one for each partnership established by
µ . Also, as a consequence of the above definition, the payoff of the dummy agents
is always zero.

For these markets, a notion of stability, sometimes called pairwise stability, is
defined in Sotomayor (1992).

Definition 2.2. Let (F,W,a,r,s) be a multiple-partner job market. A stable outcome
is a feasible outcome (u,v; µ) such that for all ( fi,w j) ̸∈ µ ,

uik + vl j ≥ ai j for all ( fi,wk) ∈ µ and ( fl,w j) ∈ µ. (2.1)

Notice that if there existed ( fi,wk) and ( fl,w j) in µ such that uik +vl j < ai j, then
fi and w j might break their current partnerships with wk and fl , respectively, and
form a new one together, because this could give to each of them a higher payoff.

It is shown in Sotomayor (1992) that if (u,v; µ) is a stable outcome, then µ is an
optimal matching.

For the multiple-partners assignment game, stable outcomes always exist. This
is proved in Sotomayor (1992) in two different ways: one of them uses linear pro-
gramming and the second one, that we comment on below, is based on a replication
of the players and a convenient way of defining the valuation matrix.

Given any multiple partners-assignment game (F,W,a,r,s) we can define a re-
lated simple assignment game (F̃ ,W̃ , ã) in the following way. Each firm fi with
quota ri is replicated ri times and each worker w j with quota s j is replicated s j
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times:

F̃ = { fik | i = 1, . . . ,m; k = 1, . . . ,ri} and W̃ = {wk j | j = 1, . . . ,n; k = 1, . . . ,s j}

with unitary quotas, r̃ik = 1 for all i = 1, . . . ,m and k = 1, . . . ,ri, and s̃k j = 1 for
all j = 1, . . . ,n and k = 1 . . . ,s j. Moreover, given µ ∈ Ma(F,W,r,s), we define a
one-to-one matching µ̃ between F̃ and W̃ in this way: (i) if ( fik,wl j) ∈ µ̃ , then
( fi,w j) ∈ µ and (ii) if ( fi,w j) ∈ µ , there exist one and only one k = 1, . . . ,ri and
one and only one l = 1 . . . ,s j such that ( fik,wl j) ∈ µ̃ . This means that if fi hires
w j under µ , then one copy of fi hires one copy of w j under µ̃ and that no other
copies of them are matched. After defining ã, it can be shown that µ̃ is optimal for
(F̃ ,W̃ , ã).

Then, given µ̃ as defined above, the valuation matrix ã of this related simple
assignment game (F̃ ,W̃ , α̃) is defined by

ãik,l j =

{
0 if ( fi,w j) ∈ µ and ( fik,wl j) ̸∈ µ̃,

ai j otherwise.
(2.2)

Now, if (u′,v′; µ̃) is a feasible outcome for the simple assignment game (F̃ ,W̃ , ã),
we can built a feasible outcome (u,v; µ) for the multiple-partners assignment game
(F,W,a,r,s) in the following way:

if ( fik,wl j) ∈ µ̃, then define ui j = u′ik, vi j = v′l j, and
ui0 = v0 j = 0, whenever i or j are matched to a dummy partner.

(2.3)

Proposition 2 in Sotomayor (1992) shows that (u′,v′; µ̃) is stable for (F̃ ,W̃ , ã) if
and only if (u,v; µ) is stable for (F,W,a,r,s).

Since it is well-known that stable outcomes always exist for the simple assign-
ment game, the above result guarantees also existence for the multiple-partners as-
signment game. Moreover, Sotomayor (1999) proves that the payoff vectors of the
set of stable outcomes form a convex and compact lattice and, as a consequence,
there exists a unique optimal stable payoff vector for each side of the market. To
this end, the problem that ui j and vi j are indexed according to the current matching,
that may differ from one stable matching to another, has to be solved. However, it is
also proved in Theorem 1 in Sotomayor (1999) that in every stable outcome a player
gets the same payoff in any nonessential partnership (those partnerships that occur
in some but not all optimal matchings). Because of that, given a stable outcome
(u,v; µ) and another optimal matching µ ′, we can reindex ui j and vi j according to
µ ′ and still get a stable outcome compatible with µ ′.

As a consequence of all that, to obtain the firms-optimal stable outcome in the
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multiple-partners assignment game we only need to obtain the firms-optimal sta-
ble payoff vector in the related simple assignment game. In the simple assignment
game, the maximum stable payoff of a firm fik ∈ F̃ is its marginal contribution,
uik(ã) = wã(Ñ)−wã(Ñ \ { fik}), and similarly for the workers, vl j(ã) = wã(Ñ)−
wã(Ñ \{wl j}) (see Demange (1982) and Leonard (1983)). Hence, (u(a),v(a)) de-
fined from (u(ã),v(ã)) as in 2.3 are the optimal stable payoff vectors in the multiple-
partners assignment game, and the maximum total stable payoff of an agent in the
multiple-partners assignment game is

U i(a) = ∑
( fi,wk)∈µ

uik(a) for all fi ∈ F and V j(a) = ∑
(k, j)∈µ

vk j(a) for all w j ∈W,

given any optimal matching µ . Notice that, for all fi ∈ F ,

U i(a) = ∑
( fi,wk)∈µ

w̃a(Ñ)− w̃a(Ñ \{ fik}) ≤ w̃a(Ñ)− w̃a(Ñ \{ fi1, fi2, . . . , firi})

= wa(N)−wa(N \{ fi}),

where, in contrast to the simple assignment game, the inequality U i(a)≤ wa(N)−
wa(N \{ fi}) may be strict.

The set of total payoffs (U,V ) to the agents in the multiple-partners assignment
game has been studied in Fagebaume et al. (2010), where it is proved that the max-
imum of any pair of stable (total) payoffs for the firms is stable but the minimum
need not be, even if we restrict the multiplicity of partnerships to one of the sides.

The aim of the present paper is to study the properties of stable allocation rules.
An allocation rule selects a feasible outcome for each multiple-partners job market.

Definition 2.3. Fix a set F of firms with quotas r and a set W of workers with
quotas s. An allocation rule ϕ consists of maps (u,v; µ) from valuation profiles
a ∈ A F×W to feasible outcomes (u(a),v(a); µ(a)). That is, for each a ∈ A F×W ,
ϕ(a)≡ (u(a),v(a); µ(a)) is a feasible outcome for (F,W,a,r,s).

An allocation rule is a stable rule if it always selects a stable outcome.

Definition 2.4. Fix a set F of firms with quotas r and a set W of workers with
quotas s. An allocation rule ϕ ≡ (u,v; µ) is a stable rule if for each valuation
profile a ∈ A F×W , ϕ(a)≡ (u(a),v(a); µ(a)) is a stable outcome for (F,W,a,r,s).

In the next section we study some outstanding stable rules: the firms-optimal
stable rules, that for each valuation profile select the firms-optimal stable payoffs
together with a compatible matching, and the workers-optimal stable rules, that
select the workers-optimal stable payoffs with a compatible matching. Notice from
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the above discussion of the literature, that for each of these two type of rules the
associated payoff vector is uniquely determined, although the compatible matching
may not be unique.

2.3. Valuation monotonicity properties

We begin by considering some monotonicity properties that are satisfied by the
optimal stable rules in the simple assignment game and we see whether they are
satisfied by the corresponding rules in the multiple-partners assignment game. The
first one is pairwise monotonicity. A rule for the simple assignment game is pair-
wise monotonic if whenever a single valuation of the market weakly increases and
the remaining ones do not change, then the rule does not decrease the payoff of
neither the firm nor the worker related to that valuation. It turns out that both op-
timal stable rules, and also the fair division rules, are pairwise monotonic (Núñez
and Rafels, 2002). If we want to discriminate between these stable rules, we need
to consider different changes in the valuation profile. In van den Brink et al. (2021),
a rule for the simple assignment game is said to be firm-valuation monotonic2 if
whenever all valuations of a single firm weakly decrease but this does not change
which worker is hired by this firm, then the payoff to this firm cannot increase. It
turns out that firms-optimal stable rules are the only stable rules for the simple as-
signment game that are firm-valuation monotonic. Of course, parallel definitions
and results follow for the workers-optimal stable rule.

Let us now generalize the definition of the above monotonicity properties to the
multiple-partners assignment game. Notice in the next definition that we can easily
compare the payoffs a firm receives in different matchings since we requiere that
the firm keeps the same partners after decreasing the valuations.

Definition 2.5. Fix a set F of firms with quotas r and a set W of workers with quotas
s. An allocation rule ϕ ≡ (u,v, ; µ) satisfies firm-valuation monotonicity (FVM)
if for all a,a′ ∈ A F×W such that there is a firm ft ∈ F such that a′i j = ai j for all
fi ∈ F \{ ft} and all w j ∈W and a′t j ≤ at j for all w j ∈W, then

µ ft (a) = µ ft (a
′)⇒ utk(a′)≤ utk(a) for all k ∈ µ ft (a).

FVM means that if all valuations of a firm weakly decrease but this does not
modify which workers it is assigned to, then the rule cannot give this firm a higher
payoff in any of its partnerships.

2The market considered in van den Brink et al. (2021) is formed by buyers and sellers and hence
this property is called there buyer-valuation monotonicity
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When defining a pairwise monotonicity property for the multiple-partners assign-
ment game, in order to be able to compare the payoffs before and after the change
of a value, we also need to require that the two agents related to the value that has
increased or decreased keep the same partners after this change. Hence, when ap-
plied to rules for the simple assignment game, this property is weaker than the usual
pairwise monotonicity for these games.

Definition 2.6. Fix a set F of firms with quotas r and a set W of workers with quotas
s. An allocation rule ϕ ≡ (u,v, ; µ) satisfies pairwise monotonicity (PM) if for all
a,a′ ∈A F×W such that there is a firm-worker pair ( ft ,wk) ∈ F ×W such that a′i j =

ai j if ( fi,w j) ̸= ( ft ,wk) and a′tk ≤ atk, then µ ft (a) = µ ft (a
′) and µwk(a) = µwk(a

′)

imply

ut j(a′)≤ ut j(a) for all j ∈ µ ft (a) and vik(a′)≤ vik(a) for all i ∈ µwk(a).

The next example shows that firms-optimal stable rules do not satisfy any of the
above monotonicity properties.

Example 2.1. Let be a multiple partner assignment game with three firms, F =

{ f1, f2, f3} and three workers, W = {w1,w2,w3}, all agents with quota 2, and val-
uation matrix

a =

 4.5 20 4
5 3 1
2 3 2

 .

There is only one optimal matching, given by

µ = {( f1,w2),( f1,w3),( f2,w1),( f2,w2),( f3,w1),( f3,w3)},

and hence any stable rule must select this matching µ . The worth of the grand
coalition is wa(N) = 36.

Assume the value a11 increases in 0.1, that is a′11 = 4.6 and the other values
remain unchanged. Hence, the new valuation matrix is

a′ =

 4.6 20 4
5 3 1
2 3 2


and notice that µ is also the only optimal matching for (F,W,a′,r,s).

To compute the payoffs in the firms-optimal stable rule, we obtain a related simple
assignment game as in Sotomayor (1992): F̃ = { f11, f12, f21, f22, f31, f32}, W̃ =
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{w11,w21,w12,w22,w13,w23} and

ã =



4.5 4.5 20 0 0 0
4.5 4.5 0 0 4 0
5 0 0 0 1 1
0 0 0 3 1 1
0 2 3 3 0 0
0 0 3 3 0 2


.

Here, u11(ã) = 36− 17.5 = 18.5 = u12(a). If we replace in ã the 4.5 entries with
4.6, the resulting matrix ã′ is a simple assignment game related to the valuation
matrix a′ and we can easily check that

u11(ã′) = 36−17.6 = 18.4 = u12(a′)< u12(a).

As a consequence, firms-optimal stable rules are neither firm-valuation monotonic
nor pairwise monotonic.

One may also ask about the behaviour of the total payoff of a firm in front of these
changes. But in this example it is easy to check that u12(ã′) = u12(ã) = 36−32 =

4 = u13(a′) = u13(a). Hence, U1(a′) = 22.4 < 22.5 =U1(a).

Taking into account the example above, we strengthen the requirement of firm-
monotonicity by assuming that all valuations of a given firm are decreased by the
same constant amount. Analogously, we will study a new worker-monotonicity
property assuming the valuations of all firms with respect to a given worker decrease
by the same constant amount. We will see how the two optimal stable rules react to
these changes in the valuations.

2.3.1. Firm-covariance of the firms-optimal stable rules

We consider a multiple-partners assignment game (F,W,a,r,s) that is “balanced”,
in the sense that ∑i∈F ri = ∑ j∈W s j. This assumption is without loss of generality
since we could always add a fake dummy agent with the necessary quota. We
analyse the behaviour of an allocation rule when the valuations of a firm fi0 decrease
by the same amount c ≥ 0, under the assumption that values that become negative
are truncated at zero: ac

i0 j = max{0,ai0 j − c} for all w j ∈ W . These values are
allowed to decrease in this way as long as no optimal matching of the initial problem
becomes non-optimal. We then say that a rule for the multiple-partners assignment
game is firm-covariant if the firm pays this cost c in each of its partnerships.

This property can be interpreted by saying that if a constant fee c is applied to

15



Stable rules in a multiple-partners job market

some firm whenever it hires a worker, then this fee is completely paid by the firm,
and not shared with the workers that it hires.

Definition 2.7. A rule ϕ ≡ (u,v; µ) is firm-covariant (FC) if for all (F,W,a,r,s),
all fi0 ∈ F and all c ≥ 0 such that

(i) ac
i0 j = max{0,ai0 j − c} for all w j ∈W and ac

i j = ai j for all fi ∈ F \{ fi0},

(ii) c ≤ ai0 j for all ( fi0,w j) ∈ µ and µ ∈ Ma(F,W ) and

(iii) Ma(F,W )⊆ Mac(F,W ),

then,

ui0 j(ac) = ui0 j(a)− c for all ( fi0,w j) ∈ µ, and

ui j(ac) = ui j(a), for all fi ∈ F \{ fi0} and ( fi,w j) ∈ µ.

Notice that conditions (ii) and (iii) together imply that the worth of the grand
coalition is still attained at the original optimal matchings.

As we remark after Definition 2.15 in the Appendix, requiring that c satisfies
conditions (ii) and (iii) in Definition 2.7 is equivalent to requiring c ≤ c∗ where this
threshold c∗, as defined in (2.5), is the minimum c ≥ 0 such that there is an optimal
matching of (F,W,ac,r,s) with a zero entry.

When we analyse if the firms-optimal stable rules satisfy this property, we may
consider the firms-optimal stable rules of the related simple assignment game and
study there how the payoff of such a rule changes when all the copies of a given firm
decrease their valuations by the same amount c ≥ 0. To this end, in the Appendix
we introduce the property of strong firm-covariance for stable rules of the simple
assignment game, by requiring that several firms decrease their valuations in a given
constant, and we provide an axiomatic characterization of their firms-optimal sta-
ble rules making use of this property. This strong firm-covariance can be defined
analogously for the multiple-partners assignment game.

An analogous covariance property can be defined when all the valuations of a
given worker are decreased by a constant amount.

Definition 2.8. A rule ϕ ≡ (u,v; µ) is worker-covariant (WC) if for all (F,W,a,r,s),
all w j0 ∈W and all c ≥ 0 such that

(i) ac
i j0 = max{0,ai j0 − c} for all fi ∈ F and ac

i j = ai j for all w j ∈W \{w j0},

(ii) c ≤ ai j0 for all ( fi,w j0) ∈ µ and µ ∈ Ma(F,W ) and

(iii) Ma(F,W )⊆ Mac(F,W ),
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then,

ui j0(a
c) = vi j0(a)− c for all ( fi,w j0) ∈ µ, and

ui j(ac) = ui j(a), for all w j ∈W \{w j0} and ( fi,w j) ∈ µ.

The next characterization of the firms-optimal stable rules of the multiple-part-
ners assignment game follows from the results on the simple assignment game de-
veloped in the Appendix. We could also state this result replacing firm-covariance
(worker-covariance) with strong firm-covariance (strong worker-covariance), since
in any case it relies on the strong covariance of the optimal stable rules of the simple
assignment game.

Theorem 2.1. 1. The firms-optimal stable rules are the only stable rules for the
multiple-partners assignment game that are firm-covariant.

2. The workers-optimal stable rules are the only stable rules for the multiple-
partners assignment game that are worker-covariant.

Proof. Let (F,W,a,r,s) be a multiple-partners assignment game. Let fi0 ∈ F and
c ≥ 0 that satisfies the conditions in Definition 2.7. Take some µ ∈ Ma(F,W,r,s)
and let (F̃ ,W̃ , ã) be a related simple assignment game where firms and workers have
been replicated according their capacity and the valuations are as described in (2.2),
given that µ ∈Ma(F,W,r,s). Let (F,W,ac,r,s) be the multiple-partners assignment
game with ac as in Definition 2.7. Notice that when we replicate this market we
obtain (F̃ ,W̃ , ãc) and the valuations satisfy ãc = ãc,I , as in Definition 2.15 in the
Appendix, where I consists of the ri0 copies of firm fi0 .

As a consequence, if uik(ã) and uik(ãc) are the maximum stable payoffs of the k
copy of firm fi in (F̃ ,W̃ , ã) and (F̃ ,W̃ , ãc), respectively, then from Proposition 2.5
in the Appendix,

ui0k(ãc) = ui0k(ã)− c and uik(ãc) = uik(ã) if i ̸= i0.

Hence, if ( fi0 ,w j) ∈ µ and ( fi0k,wl j) ∈ µ̃ ,

ui0 j(ac) = ui0k(ãc) = ui0k(ã)− c = ui0 j(a)− c.

Similarly, if fi ∈ F \{i0}, ( fi,w j) ∈ µ and ( fik,wl j) ∈ µ̃ , then

ui j(ac) = uik(ãc) = uik(ã) = ui0 j(a),

which shows that the firms-optimal stable rules of the multiple-partners assignment
game are firm-covariant.
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The converse implication is straightforward since any stable rule for the multiple-
partners assignment game that is FC induces a stable rule for the simple assignment
game that is strong firm-covariant, and by Theorem 2.3 in the Appendix we know
this can only be a firms-optimal stable rule. ■

If we are interested in the maximum total payoff of the firms in a stable outcome,
then we have

U i0(a
c) =

ri0

∑
k=1

ui0k(ãc) =

ri0

∑
k=1

(ui0k(ã)− c) =U i0(a)− ri0c

and for all fi ∈ F \{ fi0}

U i(ac) =
ri

∑
k=1

uik(ãc) =
ri

∑
k=1

uik(ã) =U i(a),

Notice now that, as a consequence of Theorem 2.1, we deduce that the firms-
optimal stable rules of the multiple partners assignment game satisfy a weaker form
of valuation monotonicity. We strengthen the conditions under which a decrease of
the valuations of the firm should imply a decrease in that firm’s payoffs: we only
require monotonicity when all valuations are decreased by the same amount.

Definition 2.9. A rule ϕ ≡ (U,V ; µ) is weak firm-valuation monotonic (WFVM)
if for all (F,W,a,r,s), all fi0 ∈ F and all c ≥ 0 such that

(i) ac
i0 j = max{0,ai0 j − c} for all w j ∈W and ac

i j = ai j for all fi ∈ F \{ fi0},

(ii) c ≤ ai0 j for all ( fi0,w j) ∈ µ and µ ∈ Ma(F,W ) and

(iii) Ma(F,W )⊆ Mac(F,W ),

then,

ui0 j(ac) ≤ ui0 j(a) for all ( fi0 ,w j) ∈ µ.

Since the firms-optimal stable rules are firm-covariant, they trivially satisfy weak
firm-valuation monotonicity.

Corollary 2.1. On the domain of multiple-partners assignment game, the firms-
optimal stable rules satisfy weak firm-valuation monotonicity.

We can analogously define weak worker-valuation monotonicity (WWVM). A
rule for the multiple-partners assignment game is weak worker-valuation monotonic
if whenever the values all firms obtain with a given worker decrease by the same
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amount (with truncation to avoid negative valuations), in such a way that all optimal
matchings of the initial market still remain optimal, then the payoff this worker
obtains in each partnership does not increase. It is then obtained that the workers-
optimal stable rules are weak worker-valuation monotonic.

2.4. Non-manipulability properties

Given a multiple-partners job market, when an allocation rule is to be adopted,
then firms and workers are required to report their valuations and this induces a
strategic game. Recall that each firm fi values in hi j ≥ 0 the possibility of hir-
ing worker w j and each worker w j has a reservation value t j ≥ 0 and will not ac-
cept being hired with a salary below his/her reservation value. Once agents report
their valuations, an allocation rule ϕ(h, t) selects a matching µ ∈ M (F,W,r,s) and
determines how to split the net profit ai j = max{hi j − t j,0} of each partnership
( fi,w j) ∈ µ . We may assume the rule simply determines the salary mi j that firm fi

pays to worker w j if they are matched. Then, in the partnership ( fi,w j), the payoff
of the firm is ui j = hi j −mi j and the payoff of the worker is vi j = mi j − t j.

The question is whether a firm (or a worker) has incentives not to report its true
valuations, once known which allocation rule will be applied. In particular, we want
to study whether firms (workers) have incentives to manipulate the firms-optimal
(workers-optimal) stable rule, since it is something they cannot do in the simple
assignment game.

For this strategic analysis, and since population will not change, we may consider
the sets of firms and workers, F and W , and their capacities fixed. Then, for any
reported valuations (h, t), a firms-optimal stable rule selects an optimal matching µ

and for all ( fi,w j) ∈ µ determines a salary mi j such that v(h, t)i j = mi j − t j, where
(u(h, t),v(h, t)) is the firms-optimal stable payoff vector. Similarly, the workers-
optimal stable rule selects an optimal matching µ and for all ( fi,w j)∈ µ determines
a salary mi j such that v(a)i j =mi j−t j, where (u(h, t),v(h, t)) is the workers-optimal
stable payoff vector according the reported valuations.

From Pérez-Castrillo and Sotomayor (2017), that studies the manipulability of
the optimal competitive equilibrium rules of the multiple-partners assignment game,
and taking into account that every firms-optimal stable rule coincides with a firms-
optimal competitive equilibrium rule, we deduce that these rules are manipulable
by any firm with capacity greater than one. However, in the example provided in
Pérez-Castrillo and Sotomayor (2017), the firm that manipulates the firms-optimal
stable rule increases its valuations in a non-constant way, that is, it increases some
valuations but not all of them by the same amount.
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We may think that “naive” firms, when trying to manipulate an allocation rule,
only consider whether to increase or decrease all its valuations by the same constant
amount. This idea leads to a weaker non-manipulability property.

Definition 2.10. Let F be a set of firms with capacities r = (ri)i∈F and W a set of
workers with capacities s = (s j) j∈W . A firm fi0 ∈ F manipulates a rule ϕ ≡ (m; µ)

in a multiple-partners job market (F,W,h, t,r,s) by constantly over-reporting its
valuations if there exists c > 0 such that fi0 gets a higher payoff at (v(h′, t); µ(h′, t))
than at (v(h, t); µ(h, t)), where h′i0 j = hi0 j + c for all w j ∈ W and h′i j = hi j for all
fi ∈ F \{ fi0} and all w j ∈W.

We intend to make use of the firm-covariance property that we introduced in the
previous section. But notice that the fact that h′i0 j = hi0 j +c for all w j ∈W does not
imply a′i0 j = max{h′i0 j − t j,0}= ai0 j +c, since for some w j ∈W it may happen that
hi0 j − t j < 0. Because of that, we will restrict the study to the domain of multiple-
partners job market where all firm-worker pairs are mutually acceptable, that is,
hi j − t j ≥ 0 for all ( fi,w j) ∈ F ×W .

Proposition 2.1. On the domain of multiple-partners job market where all firm-
worker pairs are mutually acceptable, no firm can manipulate a firms-optimal stable
rule by constantly over-reporting its valuations.

Proof. Let (F,W,h, t,r,s) be a multiple-partners job market such that hi j − t j ≥ 0
for all ( fi,w j) ∈ F ×W . If firm fi0 reports h′i0 j = hi0 j + c for some c > 0, then
a′i0 j = max{h′i0 j − t j,0} = ai0 j + c and both markets have the same set of optimal
matchings. From Theorem 2.1 and the proof of Proposition 2.5 the salaries m′

i j
determined by ϕ(h′, t), where ϕ is the firms-optimal stable rule, are the same as
the salaries mi j determined by ϕ(h, t), since vi j(a

′) = vi j(a), for each ( fi,w j) in an
optimal matching µ ∈ Ma(F,W,r,s). Then, for all ( fi0,w j) ∈ µ

hi0 j −m′
i0 j = hi0 j − (vi0 j(a

′)+ t j) = hi0 j − (vi0 j(a)+ t j) = hi0 j −mi0 j.

Hence, the total payoff of firm fi0 does not improve when reporting h′i0:

U i0(a
′) = ∑

(i0, j)∈µ

hi0 j −m′
i0 j = ∑

(i0, j)∈µ

hi0 j −mi0 j =U i0(a).

■

Notice that, because each firm may value differently each worker in the market,
firms may have more sophisticated strategies than the constant over-reporting of
Definition 2.10. Take for instance Example 4.2 in Pérez-Castrillo and Sotomayor
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(2017) that consists in a market with three workers with capacity one and null reser-
vation value and two firms, the first of them with capacity two, with valuations
h1 = (7,6,4) and h2 = (8,6,3). Notice that all firm-worker pairs are acceptable.
Since there is only one optimal matching, this is the matching selected by any sta-
ble rule, µ = {( f1,w2),( f1,w3),( f2,w1)}. In the firms-optimal stable rule, f1 pays
salaries v12(a) = 1 and v13(a) = 0, with a net profit of U1(a) = 9. If f1 reports
h′1 = (8,7,7), which is a non-constant over-report of its valuations, then the optimal
matching does not change but now the salaries paid by f1 in the firms-optimal sta-
ble rule are v12(a

′) = v13(a
′) = 0 and the payoff of f1, taking into account its true

valuations, is 10.
Instead, the reservation value of a worker does not depend on which firm he/she

is matched to. Hence, when a worker under-reports his reservation value, his/her
net valuations with all firms increase by the same amount, provided all firm-worker
pairs are acceptable.

Definition 2.11. Let F be a set of firms with capacities r = (ri)i∈F and W a set
of workers with capacities s = (s j) j∈W . A worker w j0 ∈ W manipulates a rule
ϕ ≡ (m; µ) in a multiple-partners job market (F,W,h, t,r,s) by under-reporting
his/her reservation value if there exists 0 ≤ c ≤ t j0 such that w j0 gets a higher
payoff at (v(h, t ′); µ(h, t ′)) than at (v(h, t); µ(h, t)), where t ′j0 = t j0 − c and t ′j = t j

for all w j ∈W \{w j0}.

Notice that given a multiple-partners job market where all firm-worker pairs are
acceptable, then all firm-worker pair in the market that results when some worker
under-reports his/her reservation value are also acceptable.

Proposition 2.2. On the domain of multiple-partners job market where all firm-
worker pairs are mutually acceptable, no worker can manipulate the workers-
optimal stable rule by under-reporting his/her reservation value.

Proof. Let (F,W,h, t,r,s) be a multiple-partners job market such that hi j − t j ≥ 0
for all ( fi,w j) ∈ F ×W . If worker w j0 reports t ′j0 = t j0 − c for some c > 0, then
a′i j0 = max{h′i j0 − t j0 ,0} = ai j0 + c and both markets have the same set of optimal
matchings. From Theorem 2.1 and the proof of Proposition 2.5 the salary m′

i j0
determined by ϕ(h, t ′), where ϕ is the workers-optimal stable rule is the same as
the salary mi j0 determined by ϕ(h, t):

m′
i j0 = vi j0(h, t

′)+ t ′j0 = vi j0(h, t)+ c+ t j0 − c = mi j0.

Hence, given any µ ∈ Ma(F,W,r,s), the payoff to worker w j0 in each partnership
( fi,w j0) ∈ µ is m′

i j0 − t j0 = mi j0 − t j0 and w j0 has no incentives to report t ′j0 instead
of t j. ■
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This may not be the case when a worker over-reports his/her reservation value.
Example 4.1 in Pérez-Castrillo and Sotomayor (2017) shows that in that case such
a worker may manipulate the workers-optimal stable rule.

However, the above non-manipulability properties do not characterize neither the
firms-optimal stable rules nor the workers-optimal stable rules on the domain where
all firm-worker pairs are acceptable. Notice for instance that the workers-optimal
stable rule is also non-manipulable by constant over-reporting of one firm’s valua-
tions. Take (F,W,a,r,s) where all pairs are acceptable, a firm fi0 ∈F and an optimal
matching µ ∈Ma(F,W ). Assume h′i0 j = hi0 j +c for some c > 0, while h′i j = hi j for
i ∈ F \ { fi0} and j ∈ W . This implies a′i0 j = ai0 j + c for all j ∈ W , while a′i j = ai j

otherwise. Consider the related simple assignment game (F̃ ,W̃ , ã) and the corre-
sponding optimal matching µ̃ . If w j0 ∈W is such that ( fi0k,wl j0)∈ µ̃ , where fi0k and
wl j0 are copies of fi0 and w j0 respectively, then vi0 j0(a

′) = vl j0(ã
′) = wã′(F̃ ∪W̃ )−

wã′(F̃∪(W̃ \{wl j0})) is either vi0 j0(a)+c or vi0 j0(a), since µ ′ ∈Mã′(F̃ ,W̃ \{wl j0})
if and only if µ ′ ∈ Mã(F̃ ,W̃ \ {wl j0}). This means vi0 j0(a

′) ≥ vi0 j0(a) and hence
hi0 j0 − vi0 j0(a

′) ≤ hi0 j0 − vi0 j0(a) and i0 has no incentives to constantly over-report
its valuations.

2.5. The fair division rules

In some situations, specially in two-sided markets without money, it is usual to
implement an allocation rule that favours one side of the market. Take for instance
the allocation of students to colleges or resident doctors to hospitals. But in a job
market, and also in a market with buyers and sellers, it makes sense to assume that
matched agents enter a negotiation and agree on a price or salary that is in between
those that are optimal for each side.

We extend to the multiple-partners job market the notion of fair division payoff
vector that was introduced by Thompson (1981) for the simple assignment game as
the midpoint between the two optimal stable payoff vectors. That is, given a set F
of firms with quotas r and a set of workers W with quotas s, and a valuation profile
a ∈ A F0×W0 , a fair division rule is ϕτ ≡ (uτ(a),vτ(a); µ) where

uτ
i j(a) =

1
2

ui j(a)+
1
2

ui j(a) and vτ
i j(a) =

1
2

vi j(a)+
1
2

vi j(a) for all ( fi,w j) ∈ µ

and µ is a compatible matching. Notice that there may be several compatible match-
ings but the payoff vector is uniquely defined.

In van den Brink et al. (2021), and for the simple assignment game, the fair
division rule is characterized as the only stable rule that satisfies grand valuation
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fairness and weak derived consistency. Our aim is to extend these two properties
to the multiple-partners job market and see whether they also individualize the fair
division rules. To extend the notion of (derived) consistency, that reflects how a
solution behaves when some agents leave the market, we will allow in this section
for positive values ai0 and a0 j, for all fi ∈ F and w j ∈ W . Hence, now a valuation
profile is (ai j) i∈F0

j∈W0

with a00 = 0, and we denote by A F0×W0 the set of all valuation

profiles. We assume again that all firm-worker pairs are mutually acceptable, which
in the notation just introduced translates to saying that for all ( fi,w j) ∈ F0 ×W 0,
ai j ≥ ai0 +a0 j.

Roughly speaking, grand valuation fairness requires that if all firm-worker val-
uations decrease by a same amount c ≥ 0, as long as all optimal matchings of the
initial market remain optimal, the payoff all agents receive from each partnership
decreases equally.

Definition 2.12. A rule ϕ ≡ (u,v; µ) satisfies great valuation fairness (GVF) if for
all (F,W,a,r,s) and all c ≥ 0 such that

(i) ac
i j = max{0,ai j − c} for all fi ∈ F and w j ∈W,

(ii) c ≤ ai j for all ( fi,w j) ∈ µ and µ ∈ Ma(F,W,r,s) and

(iii) Ma(F,W )⊆ Mac(F,W,r,s),

then,
ui j(ac)−ui j(a) = vi j(ac)− vi j(a) for all ( fi,w j) ∈ µ. (2.4)

From firm-covariance and worker-covariance of the two optimal stable rules, it
follows quite straightforwardly that the fair division rules satisfy GVF.

Proposition 2.3. On the domain of multiple-partners assignment markets, the fair
division rules satisfy GVF.

Proof. Recall that the minimum c satisfying (i), (ii) and (iii) is the c∗ defined in
(2.5). As a consequence, if a multiple-partners job market (F,W,a,r,s) is “unbal-
anced”, in the sense that ∑ fi∈F ri ̸= ∑w j∈W s j, then c∗ = 0 and GVF does not impose
any restriction. Hence, we may focus on markets where the sum of capacities of
firms equals those of workers.

Let (F,W,a,r,s) be a multiple-parters job market with ∑ fi∈F ri = ∑w j∈W s j, µ an
optimal matching and c ≥ 0 satisfying (i), (ii), and (iii) in Definition 2.12. By strong
firm-covariance of the firms-optimal stable rules, taking I = F , that is, assuming all
firms decrease their valuations in c, we have that ui j(ac) = ui j(a)− c and vi j(a

c) =

ui j(a) for all ( fi,w j)∈ µ . Similarly, from worker-covariance of the workers-optimal
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stable rule, taking I = W , we have vi j(ac) = vi j(a)− c and ui j(a
c) = vi j(a) for all

( fi,w j) ∈ µ . As a consequence,

uτ
i j(a

c) = uτ
i j(a)−

c
2

and vτ
i j(a

c) = vτ
i j(a)−

c
2

for all ( fi,w j) ∈ µ

which implies uτ
i j(a

c)−uτ
i j(a) =

c
2 = vτ

i j(a
c)− vτ

i j(a) and GVF holds. ■

The idea now is to proceed as in the simple assignment game (van den Brink et al.,
2021). In that case, we decrease all firm-worker values until reaching the threshold
c∗; at this point there is a firm-worker pair ( fi,w j) whose payoff is fixed, and equal
to their individual values ai0 and a0 j, at any stable outcome. Then, these two agents
leave the market with their fixed payoff and we must define the reduced game in
such a way that the fair division rule is consistent with respect to this reduction.

For the simple assignment game, a notion of reduced game is introduced in Owen
(1992) with the name of derived game. Several solution concepts, such as the core,
the optimal stable rules for any side of the market or the nucleolus (Llerena et al.,
2015), are derived consistent, that meaning that when we restrict the solution payoff
vector to the agents that remain in the derived market game, we get a solution payoff
vector of the derived market game. The fair-division rules are not derived consistent,
unless the agents that leave the market have a unique stable payoff.

We now propose how to reduce a multiple-partners job market when an individual
or a firm-worker pair have a unique stable payoff. Since agents may have capacities
that allow for multiple partnership, the firm and worker in that pair may not leave
the market but simply reduce their capacities in one unit.

Definition 2.13. Let (F,W,a,r,s) be a multiple-partner assignment market, µ an
optimal matching, T = { fi,w j} with ( fi,w j) ∈ µ such that ai j = ai0 + a0 j and z =
(u,v; µ) a stable outcome.

The derived assignment market relative to T at z is (FT ,W T ,aT,z,rT ,sT ) where

FT =

{
F \{ fi} if fi ∈ F, ri = 1,
F otherwise

and

W T =

{
W \{w j} if w j ∈W, s j = 1,
W otherwise

,

aT,z
kl = akl for all fk ∈ FT , wl ∈W T ,

(i) aT,z
k0 = max

{
ak0,ak j − vi j

}
, for all fk ∈ FT ,

(ii) aT,z
0k = max

{
a0k,aik −ui j

}
, for all wk ∈W T ,

and rT
k = rk −1 if fk ∈ T ∩FT , rT

k = rk if fk ∈ FT \T ,
sT

k = sk −1 if wk ∈ T ∩W T , sT
k = sk if wk ∈W T \T .
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In the derived assignment market relative to a coalition T = { fi,w j} such that
ai j = ai0 +a0 j, (i) values for the firm-worker pairs ‘that are still in the market’ are
the same as in the original market, (ii) the individual values are modified taking into
account the possibilities to trade with agents outside the derived market and (iii) the
capacity of each agent in T decreases in one unit.

Notice that the above definition allows for T to contain a dummy agent, like
T = { fi,w0} if ( fi,w0) ∈ µ .

Weak derived consistency means that in a derived market at a coalition T =

{ fi,w j} such that ai j = ai0 +a0 j, the payoffs for the firms and workers that remain
in the market do not change.

Definition 2.14. On the domain of multiple-partners job markets, a stable alloca-
tion rule ϕ is weak derived consistent (WDC) if for all market (F,W,a,r,s) and all
coalition T = { fi,w j} with ( fi,w j) ∈ µ and ai j = ai0 +a0 j, it holds

(i) µ ′ = µ \{( fi,w j)} is optimal for (FT ,W T ,aT,(u,v),rT ,sT ),

(ii) ukl(FT ,W T ,aT,(u,v),rT ,sT ) = ukl for all ( fk,wl) ∈ µ ′ and
(iii) vkl(FT ,W T ,aT,(u,v),rT ,sT ) = vkl for all ( fk,wl) ∈ µ ′

where ϕ(F,W,a,r,s) = (u,v; µ).

Let us first argue in the next lemma that condition (i) in the above definition
always holds, since it is necessary to guarantee that ukl and vkl are well-defined.

Lemma 2.1. Let (FT ,W T ,aT,z,rT ,sT ) be the derived game at T = { fi,w j} with
( fi,w j) ∈ µ such that ai j = ai0 +a0 j and z = (u,v; µ) is a stable outcome. Then,

1. aT,(u,v)
k0 = ak0 if ( fk,w0) ∈ µ (and aT,(u,v)

0l = a0l if ( f0,wl) ∈ µ),

2. (u′,v′; µ ′) is a stable outcome for (FT ,W T ,aT,(u,v),rT ,sT ), where µ ′ = µ \
{( fi,w j)}, u′kl = ukl and v′kl = vkl for all ( fk,wl) ∈ µ ′.

3. µ ′ = µ \{( fi,w j)} is optimal for (FT ,W T ,aT,(u,v),rT ,sT ).

Proof. Notice that ( fk,w0)∈ µ , implies ak0 = uk0 ≥ ak j−vi j because of the stability
of (u,v). In the same way, ( f0,wl) ∈ µ implies a0l = v0l ≥ ail −ui j, and statement
1) is proved.

To prove 2) notice that for all ( fk,wl) ∈ µ ′, it holds ( fk,wl) ∈ µ and hence
u′kl + v′kl = ukl + vkl = akl = aT,(u,v)

kl . This includes the case where ( fk,w0) ∈ µ ′ and

then u′k0 = ak0 = aT,(u,v)
k0 , and similarly for ( f0,wl) ∈ µ . This means that (u′,v′) is

feasible with respect to µ ′. Now, if ( fk,wl)∈ FT ×W T with ( fk,wl) ̸∈ µ ′ then either
( fk,wl) ̸∈ µ and in this case u′kq+v′pl = ukq+vpl ≥ akl = aT,(u,v)

kl for ( fk,wq)∈ µ ′ and
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,( fp,wl)∈ µ ′, or ( fk,wl) = ( fi,w j). In this second case, if ( fi,wq),( fp,wl)∈ µ ′, we
have u′iq+v′p j = uiq+vp j ≥ ai0+v0 j = ai j, where the last equality follows from the

assumption. Finally, if ( fk,wl) ∈ µ ′, then ukl ≥ max{ak0,ak j − vi j} = aT,(u,v)
k0 , and

similarly vlk ≥ aT,(u,v)
0k for all ( fl,wk)∈ µ ′. As a consequence, (u′,v′; µ ′) satisfies all

stability constraints.
It follows from Sotomayor (1992) that µ ′ is optimal for this market, since we

know that (u′,v′; µ ′) is a stable outcome for the market (FT ,W T ,aT,(u,v),rT ,sT ).
■

Notice that statement 2) in Lemma 2.1 crucially depends on the fact that ai j =

ai0 + a0 j. This condition is also important to notice that for all stable payoff vec-
tors it holds ui j = ai0 and vi j = a0 j. Then, a sort of converse of statement 2)
holds: under the assumptions of Lemma 2.1, if (u′′,v′′) is a stable payoff vector
for (FT ,W T ,aT,(u,v),rT ,sT ), then, by completing it with the payoffs ui j and vi j we
obtain a payoff vector of the initial market (F,W,a,r,s). As an immediate con-
sequence, if (u,v) is a stable payoff vector of (F,W,a,r,s), then the set of stable
payoff vectors of (FT ,W T ,aT,(u,v),rT ,sT ) is precisely the restriction of the set of
stable payoff vectors of (F,W,a,r,s) to FT ∪W T . In particular, the restrictions of
(u(a),v(a)), (u(a),v(a)) and (uτ(a),vτ(a)) to FT ∪W T are, respectively, the firms-
optimal stable payoff vector, the workers-optimal stable payoff vector and the fair
division payoff vector of the derived game (FT ,W T ,aT ,rT ,sT ). This proves the
next proposition.

Proposition 2.4. On the domain of multiple-partners job markets, the firms-optimal
stable rules, the workers-optimal stable rules and the fair division rules are weak
derived consistent.

We have seen until now that the fair division rules satisfy GVF and WDC. It only
remains to see that these two properties characterize these rules among all stable
rules. We only sketch the proof, since it is very similar to the one for the simple
assignment game in van den Brink et al. (2021).

Theorem 2.2. On the domain of multiple-partners job markets, the fair division
rules are the only stable rules that satisfy GVF and WDC.

Proof. Let ϕ be a stable rule that satisfies GVF and WDC, and take a multiple-
partners assignment game (F,W,a,r,s). Let c1 ≥ 0 be the maximum c ≥ 0 such
that Ma(F,W,r,s) ⊆ Mac(F,W,r,s), and c ≤ ai j (and thus ac

i j = ai j − c) for all
( fi,w j) ∈ µ for some µ ∈ Ma(F,W,r,s). Then, there is some ( fi1,w j1) in an op-
timal matching of (F,W,ac1 ,r,s) such that ac1

i1 j1 = ai10 + a0 j1 , which means that
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ui1 j1 = ai10 and vi1 j1 = a0 j1 for each stable payoff vector (u,v) of (F,W,ac1,r,s).
Define T1 = { fi1 ,w j1}.

Let zϕ(a) = (uϕ(a),vϕ(a)) and zϕ(ac1) = (uϕ(ac1),vϕ(ac1)) be the payoff vectors
selected by the rule ϕ when applied to (F,W,a,r,s) and (F,W,ac1,r,s) respectively,
and zτ(a) = (uτ(a),vτ(a)) and zτ(ac1) = (uτ(ac1),vτ(ac1)) the payoff vectors se-
lected by any fair division rule in these markets. Trivially, because of the selection
of T1, uϕ

i1 j1(a
c1) = uτ

i1 j1(a
c1) and vϕ

i1 j1(a
c1) = vτ

i1 j1(a
c1). And by GVF of both ϕ and

τ ,

uϕ

i1 j1(a) = uϕ

i1 j1(a
c1)+

c1

2
= uτ

i1 j1(a
c1)+

c1

2
= uτ

i1 j1(a)

vϕ

i1 j1(a) = vϕ

i1 j1(a
c1)+

c1

2
= vτ

i1 j1(a
c1)+

c1

2
= vτ

i1 j1(a)

Consider now

F1 =

{
F \{ fi1} if fi1 ∈ F and ri1 = 1,
F otherwise

and ;

W1 =

{
W \{w j1} if w j1 ∈W and s j1 = 1,
W otherwise

,

and the derived market at T1 and zϕ(a). That is, a1 = aT1,zϕ (a), r1 = rT1 and s1 = sT1 ,
as in Definition 2.13. By WDC of ϕ , uϕ

i j(a1) = uϕ

i j(a
c1) and vϕ

i j(a1) = vϕ

i j(a
c1) for

all ( fi,w j) ∈ µ1 = µ \{( fi1,w j1)}.
We now repeat the procedure, that is, given (F1,W1,a1,r1,s1) we take c2 ≥ 0 the

maximum c ≥ 0 such that Ma1(F
1,W 1,r1,s1)⊆Mac

1
(F1,W 1,r1,s1), and c ≤ (a1)i j

(and thus (a1)
c
i j = (a1)i j − c) for all ( fi,w j) ∈ µ for some µ ∈ Ma1(F

1,W 1,r1,s1).
Then, there is some ( fi2,w j2) in an optimal matching µ1 of (F1,W 1,ac2

1 ,r1,s1)

such that (a1)
c2
i2 j2 = (a1)i20 +(a1)0 j2 , which means that ui2 j2 = ai20 and vi2 j2 = a0 j2

for each stable payoff vector (u,v) of (F1,W 1,(a1)
c2,r1,s1). And we define T2 =

{ fi2 ,w j2}. Notice at this point that, from Sotomayor (1999), the components of any
stable payoff vector can be reindexed according to the new optimal matching µ1.

Since at each step the aggregated capacity strictly decreases, we can guarantee
that the procedure is finite. Moreover, at each step, some payoffs ui j and vi j, for
( fi,w j) optimally matched, are proved to coincide in ϕ and in τ , and by GVF and
WDC they also coincide in the initial market. ■

The above theorem shows that the known axiomatic characterization of the fair
division rules in the simple assignment game extends to the multiple-partners as-
signment games. As a consequence, it also follows the logical independence of the
two axioms.

27



Stable rules in a multiple-partners job market

2.6. Concluding remarks

The axiomatic characterizations given in this paper for the two-optimal stable
rules and the fair-division rules, on the domain of multiple-partners job markets,
have in common that all of them rely on the behaviour of the rules when some firm-
worker valuations decrease in a constant amount. This provides a unifying approach
to all these stable rules.

Furthermore, from the discussion at the end of Section 4, it follows that on the
domain where all firm-worker pairs are acceptable, the fair-division rules are also
non-manipulable by constant over-reporting of one firm’s valuations. Although this
is a weak non-manipulability property, we find it interesting since it rules out a kind
of manipulation that is frequently observed in experiments.

A. Appendix: Strong firm-covariance for stable rules
in the simple assignment game

We analyse the behaviour of an allocation rule for the simple assignment game
when the valuations of an arbitrary set I of firms decrease by the same amount
c ≥ 0, under the assumption that values that become negative are truncated at zero:
ac

i j = max{0,ai j − c} for all ( fi,w j) ∈ I ×W . These row values are allowed to
decrease in this way as long as no optimal matching of the initial problem becomes
non-optimal. A rule is covariant with respect this change if all firms that have seen
their values decreased in c, also see their payoff decreased in c.

Definition 2.15. A rule ϕ ≡ (u,v; µ) for the simple assignment game is strong
firm-covariant (SFC) if for all (F,W,a), all I ⊆ F and all c ≥ 0 such that

(i) ac,I
i j = max{0,ai j − c} for all ( fi,w j) ∈ I ×W and ac

i j = ai j for all ( fi,w j) ∈
(F \ I)×W,

(ii) c ≤ ai j for all fi ∈ I, ( fi,w j) ∈ µ and µ ∈ Ma(F,W ) and

(iii) Ma(F,W )⊆ Mac,I(F,W ),

then,

ui(ac,I) = ui(a)− c, for all fi ∈ I and

ui(ac,I) = ui(a), for all fi ∈ F \ I.

We can give a threshold for those c ≥ 0 on the conditions of the above definition.
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Lemma 2.2. Conditions (ii) and (iii) in Definition 2.15 are equivalent to consider-
ing c ≤ c∗, where

c∗ =min{c≥ 0 | ∃µ ∈Mac,I(F,W ) and ( fi,w j)∈ µ with fi ∈ I and ai j = 0}. (2.5)

Proof. Let us define mI
a = min{ai j | ( fi,w j) ∈ µ for some µ ∈ Ma(F,W ) and fi ∈

I}. It is quite clear that c∗ ≤ mI
a. Otherwise, if mI

a < c∗, taking c = mI
a, by definition

of c∗, we have that for any µ ∈ Mac,I(F,W ) it holds ac,I
i j > 0 for all ( fi,w j) ∈ µ

and fi ∈ I. This implies that there is an optimal matching µ ′ of the initial market
that is not optimal in (F,W,ac,I), since by definition of mI

a, µ ′ will have a null
entry. But ∑( fi,w j)∈µ ac,I

i j > ∑( fi,w j)∈µ ′ ac,I
i j implies ∑( fi,w j)∈µ ai j > ∑( fi,w j)∈µ ′ ai j, and

contradicts µ ′ ∈ Ma(F,W ).
We now show that if 0 ≤ c ≤ c∗, then c satisfies (ii) and (iii) in Definition 2.15.

First, since c ≤ c∗ ≤ mI
a, ac,I

i j = ai j−c ≥ 0 for all ( fi,w j)∈ µ , for all µ ∈Ma(F,W ),

and (ii) is satisfied. Moreover, since c ≤ c∗, by definition of c∗, we have ac,I
i j =

ai j − c ≥ 0 for all ( fi,w j) ∈ µ ∈ Mac,I(F,W ). This implies that all µ ∈ Ma(F,W )

is also optimal for (F,W,ac,I). Otherwise, if there exists µ ′ ∈ Mac,I(F,W ) such that
∑( fi,w j)∈µ ′ ac

i j > ∑( fi,w j)∈µ ac,I
i j , then

∑
( fi,w j)∈µ ′

ai j −|I|c = ∑
( fi,w j)∈µ ′

ac,I
i j > ∑

( fi,w j)∈µ

ac,I
i j = ∑

( fi,w j)∈µ

ai j −|I|c,

in contradiction with µ ∈ Ma(F,W ).
Conversely, if c satisfies (ii) and (iii), we show that c ≤ c∗. Indeed, (ii) im-

plies that c ≤ mI
a. To see that c ≤ c∗, if we assume on the contrary that c∗ <

c ≤ mI
a, we know that none of the matchings µ ∈ Ma(F,W ) has a null entry nei-

ther in (F,W,ac∗,I) nor in (F,W,ac,I). Instead, by definition of c∗ there is µ ′ ∈
Mac∗,I(F,W ) with ( fi0,w j0)∈ µ ′ and ac∗,I

i0 j0 = 0≥ ai0 j0 −c∗. Then, since c∗ < c≤mI
a,

∑( fi,w j)∈µ ′ ac,I
i j >∑( fi,w j)∈µ ac,I

i j for all µ ∈Ma(F,W ), in contradiction with (iii). ■

If a rule ϕ satisfies Definition 2.15 for |I| = 1, we will say ϕ is firm-covariant
(FC). And notice that this definition coincides with Definition 2.7 when applied to
a rule for the simple assignment game. We first prove that the firms-optimal stable
rules are strong firm-covariant.

We could similarly define when an allocation rule is strong worker-covariant and
we would obtain, in an analogous way, that the workers-optimal stable rules are
strong worker-covariant.

Proposition 2.5. The firms-optimal stable rules of the simple assignment game are
strong firm-covariant.
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Proof. We can assume without loss of generality that there are as many firms as
workers (otherwise we only need to add dummy agents with null valuations in the
short side of the market). If ai j = 0 for some fi ∈ I such that ( fi,w j) ∈ µ and
µ ∈Ma(F,W ), then only c = 0 satisfies the conditions on Definition 2.15, and SFC
is trivially satisfied in that case. So, assume ai j > 0 for all ( fi,w j) ∈ µ such that
fi ∈ I and µ ∈ Ma(F,W ).

Let c ≥ 0 be a constant under the conditions of Definition 2.15, that is, c ≤ ai j for
all ( fi,w j)∈ µ with fi ∈ I and µ ∈Ma(F,W ) (and thus ac,I

i j = ai j−c), and moreover
any matching µ that is optimal for (F,W,a) is also optimal for (F,W,ac,I).

From now on, to simplify notation, we will write just ac instead of ac,I .

Consider the two optimal stable payoff vectors, (u(a),v(a)) and (u(a),v(a)), for
(F,W,a). Let (uc(a),v(a)) be given by

uc(a) = ui(a)− c for all fi ∈ I; uc(a) = ui(a) for all fi ∈ F \ I.

We show that (uc(a),v(a)) is stable for (F,W,ac), that is, we show individual ratio-
nality for each firm and worker, and the stability requirements for each firm-worker
pair.

(i) Individual rationality for the workers (i.e. v j ≥ 0 for all w j ∈ W ) follows
trivially from the stability of (u(a),v(a)).

(ii) The stability requirements for every firm-worker pair (i.e. uc(a)i+v(a) j ≥ ac
i j

for all fi ∈ F and w j ∈W ) follows trivially from the stability of (u(a),v(a)) (under
the assumption that uc

i (a)≥ 0, which we show next under (iii)).

(iii) It only remains to show individual rationality for the firms. It is obvious
that uc

i (a) = ui(a) ≥ 0 for all fi ∈ F \ I, so we only need to prove that uc
i (a) =

ui(a)− c ≥ 0 for all fi ∈ I. This implies to show that any c on the conditions of
Definition 2.15 satisfies c ≤ mini∈I ui(a). Let us denote by fi1 ∈ I the firm such that
ui1(a) = mini∈I ui(a).

Notice first that trivially if c′ = ui1(a), then (uc′(a),v(a)) is stable for (F,W,ac′).
Let k be the cardinality of I, µ ∈ Ma(F,W ) and µ ′ ∈ Ma(F \{ fi1},W ). Then,

ui1(a) = ∑
( fi,w j)∈µ

ai j − ∑
( fi,w j)∈µ ′

ai j. (2.6)

Furthermore,

∑
( fi,w j)∈µ ′

ac′
i j ≥ ∑

( fi,w j)∈µ ′
ai j − (k−1)c′.
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On the other hand, ∑( fi,w j)∈µ ai j −∑( fi,w j)∈µ ac′
i j = kc′, and then

∑
( fi,w j)∈µ

ac′
i j = ∑

( fi,w j)∈µ

ai j − kc′

= ∑
( fi,w j)∈µ ′

ai j + c′− kc′ = ∑
( fi,w j)∈µ ′

ai j − (k−1)c′ ≤ ∑
( fi,w j)∈µ ′

ac′
i j,

where the second equality follows from (2.6). This implies that µ ′ is also optimal
for (F,W,ac′) and, as a consequence, if w j2 ∈W is the worker unmatched by µ ′, then
ac′

i1 j2 = 0. Otherwise, ac′
i1 j2 > 0 would contradict the optimality of µ in (F,W,ac′).

We finally show that c ≤ ui1(a). On the contrary, suppose that c > c′ = ui1(a).
Since ac′

i1 j2 = 0, we have ai1 j2 − c < 0. Then, { fi1,w j2} belonging to an optimal
matching of (F,W,ac′) and c > c′ implies that the optimal matchings of (F,W,a),
which entries have not been truncated, are no longer optimal in (F,W,ac). This
contradicts that c satisfies the conditions of Definition 2.15. So, we have proved
that c ≤ ui1(a), and as a consequence individual rationality for the firms is satisfied.

Since we showed individual rationality for the firms and the workers ((i) and
(iii) above), and the stability requirements for all firm-worker pairs ((ii) above), we
have that (uc(a),v(a)) is a stable payoff vector for (F,W,ac), for all c under the
conditions of Definition 2.15. Analogously, it can be shown that (u(a),vc(a)) is a
stable payoff vector for (F,W,ac).

Notice that, by (uc(a),v(a)) being a stable payoff vector of (F,W,ac), it is the
optimal stable payoff vector of (F,W,ac). Otherwise, one can derive a contradiction
with (u(a),v(a)) being the optimal stable payoff vector of (F,W,a). This completes
the proof of SFC for the firms-optimal stable rule. ■

The converse implication also holds. In fact, it is even stronger. Any stable rule
that satisfies Definition 2.15 for |I| = 1 (any single row) must be the firms-optimal
stable rule. We state the result for both optimal stable rules but only prove it for the
firms-optimal one.

Theorem 2.3. 1. The firms-optimal stable rules are the only stable rules for the
simple assignment game that are firm-covariant.

2. The workers-optimal stable rules are the only stable rules for the simple as-
signment game that are worker-covariant.

Proof. It has already been proved in Proposition 2.5 that any firms-optimal stable
rule is SFC. We need to prove the converse implication. Let ϕ ≡ (uϕ ,vϕ ; µ) be a
stable rule that satisfies FC. If ϕ is not the firms-optimal stable rule, there exists fi0 ∈
F and a simple assignment game (F,W,a) such that 0 ≤ uϕ

i0(a)< ui0(a). Take then
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I = { fi0}⊆ F and c∗ = ui0(a), where c∗ as defined in (2.5) satisfies the requirements
of Definition 2.15.

Then, by firm-covariance of ϕ , we get uϕ

i0(a
c∗) = uϕ

i0(a)− c∗ < ui0(a)− c∗ = 0
which contradicts the stability of ϕ . ■

The combination of the above results leads to the next straightforward character-
ization.

Corollary 2.2. 1. The firms-optimal stable rules are the only stable rules for the
simple assignment game that are strong firm-covariant.

2. The workers-optimal stable rules are the only stable rules for the simple as-
signment game that are strong worker-covariant.
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3. Buying elections for peanuts

Abstract

We study an election under the influence of an interest group, assuming that a
committee must decide between two options—to implement a reform or to stay with
the status quo—and that all its members are aligned and in favor of the reform. The
decision is taken via simultaneous voting and simple majority. An interest group
that prefers the status quo offers an equal share of a “small” budget to any member
that votes against the reform. We demonstrate that even if the available budget is a
miniscule fragment of the one required to buy the election for sure (see, e.g., Dal Bò
2007), the interest group can be quite disruptive: there is always a completely mixed
equilibrium in which the status quo is the most likely outcome, and the probability
of its implementation converges to one as the size of the committee increases. The
strategic uncertainty generated by the fact that other equilibria also exist, in which
the reform is the most likely winner, seems to be the price that the interest group
pays when attempting to buy an election for peanuts. We study the model under
different assumptions on how the voting stage proceeds, but concerns on democratic
quality do not vanish.

Keywords: elections; interest groups; lobbies; vote-buying; mixed-strategy equi-
librium.

JEL Codes: D71, D72.

3.1. Introduction

In democratic systems, the will of the majority is sovereign; however, there are
various scenarios in which a minority can wield significant influence over outcomes
(see, Leaver and Makris 2006, for comprehensive evidence on such scenarios). An
insightful explanation for the existence and natural occurrence of these cases is
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found in a renowned observation by Pareto in his influential work, the 1927 Manual
of Political Economy (Pareto 1927)1:

In order to understand how those who champion protection make them-
selves heard so easily it is necessary to add the consideration which ap-
plies to social movements generally[...] If a certain measure A is the
case of a loss of one franc to each of a thousand persons, and of a one
thousand franc gain to one individual, the latter will expend a great deal
of energy, whereas the former will resist weakly; and it is likely that, in
the end, the person who is attempting to secure the thousand francs via
A will be successful.

Interest groups representing minority concerns can affect collective decision mak-
ing in various ways. They manipulate electoral outcomes indirectly by “lobbying”
decision makers—i.e. by spending resources on advertising and other means of
influence—and directly by “bribing” them—i.e. by promising decision makers a
payout if they support the interest groups’ preferred policy.

In this paper, we abstract from the nuances of indirect influence, and try to under-
stand by the means of a formal model, how expensive it is for an interest group to
“buy” an election by directly paying decision makers who support its preferred al-
ternative, when the preferences of the interest group and the decision makers are not
aligned. Notice that even such blunt form of intervention cannot be easily discarded
merely by proclaiming it illegal. Indeed, as stressed by Levine et al. (2022):

[B]ribing politicians through campaign contributions is only the tip of
the iceberg. Now and historically a simple and effective incentive is to
give money to the family or to give money after departing office.[...] If
lobbyists take the long view it is hard to legislate against them: Do we
pass a law that anyone who has ever worked in government, is likely
ever to work in government or who is related to such a person is unem-
ployable?

We consider that there are two alternatives—a reform proposal and a status quo—
and that decision makers choose one of the two by means of the simple majority
rule; hence, they vote and the alternative with more votes is implemented. To cap-
ture the case of maximum tension between the decision makers and the interest
group we consider that every decision maker prefers the reform, and that the inter-
est group prefers the status quo. Before the election, the interest group commits to

1We quote and cite the first version of the book translated into English, that’s why the date of
the citation does not correspond to the one of the original work, which is in Italian.
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conduct a transfer to each decision maker who will vote for its preferred outcome,
and it fulfils its promise upon the publication of the vote record (i.e. ballots are
open). We consider simple transfer schemes of the following sort: each decision
maker that will vote for the alternative preferred by the interest group, will get an
equal share of a fixed monetary amount. Does the interest group need to dedicate
huge resources to be able to affect the outcome in its favor, or can it buy an election
by promising only a small transfer to the involved decision makers? Answering this
question is of paramount importance, as it will allow us to assess the vulnerability
of democratic institutions to monetary influence from local elites, or even outsiders.

Our findings draw a rather dim picture of the resilience of electoral institutions
to bribing attempts. On top of pure strategy equilibria in which all decision mak-
ers vote against their preferred alternative, independently of the bribe amount (such
equilibria exist even if the bribe amount is zero), we show that in every symmetric
(mixed) equilibrium the alternative preferred by the interest group wins with posi-
tive probability, irrespective of the amount that the interest group commits to spend
for bribing. What is even worse, there is always a symmetric equilibrium in which
the alternative preferred by the interest group is the most likely winner. Moreover,
in that equilibrium, given any budget, as the electorate becomes large, we find that
the alternative preferred by the interest group wins with a probability that converges
to one! That is, an interest group can buy an election for peanuts, especially, when
the electorate is large.2

The reasoning behind this apparently unintuitive finding is as follows. Condi-
tional on being pivotal, a voter prefers to vote for the reform (since the transfer from
the interest group is small), but, conditional on not being pivotal, a voter prefers to
vote for the status quo (since the transfer from the interest group is positive). In a
completely mixed equilibrium, the expected utilities associated with the two actions
should be identical. The expected utility gain from supporting the reform is equal
to the probability of being pivotal times the utility gain from the reform, and the ex-
pected utility gain from opposing the reform is equal to the expected transfer from
the interest group. When each voter supports the reform with a fixed probability,
then as the number of voters increases, both the probability of being pivotal and the
expected transfer from the interest group converge to zero. However, they converge
to zero at a different speed: When the fixed probability of supporting the reform
is different than [equal to] one half, then the probability of being pivotal converges
faster [slower] to zero than the expected transfer from the interest group. That is,

2Our results are a possible explanation, in some settings, for the emergence of a “Tullock para-
dox” (Tullock 1967 ; Tullock 1997), which states that certain interest groups seem to obtain political
favors that are worth significantly more than the resources that these groups have used in order to
secure them.
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two completely mixed equilibria exist—one in which the reform is the most likely
winner, and one in which the status quo prevails with higher probability—and both
of them converge to a coin flip (for each individual) between the two actions in the
size of the group, for any admissible parametrization. Following Martinelli (2006),
we show that both mixed equilibria converge to the even lottery between the two ac-
tions “slowly", and hence the probability of the most likely winner prevailing goes
to one as the electorate grows.

We are surely not the first to investigate a model of interest group influence on
committee elections. Dal Bò (2007) studies a setting similar to ours, but focuses
only on pure equilibria of the voting stage and allows for more elaborate transfer
schemes (i.e. for any profile of actions, the interest group is allowed to promise any
profile of transfers). The difference in predictions that follows from the alternative
equilibrium notions and admissible transfer schemes that are used by our paper and
Dal Bò (2007) is stark. In that paper, the resources that the interest group needs to
commit to buy the election become unboundedly large in the size of the electorate.
By allowing more nuanced transfer schemes than equal division, Dal Bò (2007)
shows that the interest group does not actually need to spend these resources. How-
ever, for its bribing attempt to be convincing, it needs to be able to commit a lot of
resources to this cause. By focusing on symmetric mixed equilibria instead, and to
simple transfer schemes (equal division), we show that the alternative preferred by
the interest group can be implemented in equilibrium with high probability—and
almost certainly when the group of voters becomes arbitrarily large—even if the in-
terest group has very few resources to commit to bribing voters. However, it should
be noted that other equilibria also exist in which the alternative least preferred by
the interest group is the most likely winner. Arguably, the strategic uncertainty gen-
erated by the simultaneous existence of multiple equilibrium outcomes is the price
that the interest group pays by attempting to buy an election without committing
substantial resources.3 4

It is noteworthy, that the, arguably, intuitive transfer technology that we consider
in this paper has already received attention by earlier studies, but the corresponding
fully mixed equilibria have been deemed “difficult to solve" (Dahm et al. 2014, p.
73). That is, our formal analysis breaks new ground in a model that the literature

3This result is also in contrast with Name-Correa and Yildirim (2018), which granting the inter-
est group with less flexibility (it can only make bribes contingent on the result of the election) arrives
to the conclusion that larger committees help deter capture.

4Chen and Zapal (2022) study a model of sequential vote-buying and see that with upfront
payments the interest group might buy the elections at a low cost, provided that agents discount the
future. However, in their model there still is a minimum budget that the interest group must be able
to spend in order to influence the election.
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considers deserving of exploration, but hard to crack.5 Furthermore, even if during
the paper we will mainly talk about bribing, this work shows that the model we
study can also explain situations without direct transfers, but with a more subtle
lobbying action going on.

Our work is also related to vote trading, in which there is not an external interest
group but the trading takes place inside the committee. It is a matter of framing
though: the interest group in our model could be a member of the committee, and
the main results would just carry over. In this sense, our work poses doubts on the
efficiency of vote trading, since the “price of votes” might not reflect their actual
value, which is in line with the critique in Neeman (1999). A relevant work in this
strand of the literature is Casella and Turban (2014), which is profoundly different
from ours but derives a conclusion similar in spirit, also through a mixed-strategy
analysis: a minority (inside) the committee can implement a policy with positive
probability.

3.2. The model

A committee of N members, where N is an odd number, has to decide between
two different options, which we call A (reform) and B (status quo), of which one
must be chosen. Each member votes for A or B, then votes are added and the option
with more votes is chosen (simple majority).

There is an interest group which strictly prefers option B and is willing to spend
a certain budget, M, in order to affect the election. We assume that all committee
members strictly prefer A, so there exists a clear conflict between the interest group
and the people in charge of the decision. Furthermore, we assume that the com-
mittee members are perfectly aligned, hence the results cannot be interpreted as a
consequence of internal discrepancies. In other words: we make it as difficult as
possible for the interest group.

Hence, we assume that committee members get utility H > 1 if A passes and
utility 0 if B passes. We normalize the budget of the interest group to be M = 1
and we consider that the interest group offers an equal part of the budget to any
member that votes for B; if only one member votes for B, he gets the whole budget,
if two members do so, they get half of the budget each, and so on. Notice that given
that we assume that H > M, the interest group cannot bribe a single decision maker
(N = 1) in any way, hence from now on we assume N ≥ 3.

5There is also a strand of theoretical literature that focuses on the tension that arises when there
are several interest groups that have different preferences. Maybe the most relevant example of this
strand of literature is Groseclose and Snyder (1996), which presents a model that can account for the
existence of supermajorities and other coalition patterns difficult to explain otherwise.
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The payoff of each member depends on their personal vote and on the decision
taken by the committee. Let Ni

B denote how many of the remaining N−1 committee
members vote for B when member i is taken out of the pool. If UX ,i

Y denotes the
utility that member i gets when he votes for X and Y passes, then with the rest of
the notation introduced we have:

UA,i
A = H,

UB,i
A = H +

1
Ni

B +1
,

UA,i
B = 0,

UB,i
B =

1
Ni

B +1
.

(3.1)

We assume that these utility functions are public. In particular, each member of the
committee knows the preferences of the other members.

Notice a couple of things. First of all, we assume that the interest group can see
who cast which vote, since he can afterwards perfectly discriminate who has to be
paid. This is an assumption we relax in Section 2.3. Secondly, not allowing for
abstention is not relevant, since voting for A clearly (weakly) dominates not voting
for anyone. At last, given the members’ symmetry in preferences, NB is not really
member-specific, but rather strategy-specific, meaning that in general for any two
members i and i′ that use the same strategy, Ni

B = Ni′
B .

In the next two subsections we explore the equilibria of this game. We start by
looking at pure strategy Nash equilibria, which are rather simple, and then move to
symmetric mixed strategy Nash equilibria.

3.3. Pure strategy Nash equilibria

Let’s analyze the equilibria of the game when the strategy space of each commit-
tee member consists only of voting for A or voting for B. Notice that each member
voting for A cannot be part of an equilibrium, since any member would individually
deviate and vote for B without affecting the election and taking money from the
interest group.

The following proposition characterizes equilibria in this setting.

Proposition 3.1. All pure strategy Nash equilibria of the game correspond to one
of the following scenarios:

1. All committee members vote for B.
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2. Exactly (N +1)/2 committee members vote for A and the rest vote for B.

Proof. First of all, it is clear that in any equilibrium in which A is chosen, there
have to be exactly (N + 1)/2 committee members that vote for A. This is the case
because: a) if there were more, any agent voting for A would derive strictly more
utility by voting for B, since A would still pass; and b) if there were less, A would
not pass. Furthermore, any situation in which exactly (N +1)/2 members vote for
A clearly constitutes an equilibrium of the game, since no member voting for A can
deviate without affecting the choice, and since H > 1 being worse off, and obviously
no member voting for B can do better neither since A is already passing.

Regarding equilibria in which B passes, it is clear that there can only be one,
corresponding to the situation in which every member is voting for B. In addition,
such a case is obviously an equilibrium, since no one can single-handedly deviate
and change the result of the choice. ■

Notice that for the previous proposition to hold, it is irrelevant the budget of the
interest group and how it promises to distribute it among voters, as long as it offers
a positive quantity to anyone voting for B. And, in fact, the only equilibrium in
which B passes looks unlikely and is often dismissed in the literature (since it exists
in most settings, as it is difficult to avoid as long as there are no expressive payoffs
or majority concerns).

Hence, we have seen that considering pure strategies we can separate equilibria
in two classes, only one of which is symmetric, in the sense that all members use the
same strategy. In the only symmetric equilibrium in pure strategies everyone votes
for B and B passes. This equilibrium will also appear in the next section, where we
analyze symmetric mixed strategy Nash equilibria.

3.4. Symmetric mixed strategy Nash equilibria

In this section we study symmetric equilibria of the game, that is: equilibria
in which all members choose the same strategy. We consider mixed strategies,
hence members assign a probability, which we will note as p, to voting for B, and a
probability, 1− p, to voting for A.

Since we focus on situations in which all members play the same strategy, note
that the superscript i in (3.1) is irrelevant. As we already commented on, if all
members play the same strategy then Ni

B is the same variable for all of them as well,
since clearly taking out any of the members from the group has always the same
effect. Hence, from now on we will simply refer to it as NB.

In any symmetric mixed strategy Nash equilibrium such that p ∈ (0,1), hence a
completely mixed strategy Nash equilibrium, every member has to be indifferent
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between voting for A and voting for B; otherwise, he would use a pure strategy. So
we start by deriving the expected utilities from the point of view of one member
when the rest all vote for B with probability p.

A member voting for A only gets utility from A being implemented, and in that
case he gets utility H. Hence, the expected utility of a member voting for A when
all other members vote for B with probability p is:

E(um(A)) = H ·P
(

NB ≤ N −1
2

)
. (3.2)

When voting for B instead, a member potentially derives utility both from the
interest group and from A passing. So the expected utility of a member voting for B
when all other members vote for B with probability p can be written as:

E(um(B)) = (H +1)P(NB = 0)+ . . .+

(
H +

1
(N −1)/2

)
P
(

NB =
N −3

2

)
+

+
1

(N +1)/2
P
(

NB =
N −1

2

)
+ . . .+

1
N

P(NB = N −1) =

= H ·P
(

NB ≤ N −3
2

)
+E

(
1

1+NB

)
.

(3.3)

We know from the previous section that p = 1 constitutes a symmetric Nash
equilibrium and that p = 0 does not. Any other symmetric mixed strategy Nash
equilibrium, which will be completley mixed, must make the following equality
hold:

E(um(A)) = E(um(B)). (3.4)

Simplifying we obtain that Equation 3.4 reduces to:

E
(

1
1+NB

)
= H

(
N −1

N−1
2

)
p

N−1
2 (1− p)

N−1
2 . (3.5)

Equation (3.5) is very intuitive and it basically states that, in equilibrium, the ex-
pected gain in utility that a member gets from voting B, which is the LHS of the
equation, should equal the expected gain he gets from voting A, which is its RHS,
so that he doesn’t strictly prefer one of the two options. Naturally, the equation
depends on all parameters of the game. Notice that the equation brings to light
something that is fundamental: a member only cares about voting for A when he is
pivotal, i. e., when there would be a tie without him; this is precisely what the RHS
of (3.5) is capturing.
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Just by using the definition of expected value of a random variable we have that:

E
(

1
1+NB

)
=

N−1

∑
i=0

1
1+ i

(
N −1

i

)
pi(1− p)N−1−i

i!(N −1− i)!
. (3.6)

Before continuing, in order to get a better understanding of the model, let’s plot
both sides of Equation (3.5) for some parameter values (Figure 1), using p as plot-
ting variable. Intersections of both functions indicate symmetric mixed strategy
Nash equilibria of the game.

0.5 1

1

2

3

4

p

RHS
LHS

Figure 3.1.: Both sides of Equation 3.5 for H = 1.2 and N = 11.

Looking at Figure 1, we see that for the chosen parameters there are two symmet-
ric equilibria with p ∈ (0,1), so in completely mixed strategies. Furthermore, one
of them involves a “low” probability of each member voting for B, and the other
one a “high” probability of it. We will characterize the equilibria and see that the
above feature holds in general.

In the next lemma we derive an alternative expression for (3.6), which is compact
and will prove useful.

Lemma 3.1. For all p ∈ (0,1) and N ≥ 3, the following holds 6:

E
(

1
1+NB

)
=

1− (1− p)N

pN
.

6Notice that

lim
p→0

1− (1− p)N

pN
= 1,

so the expression is well-defined at p = 0.
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Proof. Developing the expression that we know of E
(

1
1+NB

)
we have that:

E
(

1
1+NB

)
=

N−1

∑
i=0

(
N −1

i

)
pi(1− p)N−1−i 1

i+1

=
N−1

∑
i=0

(
N

i+1

)
pi(1− p)N−1−i 1

N

=
1

pN

N−1

∑
i=0

(
N

i+1

)
pi+1(1− p)N−1−i

=
1

pN

N

∑
k=0

(
N
k

)
pk(1− p)N−k − (1− p)N

=
1− (1− p)N

pN
,

where in the last step we have simply used the Newton binomial. ■

With this new expression we have just derived, we can rewrite Equation 3.5, for
p ∈ (0,1], in the following two ways:

H
(N −1)!((N−1

2

)
!
)2 p

N−1
2 (1− p)

N−1
2 =

1− (1− p)N

pN
; (3.7)

H
N!((N−1
2

)
!
)2 p

N+1
2 (1− p)

N−1
2 +(1− p)N = 1. (3.8)

Notice that Equation 3.8 is simply Equation 3.7 slightly rearranged. Both equations
will be useful when characterizing symmetric mixed strategy Nash equilibria in the
following section.

In order to keep expressions short, we will use the following notation throughout
the rest of the paper:

fN(p,H) = H
(N −1)!((N−1

2

)
!
)2 p

N−1
2 (1− p)

N−1
2 ;

lN(p,H) = H
N!((N−1
2

)
!
)2 p

N+1
2 (1− p)

N−1
2 +(1− p)N ;

uN(p,H) = H
N!((N−1
2

)
!
)2 p

N+1
2 (1− p)

N−1
2 ;

gN(p) =
1− (1− p)N

pN
.

(3.9)
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3.4.1. Characterization of symmetric mixed strategy Nash
equilibria

In this section we fully describe the symmetric mixed strategy Nash equilibria of
the game for the different combinations of parameters, H and N.

First of all, we see that for N ≥ 7 any member strictly prefers to vote for A if
the rest choose p = 1/2, for any H > 1. In other words, at p = 1/2, the LHS of
Equation 3.7 is greater than the RHS if N ≥ 7. This is not true for the cases N = 3
and N = 5 and they will be discussed at the end of the section.

Proposition 3.2. If N ≥ 7, at p = 1/2 it holds that:

H
(N −1)!((N−1

2

)
!
)2 p

N−1
2 (1− p)

N−1
2 >

1− (1− p)N

pN
.

Proof. What we want to see is clearly equivalent to seeing that the LHS of Equation
3.8 is greater than the RHS under the specified conditions. Substituting p= 1/2 into
the inequality we get:

H
N!((N−1
2

)
!
)2

(
1
2

)N+1
2
(

1
2

)N−1
2

+

(
1
2

)N

> 1.

It is clearly enough to see that, for N ≥ 7:

N!((N−1
2

)
!
)2

(
1
2

)N+1
2
(

1
2

)N−1
2

> 1.

We prove it by induction. The case N = 7 is easily verified. Then, if we denote as
g(N) the LHS of the previous inequality:

g(N +2) =
(

N +2
N +1

)
N!((N−1
2

)
!
)2

(
1
2

)N+1
2
(

1
2

)N−1
2

=

(
N +2
N +1

)
g(N)> g(N),

and the proof is over, since we see that if the inequality holds for N it also holds for
N +2. ■

Hence, if N − 1 members of the committee choose p = 1/2, the probability of
being pivotal of the remaining member is too high to be tempted by the offer of
the interest group, given the available budget. In particular, the symmetric profile
p = 1/2 cannot be an equilibrium of the game.

We are ready to see that, for N ≥ 7, there is always one, and only one, symmetric
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mixed strategy Nash equilibrium in which members are more likely to vote for A
than for B. The equilibrium will obviously depend on H as well, but its existence in
the interval of interest does not.

Proposition 3.3. For N ≥ 7, there exists one, and only one, symmetric mixed strat-
egy Nash equilibrium such that p ∈ [0,1/2).

Proof. Let’s focus on Equation 3.7. We have to see that it has one, and only one
solution in the interval (0,1/2). Given that we know that at p = 1/2 the LHS is
greater than the RHS and that both sides are clearly continuous in p, it is enough to
see that: i) this relationship is reversed at p = 0; ii) the LHS is increasing in [0,1/2];
iii) the RHS is decreasing in [0,1/2].

Points ii) and iii) are immediate just by differentiating. And i) is immediate to
verify, since, with the notation introduced, fN(0,H) = 0 and gN(0) = 1. ■

The next step is to discuss existence of equilibria with p ∈ (1/2,1). This case
is less clear than the one we have just studied though, since now, in the domain of
interest, both sides of (3.5) are decreasing, hence it is not immediate to conclude that
there is a unique interior solution. However, we see in the next lines that the same
sort of result still holds. We divide the proof in two parts: existence and uniqueness.

Proposition 3.4. For N ≥ 7, there exists one symmetric mixed strategy Nash equi-
librium such that p ∈ (1/2,1).

Proof. With the notation introduced, it is immediate that fN(1,H) = 0 and gN(1) =
1/N, and we know from Proposition 2.3 that fN(1/2,H) > gN(1/2). Since both
functions are continuous, they must cross at least once in the interval (1/2,1), and
hence Equation 3.7 must have a solution in this interval. ■

Hence, there is also a symmetric equilibrium in which B is more likely to pass
than A. We move on to see that it is also unique in the class of completely mixed
Nash equilibria in which this is the case.

Proposition 3.5. For N ≥ 7, there exists one, and only one, symmetric mixed strat-
egy Nash equilibrium such that p ∈ (1/2,1).

Proof. Existence comes from the previous proposition. We just need to prove
uniqueness. We will see that the LHS of Equation 3.8, which we call lN(H, p),
can only attain once the value 1 in the interval (0,1/2).
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Differentiating we obtain:

l′N(p,H) = H
N!

((N −1)/2)!2 p(N−1)/2(1− p)(N−3)/2
(

N +1
2

−N p
)
−N(1− p)N−1

= (1− p)(N−3)/2
(

H
N!

((N −1)/2)!2 p(N−1)/2
(

N +1
2

−N p
)
−N(1− p)(N+1)/2

)
.

It is immediate to check that lN(0,H) = 1 and that l′N(0,H)< 0, which taking into
account that we know that there is one, and only one, solution with p < 1/2, implies
that lN(1/2,H)> 1. It is also immediate, just substituting, to see that l′N(1/2,H)>

0. Furthermore, if p ≥ N+1
2N , then l′N(p,H) < 0, and we can conclude that lN(p,H)

must have one maximum in the interval (1/2, N+1
2N ) and that any extreme point of

lN(p) in [1/2,1] has to be in this interval. We prove that there is only one. Notice
that, since l′N(1/2,H) > 0 and l′N

(N+1
2N ,H

)
< 0, there cannot be only two extreme

points in the interval, if there are more than one, there must be at least three. Hence,
seeing that there cannot be three is enough. And in order to see that it is enough to
prove that, in the interval of interest, the function

N!
H ((N −1)/2)!2 p(N−1)/2

(
N +1

2
−N p

)
−N(1− p)(N+1)/2,

which determines the roots of lN(p), is strictly concave. This is the case because a
strictly concave function has at most two zeroes. It is a simple exercise of derivation
to see that for p > 1/2 the function above is indeed strictly concave, and the proof
is concluded. ■

At this point we have characterized the equilibria of the game for committees with
at least 7 members. We have seen that there are three symmetric mixed strategy
Nash equilibria, one with p = 1, in which all voters vote for B, and two that are
completely mixed. In one of them, p < 1/2, and A is more likely to pass, and in the
other one, 1/2 < p and B is more likely to pass. However, we still have to study the
cases N = 3 and N = 5. We do it in the next lines. We will see, in particular, that
there is H∗ such that if H > H∗ the characterization of the case N ≥ 7 carries over.

Proposition 3.6. If N = 3, there exists H∗ > 1 such that:

1. if H <H∗, there is no symmetric completely mixed strategy Nash equilibrium;

2. if H = H∗, there is one, and only one, symmetric completely mixed strategy
Nash equilibrium;

3. If H > H∗, there are exactly two symmetric completely mixed strategy Nash
equilibria.
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Furthermore, there exists H∗∗ > H∗ such that if H > H∗∗, the two completely mixed
strategy Nash equilibria are at opposite sides of 1/2.

Proof. We know that p = 0 doesn’t constitute an equilibrium and p = 1 does, hence
we only need to assess the solutions of Equation 3.8 in the interval (0,1). If N = 3
we can solve the equation algebraically. By doing so, we find that the solutions are:

p1 = 0, p2 =
−
√

3
√

12H2 −12H −1+6H +3
2(6H +1)

, p3 =

√
3
√

12H2 −12H −1+6H +3
2(6H +1)

.

Let H∗ be the positive solution to 12H2−12H−1 = 0, hence H∗ = 1
6

(
2
√

3+3
)
.

Notice that H∗ > 1. If H < H∗, it is clear that both p2 and p3 are not real. If
H = H∗, p2 and p3 collapse to being the same solution. So there is only left to
prove that, if H > H∗, both p2 and p3 are in the interval (0,1). However, once
again the expressions can be solved algebraically (now in H) and it is immediate
to see that, in fact, there is no H > 0 that makes p2 = 0 or p3 = 1, which with the
continuity of the functions in the domain of interest and the fact that their value at
H∗ is in the interval (0,1), concludes this part of the proof.

The existence of H∗∗ is simple with what we already saw. Taking the solution p2

and derivating it with respect to H, we can see that it is decreasing for H > 1. It
is straightforward to check that for H = 2, p2 < 1/2, which given the continuity of
p2 in the interval of interest guarantees that for H ≥ 2, p2 ∈ (0,1/2). An analogous
argument for p3 concludes the proof. ■

A similar result can also be proved for N = 5, even if now we cannot solve for
the equilibria algebraically as in the N = 3 case.

Proposition 3.7. If N = 5, there are two, and only two, symmetric mixed strategy
Nash equilibria other than p = 1. Furthermore, there exists H∗∗ such that if H >

H∗∗, the two completely mixed strategy Nash equilibria are at opposite sides of 1/2.

Proof. Let’s focus on Equation 3.8. First of all, it is a matter of computation to
verify that the LHS is greater than 1 at p = 0.6 for any H > 1. Now, given that
both at p = 1 the LHS is clearly smaller than 1 and that at p = 0 the derivative is
negative, it is enough to prove that it has at most two extreme points in (0,1).

Using our notation, hence denoting by l(p) the LHS of (3.8) (now fixing N = 5),
and derivating we have that for p ∈ (0,1):

l′(p) = 0 ⇐⇒ 90H p2(1− p)−60H p3 −5(1− p)3 = 0. (3.10)

Even if, once again, we have a polynomial that we can solve algebraically, now
it is not as helpful because the expressions of the solutions are complicated. How-
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ever, proving what we need is relatively easy. Notice that we just have to see that
Equation 3.10 has one negative solution, since any polynomial of degree three has
at most three different real roots. Firstly, it is clear that at p = 0 it is negative.
Secondly, when p tends to −∞ it behaves like −90H p3 −60H p3 +5p3, which for
H > 1 is clearly positive. And the first part of the proof is concluded, since the
polynomial must have a negative root, and as a consequence it can at most have two
roots in the interval of interest.

The existence of H∗∗ is immediate by checking that we can simply choose it such
that: (

1
2

)5

(30H∗∗+1) = 1,

which is Equation 3.8 for N = 5 at p = 1/2. ■

After the analysis of these two particular cases, we have a complete characteriza-
tion of the symmetric mixed strategy Nash equilibria of the game. Furthermore, we
have seen that there is H∗ > 1, such that if we only consider H > H∗, then no dis-
tinction is needed; that is: the study corresponding to N ≥ 7 carries over to N ≥ 3.
When there is no possible misunderstanding, and in particular it is granted that the
two symmetric completely mixed strategy Nash equilibria of the game exist, we
will note them as p1(H,N) and p2(H,N), with p1(H,N) ≤ p2(H,N). Notice that
for N ≥ 7, we have in general that p1(H,N) ∈ (0,1/2) and p2(H,N) ∈ (1/2,1).

It is natural to wonder how the equilibria that we have just characterized react
to changes in the parameters of the game. It is especially interesting to study how
including more members to the committee might affect these equilibria. We see this
next.

3.4.2. Comparative statics

Let’s see how an increase on H or N might affect the symmetric mixed equilibria
of the game, which we fully described in the previous section. Once again, in order
to do so we will mainly focus on Equation 3.7 and Equation 3.8.

Notice, looking at Equation 3.7, that only one side depends on H, hence the
result concerning comparative statics on this parameter is trivial. Having in mind
the notation we set for the equilibria at the end of the last section:

Proposition 3.8. If H ′ > H > 1, then the following hold:

1. If N ≥ 5, then p1(H ′,N)< p1(H,N) and p2(H,N)< p2(H ′,N).

2. If N = 3 and H ≥ H∗, where H∗ is as determined in the proof of Proposition
3.6, p1(H ′,N)< p1(H,N) and p2(H,N)< p2(H ′,N).
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Proof. Take a look at Equation 3.7, which describes symmetric completely mixed
strategy Nash equilibria. By taking a greater value for H, we are just moving
the LHS upwards. This, along with the fact, which we know, that in the interval
(p1(H,N), p2(H,N)) the LHS is greater than the RHS, proves immediately the re-
sult. ■

Hence, increasing H, which represents the utility that each member gets when his
most preferred option, A, passes, has a polarizing effect on the two symmetric com-
pletely mixed strategy Nash equilibria. Roughly speaking, an increase in H makes
pivotality more relevant. From the point of view of one member, the probability
with which the others vote for B has to compensate for this increase in the value of
pivotality in order to make him indifferent between voting for A and voting for B.

Comparative statics with respect to N are less clear. A quick analysis on both
sides of Equation 3.7 is enough to see that the effect of an increase in N is not
trivial. In particular, it is not complicated to see that an increase in N causes both
sides of the equation to decrease, hence leading to an ambiguous effect at first sight.
However, we can establish a result by comparing how much each side decreases
(after a certain threshold).

Proposition 3.9. There exists N∗ such that, if N > N∗, then

p1(H,N +2)> p1(H,N).

Proof. First of all, let’s write (3.8) for N +2, with the notation introduced:

4p(1− p)
N +2
N +1

uN(p,H)+(1− p)2(1− p)N = 1.

Notice that there is a threshold p∗(N) < 1/2 such that, if p < p∗(N), then it holds
that 4p(1− p)N+2

N+1 < 1. This threshold is easy to compute, since it solves a quadratic
equation, and is given by:

p∗(N) =
1
2
− 1

2
√

N +2
.

In order to prove the proposition it is enough to see that there exists N∗ such that,
if N > N∗, then uN(p∗(N),H)> 1, since this clearly guarantees that

uN+2(p1(H,N),H)+(1− p1(H,N))N+2 < uN(p1(H,N),H)+(1− p1(H,N))N

and hence that p1(N)< p1(N +2). So let’s prove that.
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Substituting and grouping terms we have that

uN(p∗(N),H) = H
N!

((N −1)/2)!2

(
1
2
− 1

2
√

N +2

)(
1
4
− 1

4(N +2)

)N−1
2

.

It can be checked that uN(1, p∗(N)) > 1 holds for N = 27, and so it holds for all
H > 1 as well. Now we prove that if the inequality holds for N it must also hold
also for N +2. In fact we will see that uN(h, p∗(N)) is increasing in N.

Since 1
2 −

1
2
√

N+2
increases with N, it is enough to see that

(
1
4
− 1

4(N +2)

)N−1
2

< 4
N +2
N +1

(
1
4
− 1

4(N +4)

)(
1
4
− 1

4(N +4)

)N−1
2

.

First of all, it is clear that(
1
4
− 1

4(N +2)

)N−1
2

<

(
1
4
− 1

4(N +4)

)N−1
2

,

so it is enough to see that

1 < 4
N +2
N +1

(
1
4
− 1

4(N +4)

)
.

Rewriting the RHS of the last inequality, we have that

4
N +2
N +1

(
1
4
− 1

4(N +4)

)
=

N +2
N +1

· N +3
N +4

> 1.

And we have concluded the proof. ■

A symmetric result for p2(H,N) is straightforward with the proof for p1(H,N).

Proposition 3.10. There exists N∗ such that, if N > N∗, then

p2(H,N +2)< p2(H,N).

Proof. The proof follows just as the one of Proposition 3.9 taking now p∗(N) as
the solution of 4p(1− p)N+2

N+1 = 1 with p > 1/2. Hence, now p∗(N) = 1
2 +

1
2
√

N+2
,

which is symmetric to the previous threshold with respect to 1/2.
The proof is concluded by realizing that for all x ∈ (0,1/2), uN(1/2− x,H) <

uN(1/2+ x,H). This is immediate because fN(p) is symmetric around 1/2 and
uN(p,H) = H ·N · p · fN(p). Hence, uN(p∗(N),H) > 1 trivially holds now as well
and the same N∗ as before is enough. ■
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Since we know that p1(H,N)∈ (0,1/2) for all N ≥ 7, Proposition 3.9 tells us that,
above a certain N∗, the equilibrium with p1(H,N) moves monotonically towards
1/2 as N grows larger. Hence, {p1(H,2k+ 1)}k∈N must converge somewhere in
(0,1/2]. The same argument works for p2(H,N) in the opposite interval. In the
next section we see that both equilibria actually converge to 1/2.

3.4.3. The limit case: committee size arbitrarily large

In this section we study how the symmetric mixed strategy Nash equilibria of the
game behave when N is arbitrarily large. As we have justified, convergence of the
equilibria is guaranteed. Notice that the equilibrium with p= 1 always exists, hence
its convergence is trivial, so we focus on the completely mixed strategy equilibria
from now on.

In order to get the main result, we need to study a bit more in depth the RHS of
Equation 3.7. We devote the next couple of lemmas to do so.

Lemma 3.2. For any p ∈ [0,1] and any N ≥ 3, N ≥ (1− p)2(N +2(1− (1− p)N))

holds.

Proof. First of all, we see that the RHS of the inequality is decreasing in p. Derivat-
ing and grouping terms we obtain that the derivative of the RHS is 2(1− p)((1−
p)N(N + 2)− (N + 2)), which is clearly negative for all p ∈ [0,1]. Checking that
the inequality holds for p = 0, which is trivial, concludes the proof. ■

Lemma 3.3. The function gN+2(p)/gN(p) is decreasing in p.

Proof. Derivating and simplifying we can see that the derivative is negative if, and
only if,

N ≥ (1− p)2(N +2(1− (1− p)N)),

which we have just proved in the previous lemma. ■

Since gN+2(0)/gN(0) = 1, it is an immediate consequence of the last result that
gN+2(p)≤ gN(p) for all p ∈ [0,1]. Similarly, since gN+2(1)/gN(1) = N

N+2 , we also
have that

gN+2(p)≥ N
N +2

gN(p) (3.11)

for all p ∈ [0,1].
The function gN(p), as defined in (3.9), is the expected payment that a member

gets from voting B when all others voter for B with probability p. Hence, it is clear
that the gN(p) is decreasing in p: the more likely the others are to vote for B, the less
money a members expects to get from voting it. With that in mind, Lemma 3.3, tells
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us something very intuitive: the reduction in the expected payment from the interest
group faced by a single member voting for B when p increases, is more severe as
the committee is larger. This is only natural, since the bigger the committee, the
more people that are adjusting their voting behavior when we change p.

Now we are ready to prove the main result of this section. As we did in the
last section, we will prove the result first for p1(H,N), and then obtain the one for
p2(H,N) as an immediate consequence.

Proposition 3.11. Given any δ > 0, there exists N∗(H) such that for all N >N∗(H),
there exists p(N)∈ (1/2−δ ,1/2) that constitutes a symmetric mixed strategy Nash
equilibrium of the game.

Proof. Consider any 0 < δ < 1/2 and any N ≥ 7. Let p0 = 1/2−δ throughout this
proof.

With the notation introduced up to this point, symmetric completely mixed strat-
egy Nash equilibria are defined by gN(p) = fN(p,H). Since gN(0) > uN(0,H)

and the two functions cross exactly once in the interval (0,1/2), if, for all N,
gN(p0)> fN(p0,H) we are done. Assume that it is not the case for some N.

It is immediate to see that in general fN+2(p,H) = 4p(1− p) N
N+1 fN(p,H). So

for all k ≥ 1, we have that fN+2k(p0,H) < (4p0(1− p0))
k fN(p0,H). Furthermore,

by applying repeatedly Inequality 3.11, we have that for all k ≥ 1, gN+2k(p0) ≥
N

N+2k gN(p0). Then, for all k ≥ 1,

fN+2k(p0,H)

gN+2k(p0)
≤ (4p0(1− p0))

k(N +2k)
fN(p0,H)

NgN(p0)
,

and since 4p0(1− p0)< 1 and the exponential decreases faster than any polynomial,
it is clear that the RHS of the last inequality goes to 0 as N goes to infinite and we
can conclude that

lim
N→∞

fN(p0,H)

gN(p0)
= 0.

Hence, using the definition of limit, in particular there exists N∗(H) such that, for
all N ≥ N∗(H), fN(p0,H)/gN(p0)< 1, or what is the same, such that fN(p0,H)<

gN(p0). ■

The result concerning the symmetric interval with respect to 1/2 is proved in
exactly the same way. Notice that the expressions we used remain unchanged and
that the crucial fact, that is 4p0(1− p0) < 1, holds as well for p0 > 1/2. We state
it as a corollary and do not provide a separate proof since the previous one carries
over without complications.
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Corollary 3.1. Given any δ > 0, there exists N∗(H) such that for all N > N∗(H),
there exists p(N)∈ (1/2,1/2+δ ) that constitutes a symmetric mixed strategy Nash
equilibrium of the game.

Summarizing the results up to this point: for N ≥ 7, we have seen that the two
symmetric completely mixed strategy Nash equilibria of the game are on opposite
sides of 1/2, but they both move towards 1/2 as N increases (after a certain thresh-
old), and in fact both of them get arbitrarily close to it.

3.4.4. Welfare analysis

We know that both symmetric completely mixed strategy Nash equilibria con-
verge to 1/2. However how fast they do so is relevant in order to assess how the
probability of A passing evolves in each scenario. Broadly speaking, fast conver-
gence of p1(H,N) to 1/2 would lead to probabilities of A passing close to 1/2 in
equilibrium for arbitrarily large committees. On the other hand, slow convergence
would lead to probabilities of A passing close to 1 in equilibrium for arbitrarily large
committees.

If p is the probability with which each of the members of the committee votes for
B, then the probability of A passing is:

PA(p) =
(N−1)/2

∑
i=0

(
N
i

)
pi(1− p)N−i. (3.12)

Next we see that, given a fixed H: i) under p1(H,N) the probability of A pass-
ing converges to 1 as N grows large; and ii) under p2(H,N) the probability of A
passing converges to 0 as N grows large. Hence, in big enough committees, the two
completely mixed strategy Nash equilibria provide “completely" different results.
We focus on proving the first of these points, since the second one will then be im-
mediate. To prove this result, we draw inspiration from the proof of Theorem 2 of
Martinelli (2006), which makes use of the Berry-Esseen theorem.

We start with a technical lemma, which is convenient to prove separately, but that
has no value on its own.

Lemma 3.4. Given N ≥ 5, it holds that:(
N −2
N −4

)N−1
2

(N −2)>
(

N +2
N

)N−1
2

(N +2).
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Proof. This last inequality is equivalent to:

(
N −2
N +2

)N+1
2
(

N
N −4

)N−1
2

> 1.

Taking logarithms on both sides of the inequality we get:

N +1
2

(log(N −2)− log(N +2))+
N −1

2
(log(N)− log(N −4))> 0.

It is immediate to see that the LHS goes to 0 as N grows large and that at N = 5
it is positive. Hence, it is enough to see that the derivative of the LHS is negative.
Derivating we obtain:

1
2

(
−

8
(
N2 +2

)
N (N3 −4N2 −4N +16)

+ log
(

N
N −4

N −2
N +2

))
,

so we have to see that for N ≥ 5,

−
8
(
N2 +2

)
N (N3 −4N2 −4N +16)

+ log
(

N
N −4

N −2
N +2

)
< 0.

It is once again clear for N = 5 and the LHS goes to 0 as N grows large, hence it is
enough to see that the LHS is increasing. By derivating the LHS we obtain:

48N4 +64N3 −640N2 +128N +256
(N −4)2(N −2)2N2(N +2)2 ,

which is positive if, and only if, 48N4 + 64N3 − 640N2 + 128N + 256 > 0, which
is immediate to check for N ≥ 5 since the polynomial of degree 4 can be solved in
general. ■

We follow up by finding sequences of probabilities that we can assess how they
behave in terms of convergence of the probability of A passing.

Lemma 3.5. If committee members of a committee of size N all vote according to
the probability pk(N) = 1

2 −
k√
N

for k <
√

N a natural number, the probability of A
passing goes to Φ(2k) as N grows large.

Proof. We consider the sequence pk(N) = 1
2 −

k√
N

, and hence that each voter votes

for A with probability 1
2 +

k√
N

. This sequence clearly converges to 1/2 as N grows
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large. Now consider the random variable X i
N defined by:

X i
N =


1
2 −

k√
N

if voter i votes for A

−1
2 −

k√
N

if voter i votes for B

Then, given N the variables X i
N are identically distributed, and it is immediate to

derive the following:

E
(
X i

N
)
= 0,

E
((

X i
N
)2
)
=

1
4
− k2

N
,

E
(
|X i

N |3
)
=

1
8
− 2k4

N2 .

A doesn’t pass if it gets (N −1)/2 votes or fewer. This is equivalent to:

N

∑
i=1

X i
N +N ·

(
1
2
+

k√
N

)
≤ N −1

2
N

∑
i=1

X i
N ≤−1

2
−N

(
k√
N

)
.

Then, if we let FN denote the distribution of:

∑
N
i=1 X i

N√
N ·E

((
X i

N
)2
) ,

the probability of A passing is 1−FN(JN) where:

JN =
−1

2 −N
(

k√
N

)
√

N ·E
((

X i
N
)2
) .

By means of the Berry-Esseen theorem we know that, for all w,

|FN(w)−Φ(w)| ≤
3E
(
|X i

N |3
)(

E
((

X i
N
)2
))3/2√

N
.

It is clear that the RHS of the previous inequality goes to 0 as N grows large, so the
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approximation with the normal distribution is increasingly good. In particular

lim
N→∞

|FN(JN)−Φ(JN)|= 0,

and since in our case limN→∞ JN =−2k, and Φ is continuous and hence

lim
N→∞

|ΦN(JN)−Φ(−2k)|= 0,

we have that the probability of A passing goes to 1−Φ(−2k) = Φ(2k). ■

Since limk→∞ Φ(2k) = 1, it is sufficient to see the following result, which com-
pares the previous sequences with the one given by p1(H,N).

Lemma 3.6. For all k natural, there exists N∗(k) such that if N ≥ N∗(k), then

p1(H,N)<
1
2
− k√

N
.

Proof. It is enough to see that there exists N∗ such that if N ≥ N∗ then:

uN(k) =
N!((N−1
2

)
!
)2 (pk(N))

N+1
2 (1− pk(N))

N−1
2 > 1. (3.13)

In order to do so, notice that it is enough to see that there exists N0 such that
uN0(k)> 0 and such that, if N ≥ N0, then

uN+2(p,k)>
N +2
N +1

uN(p,k),

since the product N+2
N+1

N+4
N+3 . . . diverges for any N. We have that:

uN+2(k)
uN(k)

=
N +2
N +1

(N +2−4k2)
N+1

2

(N −4k2)
N−1

2

(√
N +2−2k√

N −2k

) √
N

N

√
N +2N+2

>
N +2
N +1

(
N +2−4k2

N −4k2

)N−1
2

√
N

N−1

√
N +2N+1 (N +2−4k2).

Hence, it is enough to see that:

(
N +2−4k2

N −4k2

)N−1
2

(N +2−4k2)≥
(

N +2
N

)N−1
2

(N +2).

We know from Lemma 3.4 that this inequality holds for the case k = 1, so it is
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enough to see that if a ≥ 4, then for N ≥ a the function

(
N +2−a

N −a

)N−1
2

(N +2−a)

is increasing in a, which is straightforward derivating and grouping terms properly.
■

Now we are ready to state the main result of this section, which we have already
introduced:

Theorem 3.1. Given H > 1 and any ε > 0, there exists N∗ such that if N ≥ N∗, then
PA(p1(H,N))> 1− ε and PA(p2(H,N))< ε .

Proof. Given H > 1 and ε > 0, we know that we can take k∗ such that for all k ≥ k∗,
Φ(2k)< 1−ε/2. Furthermore, we know from Lemma 3.5, that we can choose N0 >

(k∗)2 such that if N ≥ N0, then the probability of A passing when pk(N) = 1
2 −

k√
N

is chosen by all members, is such that Φ(2k)− ε/2 < PA(pk(N)). By Lemma 3.6
we know that there exists N1 such that if N ≥ N1, then p1(H,N) < 1

2 −
k√
N

, and
hence such that if N ≥ N1, then PA(pk(N))< PA(p1(H,N)). It is clear that choosing
N∗ = max{N0,N1} provides the desired result.

The proof concerning PA(p2(H,N)) is immediate realizing that 1/2− p1(H,N)>

p2(H,N)−1/2, and hence that the same N∗ must work as well, since in general we
have: PA(p1(H,N))< 1−PA(p2(H,N)). ■

Hence, we have derived both results of interest regarding convergence of the ex-
pected outcome of the election when the size of the committee grows large. How-
ever, it is also interesting to see numerically how are these outcomes for different
values of N, since many committees have a definite size and/or cannot include an
arbitrarily large amount of members.

In the following table we report, for different values of N, the probabilities that
yield symmetric completely mixed strategy Nash equilibria, and the probability of
A passing for each of them. We fix H = 1.5 for all cases, since it doesn’t play
an interesting role. In order to keep notation short, since we stick to N ≥ 7, we
denote simply by p1 the equilibrium in the interval (0,1/2), and by p2 the one in
the interval (1/2,1).
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N p1 p2 PA(p1) PA(p2)

7 0.3657299625 0.7555054273 0.7734354867 0.0655875462
15 0.3637414053 0.6977288773 0.8630360795 0.0521503635
31 0.3773898020 0.6532047817 0.9189185447 0.0389922406
95 0.4094768404 0.6007906874 0.9627918559 0.0232716543
215 0.4315274100 0.5730613861 0.9783017149 0.0155159882
617 0.4541302262 0.5474810870 0.9888290885 0.0090122542

We can clearly see the convergence results of Theorem 1 happening, but we can
also see that in relatively large committees, such as N = 15, the probability of B
passing under p1 is still of almost 14%. Furthermore, it is worth pointing out that
in this particular case in order to use the pivotal bribes of Dal Bò (2007) the interest
group would need to have a budget of B = 12, while we study the extreme case of
B = 1.

3.5. Alternative assumptions: anonymity,
sequentiality and probability of being corruptible

In this section we study the model taking into account three natural alternative
considerations: i) the personal vote is anonymous; and ii) voting is performed se-
quentially; and iii) each member has a probability of being corruptible.

3.5.1. Anonymous voting

In this case, the interest group cannot directly compensate the voters who vote for
B, because he does not know who they are. However, we assume that the final score
is public. Hence, let’s assume that the interest group promises that it will randomly
compensate as many members as votes obtained the option B.

It is easy to see that the analysis of equilibria in pure strategies remains intact.
Let’s consider mixed strategies. We focus once again in symmetric mixed strategy
Nash equilibria. Notice as well that the situation in which all agents vote for A is
not an equilibrium, since any agent has an incentive to deviate, because A passes
anyway and he might get some compensation from voting for B.

Lemma 3.7. Let i denote how many of N −1 members vote for B. If i > 0, then the
remaining member, in expected terms, gets the same from the interest group whether
he votes for A or for B.
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Proof. It suffices to check that:

1
i+1

(N−1
i

)( N
i+1

) =
1
i

(N−1
i−1

)(N
i

) ,

which is trivial when written in factorial form and simplifying. The LHS is the
expected payment made by the interest group to the member when he votes for B
and the RHS when he votes for A. ■

Voting for B instead of voting for A now has two effects: i) it is more likely to
be chosen by the interest group; and ii) less money is distributed to the selected
members. And the previous Lemma proves that if i > 0, this two effects cancel each
other.

However, if i = 0, it is obvious that this is not the case, since if the remaining
member votes for A, it is certain the he will not receive any payment. Hence, if
p continues to denote the probability with which every agent votes for B, the ex-
pected gain from voting for B instead of for A in the eyes of a single member of the
committee is: (1−p)N−1

N . And the equation describing symmetric completely mixed
strategy Nash equilibria is:

H
(

N −1
N−1

2

)
p

N−1
2 (1− p)

N−1
2 =

(1− p)N−1

N
. (3.14)

And now, due to the nature of the functions involved, it is easier than before to
characterize symmetric mixed strategy Nash equilibria.

Proposition 3.12. In the game with anonymous voting there are exactly two sym-
metric mixed strategy Nash equilibria; one with p ∈ (0,1/2) and one with p = 1.

Proof. Moving all terms to one side we have that Equation 3.14 can be rewritten as

H(1− p)
N−1

2

((
N −1

N−1
2

)
p

N−1
2 − (1− p)

N−1
2

N

)
= 0.

Hence, p defines a completely mixed strategy Nash equilibrium if, and only if,(
N −1

N−1
2

)
p

N−1
2 =

(1− p)
N−1

2

N
, (3.15)

or p = 1. It is clear that the LHS of Equation 3.15 is increasing and the RHS de-
creasing inside (0,1), so there can be only one solution in the interval. Furthermore,
since at p = 0 the RHS is greater than the LHS and at p = 1/2 the relationship is
clearly the opposite, there has to be a solution in the interval (0,1/2). ■
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We refer to the solution p ∈ (0,1/2) as pa
1(H,N), where the super-index a makes

reference to the anonymous case we are considering. Then it is easy to see that

pa
1(H,N)< p1(H,N),

where p1(H,N) is the solution in the same interval of the original model. It is just
a consequence of the immediate fact that the RHS of Equation 3.14 is smaller than
the RHS of Equation 3.7.

3.5.2. Sequential voting

We move on to briefly discuss how the game changes if the members of the
committee take turns in order to vote and the votes are public. If the votes were not
public sequentiality doesn’t matter.

Now we deal with a dynamic game and, as it is usually done, we use as solu-
tion concept subgame perfect Nash equilibrium (SPNE). The characterization of
equilibria is simple in this case.

Proposition 3.13. If members vote sequentially, A passes for sure in any SPNE. In
any SPNE, the first (N −1)/2 members vote for B and the rest vote for A.

Proof. Just notice that the (N+1)/2 last members don’t have a credible threat with
which they can punish the other ones. Pivotality is no longer uncertain. Hence,
equilibrium strategies are “I vote for B unless I am pivotal, then I vote for A”. ■

At this point it is worth mentioning that we should take these results with a grain
of salt. Both anonymous and sequential voting, given the results we have just de-
rived, might look like better voting mechanisms and we might consider them as
good policy advise in order to reduce outside pressure on voting institutions. How-
ever, they have their own issues. On one hand, anonymous voting erases partially
accountability of the voting members, which in an institution whose members are
elected, like in a parliament, can be a big issue. On the other hand, the results on
sequential voting are very sensitive to uncertainty on whether everyone got the same
offer or not, since buying the last voter can be extremely powerful; members of the
committee are no longer symmetric given a certain order of voting.

3.5.3. Each member has a probability of being corruptible

Assume that each member of the committee is corruptible with probability η .
Then, from the point of view of a corruptible member, the other ones now vote for
B with probablity η p. If η = 1 we clearly recover the baseline case.
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Then the indifference condition describing completely mixed equilibria is:

H
(N −1)!(N−1

2

)
!
(N−1

2

)
!
(η p)

N−1
2 (1−η p)

N−1
2 =

1− (1−η p)N

η pN
. (3.16)

From the study of the baseline case, we know that, if N ≥ 7, the previous equation
has exactly two solutions in the interval [0,1/η ], and that these solutions are at
opposite sides of 1/(2η).

Proposition 3.14. If N ≥ 7, then let p1(H,N) and p2(H,N) denote the completely
mixed strategy Nash equilibria of the baseline case (η = 1). It holds that:

1. If p2(H,N) < η , there are two symmetric completely mixed strategy Nash
equilibria, pη

1 (H,N) = p1(H,N)
η

and pη

2 (H,N) = p2(H,N)
η

, and three symmetric
mixed strategy Nash equilibria (since, p = 1 constitutes an equilibrium).

2. If p2(H,N) = η , there is one completely mixed strategy Nash equilibrium,
pη

1 (H,N) = p1(H,N)
η

, and p = 1 is a symmetric equilibrium.

3. If p1(H,N)< η < p2(H,N), there is only one symmetric mixed strategy Nash
equilibrium, which is completely mixed, pη

1 (H,N) = p1(H,N)
η

.

4. If p1(H,N) = η , there is only one symmetric Nash equilibrium, which corre-
sponds to p = 1.

5. If η < p1(H,N), there is no symmetric completely mixed strategy equilibria,
and there is only one symmetric equilibrium, which is given by p = 1.

Proof. We know that Equation 3.16, which describes completely mixed equilibria,
has exactly two solutions in the interval [0,1/η ]. By performing the change of
variable p′ = η p we recover the equation of the baseline case, which we know
that has exactly two solutions, p1(H,N) and p2(H,N). Then, in this problem, the
only two solutions in the interval [0,1/η ] are given by pη

1 (H,N) = p1(H,N)
η

and

pη

2 (H,N) = p2(H,N)
η

. All we have to do is check when these solution are in the
interval [0,1]. Doing it is immediate and provides the classification stated by the
proposition. ■

Notice in particular, that for some values of η we lose the equilibrium with p= 1.
This happens when p1(H,N) < η < p2(H,N), since in this situation, if the other
N − 1 members set p = 1, the best reply of the remaining member is to vote for
A (hence, to set p = 0). This happens because the proportion of non-corruptible
members is expected to be large enough as for a single member to be pivotal with
high enough probability.
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Proposition 3.15. Given 1/2 < η , there exists N∗(H) such that, if N ≥ N∗(H), then
there are two symmetric completely mixed strategy Nash equilibria.

Proof. The result is an immediate consequence of the convergence of the solutions
to 1/2 in the baseline case (η = 1). ■

Similarly:

Proposition 3.16. Given η < 1/2, there exists N∗(H) such that, if N ≥ N∗(H), then
there is no symmetric completely mixed strategy Nash equilibrium.

3.6. Concluding remarks

We have studied a model of voting in committees that allows for the presence
of an outside interest group in a position to exert influence. The committee has to
choose whether to implement a reform or not, and all its members strictly prefer the
reform to be implemented. We study how disruptive an interest group that prefers
the status quo and that is willing to spend a certain budget buying votes can be. In a
similar scenario, Dal Bò (2007) proves that the interest group can make its preferred
option pass at virtually no cost using pivotal bribes. However, for such bribes to
be credible, the interest group might need a big budget, even if in equilibrium it
does not spend it all. Furthermore, the necessary budget grows unboundedly as the
committee size grows large. Focusing on a different bribing scheme, equal split
bribes, we show that if the interest group is willing to be uncertain about avoiding
the reform to be implemented, it can be very disruptive employing few resources.
In addition, the scheme that we study is simple in a couple of dimensions: i) it is
anonymous; i.e. everyone gets the same offer, hence offers need not be stated indi-
vidually; and ii) the bribe paid to each voter does not depend on which alternative
passes.

We show that, in general, the game has three symmetric mixed strategy Nash
equilibria. In one of these equilibria all members of the committee vote against the
reform, which is an equilibrium sometimes deemed unrealistic in the literature, and
that is often found in models like ours without expressive concerns. The other two
equilibria are completely mixed and there is one in which reform is more likely to
pass and one in which it is less likely to pass. We see numerically that for small
and medium size committees, even in the equilibrium in which the reform is more
likely to pass, there is a decent chance that it does not. We show that after a cer-
tain threshold, an increase in the size of the committee makes the probabilities that
committee members use in the two completely mixed strategy Nash equilibria to
moderate, i.e., to move towards 1/2. However, the probability of the reform being
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implemented does not moderate at all; in fact, we see that in the limit, as the size of
the committee grows large, the probability of the reform passing the voting goes to
1 or 0 depending on which of the two completely mixed equilibria is played. The
uncertainty faced by the interest group can be viewed as the price to pay in order to
try to buy an election with few resources.

Our results provide a possible explanation for the “Tullock paradox”(Tullock
1967; Tullock 1997), suggesting that members of a voting body might be tempted
by lower than necessary offers because they might assess that they are not likely,
individually, to be pivotal. They are also in line with the observation that there
seems to be “few money in US politics”, of which de Figueiredo and Richter (2014)
and Ansolabehere et al. (2003) provide evidence.

At last, we see that under anonymity and sequentiality the potential influence of
the interest group is reduced. However, both these alternative assumptions have
other issues outside the model here considered. For example, in democratic insti-
tutions it might be desirable to make the members accountable for their actions,
since lack of accountability has been empirically associated with corruption (Pers-
son et al. 2003).
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4. Information acquisition, voting
and networks.

Abstract

A society of identical individuals must choose through elections one of two al-
ternatives under uncertainty about the state of the world. Individuals can (a) choose
the accuracy of their private signals about the state of the world at an increasing
cost, and (b) send messages to other individuals to whom they are connected in
some network. We show that the existence of a full (communication) network leads
generically to two types of equilibria. First, there always exists an equilibrium in
which only one citizen—a dictator—acquires information and everybody else votes
equally based on such information, which is sent by the dictator to all other citizens
via the network. Second, the only symmetric equilibrium that would exist without a
network is also an equilibrium with a full network, but only if information acquisi-
tion costs are sufficiently high. This condition keeps at bay the extent of the positive
externalities created by acquiring information that can be distributed at no cost.

Keywords: elections; information acquisition; networks; free-riding.

JEL Codes: D71, D72.

4.1. Introduction

Information plays an important role in elections. As pointed out already by
Downs (1957), citizens will typically not find it worthwhile to incur a substantial
effort to acquire (costly) information about the consequences of policy. The rea-
son for this is that citizens expect the information they acquire to be consequential
for the election outcome only with a small probability, which captures the events
in which the citizens’ vote will be pivotal. Yet, crucially, election outcomes can
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still maximize social welfare if society acquires collectively the right amount of in-
formation. Whether elections are an effective tool to implement socially optimal
outcomes hinges on the technology citizens use to acquire information about the
consequences of policy, as well as on the size of the population (see e.g. Martinelli,
2006).

The above insights have been derived in (theoretical) settings that rest on a cru-
cial assumption: individuals acquire information that is private and can only be ex-
pressed through the citizens’ vote in the election. However, the emergence of social
networks in modern societies—and, more broadly, the advent of myriad of com-
munication technologies—facilitates the dissemination of (previously acquired) in-
formation among the citizens at virtually no cost prior to elections. The possibility
for (true) information to be spread among the citizens may affect the functioning of
elections and have important consequences for collective action in democracy. A
priori, such a possibility could generate two intertwined effects affecting citizens in
a heterogeneous way, but it might as well lead to none of these effects. First, at the
information acquisition stage, some, or even most, citizens may prefer not to learn
themselves first-hand about the state of the world and instead free ride on others
providing second-hand information to save the costs of information acquisition; we
call these citizens uninformed voters. Second, at the voting stage, those citizen(s)
who did acquire information about the state of the world may be pivotal de facto
with a very large probability; we call these citizens informed voters. The reason for
this is that uniformed citizens will replicate the vote of the informed citizens based
on the information acquired by the latter, provided uninformed voters trust the mes-
sages sent by informed voters. An important question is whether such effects can
be sustained in some or in all equilibria of an underlying game and, if so, what the
consequences for welfare are.

In this paper, we take up the question how the ex post costless spread of infor-
mation influences the incentives to ex-ante acquire such information, and thus how
this, in turn, affects election outcomes. We start from Martinelli (2006) and con-
sider a society made up of a finite (and, for simplicity, odd) number of ex-ante equal
citizens who has to choose via voting with the majority rule one of two alternatives.
All citizens agree that choosing one of the two alternatives is best for one of the
two binary states of the world, so our setup is of common value. However, citizens
may disagree in the likelihood they attach to each state of the world, since they
receive different private independent signals about the true state of the world. The
accuracy of any such state-conditional signal depends on the effort an individual
incurs. Following Martinelli (2006), information acquisition costs are modeled as
an increasing, convex function of accuracy.

To include the possibility of information spread, we then depart from Martinelli
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(2006) by assuming that citizens can communicate whatever information they have
acquired first-hand at no cost to any other citizen with whom they are linked in
some (social) network, which we model as a non-directed graph. For most of our
analysis, we focus on the case of a full network: i.e., each citizen can communicate
for free with any other citizen in the society. Proceeding with the full network
suffices to unravel novel mechanisms in information acquisition in elections that
cannot be obtained if there is no network. The specifics of the network are common
knowledge before information can be acquired, and for simplicity we assume the
network to be given exogenously.

The timeline of the game we analyze is the following: In Stage 0, nature draws
the state of the world. In Stage 1 (information acquisition stage), each voter chooses
the quality of the information about the state of the world that s/he wants to acquire,
at a cost that increases with accuracy. Then voters privately observe their signals
of the chosen accuracy. In Stage 2 (message stage), voters send messages to the
other voters with whom they are connected in the (communication) network. Each
voter observes the messages sent to him/her, evaluates how truthful these messages
are, and updates his/her beliefs about the state of the world and about “how much
information” other voters might hold. In Stage 3 (voting stage), each citizen casts
a vote (there is no abstention), the alternative with most votes is implemented, and
payoffs are realized.

The above dynamic game is difficult to analyze. Yet, provided the network is full,
the bulk of the analysis of the above dynamic game is tantamount to investigating
a suitable static game—called information game with communication network—
where (in the only step, viz. Stage 1) all citizens simultaneously choose the quality
of the information about the state of the world and receive their private signals,
and then (a) transmit their first-hand information truthfully to everybody else, and
(b) vote sincerely, i.e., they vote for the alternative that is most likely given all
the information (first-hand and second-hand) at their disposal. This simplification
allows us to compare our results about the information game with communication
network to the benchmark case established in Martinelli (2006), which corresponds
to the variant of the above dynamic game where the network is empty (i.e., no
message can be sent between voters).

To prove that a simplification of our dynamic setup that focuses on Stage 1 makes
sense, we prove the following auxiliary results for the dynamic game. First, truthful
communication in Stage 2 is weakly dominant (Lemma 4.2). That is, if citizens ac-
quire any information at all first-hand, we can consider that they will simply share
it with all the other citizens (provided the network is full, as otherwise there is no
guarantee for truthful reporting to be sustained in equilibrium). This means that
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we do not need to explicitly model Stage 2.1 Second, voting sincerely in Stage 3
weakly dominates all other voting strategies (Lemma 4.1).2 This means that we
can also abstract from Stage 3 for our analysis. To derive Lemmas 4.1 and 4.2,
we make the (behavioral) assumption that citizens will believe any message sent to
them. Proceeding with such an assumption therefore enables the simplification of
our dynamic game and is in keeping with a naive interpretation of our setup in which
where all agents have the same goal. A Nash equilibrium of the static game under-
lying Stages 0–1 (which we simply call an equilibrium) can therefore be extended
to a perfect Bayesian equilibrium (PBE) of the whole dynamic game consisting of
Stages 0–3 (Lemma 4.3) in which citzens sent truthful messages, believe all mes-
sages, and vote sincerely.

Our results with regard to information games with communication network iden-
tify two possible intertwined mechanisms for information acquisition and voting in
the presence of a full (communication) network. We show that there always ex-
ists an equilibrium of our static game in which exactly one citizen—which we call
a dictator—acquires a positive level of information about the state of the world
and all citizens—including the informed voter (or dictator) who acquired first-hand
information—vote according to the informed voter’s signal (Theorem 4.2). Such an
equilibrium—called a dictator equilibrium—yields the same outcome a one-person
committee would attain, and thus its predictions are independent of the size of the
population. The dictator equilibrium fails to exist if there is no (communication)
network (Proposition 4.1), so it cannot be obtained in the benchmark case consid-
ered by Martinelli (2006).

With a full network, the citizen acting as dictator is content with his/her decision
to acquire a higher information level than s/he would if there were no network since,
given the strategies of all other citizens, s/he expects to be pivotal with probability
one. At the same time, the citizens who do not acquire any first-hand information
do not find it worth to do otherwise as long as the information acquisition cost func-
tion is convex (and increasing). This means that the accuracy of the information the
citizenry attains collectively with a full network can in principle be lower or higher
than the accuracy of the information the citizenry attains collectively when there is
no communication network. We show that, depending on the information acquisi-
tion function and on the population size, the probability of implementing the right
alternative will be smaller or larger in the dictator equilibrium than in the case with
no network. This means that we cannot unambiguously say that (communication)

1Hence, our setup with a full network is akin to a setting where signals are publicly observed
but whose costs are private.

2By means of an example we show that Lemma 4.1 fails to hold in general if the network is not
full.
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networks are either good (Proposition 4.3) or bad for welfare (Proposition 4.2).
Beyond the dictator equilibria, an information game with communication may

have other equilibria in which more than one individual acquires a positive level of
information. Under a full network, it can be a focal point to look for symmetric
equilibria in which all agents acquire the same level of costly information. In com-
parison with dictator equilibria, if such an equilibrium exists there is no asymmetry
in (first-hand) information at the population level, which could be beneficial in the
long term for other issues such as income inequality. We show that the equilibrium
information accuracy choices in Martinelli (2006) remain also equilibrium choices
under a full network, provided that marginal information acquisition costs are suf-
ficiently large (Theorem 4.3). Moreover, (a) this is the only symmetric equilibrium
regardless of how large marginal information acquisition costs are (Proposition 4.4),
and (b) symmetric equilibria do not generally exist if it is sufficiently cheap to ac-
quire a further marginal bit of information (Proposition 4.5). With a full network,
all individual signals (of the accuracy chosen without a network) become public for
everyone, so it cannot be very cheap to acquire information for intermediate lev-
els of information quality to be sustained in equilibrium. When such an equilibrium
exists, the posterior about the state of the world is much more accurate with the pos-
sibility of communication than without such a possibility, conditional on the same
(equilibrium) information accuracy levels. Yet, because the decision which alterna-
tive to implement is taken via the majority rule, the probability of implementing the
correct alternative—i.e., the alternative that matches the state of the world—is the
same in both situations (Proposition 4.6). This implies that, in equilibrium, the pos-
itive externalities created by acquiring information in the presence of a full network
vanish, and thus no citizen underprovides information (compared to the case of no
network).

Our results suggest that networks can have a dramatic impact on the structure
of information acquisition in elections and/or in election outcomes, but also that
neither of these phenomena need necessarily take place. This raises the question
whether or not it is good for social welfare that such networks—which facilitate the
spread of information—be regulated. Of course, in real life (social) networks can
transmit false information, particularly in polarized societies, which can have fur-
ther profound consequences for the quality of democracy. But our results warn
us that even in the absence of conflict and polarization in the citizenry, social
networks—or, more generally, the possibility for information to be spread among
citizens at no cost—can have negative consequences for welfare.

The paper is organized as follows. In Section 4.2 we review the literature most
closely connected to our paper. In Section 4.3 we introduce our model, set up the
notation, and prove some results that justify our analysis of a simplified static game
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instead of the full dynamic game. In Section 4.4 we show the existence of dictator
(asymmetric) equilibria in our static game. In Section 4.5 we show the existence
of symmetric equilibria in our static game. In Section 4.6 we briefly discuss some
extensions of our model and results. Section 4.7 concludes.

4.2. Related literature

Our paper enriches the understanding of how elections aggregate information
and impact democratic performance. Condorcet (1785) conjectured that majority
outcomes may be more reliable when more citizens exert their voting rights; in
fact, the wisdom of majority may be infallible in arbitrarily large elections. Several
strands of research have emerged since to investigate this conjecture, some of which
our study aligns with, as elaborated in the following paragraphs.

The first formal explorations of Condorcet’s thoughts (Black, 1958; Miller, 1986;
Grofman and Feld, 1988; Young, 1988; Ladha, 1992, 1993; Berg, 1993; Paroush,
1998; McLean et al., 1994) generally consider settings in which information is
spread exogenously among voters, and in which voters vote sincerely. A voter is
said to vote sincerely when s/he votes for the alternative that is more likely from
his/her point of view. Austen-Smith and Banks (1996) demonstrates that, even if all
voters share the same goal, sincere voting might not be always rational; other papers
further contributed to this understanding (Duggan and Martinelli, 2001; Mukhopad-
haya, 2003). However, most of this literature focuses on environments in which
voters do not share their private information. Information transmission across peers
have become an important aspect in elections recently, so it is natural to investi-
gate the role of strategic behavior and (strategic) communication under such cir-
cumstances. Li (2001) studies a model in which voters are assumed to perfectly
see each others’ efforts and signals, and investigates how committing to different
aggregation rules might lead to different levels of effort. We prove that voting sin-
cerely and reporting information truthfully can be rational if voters trust each other’s
messages.

Martinelli (2006), which is the closest paper to our work, questions the assump-
tion that information is exogenously dispersed among voters. In both models, voters
incur a cost to increase the precision of their private information about an alternative
to be voted upon later. Unlike in Martinelli (2006), in our setup voters in our setup
can send messages to each other about both the accuracy and the content of their
signals. Gerardi and Yariv (2008) explore a model with information acquisition and
communication, without votes but with one principal who aggregates the reported
information. However, they focus on the mechanism design side of the problem,
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looking for ways to both extract as much information as possible and ensure truth-
ful reporting. In addition, unlike in our setup, they assume that there are just two
information levels (informed and non-informed); we have a continuum of possible
information levels.

Bobkova and Klein (2020) investigate voting scenarios where privately informed
voters can share their information as well, although not in a costly information ac-
quisition environment, and under a unanimous voting rule. They show that informa-
tion sharing can only be beneficial to an information centralizer principal when the
accuracy of each voter’s private information is sufficiently high. Our full network
can be analogous to a non-strategic central planner eliciting private information
from voters and recommending decisions. Our findings offer a different perspec-
tive: for each private information accuracy that emerges in a symmetric equilibrium
without information sharing, we identify a class of cost functions that implement
the same equilibrium assuming perfect observability.

Gersbach et al. (2020) study the role of information in committees. Like us, they
consider information acquisition to be costly and examine its impact on the level
of information to be acquired. However, Gersbach et al. (2020) do not consider
the possibility of communication between committee members, which we do if we
think of our full network as a full committee.

Apart from the analysis of information aggregation in elections, our paper con-
tributes broadly to a literature of public goods provision. Indeed, information serves
a public good in our model, since private signals and their inference are made avail-
able to all connected voters in equilibrium. Moreover, our assumption on costly
acquisition deepens the incentives for free-riding on the provision of information by
other players. Bramoullé and Kranton (2007) study the provision of public goods in
networks, although in a complete information environment. They find the existence
of equilibria with specialization, that is, equilibria in which only some individuals
contribute and others free ride. Our results of existence of dictator equilibria is an
analogue to their findings. Like us, Bramoullé and Kranton (2007) also find that
specialization can be good or bad for society.

In our model, messages can be sent for free, so lying is costless. Yet, because
there is no conflict of interest, we find that an equilibrium exists with full infor-
mation revelation among players (a separating equilibrium in cheap talk games, as
commonly denoted since Crawford and Sobel, 1982). Our assumption about mes-
sages being commonly believed resembles the assumption of naivety from receivers
in the cheap-talk model in Chen (2011).
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4.3. Model

An electorate of 2n+ 1 citizens must choose one of two alternatives, A and B.
We let N := {1, ...,2n+ 1} denote the set of all citizens (also called voters). All
citizens agree that each of the alternatives is more suitable for one of two states of
the world, so we consider a common value setup. The state of the world cannot
be directly observed. ex-ante, citizens attach equal probabilities to any of the two
possible states of the world, and this is common knowledge. A voter’s utility U(d,z)
depends on the chosen alternative, d ∈ {A,B}, and the realized state of the world,
z ∈ {zA,zB}. We normalize utilities so that for all citizens, U(A,zA) =U(B,zB) = 1
and U(A,zB) =U(B,zA) = 0. This means that citizens derive the same utility from
implementing alternative A in state zA and alternative B in state zB. Citizens also
derive the same utility level, yet a lower one, from implementing alternative A in
state zB or alternative B in state zA.

Prior to voting, citizens must decide on the quality of information about the state
of the world they want to acquire. The quality (or accuracy) is modeled as some
value x ∈

[
0, 1

2

]
and a binary signal space {sA,sB}, with probability distributions

such that P[sA|zA,x] = P[sB|zB,x] = 1
2 + x. Thus, the higher the choice of x, the

higher the informativeness of any observed signal. However, acquiring information
is costly: choosing x reduces the citizen’s utility by some amount C(x). We follow
Martinelli (2006) and assume that C(x) is strictly increasing, strictly convex and
twice continuously differentiable for x∈

(
0, 1

2

)
, and it satisfies C(0)= 0 and C′(0)=

0.
Once citizens have acquired first-hand information about the state of the world

through their signals, they can send a message to the voters connected to them in
some exogenously given network. In these messages, citizens can specify both (a)
how much information about the state of the world they have acquired and (b) what
signal they have received. Formally, we let Γ : N → P(N) be the (communication)
graph describing the network. That is, we assume that citizen i ∈ N is connected
to the set of voters Γ(i), and we impose the condition that j ∈ Γ(i) if and only if
i ∈ Γ( j), i.e., the graph is non-directed. Given the graph, voter i sends message
m j

i = (x j
i ,s

j
i ) ∈ [0, 1

2 ]×{sA,sB} to voter j ∈ Γ(i). We let Mi denote the set of all
the messages containing second-hand information that voter i has received from all
citizens j ∈ Γ(i).

After receiving the messages sent to them, voters update their beliefs about (a)
the state of the world, and about (b) how much information the other voters have.
In our setup, updating about the state of world alone is not sufficient. The reason
for this is as follows: when casting a vote after acquiring first-hand information
and receiving second-hand information from others, if a voter thinks that someone
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else has more information than him/her, s/he might find it beneficial to increase the
probability of that agent being pivotal. This will be made clear in Example 4.1.
To account for the fact that updating about the state of the world does not suffice
for voting, we define a node of the game as some vector θ = ((zi,Pi))i∈N , where
zi ∈ {zA,zB} denotes the state of the world that voter i deems more likely, and Pi

denotes the probability with which that agent is correct about the state of the world.
We denote by Θ the set of all possible nodes of the game and by ∆(Θ) the set of
all probability distributions over Θ. After observing the messages, and given their
prior beliefs, voters update the probability distribution from ∆(Θ).

Finally, citizens cast their votes (no abstention occurs). The alternative that re-
ceives more votes is implemented, and payoffs are realized.

Summarizing, the timing of our political game, which consists of three main
stages, is the following:

0. Nature draws the state of the world z ∈ {zA,zB}.

1. Information acquisition stage:

a) Each voter i ∈ N chooses quality of information xi ∈
[
0, 1

2

]
.

b) Each voter i ∈ N observes signal si ∈ {sA,sB} with precision 1
2 + xi.

2. Message stage:

a) Voters send messages to the voters connected with them according to Γ.

b) Each voter observes the messages sent to him/her and updates his/her
beliefs about which game node has been reached.

3. Voting stage:

a) Each voter casts one vote, and the alternative with more votes is imple-
mented.

b) Voter i obtains payoff U(d,z)−C(xi) under state of the world z if d ∈
{A,B} is implemented and s/he choose xi in Stage 1.

In the above dynamic game, which we call information game with messages
and denote by G , a strategy for voter i consists of: (i) an information quality/accu-
racy xi ∈ [0, 1

2 ]; (ii) a message mi(xi,si) for any chosen information level, xi ∈ [0, 1
2 ],

and for any signal received, si ∈ {sA,sB}; (iii) mappings α i
A and α i

B from the set of
probability distributions over the set of nodes, ∆(Θ), to a probability of choosing
alternative A or B, respectively, i.e., for d ∈ {A,B},

α
i
d : ∆(Θ)→ [0,1].
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Given that all citizens vote (there is no abstention), we have α i
A +α i

B = 1 for all
i ∈ N. Hence, one of the mappings is enough to describe the strategy of a voter.

From now on, unless stated otherwise we consider a full comunication network,
i.e., we make the following assumption:

Assumption 4.1 (Full network). Γ(i) = N \{i} for every voter i ∈ N.

Under Assumption 4.1, every citizen sends a message to any other citizen. Later
we discuss other network structures and the relevance of our choice for the commu-
nication network.

Next, we adapt the definition of sincere voting of Austen-Smith and Banks (1996)
to our setup, and we show that voting sincerely is a dominant strategy for all voters
in Stage 3 under appropriate assumptions.

Definition 4.1. A voting strategy (α i
A,α

i
B) for voter i is sincere if it always selects

the alternative which maximizes the expected individual utility given individual i’s
information.

A sincere voting strategy is uniquely defined for any given information unless
both alternatives yield the same expected utility given such an information.

In our game, citizens update their beliefs about the node of the game that has
been reached, so the appropriate solution concept is Perfect Bayesian Equilibrium.
Yet, in the next three lemmas we justify that we can simplify the analysis of game
G to the analysis of some suitable static game capturing the main elements of game
G , and then use Nash equilibrium as our solution concept. To be able to carry out
such a simplification, we momentarily make the following assumption:

Assumption 4.2 (Commonly believed messages). It is common knowledge that vot-
ers believe that the information sent to them is truthfully reported by the other citi-
zens (in short, we say that messages are commonly believed).

Assumption 4.2 can be seen as a behavioral tenet that is in keeping with our com-
mon value setup. As we shall see, it renders such a setup solvable while keeping
the main features of the entire setup as we introduced it above. Assumption 4.2
allows voters not to truthfully communicate their information to others (on or off
the equilibrium path), yet this fact will not be learned by the citizens receiving such
messages. Given Assumption 4.2, the voters’ updating process with regard to the
probability distribution of the game nodes that have been reached is straightforward:
each voter will allocate probability one to the node matching his/her first-hand in-
formation (which is private and has been acquired by himself/herself) and his/her
second-hand information (which s/he has received from other citizens).
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In the following, we prove a number of lemmas that will enable us to simplify the
dynamic setup introduced above. The first lemma considers the incentives to vote
sincerely, as set out in Definition 4.1.

Lemma 4.1 (Sincere voting). Under Assumptions 4.1 and 4.2, voting sincerely is
weakly dominant for all voters in Stage 3 of game G regardless of history until the
end of Stage 2.

Proof. Consider some voter i ∈ N. No matter whether or not s/he sent a truthful
message to any other citizen, under Assumption 4.2 his/her probability distribution
over Θ puts probability one to the node corresponding to his/her private information
(information acquisition level and signal) and the messages s/he received. Condi-
tional on being in that node of the game, no other citizen can have a higher probabil-
ity than him of being right. The reason for this is as follows: being in a full network
in which all citizens receive messages from all other citizens, under Assumption 4.2
there is no citizen different from voter i who has a higher level of information from
voter i’s perspective. If voter i did truthfully reveal his/her private information in
Stage 1, then s/he believes all other citizens to have his/her same level of informa-
tion. If voter i did not truthfully reveal his/her private information in Stage 1, then
s/he believes all other citizens to have a lower level of information. Finally, since
citizen i’s vote only matters when breaking a tie, voting for whichever alternative
s/he thinks is more likely (given his/her information about the nodes of the game)
is weakly-dominant. ■

Next, we show that if messages are commonly believed and all voters vote sin-
cerely in Stage 3, it must also be the case that in Stage 2 all citizens report truthfully
both the signals they received and the information levels they acquired in Stage 1.

Lemma 4.2 (Truthful reporting). Let Assumptions 4.1 and 4.2 be satisfied. Then,
for any history of game G until the end of Stage 1, no citizen has strict incentives
to send a message different from (xi,zi) in Stage 2, where xi ∈

[
0, 1

2

]
is the level of

information acquired in Stage 1 and zi ∈ {zA,zB} is the signal received in this same
stage by citizen i.

Proof. We start noting that by Lemma 4.1, under Assumptions 4.1 and 4.2 citizens
anticipate that all of them will vote sincerely in Stage 3. Then consider some voter
i ∈ N. Due to Assumption 4.2, voter i believes that all the messages s/he received
were truthfully reported. We proceed by contradiction, so we suppose that citizen i
sends some message mi in Stage 2 to some citizen j that differs from (xi,si). Then,
Assumption 4.2 and the fact that the communication graph is complete imply that
citizen j will have, from the perspective of voter i, an overall lower information
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sA, 0.21

sB, 0.2sB, 0.2

Figure 4.1.: Network of Example 4.1 with the information levels and signals.

level than i. Now recall that we are assuming that citizen j will vote sincerely in
Stage 3, i.e., s/he will use whatever information s/he gathered in Stage 2. This im-
plies that there is some (possibly zero) probability that citizen j will vote in Stage 3
for alternative z ∈ {zA,zB} when, according to the information citizen i holds, i.e.,
(xi,si)×Mi, alternative z′ ∈ {zA,zB} \ {z} should be implemented. Clearly, citi-
zen j’s vote can either have no effect on the election outcomes or break a tie and
yield the implementation of z. Hence, by not truthfully reporting (xi,zi) to all other
citizens, voter i expects a utility that is lower than, or equal to, the one s/he expects
if s/he sends message (xi,zi) to all citizens. Hence, given (xi,si)×Mi, citizen i has
no strong incentive to send false information in Stage 3, provided of course that
Assumption 4.2 holds. ■

Lemmas 4.1 and 4.2 imply that commonly believing all messages, i.e., Assump-
tion 4.2, can be compatible with a PBE of the information game with messages
consisting of Stages 1–3, viz. game G . The reason for this is as follows: we have
seen that, given any information levels acquired in Stage 1, commonly believing
messages induces truthful reporting in Stage 2. We have also proved that these
beliefs (weakly) induce sincere voting in Stage 3. It remains to be seen if, given
truthful reporting, common believing and sincere voting, there exist equilibrium
information levels in Stage 1.

It is important to note that Lemmas 4.1 and 4.2 may not carry over to all com-
munication networks. For example, take a look at the following instance of our
model:

Example 4.1. There are three voters (n = 1), so N = {1,2,3}. Voter 1 is connected
with voters 2 and 3 in graph Γ, but the latter two voters are not connected to each
other in the graph. Suppose that voter 1 acquires information level x1 = 0.3 and
receives signal s1 = sA, while voters 2 and 3 acquire information level x2 = x3 = 0.2
and both receive s2 = s3 = sB. This information is summarized in Figure 4.1.
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Suppose now that the three voters submit truthful messages and that Assump-
tion 4.2 holds. With the information they hold, voters 2 and 3 think that z = zA is
the most likely state of the world. However, voter 1, who has more information than
them, thinks that z = zB is actually more likely. Hence, if voter 3 votes sincerely,
i.e., if s/he votes for A, it is strictly better for voter 2 to vote for B than to vote for A,
since then s/he makes voter 1 pivotal. In other words, in this example, voting sin-
cerely might not be dominant for all voters, and an equivalent to Lemma 4.1 cannot
be extended in general that do not satisfy Assumption 4.1.

Furthermore, if we assume that all voters vote sincerely and that Assumption 4.2
holds, then voter 1 strictly prefers to submit a truthful message to one of the voters
and the message (x2,sB) to the other one, instead of submitting a truthful message
to both voters. Similarly as before, this ensures that voter 1 is pivotal, which is
better for everyone since s/he has more information. Hence, Lemma 4.2 cannot be
extended in general to non-full networks.

Henceforth, we assume that voters submit truthful messages in Stage 2 and vote
sincerely in Stage 3 no matter the history of the game. This enables us to focus on
a static reduced version of the dynamic game G in which each voter can perfectly
observe the signals and the information levels of the other voters and voting is sin-
cere. The timing of this static game, denoted by G 1 and called information game
with communication, is:

0. Nature draws the state of the world z ∈ {zA,zB}.

1. Acquisition, observation, and voting stage:

a) Each voter i ∈ N chooses quality of information xi ∈
[
0, 1

2

]
.

b) Each voter observes signal si ∈ {sA,sB} with precision 1
2 + xi.

c) Each voter observes the signals and information levels of the voters con-
nected with him/her according to Γ.

d) Each voter votes sincerely, given (xi,si)i∈N .

e) Voter i obtains payoff U(d,z)−C(xi) under state of the world z, if d ∈
{A,B} is implemented and xi was chosen by such a voter.

In game G 1, a strategy for voter i is a choice of information quality xi, with xi ∈[
0, 1

2

]
. To find Nash equilibria of game G 1, we need a tie-breaking rule for the case

when the voters’ posterior is the same for both states of the world. To introduce our
tie-breaking rule, some further notation comes in handy. Let xxx := (xi)i∈N represent
a vector of information qualities and sss := (si)i∈N represent a vector of signals, one
for each citizen. Let also SA(sss) and SB(sss) represent the set of components of sss that
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are equal to sA and sB, respectively. The state-conditioned probabilities of sss under xxx
are as follows:3

P[sss|xxx,zA] = ∏
j∈SA(sss)

(
1
2
+ x j

)
∏

k∈SB(sss)

(
1
2
− xk

)
, (4.1)

P[sss|xxx,zB] = ∏
j∈SA(sss)

(
1
2
− x j

)
∏

k∈SB(sss)

(
1
2
+ xk

)
. (4.2)

For the remainder of our analysis of game G 1 we shall impose the following tie-
breaking rule:

Assumption 4.3 (Tie-breaking rule). For any citizen i ∈ N, if his/her posterior is
completely uninformative, i.e., if P[sss|xxx,zA] = P[sss|xxx,zB], then such a citizen votes for
the alternative that is most suitable for the state of the world that matches the signal
s/he received.4

Assumption 4.3 implies that, in game G 1, it is common knowledge among all cit-
izens that any voter i will vote for alternative A if P[sss|xxx,zA]> P[sss|xxx,zA], will vote for
alternative B if P[sss|xxx,zB]> P[sss|xxx,zA], and will votes for alternative si if P[sss|xxx,zA] =

P[sss|xxx,zB]. Note that since we are considering a full network, viz. Assumption 4.1,
all citizens will vote for the same alternative unless P[sss|xxx,zA] = P[sss|xxx,zB].

Using Lemmas 4.1 and 4.2 and the discussion after such results enables us to
obtain the following result:

Lemma 4.3 (Connection between games). Let (x∗i )i∈N be a Nash equilibrium of the
information game, viz. G 1. Then, a PBE of the information game with messages,
viz. G , exists in which citizens acquire information levels (x∗i )i∈N , send truthful
messages, and vote sincerely, and then messages are commonly believed.

Our next task is therefore to explore the set of Nash equilibria of game G 1. In
any Nash equilibria of this (static) game, which we denote typically as (x∗i )i∈N ,
each voter i chooses x∗i ∈

[
0, 1

2

]
to maximize his/her ex-ante payoff, given that other

voters choose x∗−i. This payoff can be written as a function of (xi)i∈N as

G(xi,x−i) :=
1
2

{
Pα(A|xi,x−i,zA)+Pα(B|xi,x−i,zB)

}
−C(xi),

where Pα(A|xxx,zA) and Pα(B|xxx,zB) represent the probabilities of alternative A and B
winning the election under state zA and zB respectively, given xxx.

3In Equations (4.1) and (4.2), we adopt the convention that the empty product equals one.
4Other tie-breaking rules such as randomizing between states or choosing arbitrarily one of the

states when a posterior tie occurs would not lead to different results. Hence, in the statements of the
results we do not make it explicit that we are considering Assumption 4.3.
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The full network—viz. Assumption 4.1—represents one polar case of our general
setup. Another polar case is the empty network.

Assumption 4.4 (Empty network). Γ(i) = /0 for every voter i ∈ N.

Under Assumption 4.4, no citizen can send any message to other citizens. In
such a case, game G is akin to the dynamic game obtained from G featuring only
Stages 0, 1, and 3. If we additionally assume sincere voting, the analysis of the
latter dynamic game reduces to the analysis of a static game consisting of Stages
0 and 1. We call such a static game information game without communication
and denote it by G 2. It has been analyzed in Martinelli (2006), which is our starting
point.5

Theorem 4.1 (Martinelli (2006); Gersbach et al. (2020)). Game G 2 has a unique
symmetric equilibrium, denoted by (x∗i )i∈N , where x∗i = x∗(n) = x∗ solves the fol-
lowing equation (

2n
n

)(
1
4
− (x∗)2

)2

=C′(x∗). (4.3)

Moreover, x∗(n) is strictly decreasing in n and

lim
n→∞

P[right alternative is chosen] = φ(2
√

2k), (4.4)

where √
2φ(2

√
2k) = kC′′(0). (4.5)

We shall use the results in Theorem 4.1 as benchmarks for our subsequent en-
deavours.6

4.4. Dictator equilibria

In this section we show that game G 1 always has an equilibrium in which exactly
one voter acquires information about the state of the world and all other voters vote
according to this voter’s signal. It is in this sense that we refer to equilibria with
such a property as dictator equilibria.

5In the polar case of a full network, viz. Assumption 4.1, truth-telling in the message stage is
compatible with equilibrium behavior (Lemma 4.2). This enables us to think of our framework under
Assumption 4.1 as one in which signals and information acquisition levels are public, as opposed to
our framework under Assumption 4.4 in which both signals and information acquisition levels are
private.

6For the analysis of game G 2 we also consider Assumption 4.3.

77



Information acquisition, voting and networks

Theorem 4.2. In game G 1, a dictator equilibrium (x∗i ,0, . . . ,0) always exist for any
citizen i ∈ N. In this equilibrium, citizen i acquires perfect information if and only
if C′(1/2)≥ 1.

Proof. We want to show that (x∗i ,0, . . . ,0) is an equilibrium of game G 1 for some
value of x∗i and any citizen i ∈ N. That is, any j ∈ N\{i} is a voter for which x∗j = 0.

We start by analyzing voter i’s best response when no other citizen acquires infor-

mation, i.e., when x∗−i = (

2n︷ ︸︸ ︷
0, . . . ,0). If voter i chooses xi > 0, then whichever signal

s/he receives is the alternative that will be chosen. The reason for this is two-fold:
on the one hand, all signals and information acquisition levels are public; on the
other, all citizens vote sincerely. Accordingly, if xi > 0, voter i’s ex-ante expected
payoff given x∗−i is

G(xi,x∗−i) =

(
1
2
+ xi

)
−C(xi).

It is easy to verify that G(0,x∗−i) = 1/2, since in such a case no citizen acquires any
information. Since C′(0) = 0, we obtain G′(0,x∗−i) = 1 > 0, so xi = 0 cannot be a
best reply to x∗−i. Hence, voter i’s best response to x∗−i is either interior (x∗i < 1/2),
if C′(1/2) > 1, or is x∗i = 1/2, if C′(1/2) ≤ 1. In the former case, the interior
solution x∗i corresponds to the information acquisition level that solves the following
equation:

1 =C′(x∗i ). (4.6)

Next, we take as given the optimal choice of x∗i > 0 (depending on the value of
C′(1/2)), and verify that no voter j ∈ N \ {i} wishes to deviate from x j = 0 to
x j > 0, taking also as given that xk = 0 for all k ∈ N \{i, j}. First of all, acquiring
x j ∈ (0,x∗i ) is strictly dominated by x j = 0. This follows from the fact that (a) C(x)
is strictly increasing for x ∈ (0,1/2), and that (b) if voter j acquires an information
level lower than x∗i , the alternative chosen by all citizens (including voter j) will
continue to be the one that matches citizen i’s signal. We split the remainder of the
proof in two cases, depending on the value of the derivative of the cost function at
1/2.

Case I: C′(1/2)≤ 1. In this case, voter i acquires full information, i.e., x∗i = 1/2.
Since the correct alternative is therefore chosen with probability one and C is strictly
increasing, it is clear that voter j strictly prefers to not acquire any information.
Therefore, x∗i = 1/2 and x∗j = 0 for all j ∈ N \{i} is a Nash equilibrium of game G 1.

Case II: C′(1/2) > 1. In this case, voter i acquires an interior level of informa-
tion, i.e., 0 < x∗i <

1
2 , which solves Equation (4.6). If voter j deviates from choosing

x j = 0 to x j ∈ (x∗i ,1/2], then whichever alternative matching voter j’s signal will
be chosen by all citizens. The reason for this is the same as in Case I. Accordingly,
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voter j’s ex-ante expected payoff for x j ∈ (x∗i ,1/2] is

G(x j,x∗− j) =

(
1
2
+ x j

)
−C(x j).

It then suffices to note that for x j ∈ (x∗i ,1/2],

∂G(x j,x∗− j)

∂x j
= 1−C′(x j)< 1−C′(x∗i ) = 0,

where the inequality follows from the fact that C is strictly convex and the least
equality is equivalent to Equation (4.6). Hence, for voter j no deviation from choos-
ing x j = 0 to x j ∈ (x∗i ,1/2] is profitable.

Therefore, it remains to verify the case where citizen j deviates from x j = 0 to
x j = x∗i . There are two cases. First, if si = s j, then all citizens vote according to
citizen i’s and citizen j’s signals. Therefore, the alternative corresponding to such
signals is chosen with probability one. Second, if si ̸= s j, citizens vote according to
their own signal due to Assumption 4.3. In particular, citizen i votes for alternative
si and citizen j votes for alternative s j. This means that both votes cancel each other
out, so the election outcome depends on the remaining 2n−1 citizens. Hence, the
probability of alternative A (B) winning under state zA (zB) is the probability of at
least n over 2n−1 voters obtaining signals sA (sB). This leads to:

G(x j;x∗− j) =

(
1
2
+ x∗i

)2

+2
(

1
2
+ x∗i

)(
1
2
− x∗i

) 2n−1

∑
k=n

(
2n−1

k

)(
1
2

)2n−1

−C(x∗i ),

=

(
1
2
+ x∗i

)2

+2
(

1
2
+ x∗i

)(
1
2
− x∗i

)(
1
2

)2n−1 2n−1

∑
k=n

(
2n−1

k

)
−C(x∗i ),

=

(
1
2
+ x∗i

)2

+2
(

1
2
+ x∗i

)(
1
2
− x∗j

)(
1
2

)2n−1

22(n−1)−C(x∗i ),

=

(
1
2
+ x∗i

)2

+

(
1
2
+ x∗i

)(
1
2
− x∗i

)
−C(x∗i ),

=

(
1
2
+ x∗i

)
−C(x∗i ).

The expected utility given by the above expression increases if citizen j chooses
any x′j < x∗i instead of x j = x∗i . The reason for this is that the probability of choosing
the right alternative will still be

(1
2 + x∗i

)
, but the private cost of learning incurred

by voter j will be smaller since C is strictly increasing for x ∈ (0,1/2). To sum up,
it is a best response for any citizen j ∈ N \{i} to choose x∗j = 0, given x∗i satisfying
Equation (4.6) and x∗k = 0 for all k ∈ N \ {i, j}, which completes the proof of the
theorem. ■
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Theorem 4.2 reveals that a communication network—which we model by Γ—can
lead to the endogenous sorting of the population in terms of information: Only a
small number of citizens—in the theorem, only one citizen—will decide to actively
seek first-hand information and be informed about the consequences of policy, and
thus they become the sole experts in the society. The rest of the society is unin-
formed and relies on the second-hand information provided by the expert(s). While
in the polar case of a full network all citizens have the same information ex post,
uninformed voters only have such an information because it is transmitted to them
by the informed voter(s), which justifies the use of the term “uninformed”.

A possible (negative) consequence about the separation between experts and non-
experts is the increase in information inequality in the citizenry. This can occur in
our common value setup, and thus in the absence of political polarization. If, for
reasons outside our model, exerting some effort to acquire first-hand information
could help individuals develop (payoff-relevant) abilities in the mid- or long-term,
the skill gap in society could become larger, thereby increasing income inequality.
The sorting of the population in terms of information can also have dramatic effects
on how much information is acquired at the aggregate level and later expressed
through election outcomes.

To (a) see why the effects just discussed can be attributed to the communication
network, and to (b) estimate the magnitude of such effects created by communi-
cation networks on the aggregate information levels, consider as a benchmark the
case of an empty network—viz. Assumption 4.4—which as we saw leads to game
G 2. It then turns out that the equilibrium of Theorem 4.2 vanishes under an empty
network.

Proposition 4.1. In game G 2, there is no equilibrium (xi,0, . . . ,0) for any citizen
i ∈ N, provided n ≥ 1.

Proof. Suppose that voter i chooses xi ∈ (0,1/2] and the remainder voters acquire
no information at all, i.e., voters j ∈ N \{i} choose x j = 0. We inquire if for some
voter j ∈N\{i}, x j = 0 can be the best response to (xk)k∈N\{ j}. Citizen k’s vote only
matters when there is a tie among the other voters,for x j = 0 to be a best response it
is necessary that

C′(0)≥
(

1
2
+ xi

)(
2n−1

n

)(
1
2

)2n

+

(
1
2
− xi

)(
2n−1

n

)(
1
2

)2n

=

(
2n−1

n

)(
1
2

)2n

> 0.

(4.7)

To derive the right-hand side of the above inequality we have used Assumption 4.3,
but other tie-breaking rules would lead to the same result. However, the assumption
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that C′(0) = 0 leads to a contradiction with Inequality (4.7), which finishes the proof
of the proposition. ■

Proposition 4.1 shows that the dictator equilibria are not an artifact of the as-
sumption that, in contrast to Martinelli (2006), we look for asymmetric equilibria
of game G 1. Such equilibria exist because the (full) network allows 2n citizens to
rely on the information acquired by the dictator at no cost, which is the main first
effect the (full) network can have on information acquisition and voting. The sec-
ond main effect is that the dictator has all the voting power—i.e., s/he is pivotal
in the election with probability one. Therefore, the dictator reckons it is worth in-
curring a higher information acquisition level compared to the case where all other
citizens acquired some information (see Theorem 4.1). These two effects lead to
the increase of information inequality, as discussed above.

A further important consequence of Theorem 4.2 is that the level of information
acquisition the dictator acquires in a dictator equilibrium is independent of the size
of the population, 2n + 1. Moreover, such an information level depends on the
behavior of function C(x) away from x = 0. By contrast, we know from Theorem
4.1 that in large populations—i.e., if we let n go to infinity—only the behavior
of C(x) around x = 0 matters. An ensuing question is therefore how in terms of
welfare the equilibria of Theorem 4.2 compare to the equilibrium of Theorem 4.1.
We (partially) undertake such a comparison in the following two propositions for
sufficiently large populations.

Proposition 4.2. Suppose C′′(0) = 0 and C′(1/2) > 1. Then there exists n∗ ∈ N
such that, if n ≥ n∗, the probability of choosing the right alternative is higher in the
symmetric equilibrium of the information game without communication, G 2, than
in the dictator equilibrium of the information game with communication, G 1.

Proof. On the one hand, if C′(1/2) > 1 it follows from Theorem 4.2 that, in game
G 1, the dictator does not acquire perfect information and such information level is
independent of n. Hence, the probability that the right alternative is implemented is
bounded away uniformly from one, say it is below 1− ε with ε > 0, for all n ∈ N.

On the other hand, if C′′(0) = 0, it follows from Theorem 4.1—see Equations
(4.4) and (4.5)—that the probability that the right alternative is implemented con-
verges to one as n goes to infinity. Therefore, given ε , we can choose n∗ := n∗(ε) ∈
N such that for all n ≥ n∗, the probability of choosing the right alternative in the
unique symmetric equilibrium of G 2 is higher than 1− ε . ■

Proposition 4.2 shows that communication networks can have negative effects on
welfare, when this is measured by the probability of reaching the right alternative.
This will be the case if it is cheap to acquire just a bit of information (C′′(0) = 0)
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and expensive to acquire perfect information (C′(1/2)> 1). Moreover, Theorem 3
in Martinelli (2006) shows that if C′′(0) = 0 then, in the limit as n goes to infinity,
aggregate information costs convergence to zero. Using arguments analogous to
those used for the proof of Proposition 4.2 one can then see that the conclusions
of such a result remain if welfare accounts for both the probability of choosing the
right alternative and the aggregate costs of information acquisition.

Proposition 4.3. Suppose C′′(0) > 0 and C′(1/2) < 1. Then there exists n∗ ∈ N
such that, if n ≥ n∗, the probability of choosing the right alternative is lower in the
symmetric equilibrium of the information game without communication, G 2, than
in the dictator equilibrium of the information game with communication, G 1.

Proof. On the one hand, if C′′(0) > 0, it follows from Theorem 4.1 that the prob-
ability that the right alternative is implemented in the limit as n goes to infinity is
bounded away from one, say it is below 1− ε with ε > 0—see Equation (4.4).

On the other hand, if C′(1/2) = 1 it follows from Theorem 4.2 that, in game G 1,
the dictator will acquire perfect information no matter the population size. Hence,
the probability that the right alternative is implemented is one and independent of
n. This implies that given ε , we can choose n∗ := n∗(ε)∈N such that for all n ≥ n∗,
the probability of choosing the right alternative in the dictator equilibrium of G 1 is
higher than 1− ε . ■

Proposition 4.3 is concerned with the case when it is expensive to acquire just a
bit of information (C′′(0)> 0) and cheap to acquire perfect information (C′(1/2)>
1), and it is in sharp contrast with Proposition 4.2. It shows that communication
networks can also have positive effects on welfare measured by the probability
of reaching the right alternative. This means that, in general, we cannot predict
whether communication networks will foster the common good or not.

4.5. Symmetric equilibria

In this section, we study the existence of equilibria of game G 2 where all vot-
ers acquire the same (positive) level of information, which stands in contrast to the
dictator equilibria analyzed in the previous section where only one citizen acquires
a positive level of information. As we shall see, the former equilibria, if they ex-
ist, are intimately related to the symmetric equilibrium of game G 2, yet for reasons
different than in Martinelli (2006). Specifically, we next show that if information
is sufficiently expensive to acquire for the citizens, the symmetric equilibrium of
game G 2 identified by Theorem 4.1 is also an equilibrium of game G 1. One inter-
pretation of this result is that communication networks allowing the costless spread
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of information can be neutral with respect to individual efforts to become informed
and with respect to election outcomes. To derive the main result of this section—
Theorem 4.3 below—we impose an additional assumption on the information ac-
quisition function beyond the assumptions made in the previous section.

Assumption 4.5 (Information acquisition function). Information acquisition func-
tion C satisfies that C ∈C 3([0,1/2]) and C′(x),C′′(x),C′′′(x)≥ 0 for all x∈ [0,1/2].

To show our main results, we rely on a number of technical lemmas, which
we prove next. The first lemma, viz Lemma 4.4 below, gives sufficient condi-
tions for the solution of one maximization problem in some interval to be higher
than, or equal to, the solution of another maximization problem in a larger interval.
In the proof of Theorem 4.3, we partition the set of information acquisition costs
x ∈ [0,1/2] in different intervals and for each such region we ensure by means of
Lemma 4.4 that no citizen has an incentive to deviate from the equilibrium infor-
mation acquisition cost.

Lemma 4.4. Let C be an information acquisition function satisfying Assumption
4.5 and let b1,b2 > 0 be some constants satisfying b2 > b1, c1 > c2, and

x̂ =
c1 − c2

b2 −b1
∈ (0,1/2). (4.8)

Define functions y1(x) := c1+b1x−C(x) and y2(x) := c2+b2x−C(x), which cross
at x̂. Then assume that

y′1(x̂)< 0 (4.9)

and
y′2(x̂)<−y′1(x̂). (4.10)

If there exists x ∈ [x̂,1/2] such that

y′2(x)< 0, (4.11)

it must be the case that
max
[0,x̂]

y1(x)≥ max
[0,x]

y2(x). (4.12)

Proof. We start by noting that for k ∈ {1,2}, the assumptions on C(·), including
Assumption 4.5, guarantee that

y′k(0) = bk −C′(0) = bk > 0

and
y′′k (x) =−C′′(x)≤ 0. (4.13)
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Moreover, Conditions (4.9), (4.11), and (4.13) imply

y′1(x)< 0 for all x ≥ x̂

and
y′2(x)< 0 for all x ≥ x.

Therefore, for k ∈ {1,2},

xk := arg max
x∈[0,1/2]

yk(x),

is well defined and satisfies
bk =C′(xk). (4.14)

Moreover, Conditions (4.9) and (4.11) imply respectively that

x1 ∈ (0, x̂)

and
x2 ∈ (0,x), (4.15)

while the assumption that C′(·) is increasing for (0,1/2) together with b2 > b1 and
Equation (4.14) imply that

x1 < x2. (4.16)

Finally, note that for all x ∈ [0,1/2],

y′2(x)− y′1(x) = b2 −b1 > 0. (4.17)

Next, we distinguish two cases.

Case I: y′2(x̂)≤ 0.

In this case,
max
[0,x]

y2(x) = max
[0,x̂]

y2(x)< max
[0,x̂]

y1(x),

where the equality follows from y′2(x̂)≤ 0 and Condition (4.13), which ensure that
x2 ≤ x̂. The inequality is explained as follows. Since y2(x) is maximized at x = x2,
it suffices for the inequality to hold that

y1(x2)≥ y2(x2). (4.18)
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Finally,

y1(x2) = y1(x̂)+
∫ x2

x̂
y′1(x)dx = y2(x̂)−

∫ x̂

x2

y′1(x)dx

> y2(x̂)−
∫ x̂

x2

y′2(x)dx = y2(x2),

where the first and third equality follow from the fundamental theorem of calculus,
the second equality holds since y1(x) and y2(x) cross at x̂, and the inequality is due
to Condition (4.17).

Case II: y′2(x̂)> 0.

In this case, y′2(x̂)> 0 and Inequality (4.11) imply that

x2 ∈ (x̂,x). (4.19)

We claim (and show next) that

|x1 − x̂| ≥ |x2 − x̂|. (4.20)

Indeed, we obtain

C′(x̂)>
b1 +b2

2
=

C′(x1)+C′(x2)

2
≥C′

(
x1 + x2

2

)
, (4.21)

where the first inequality can be derived using the definitions of y1(·) and y2(·) in
Condition (4.10), the equality follows from Equation (4.14), and the last inequality
holds since C′(·) is convex in (0,1/2)—see Assumption 4.5. Since C′(·) is also
strictly increasing in (0,1/2), it follows from (4.21) that

x̂ >
x1 + x2

2
.

The above inequality together with Inequality (4.16) shows that the claim made in
(4.20) does indeed hold.

Let x ∈ [x̂,x2]. Then y′2(x)≥ 0, and from (4.20), we obtain that

x1 < x̂− (x− x̂) (4.22)

and, hence,
y′1(x̂− (x− x̂))< 0. (4.23)
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Moreover,

−y′1(x̂− (x− x̂)) =−y′1(x̂)−
∫ x̂

x̂−(x−x̂)
C′′(t)dt > y′2(x̂)−

∫ x

x̂
C′′(t)dt

≥ y′2(x̂)−
∫ x

x̂
C′′(t)dt = y′2(x), (4.24)

where the two equalities follow from the fundamental theorem of calculus, the first
inequality is implied by Condition (4.10), and the second inequality is due to the
following three facts: (a) x ≥ x̂; (b) x̂− (x̂− (x− x̂)) = x− x̂; and (c) C′′(x) is non-
decreasing for x ∈ (0,1/2).

Finally, we claim (and show next) that

y1(x̂− (x2 − x̂))≥ y2(x2), (4.25)

which implies Condition (4.12) and finishes the proof. Therefore, it remains to show
Inequality (4.25). To do so, we start noting that if we use the fundamental theorem
of calculus we can write

y1(x̂− (x2 − x̂)) = y1(x̂)+
∫ x̂−(x2−x̂)

x̂
y′(x)dx = y1(x̂)+

∫ x̂

x̂−(x2−x̂)
−y′1(x)dx (4.26)

and

y2(x2) = y2(x̂)+
∫ x2

x̂
y′2(x)dx. (4.27)

Using (4.24) for all x ∈ [x̂,x2] and noting that x̂− (x̂− (x2 − x̂)) = x2 − x̂,

∫ x̂

x̂−(x2−x̂)
−y′1(x)dx >

∫ x2

x̂
y′2(x)dx.

This last inequality, together with Equation (4.8) and Equations (4.26)–(4.27), im-
plies that the claim made in Condition (4.25) is correct. ■

The second lemma, viz. Lemma 4.5, shows a property of the information acqui-
sition function under Assumption 4.5.

Lemma 4.5. Let C be an information acquisition function satisfying Assumption
4.5 and let x∗ ∈ (0,1/2] be given. For all x ≥ x∗,

C′(x)
C′(x∗)

≥ x
x∗
. (4.28)

Proof. Inequality (4.28) is equivalent to x∗C′(x) ≥ xC′(x∗). For all x ∈ (0,1/2],
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define
h(x) := x∗C′(x)− xC′(x∗),

which implies
h′(x) = x∗C′′(x)−C′(x∗)

and, by Assumption 4.5,
h′′(x) = x∗C′′′(x)≥ 0. (4.29)

By definition of function h and since, by assumption, C′(0) = 0,

h(0) = h(x∗) = 0. (4.30)

Moreover, we claim (and prove below) that

h′(x∗) = x∗C′′(x∗)−C′(x∗)≥ 0, (4.31)

which together with Equation (4.29) implies that

h′(x)≥ 0 for all x ≥ x∗. (4.32)

Then, for all x ≥ x∗,

h(x) = h(x∗)+
∫ x∗

x
h′(x)dx =

∫ x∗

x
h′(x)dx ≥ 0,

where the first equality follows the fundamental theorem of calculus, the second
equality follows from Equation (4.30), and the inequality holds due to Equation
(4.32).

Therefore, it remains to show Equation (4.31), which can be explained as follows:

C′(x∗) =C′(0)+
∫ x∗

0
C′′(x)dx =

∫ x∗

0
C′′(x)dx ≤

∫ x∗

0
C′′(x∗)dx = x∗C′′(x∗),

where the first equality follows from the fundamental theorem of calculus, the sec-
ond equality follows from the assumption that C′(0) = 0, and the inequality holds
since C′′′(x)≥ 0 for all x ∈ [0,1/2] due to Assumption 4.5.

■

Before we prove the next lemma, we introduce some further notation. Consider
s1, . . . ,sk = s ∈ {sA,sB} to be k > 0 equal signals of accuracy x (x ∈ [0,1/2]). Then
we define ∆x

k as the accuracy of one signal s′ ∈ {sA,sB}\{s} guaranteeing that the
posterior after observing signals s1, . . . ,sk,s′ is equal to the prior, i.e., each alterna-
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tive is believed to occur with probability 1/2. Formally,

∆
x
k :=

(0.5+ x)k

(0.5+ x)k +(0.5− x)k −0.5. (4.33)

For completeness, we also define ∆x
0 := 0. It is clear that ∆x

k is increasing in both k
and x. The reasons for this is that one needs signal s′ to be more accurate to “com-
pensate” either more signals of the same accuracy or the same number of signals of
more intense accuracy.

The next lemma shows a property of the thresholds defined in (4.33).

Lemma 4.6. Let k ≥ 1. Then,

lim
x→0

∆x
k

x
= k.

Proof. We have a 0/0 indeterminacy. However, if we apply L’Hôpital’s rule, we
obtain for k ≥ 1,

lim
x→0

∆x
k

x
= lim

x→0

k
(
0.25 −1.x2)k−1(

(0.5 − x)k +(x+0.5)k
)2 = k.

■

Before we show the existence of symmetric equilibria, we prove that there is an
upper bound to the number of such equilibria. Specifically, the next proposition
shows that game G 1 has at most one (symmetric) equilibrium in which all citizens
acquire the same quality of information.

Proposition 4.4. Given an information game with communication, G 1, if (xi =

x)i∈N is an equilibrium, then xi = x∗.

Proof. Let (x, . . . ,x)∈ [0,1/2]2n+1 be a strategy profile of game G 1. Without loss of
generality, we focus on voter 1’s best response to the remaining 2n voters choosing
information level x ≥ 0. We know from Theorem 4.2 that xi = 0 for all i ∈ N never
constitutes an equilibrium, so we can assume x > 0. Moreover, x = 1/2 cannot
constitute an equilibrium either, since any voter would strictly prefer to acquire
zero information and free ride on the information acquired by the others. Hence,
we can assume x ∈ (0,1/2).

It is clear that a signal of accuracy x > 0 can never compensate two opposite
signals of the same accuracy x > 0. Therefore, if voter 1 acquires information
level x, his/her signal will only be followed by all the citizens (including voter 1)
whenever among the remaining citizens there are as many sA signals as there are sB
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signals. But this means that the utility of voter 1 when x1 = x ∈ [0,∆x
2] and all other

citizens choose information acquisition level x is

G(x1,x, . . . ,x) = b(x)+
(

1
2
+ x1

)(
2n
n

)(
1
2
+ x
)n(1

2
− x
)n

−C(x1),

where b(x) is some expression independent of x1. By differentiating the above
expression and equating it to zero, we obtain Equation (4.3). This means that x= x∗,
which completes the proof of the proposition.

■

Before we proceed to the general case with arbitrary information acquisition
function, C(·), and population size, 2n+ 1, we pause to take a closer look at an
example of our model where n = 1 and C(x) = ax2. (Note that C(·) satisfies As-
sumption 4.5.) In this example, we can solve the equations of interest algebraically.

Proposition 4.5. Let C(x) = ax2 and 2n+1 = 3 (equivalently, n = 1). Then game
G 1 has a symmetric equilibrium if and only if a ≥ 1. If such an equilibrium exists,
each individual acquires information level x∗, as in the unique symmetric equilib-
rium of the information game without communication, G 2.

Proof. From Proposition 4.4, we know that if a symmetric equilibrium exists, then
xi = x∗ for all i ∈ {1,2,3}. If n = 1 and C(x) = ax2, we can solve Equation (4.3)
explicitly and obtain

x∗ =
−a+

√
a2 +1

2
. (4.34)

Without loss of generality, we focus on voter 1’s best response to voters 2 and 3
acquiring information level x∗. From the proof of Proposition 4.4, we know that
x1 = x∗ is voter 1’s optimal choice in the interval [0,∆x∗

2 ]. Accordingly, we next
analyze voter 1’s optimal choice in the interval (∆x∗

2 ,1/2], and then we compare
the optimal choices in both intervals. If x1 ∈ (∆x∗

2 ,1/2], all voters vote according to
voter 1’s signal independent of the other signals. This means that for x1 ∈ (∆x∗

2 ,1/2],
voter 1’s (expected) utility (given x2 = x3 = x∗) is

G(x1,x∗,x∗) =
(

1
2
+ x1

)
−C(x1). (4.35)

This is the same utility of the dictator voter in Theorem 4.2. Given that 1/(2a) >
∆x∗

2 , we know that the optimal choice of x1 in (∆x∗
2 ,1/2] that maximizes the expres-

sion in (4.35) is attained at x1 = 1/(2a) if a ≥ 1 and at x1 = 1/2 if a < 1. For the
remainder of the proof we thus distinguish two cases.
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Case 1: a ≥ 1.

We prove that there is a symmetric equilibrium. To do so, it suffices to compare
voter 1’s expected utility if x1 = x∗ to his/her utility if x1 = 1/2. Given Expression
(4.34), we have that

G(x∗,x∗,x∗) = 0.5a3 −0.5a2
√

a2 +1+0.5
√

a2 +1−0.25a+0.5 (4.36)

and
G(1/(2a),x∗,x∗) = 0.5+

1
4a

. (4.37)

We claim (and show next) that if a ≥ 1,

G(x∗,x∗,x∗)≥ G(1/(2a),x∗,x∗). (4.38)

Using Equations (4.36) and (4.37), Condition (4.38) reads as

0.5a3 −0.5a2
√

a2 +1+0.5
√

a2 +1−0.25a+0.5 ≥ 0.5+
1

4a
,

which can be rearranged as

f (a) := 2a4 −2a3
√

a2 +1+2a
√

a2 +1−a2 ≥ 1. (4.39)

It is immediate to verify that f (1) = 1. Hence, Condition (4.38) will hold if we
show that if a ≥ 1,

f ′(a)≥ 0. (4.40)

To show this, we note that f ′(a) = 0 is equivalent to

8a3
√

a2 +1−2a
√

a2 +1 = 8a4 +2a2 −2. (4.41)

Next, we apply some non-injective transformations to Equation (4.41), and we ob-
tain (

8a3
√

a2 +1−2a
√

a2 +1
)2

=
(
8a4 +2a2 −2

)2

4a2(a2 +1)−32a4(a2 +1)+64a6(a2 +1) = 64a8 +32a6 −28a4 −8a2 +4

64a8 +32a6 −28a4 +4a2 = 64a8 +32a6 −28a4 −8a2 +4

4a2 =−8a2 +4

a =±
√

3
3

.

It is straightforward to verify that only a =−
√

3
3 is a solution of f ′(a) = 0. Finally,

90



Symmetric equilibria

f ′(0)> 0 implies Inequality (4.40). This concludes the proof of Case 1 and shows
that if a ≥ 1, game G 1 has a symmetric equilibrium (in which the three voters
acquire information level x∗).

Case 2: a < 1.

We prove that there is not a symmetric equilibrium. To do so, we compare voter
1’s expected utility if x1 = x∗ to his/her utility if x1 = 1/2. Similarly as before,

G(x∗,x∗,x∗) = 0.5a3 −0.5a2
√

a2 +1+0.5
√

a2 +1−0.25a+0.5, (4.42)

and
G(1/2,x∗,x∗) = 1+

a
4
. (4.43)

We claim (and show next) that if a ∈ (0,1),

G(1/2,x∗,x∗)> G(x∗,x∗,x∗). (4.44)

Using Equations (4.42) and (4.43), Condition (4.44) reads as

0.5a3 −0.5a2
√

a2 +1+0.5
√

a2 +1−0.25a+0.5 < 1− a
4

which can be rearranged as

g(a) := 0.5a3 −0.5a2
√

a2 +1+0.5
√

a2 +1−0.25a+0.5+a/4 < 1. (4.45)

It is immediate to check that g(0) = g(1) = 1. Hence, proving that that g′(a) = 0
only has one solution in [0,1] and that it corresponds to a minimum of g(a) suffices
to show Condition (4.44). Note that

g′(a) =
a
(
−1.5a2 +1.5a

√
a2 +1−0.5

)
√

a2 +1
.

Therefore, g′(a) = 0 if and only if,

−1.5a2 +1.5a
√

a2 +1−0.5 = 0. (4.46)

Equation (4.46) can be solved using arguments analogous as those we use to solve
Equation (4.41). If we do so, we obtain that a =

√
3/3 is the only solution to Equa-

tion (4.46) in the interval [0,1]. It is then straightforward to check that g′′(
√

3/3)>
0. Accordingly, we have proved Inequality (4.45), which means that Condition
(4.44) holds. This concludes the proof of Case 2 and shows that if a < 1, voter 1
strictly prefers to set x1 = 1/2 rather than x1 = x∗, and as a consequence game G 1
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has no symmetric equilibrium. ■

Proposition 4.5 together with Proposition 4.4 shows that, in general, game G 1

may not have a symmetric equilibrium if it is sufficiently cheap to acquire informa-
tion about the true state of the world. In such a case, a full network will necessarily
generate inequality regarding first-hand information levels in the population. This
inequality can be very extreme, since we know from Theorem 4.2 that a dictator
equilibrium always exists for game G 1.

Next, we move on to the general case regarding the information acquisition func-
tion and population size and show the main result of this section, namely, that game
G 1 has a symmetric equilibrium if the cost of marginally learning another bit of
information about the true state of the world is sufficiently large. It means that a full
network need not necessarily generate inequality regarding first-hand information.

Theorem 4.3. Consider an information game with communication, G 1, where the
information acquisition cost aC(x) satisfies Assumption 4.5. There exists a∗(n) such
that if a ≥ a∗(n), then (x∗, . . . ,x∗) is an equilibrium of G 2.

Proof. We assume that 2n voters choose to acquire information level x∗ and analyze
the best response of the remaining agent, who we consider without loss of generality
to be voter 1. Voter 1 chooses x1 to maximize

G(x1,x∗, . . . ,x∗) =
1
2

{
Pα(A|x1,x∗, . . . ,x∗,zA)+Pα(B|x1,x∗, . . . ,x∗,zB)

}
−C(x1).

We divide the proof in five steps.
Step 1. We derive an explicit expression for G(x1,x∗, . . . ,x∗) for all x1 ∈ [0,1/2]

and show that it is continuous in x1 in the entire interval.
Function G(x1,x∗, . . . ,x∗) is defined piecewise. Indeed, for k ∈ {0, . . . ,n}, the

restriction of G(x1,x∗, . . . ,x∗) to (∆x∗
2k,∆

x∗
2k+2] coincides in this interval with the fol-

lowing function:

Gk(x1,x∗, . . . ,x∗) =−C(x1)+
n

∑
i=k+1

(
2n

n+ i

)(
1
2
+ x∗

)n+i(1
2
− x∗

)n−i

+

(
1
2
+ x1

)(
2n
n

)(
1
2
+ x∗

)n(1
2
− x∗

)n

+

(
1
2
+ x1

)
·

·

(
k

∑
i=1

(
2n

n+ i

)((
1
2
+ x∗

)n+i(1
2
− x∗

)n−i

+

(
1
2
+ x∗

)n−i(1
2
− x∗

)n+i
))

.

(4.47)

Function Gk(x1,x∗, . . . ,x∗) is voter 1’s expected utility when the remaining voters
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choose to acquire information level x∗ and voter 1’ chooses an information that is
accurate enough to offset 2k opposite signals of accuracy x∗.

To show the continuity of function G(x1,x∗, . . . ,x∗) for all x1 ∈ [0,1/2], it suffices
to show that for all k ∈ {0, . . . ,n−1},

Gk(∆x∗
2k+2,x

∗, . . . ,x∗) = Gk+1(∆x∗
2k+2,x

∗, . . . ,x∗). (4.48)

To show Equation (4.48), note that:

Gk+1(x1,x∗, . . . ,x∗)−Gk(x1,x∗, . . . ,x∗) =−
(

2n
n+ k+1

)(
1
2
+ x∗

)n+k+1(1
2
− x∗

)n−k−1

+

(
1
2
+ x1

)(
2n

n+ k+1

)(
1
2
+ x∗

)n+k+1(1
2
− x∗

)n−k−1

+

(
1
2
+ x1

)(
2n

n+ k+1

)(
1
2
+ x∗

)n−k−1(1
2
− x∗

)n+k+1

Finally, Gk+1(x1,x∗, . . . ,x∗)−Gk(x1,x∗, . . . ,x∗) = 0 is a linear equation in x1. Solv-
ing for x1 leads to x1 = ∆x∗

2k+2. This completes the proof of Step 1.

Step 2. We show that for k ∈ {1, . . . ,n}, there exists a∗1(n,k) such that if a ≥
a∗1(n,k),

∂Gk−1(x1,x∗, . . . ,x∗)
∂x1

∣∣∣∣
x1=∆x∗

2k

< 0.

Define function

f n
k (x

∗) := (1−2k)
(

2n
n

)(
1
2
+ x∗

)n(1
2
− x∗

)n

+
k−1

∑
i=1

(
2n

n+ i

)((
1
2
+ x∗

)n+i(1
2
− x∗

)n−i

+

(
1
2
+ x∗

)n−i(1
2
− x∗

)n+i
)
.

Then

f n
k (0) = (1−2k)

(
2n
n

)(
1
2

)2n

+
k−1

∑
i=1

(
2n

n+ i

)(
2
(

1
2

)2n
)

≤ (1−2k)
(

2n
n

)(
1
2

)2n

+2(k−1)
(

2n
n+1

)(
1
2

)2n

=

(
1
2

)2n(
−(2k−1)

(
2n
n

)
+2(k−1)

(
2n

n+1

))
< 0. (4.49)

93



Information acquisition, voting and networks

Next, we compute

∂Gk−1(x1,x∗, . . . ,x∗)
∂x1

∣∣∣∣
x1=∆x∗

2k

=−aC′(∆x∗
2k)+

(
2n
n

)(
1
2
+ x∗

)n(1
2
− x∗

)n

+
k−1

∑
i=1

(
2n

n+ i

)((
1
2
+ x∗

)n+i(1
2
− x∗

)n−i

+

(
1
2
+ x∗

)n−i(1
2
− x∗

)n+i
)
.

(4.50)

From Equation (4.3),

a =

(2n
n

)(1
2 + x∗

)n (1
2 − x∗

)n

C′(x∗)
. (4.51)

If we substitute (4.51) into (4.50), we obtain

∂Gk−1(x1,x∗, . . . ,x∗)
∂x1

∣∣∣∣
x1=∆x∗

2k

=

(
1−

C′(∆x∗
2k)

C′(x∗)

)(
2n
n

)(
1
2
+ x∗

)n(1
2
− x∗

)n

+
k−1

∑
i=1

(
2n

n+ i

)((
1
2
+ x∗

)n+i(1
2
− x∗

)n−i

+

(
1
2
+ x∗

)n−i(1
2
− x∗

)n+i
)
.

By Lemma 4.5, we know that

C′(∆x∗
k+1)

C′(x∗)
≥

∆x∗
k+1

x∗
,

which allows us to obtain

∂Gk−1(x1,x∗, . . . ,x∗)
∂x1

∣∣∣∣
x1=∆x∗

2k

≤

(
1−

∆x∗
2k

x∗

)(
2n
n

)(
1
2
+ x∗

)n(1
2
− x∗

)n

+
k−1

∑
i=1

(
2n

n+ i

)((
1
2
+ x∗

)n+i(1
2
− x∗

)n−i

+

(
1
2
+ x∗

)n−i(1
2
− x∗

)n+i
)

:= gn
k(x

∗).

Since gn
k(x

∗) is continuous in x∗, Lemma 4.6 and (4.49) guarantee that

lim
x∗→0

gn
k(x

∗) = f n
k (0)< 0.

Hence, there exists x1(k,n)> 0 such that,

x∗ ≤ x1(k,n)⇒ gn
k(x

∗)< 0. (4.52)

Finally, from Theorem 4.1 we know the following two properties: (a) x∗ is decreas-
ing in a, and (b) lima→∞ x∗ = 0. Using (a) and (b) together with (4.52) implies that
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there is a∗1(n,k)
a ≥ a∗1(n,k)⇒ x∗ ≤ x1(k,n).

This completes the proof of Step 2.

Step 3. We show that given k ∈ {1, . . . ,n}, there exists a∗2(n,k) such that if a ≥
a∗1(n,k), then

− ∂Gk−1(x1,x∗, . . . ,x∗)
∂x1

∣∣∣∣
x1=∆x∗

2k

>
∂Gk(x1,x∗, . . . ,x∗)

∂x1

∣∣∣∣
x1=∆x∗

2k

.

Define the following function:

hn
k(x) := (4k−2)

(
2n
n

)(
1
2
+ x
)n(1

2
− x
)n

−
(

2n
n+ k

)((
1
2
+ x
)n+k(1

2
− x
)n−k

+

(
1
2
+ x
)n−k(1

2
− x
)n+k

)

−2
k−1

∑
i=1

(
2n

n+ i

)((
1
2
+ x
)n+i(1

2
− x
)n−i

+

(
1
2
+ x
)n−i(1

2
− x
)n+i

)
.

By some standard algebraic manipulations we obtain

hn
k(0) = (4k−2)

(
2n
n

)(
1
2

)2n

−2
(

2n
n+ k

)(
1
2

)2n

−4
k−1

∑
i=1

(
2n

n+ i

)(
1
2

)2n

=

(
1
2

)2n
(
(4k−2)

(
2n
n

)
−2
(

2n
n+ k

)
−4

k−1

∑
i=1

(
2n

n+ i

))

≥
(

1
2

)2n(
(4k−2)

(
2n
n

)
−2
(

2n
n+ k

)
−4(k−1)

(
2n

n+1

))
≥
(

1
2

)2n(
(4k−4)

(
2n
n

)
− (4k−4)

(
2n

n+1

))
> 0.

Next, note that

− ∂Gk−1(x1,x∗, . . . ,x∗)
∂x1

∣∣∣∣
x1=∆x∗

2k

+
∂Gk(x1,x∗, . . . ,x∗)

∂x1

∣∣∣∣
x1=∆x∗

2k

=

(
2

C′(∆x∗
2k)

C′(x∗)
−2

)(
2n
n

)(
1
2
+ x∗

)n(1
2
− x∗

)n

−
(

2n
n+ k

)((
1
2
+ x∗

)n+k(1
2
− x∗

)n−k

+

(
1
2
+ x∗

)n−k(1
2
− x∗

)n+k
)
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−2
k−1

∑
i=1

(
2n

n+ i

)((
1
2
+ x∗

)n+i(1
2
− x∗

)n−i

+

(
1
2
+ x∗

)n−i(1
2
− x∗

)n+i
)

≥−2
k−1

∑
i=1

(
2n

n+ i

)((
1
2
+ x∗

)n+i(1
2
− x∗

)n−i

+

(
1
2
+ x∗

)n−i(1
2
− x∗

)n+i
)

−
(

2n
n+ k

)((
1
2
+ x∗

)n+k(1
2
− x∗

)n−k

+

(
1
2
+ x∗

)n−k(1
2
− x∗

)n+k
)

+

(
2

∆x∗
2k

x∗
−2

)(
2n
n

)(
1
2
+ x∗

)n(1
2
− x∗

)n

:= ln
k (x

∗),

where to derive the equality we used (4.51) to substitute for a and the inequality
follows from Lemma 4.5. Since ln

k (x
∗) is continuous in x∗, Lemma 4.6 guarantees

that
lim

x∗→0
ln
k (x

∗) = hn
k(0). (4.53)

Hence, there exists x2(k,n)> 0 such that,

x∗ ≤ x2(k,n) =⇒ ln
k (x

∗)> 0. (4.54)

Finally, from Theorem 4.1 we know the following two properties: (i) x∗ is de-
creasing in a, and (ii) lima→∞ x∗ = 0. Using (i)–(ii) together with (4.54) implies that
there is a∗2(n,k) such that

a ≥ a∗2(n,k)⇒ x∗ ≤ x2(k,n).

This completes the proof of Step 3.

Step 4. We prove that given n, there exists a∗3(n) such that if a ≥ a∗3(n), then

∂Gn(x1,x∗, . . . ,x∗)
∂x1

∣∣∣∣
x1=∆x∗

2k

< 0.

We know that Gn(1/2,x∗, . . . ,x∗) =
(1

2 + x1
)
−aC(x1), so

Gn′(1/2,x∗, . . . ,x∗) = 1−aC′(1/2), (4.55)

and choosing a∗3(n)> 1/C′(1/2) suffices.

Step 5. Use Lemma 4.4 to show the theorem.

Given n, consider a∗(n) = max{a1(n,k),a2(n,k),a3(n)}k∈{1,...,n}. Then, the fol-
lowing three properties hold:

1. For all k ∈ {1, . . . ,n}, Gk−1′(∆x∗
2k,x

∗, . . . ,x∗)< 0.
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2. For all k ∈ {1, . . . ,n}, −Gk−1′(∆x∗
2k,x

∗, . . . ,x∗)> Gk′(∆x∗
2k,x

∗, . . . ,x∗).

3. Gn′(1/2,x∗, . . . ,x∗)< 0.

From (4.47), it is clear that we can write

Gk(x1,x∗, . . . ,x∗) = ck(x∗)+bk(x∗)x1 −C(x1),

with ck(x∗) < ck−1(x∗) and bk(x∗) > bk−1(x∗) for k ∈ {1, . . . ,n}. This, along with
the three properties enumerated above, allows us to apply Lemma 4.4 to functions
Gk(x1,x∗, . . . ,x∗) and Gk+1(x1,x∗, . . . ,x∗). For all k ∈ {0, . . . ,n− 1}, we therefore
obtain

max
[0,∆x∗

2k ]
Gk−1(x1,x∗, . . . ,x∗)≥ max

[0,∆x∗
2k+2]

Gk(x1,x∗, . . . ,x∗),

which implies that for all k ∈ {1, . . . ,n},

max
[0,∆x∗

2 ]
G0(x1,x∗, . . . ,x∗)≥ max

[0,∆x∗
2k+2]

Gk(x1,x∗, . . . ,x∗) (4.56)

Accordingly, it only remains to be shown that x∗ = max[0,∆x∗
2 ]G

0(x1,x∗, . . . ,x∗), but
we know this from the proof of Proposition 4.4. This completes the proof of the
theorem. ■

Theorem 4.3 shows that game G 1 has one symmetric equilibrium if there is a full
communication network and information acquisition is sufficiently costly, and that
in such an equilibrium all citizens acquire the information level they would acquire
if no network existed. In a full network, information acquired by one individual
becomes public and can therefore be used by everybody else. This means that un-
der the symmetric equilibrium of Theorem 4.3, the accuracy of the posterior each
citizen holds about the state of the world is higher than in the case of an empty
network in which the information acquired by citizens is private. Yet, as we show
in Proposition 4.6 below, the probability of choosing via voting with the majority
rule the alternative that matches the state of the world is the same with a full net-
work and with an empty network. It is clear that all else being equal individually
citizens benefit from first-hand information being public (in a full network) com-
pared to the case when it is private (in an empty network), so acquiring information
creates positive externalities. But in equilibrium these externalities vanish since the
effect of the information each citizen acquires being public is nullified. For this to
happen, however, acquiring information has to be sufficiently expensive so that off
equilibrium the extent of the positive externality is not very large.

97



Information acquisition, voting and networks

Proposition 4.6. Let G 1 be an information game with communication and suppose
that the unique symmetric equilibrium exists. Then, the probability of the right
alternative being chosen via voting with the majority rule is the same as in the
symmetric equilibrium of the information game without communication, G 2.7

Proof. In a symmetric equilibrium of the information game with communication,
G 1, given that all signals have the same quality, every voter votes for A if and only if
more A signals were received collectively than B signals. This means that the elec-
tion outcome would be the same if everyone just voted for the alternative coinciding
with their own signal, which is precisely what happens when no communication is
possible between the citizens. This finished the proof, since we know from Theo-
rems 4.1 and 4.3 that the individual information level each citizen acquires is the
same with an without the network. ■

4.6. Extensions

There are some conceivable directions in which our analysis can be extended,
all of which are left for further research. First, in Sections 4.4 and 4.5 we do not
offer a full characterization of the set of equilibria of game G 1. In particular, it
remains an open question to see (a) whether game G 1 can have equilibria in which
a number of citizens higher than one and lower than 2n+1 acquires the same level
of information, with the remaining citizens free-riding on the information provided
by the experts, and (b) whether larger information acquisition functions guarantee
the existence of equilibria with less (first-hand) information inequality.

Second, our analysis in Sections 4.3–4.5 has mainly looked into the case of a full
network. It is clear that this represents one polar case, another polar case being the
empty network. But in reality other (types of) networks may also exist. As a first
step, it therefore remains to be seen if the main insights of our paper would remain if
we considered certain classes of networks such as star-like constellations or clusters
of (fully connected) citizens in the form of bubbles.8

Third and last, our setup considers citizens with the same preferences, which
suffices to generate novel insights about the role of communication networks. It is
possible that in the case where preferences show some degree of conflict, some of
our insights will remain while some will not. Whether this is the case or not remains
to be elucidated.

7Proposition 4.6 holds as long as all individuals acquire the same level of information, even if
such a level is not optimally chosen by the individuals.

8From a technical viewpoint, it would be interesting to show the existence of PBE for game G
independent of the network, if such a result can at all hold.
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4.7. Concluding remarks

We introduced and analyzed a model that allows investigating the effect of com-
munication networks on information acquisition in elections. Our setup is non-
ideological, in the sense that all agents agree on which alternative is right for each
of the two possible states of the world. Agents can purchase costly information to
get a signal about the state, and then can transmit this information to the other vot-
ers. We have seen that, given that agents believe all the messages they receive, then
they do not have any incentive to send false messages. This allows us to focus on
the static game of information acquisition.

We have studied two types of equilibria: i) dictator equilibria and ii) symmetric
equilibra. In dictator equilibria only one agent acquires information, and such equi-
libria do not exist if there is no communication between the agents. We prove that
in our setup such equilibria always exist and that, compared to the symmetric equi-
librium of the case without communication, welfare might be enhanced or reduced.
In symmetric equilibria; all agents acquire the same level of information. We prove
that such equilibria might not exist and that, if they do, they must coincide with
the symmetric equilibrium of the case without communication. Furthermore, we
show that if information is expensive enough, then such an equilibrium exists. As
a consequence, we demonstrate that, if the symmetric equilibrium exists, then the
welfare is exactly the same as in the case without communication. Hence, in a situa-
tion in which information is expensive, and voters are expected to behave similarly,
adding a communication network does not enhance welfare. In such a situation, if
the communication network is expensive to build, then it is optimal not to do it.

In this work we have focused in scenarios in which voters “trust” each other
(commonly believed messages), and we have shown that this attitude is rational.
However, it would also be interesting to understand how other belief structures
might shape equilibria. For example, if voters in general do not trust messages
that state a “large” information level, the symmetric equilibrium might exist more
often than in our model. Questions of this sort might be interesting to study further.
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5. Concluding remarks

In this dissertation we have studied how different rules, or institutional design
choices, might shape the incentives of the agents to whom they apply. Throughout
the thesis, we have looked closely at a model of a job market (Chapter 2) and at
two different models of voting (Chapters 3 and 4). We have seen that the effect of
rules on incentives and, eventually, on equilibrium outcomes, is not always intuitive
and might not go in the direction intended by the rules themselves. The three works
that form the core of this thesis highlight the importance of understanding properly
how agents might act and react to rules, and which consequences this might bring.
In the following lines I summarize the main contributions of these works and some
directions for further research.

In Chapter 2, we have provided axiomatizations for the firms-optimal, workers-
optimal and the fair-division stable rules in the context of the multiple-partners as-
signment game. Axiomatizations of these rules in this generalized framework did
not exist. Furthermore, the axioms we use are intuitive and make explicit reference
to how extra gains in the valuations of firms and workers are shared. This allows
us to address some novel comments on the manipulability of the firms-optimal and
workers-optimal stable rules. In particular, we show that, even if firms that can hire
more than one worker can manipulate the firms-optimal stable rules, they cannot do
so by modifying their productivities with the workers in a constant way.

In Chapter 3, we have proved that an interest group with a limited budget can
block a reform even when all the Parliament members are aligned and want the
reform to pass. This is the case because voters take into account how likely their
vote is to be pivotal. We have characterized the symmetric mixed-strategy Nash
equilibria of the game, proving that there is only one such equilibrium such that the
reform is more likely to pass, but that even in that equilibrium it might not pass. We
have shown that when the electorate grows asymptotically large, the reform passes
with probability either zero or one in any symmetric equilibrium; hence, in that
case, the reform passes depending on which equilibrium is played. We have seen
that anonymous voting makes capture more difficult but that the interest group still
can induce a positive probability of the reform not passing. It might be interesting
for future research to study how capture might occur with other voting procedures.
For example, as seen in Section 3.2.3, in our model sequential voting ensures that
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the reform passes. However, with uncertainty on others’ preferences/bribes, this
might not be the case, since relying on the last voters becomes risky.

In Chapter 4, we have analyzed the introduction of a communication network into
a model of voting with information acquisition, in which voters try to choose the
right alternative without ideological concerns. We have seen that allowing voters
to communicate between each other does not necessarily enhance the probability
of choosing correctly. We have shown that, with communication, a new class of
equilibria, which we call dictator equilibria, emerges and that, if information is
costly enough, the symmetric equilibrium of the no communication case carries
over. Hence, if information is costly enough, allowing for communication might
not have any effect towards equilibrium play. As pointed out in Section 4.6, a
natural next step is to study equilibria in between the symmetric and the dictator
equilibria. Furthermore, it seems of interest to understand whether, and when, those
equilibria might co-exist. We also want to look at the setting in which there are
different information groups, that is: there are multiple groups of people that are
only connected to the other people in the same group as them.
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