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1. Introduction 

In 2020, approximately 2 billion people were still using biomass for cooking despite 

having access to electricity (Energy Sector Management Assistance Program, 2020). The 

United Nations (UN) estimates that household air pollution from cooking kills over four 

million people every year and causes millions more to become ill.1 Cooking smoke can 

lead to stroke, cancers, pneumonia, chronic lung diseases and heart disease, especially in 

women and children in low- and middle-income regions (World Health Organization, 

2014, 2021). The adoption of clean technologies based on electricity produced by renewal 

energy sources (RES) is thus a priority related to 10 of the 17 Sustainable Development 

Goals (SDGs). In particular, SDG 7.1 aims to ensure universal access to affordable, 

reliable, and modern energy services. Indeed, in recent years, global investment in clean 

energy has been increasing around the world, outpacing that of fuel fossils.2 

In developing countries, access to electricity in rural areas can improve the socioeconomic 

conditions of citizens and is strongly related to income and human development (Niu et 

al., 2016). In 2020, the level of access to electricity in Sub-Saharan Africa and in Latin 

America was 48.2% and 98.5%, respectively.3 As both regions face similar problems in 

the adoption of clean technologies powered by electricity, many rural households in Latin 

America are still using coal or wood for cooking.  

In Ecuador, for example, the main sources of household energy consumption in 2021 

were liquefied petroleum gas (LPG) (52.9%), electricity (37.9%), wood (9.2%), and 

natural gas (0.1%). Moreover, 70.4% of national LPG consumption was by households; 

the electrification of residential consumption is thus considered a priority (Mi et al., 2020; 

IIGE, 2022; Yuan et al., 2022). In this context, the country presents an interesting case 

study as in 2014 the government launched the Programa de Cocción Eficiente [Efficient 

Cooking Program] (PCE) aimed at replacing LPG-fired cookstoves and LPG-fired boilers 

with electric devices. The PCE began in 2015, when households accounted for 75% of 

national LPG consumption. The Ecuadorian government expected 3 million families to 

join to PCE, but uptake was below 700,000 families. A main reason for this is that the 

low price of LPG cylinders did not provide enough of an economic incentive to switch 

from LPG to electricity (Gould et al., 2020a). More specifically, subsidies of LPG covered 

almost 90% of its final price (IIGE, 2022). Another reason for the low uptake pointed out 

by Davi-Arderius et al. (2023) is that the PCE program did not employ a regional 

approach to tailor the program to the socioeconomic characteristics of potential 

participants. 

To the best of our knowledge, participation in the PCE program has not been analyzed in 

terms of the spatial dependence between parishes, i.e. the presence of spillover effects, 

referring to the effect of participation in a given parish being explained by participation 

in neighboring parishes (LeSage and Pace, 2009). The quantification of these spatial 

effects is useful in order to design effective strategies to engage participants: with high 

spatial dependence, the most optimal strategy could be to prioritize the engagement of 

                                                 
1https://unfoundation.org/what-we-do/issues/sustainable-development-goals/; 

https://news.un.org/en/story/2014/11/484422. 
2 https://www.iea.org/news/clean-energy-investment-is-extending-its-lead-over-fossil-fuels-boosted-by-

energy-security-strengths 
3 World Bank. 2023. Access to electricity (% of population). 

https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS 

https://unfoundation.org/what-we-do/issues/sustainable-development-goals/


 

 3 

INTERNAL 

people through a place-based approach that creates opportunities to facilitate experience- 

and knowledge-sharing among peers and stakeholders.  

In addition to spatial spillovers, the potential impact of power quality (the reliability of 

electricity infrastructure) on the engagement rate in these types of electrification 

programs has not been explored in depth. A negative impact of supply quality on PCE 

program participation would highlight the need to implement complementary policies to 

improve the quality of supply provided by utilities in combination with these types of 

electrification programs (Jamasb et al., 2017; Poudineh and Jamasb, 2015, 2017; Fowlie 

and Meeks, 2021; Macmillan et al., 2023). 

In this context, regional differences in energy consumption within a country should not 

be underestimated (Zhou and Yang, 2016; Wu et al., 2017). However, very few studies 

in the literature on clean-cooking programs have considered spatial dependence across 

small regions as this requires detailed subnational datasets (Clements et al., 2020; 

Kapsalyamova et al., 2021; Sedai et al., 2021; Adjei-Mantey et al., 2022).  

In this study, we build a monthly dataset for all parishes in Ecuador (2015-2021) using 

electricity data provided by the regulator (ARCONEL, 2023).4 This allows us to consider 

population (number of residential points of connection), economic activity (average 

electricity consumption for industrial and economic activities), the implementation of 

subsidized programs (consumption subject to subsidized tariffs), and the quality of supply 

(number of power interruptions and length of interruption) in each parish. We merge this 

dataset with a spatial dataset that identifies neighboring parishes. To our knowledge, 

similar analyses considering spatial and temporal dependencies have not been carried out, 

although many authors have suggested it (Dharshing, 2017; Bharadwaj et al., 2022; De 

Siano and Sapio, 2022). 

We use a spatial autoregressive model (SAR) to study participation in the PCE program 

and potential spillover effects between parishes (Anselin, 2022). Our main hypothesis is 

that participation in the PCE program is characterized by spatial dependence at the parish 

level and that the quality of supply provided by each utility also affects participation. 

Although our empirical analysis focuses on Ecuador, our results are of great interest for 

other developing countries aiming to implement electrification programs for cooking, 

water heating, or mobility. 

Our results show that local participation in the clean-cooking program is positively 

correlated with local economic activity, with the richest areas having a higher 

participation rate. However, electricity consumption subject to subsidized tariffs is also 

positively correlated with participation, showing cross-effects between different 

subsidized programs. The quality of the power provided by utilities matters and clearly 

affects participation, and spillover effects between parishes are also significant and 

relevant, with local residents being positively influenced by what their neighbors do. 

Based on our results, we provide some policy recommendations. First, it is essential to 

perform highly detailed spatial analyses of the determinants of participation in 

electrification programs, instead of using traditional surveys. Second, the design of 

electrification programs should always consider local particularities instead of taking a 

uniform and “space-blind” national approach. Third, cross-sectional effects between 

                                                 
4 Ecuador had 17.5 million inhabitants in 2020 and is divided into 24 provinces, 221 cantons or 

municipalities, and 1228 parishes. In our study, we use the administrative divisions of the year 2020. The 

country, as shown in Figure I.1 in Appendix I, has four climatic areas: the coastal region, the sierra region, 

the oriental or Amazon region, and the Galápagos region. 
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different subsidized programs should always be considered. Fourth, the promotion of 

electrification programs should be prioritized in the largest parishes within each canton 

as these create spillover effects to other parishes. Finally, the quality of supply should 

also be considered in the implementation of electrification programs, with the efficiency 

of the regulatory framework applied to utilities affecting the success of these. 

The remainder of the paper is organized as follows. Section 2 reviews the literature, and 

Section 3 introduces the PCE program. Section 4 outlines our empirical strategy, while 

Section 5 describes our dataset. Section 6 presents our results. Finally, Section 7 provides 

our conclusions and policy recommendations. 

2. Literature review 

The causal relationship between energy consumption, economic growth, human 

development, and trade has been verified in both the short and long run (Apergis and 

Payne, 2010; Akkemik and Göksal, 2012; Sadorsky, 2012). Employment, economic 

growth, education, gender empowerment, industrialization, and health are some of the 

potential channels through which access to energy can influence global income inequality 

(Mamidi et al., 2021). In poor countries, access to energy improves human development, 

and there is evidence that electricity and clean-cooking programs can promote economic 

and human development, as well as improve cognitive reasoning (Maji, 2019; 

Acheampong et al., 2021a, 2021b; Mamidi et al., 2021; Liu and Teng, 2022). 

The literature on clean cooking shows that wood is still used by poor populations in many 

low-income countries and in rural areas (Akintan et al., 2018). However, in recent years 

there has been significant improvement in the use of LPG as a clean cooking technology 

(Sreeja et al., 2023). Countries are also making a strong effort to promote the adoption of 

clean cooking technologies based on electricity produced by renewable energy sources 

(RES), with the additional aim of mitigating climate change. Several studies have 

investigated the use of these clean cooking technologies in developing countries 

(Banerjee et al., 2016; Gould et al., 2018; al Irsyad et al.; 2023). Participation in clean-

cooking programs depends on several regional drivers such as economic and 

sociodemographic factors and the awareness of the potential health risks associated with 

traditional cooking fuels (Vigolo et al., 2018; Dendup and Arimura, 2019). The rural-

urban divide reflects the clearest differences in adopting clean energy (Gould et al., 

2020b). Banerjee et al. (2016) find that in locations with a high level of electrification, 

the adoption of induction cookers is facilitated, and Das et al. (2018) find that households 

in India use firewood due to lower costs and potential barriers related with the access to 

alternative energy sources, particularly in rural regions. Martínez et al. (2020) explore 

cooking patterns and factors influencing LPG use in rural Andean Peru. The results of 

surveys and focus group discussions show that LPG is the second-preferred source of 

cooking energy after firewood in rural areas and that women only use LPG to prepare 

quick meals such as soups or to reheat meals. The main barrier to LPG is related to the 

purchasing costs and the technologies, which often do not match local cooking needs. 

There is also a perception that LPG affects the taste of food. Culture and tradition thus 

seem to be important determinants, especially in rural areas. Moreover, participation in 

clean-cooking programs might be constrained by affordability, ineffective information 

dissemination, the unavailability of clean cooking technologies, and the presence of easy 

substitutes such as wood or coal (Gould et al., 2018; Aemro et al., 2021; Davi-Arderius 

et al., 2023). There are also regional differences in household consumption behavior. 
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Some authors explain the low success of clean cooking in rural areas by pointing to the 

fear of expensive electricity bills (Banerjee et al., 2016). As a solution, social networks 

can help promote adoption by way of influencers (Kumar and Igdalsky, 2019). In this 

context, information and communications technology (ICT) facilitates consumer access 

to information about the pros and cons of alternative clean cooking systems (Murshed, 

2020). 

Cultural differences in cooking practices and energy use are a feature of countries across 

the globe. Akintan et al. (2018) analyze how cultural norms might influence household 

cooking practices, energy choices, and perceptions in Nigeria. This research, based on 

household surveys, participant observation, and semi-structured interviews with 

householders from four different ethnic origins in nineteen villages demonstrate that 

“ethnic-specific” fuel choice, wood fuel harvesting, and cooking practices are mainly 

influenced by traditional norms and taboos. Twumasi et al. (2020) analyses the impact of 

credit accessibility on rural household clean cooking energy consumption in Ghana. Their 

results based on survey data show that the impact is not uniform across the different 

regions of Ghana. In addition, individual household characteristics matter. An increase in 

household income or wealth in Sub-Saharan Africa, for example, leads to an increased 

likelihood of a household adopting modern energy sources (Behera et al., 2016). 

The impact of energy poverty on electricity consumption is an open issue in developing 

countries. In the past, monitoring and evaluation indicators have focused largely on 

outputs, service delivery, or dissemination. Nowadays, new analyses are needed to 

adequately identify potential beneficiaries and describe the living conditions of families 

or communities targeted by such programs and initiatives. Until now, most studies have 

used surveys to collect information, creating potential a gap in terms of ex-post analyses 

of clean-cooking programs (Bielecki and Wingenbach, 2014; Ferrer-Martí, 2018).  

Along this line, Jia et al. (2022) analyze regional differences in the impact of clean energy 

development on carbon dioxide emissions and economic growth in China. They find 

significant differences in consumption between western, central, and eastern regions. 

They point to accessibility and poverty as the mechanisms behind these differences, 

mainly due to the lack of massive electrification, installation costs, and lack of proper 

information. The evidence suggests that poor households choose low-cost cooking 

methods even though they have a higher environmental impact. Puzzolo and Pope (2017) 

and Quinn et al. (2018) point out that non-RES fuels are the primary energy sources for 

cooking in developing countries. In this context, energy poverty determines the potential 

for cooking stoves (Pachauri and Spreng, 2011). Gill-Wiehl et al. (2021) indicate that the 

affordability of electrical energy plays a relevant role in the use of electric cooking 

appliances by poor households. 

Regarding the performance of electrical utilities, Gegiant and Ramalho (2018) find that 

in low-income countries the cost of electricity connection is 70 times higher than in high-

income countries. They also show that the procedures for connection to the national grid 

tend to be more cumbersome in countries where other regulatory processes are also 

complex, suggesting a persistence of bureaucracy across public sector entities in some 

countries. Finally, they find that simpler and less costly electricity connection processes 

are associated with better firm performance in industries with high electricity needs. The 

quality of the electrical supply can be affected by the operation of equipment connected 

to the public electricity supply network, however (Elphick et al., 2015). According to 

Elphick et al. (2015), quantifying consumer costs related to power quality is an important 
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metric to justify grid investment. Thus, regulators have tried to implement efficiency 

incentives to improve the quality of supply, but in developing countries there is scant 

literature about the potential impacts of the quality of supply, with most studies having 

been conducted in developed economies (Meles, 2020). 

The quality of supply can impact a household’s choice of fuel (Sedai et al., 2021). For 

example, Kapsalyamova et al. (2021) use survey data to investigate why the use of clean 

energy is not strongly adopted in India, Kazakhstan, and Kyrgyzstan. They find that the 

quality of electricity supply is relevant for the choice of cooking fuel, with households in 

rural areas facing more frequent power supply disruptions being more likely to adopt coal 

and wood for cooking rather than gas and electric cooking. Moreover, households in 

urban areas with more frequent power supply disruptions are more likely to consume gas. 

Regarding spatial dependence, Mamidi et al. (2021) consider the direct and indirect 

effects of energy accessibility on income inequality in Latin America and the Caribbean. 

Along this line, Nan et al. (2022) study spatial spillover effects related to globalization 

and carbon emissions, showing that there is a positive spatial externality of CO2 emissions 

from neighboring countries and that spillover effects are important to consider in these 

types of analyses. Furthermore, a strand of the literature has found peer effects in the 

diffusion of household renewable energy technologies such as residential solar 

photovoltaics, electric vehicles, and water heaters (Graziano and Gillingham, 2015; Irwin, 

2021; Kucher et al., 2021; Zhang et al., 2023). Peer effects can be considered from two 

perspectives. The first refers to the influence of members of a peer group on an 

individual’s attitudes, values, or behaviors (Wolske et al. 2020). The second is related the 

tendency for people to rely on what others tell them, especially for those with little 

information or prior experience on which to base expectations (Rai and Henry, 2016). In 

such cases, information from peers plays an important role in shaping the perceptions and 

expectations of individuals and, ultimately, their behavior (Henry and Vollan, 2014). 

3. The PCE in Ecuador 

Ecuador is a developing country with a huge informal sector, many ethnicities, and spatial 

heterogeneity between natural regions as well as between urban and rural areas, in 

addition to high deprivation levels (Matano et al., 2020; Obaco et al., 2021; Mendieta 

Muñoz et al., 2022). The country has historically depended on revenue from oil 

extraction, and its energy market is highly subsidized. In 2014, the Ecuadorian 

government launched the PCE program aiming to replace LPG cookstoves and LPG 

boilers with electric devices, in an attempt to reduce the large financial burden associated 

with LPG subsidies and make better use of the country’s strong hydropower potential. 

Initially, the government planned to enroll 3 million families,5 but only 0.7 million 

families participated at the peak of the program.  

The main benefits for residential participants in the PCE program were the following 

(Davi-Arderius et al., 2023):6 

                                                 
5 https://unfccc.int/climate-action/momentum-for-change/activity-database/efficient-cooking-program-ecp 

(last accessed May 30th 2023) 
6 Ministerial Agreement no. 230-2014: Programa de Eficiencia Energética para Cocción por Inducción y 

Calentamiento de Agua con Electricidad en sustitución del gas licuado de petróleo en el sector 

residencial, published in Registro Oficial No. 359 – 22/10/2014.  

https://www.gob.ec/sites/default/files/regulations/2018-09/Documento_Delegaciones-direcciones-

provinciales-268.pdf  

 

https://unfccc.int/climate-action/momentum-for-change/activity-database/efficient-cooking-program-ecp
https://www.gob.ec/sites/default/files/regulations/2018-09/Documento_Delegaciones-direcciones-provinciales-268.pdf
https://www.gob.ec/sites/default/files/regulations/2018-09/Documento_Delegaciones-direcciones-provinciales-268.pdf
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• Free monthly electricity supply: 20 KWh for water-heating devices, 80 KWh for 

induction cooking, or 100 KWh for water heating and induction cooking;  

• Specific tax exemptions to purchase an induction stove;  

• Credit (between 150 USD and 600 USD) to purchase an induction stove (Gould 

et al. 2018); 

• The connection of one’s home to the electricity grid.  

The program also included specific agreements with national manufacturers of induction 

stoves and compatible pots and pans. 

There have been few studies of the Ecuadorian electricity sector. Ponce-Jara et al. (2020) 

consider the evolution of the electricity generation fuel mix between 2007 and 2017 and 

the implementation of energy-efficiency programs and technological solutions to the 

electricity networks. They observe that hydropower capacity in the country increased by 

81%, while biomass, biogas, wind, and solar farms played only a marginal role in total 

electricity generation. Martinez et al. (2017) analyze the theoretical CO2 emissions and 

economic impacts of the implementation of the Efficient Cooking Program, with the 

results indicating that that the future PCE program could be successful in practice. Gould 

et al. (2018) use a survey to understand cooking technology consumption patterns in rural 

Ecuador, where the availability of alternative fuels affects fuel choice. More than three 

quarters of those interviewed reported weekly wood-fuel use. Induction stove ownership 

(17%) and its use as a primary cooking appliance (1%) was low among the rural 

households surveyed, and households owning induction stoves reported very low 

satisfaction. Finally, Davi-Arderius and Obaco (2023) find that the PCE program saved 

978,470 ktons of CO2 and reduced Ecuadorian LPG consumption by 3,845,808 barrels 

(2015-2021). They also find that the rate of return of the subsidies spent on the program 

was 0.72463. 

However, most of the above studies are based on surveys, limiting the ability to account 

for potential spatial dependence in the PCE program, i.e., spillover effects. Moreover, to 

the best of our knowledge the impact of power quality on the engagement rate in the PCE 

program has not yet been analyzed. Table 1 summarizes the main studies of the PCE 

program. 
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Table 1. Summary of studies on the PCE in Ecuador, sorted by publication year. 

Source: own elaboration 

Reference Aim Dataset Methodology Scope Main results 

Martínez et al., 

2017 

Analyze potential CO2 emissions 

and cost savings related to the 

PCE program 

Dataset published by 

ARCONEL 

Data projections based 

on several scenarios 
National aggregated data 

The PCE program could save USD 1.162 

billion in annual government expenditure 

and reduce CO2 emissions by 1.8 tn per 

year. 

Martínez-Gómez et 

al., 2017 

Analyze potential impacts on 

electricity demand, energy 

consumption and CO2 emissions  

related with the introduction of a 

clean-cooking program in 

Ecuador (Plan Fronteras) 

Dataset from 

experiments on 

induction devices and 

other energy dataset 

National projections National aggregated data 

Peak electricity consumption of 2,860 MW 

at 7pm CO2 emissions decreased by 40.8 

million tones (2016-2032). 

Gould et al., 2018 

Assess the effect of LPG 

subsidies on household energy 

use 

Household surveys Probit model 
Rural areas in northern 

Ecuador 

Acceptance and use of LPG is very high. 

Very low satisfaction with induction stoves.  

Gould et al., 2020a 
Analyze the cooking technologies 

in peri-urban and rural Ecuador  
Household surveys ANOVA linear model 

Peri-urban and rural 

communities in 

coastal and Andean 

Ecuadorian provinces 

Firewood for cooking is used by a large 

number of houses. 

Induction stoves are scarcely used due to the 

lack of electrical infrastructure and the fear 

of high electricity bills. 

Davi-Arderius et 

al., 2023 

Analyze household 

socioeconomic determinants of 

the adoption of different cooking 

technologies 

Official surveys 

(ENEMDU) 

Logit and multinomial 

logit models 

National, urban, and 

rural area dwelling 

information  

Significant differences across regions, 

urban/rural areas, age, income, ethnic, and 

type of house, which were not considered 

by the PCE program. 

Davi-Arderius and 

Obaco, 2023 

Assess the effect of the PCE 

program on national LPG 

consumption, the savings on CO2 

emissions, and the rate of return 

of PCE subsidies  

Dataset published by 

ARCONEL 
Time series estimations National aggregated data 

The PCE program saved 978,470 ktons of 

CO2 and reduced LPG consumption by 

3,845,808 barrels (2015-2021). 

The rate of return of PCE subsidies was 

0.72463. 
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4. Empirical approach 

In this section, we explain the empirical approach we follow for our analysis. We test two 

distinct dependent variables. The first, 𝑃𝐶𝐸80𝑖𝑡, is the most relevant because it refers to the 

share of participants receiving 80 KWh for induction cooking. The second variable, 𝑃𝐶𝐸𝑖𝑡, 
is the share of participants benefitting from any of the three consumption types in the PCE 

program, i.e., 20 KWh for water-heating devices, 80 KWh for induction cooking, and 100 

KWh for water heating and induction cooking.  

In the first empirical estimation, we study local cooking-only participation in the PCE 

program (𝑃𝐶𝐸80𝑖𝑡) using a spatial lag model (SLM), as is shown in Equation 1: 

     𝑃𝐶𝐸80𝑖𝑡 = 𝛼𝑖 + 𝜌𝑾𝑇𝑃𝐶𝐸80𝑖𝑡 + 𝛽1 log(𝑁𝑅𝐸𝑆𝑖𝑡) + 𝛽2 log(𝑁𝑅𝐸𝑆𝑖𝑡
2) +

𝛽3log(𝑒𝐸𝐿𝐷𝑖𝑡) + 𝛽4log⁡(𝑒𝑃𝑂𝑉𝑖𝑡) + 𝛽5log⁡(𝑒𝐴𝐶𝑇𝑉𝑖𝑡) + 𝛽6log⁡(𝐹𝑀𝐼𝑘𝑗𝑡) + 𝑇 + 𝜃 + 𝑢𝑖𝑡 ,   (1) 

where 𝑁𝑅𝐸𝑆𝑖𝑡 is the number of residential points of consumption, which is a proxy of the 

size of parish i; 𝑒𝐸𝐿𝐷𝑖𝑡 is the monthly average residential expenditure subject to the 

subsidized tariff for the poor (dignity tariff); 𝑒𝑃𝑂𝑉𝑖𝑡 is the monthly average residential 

expenditure subject to the tariff for the elderly; 𝑒𝐴𝐶𝑇𝑉𝑖𝑡 is the average monthly electricity 

consumption of industrial and commercial activities, as a proxy of the economic activity of 

parish i; 𝐹𝑀𝐼𝑘𝑗𝑡 is the monthly frequency of power interruptions for each utility j 

corresponding to each Ecuadorian province (see Note 4). We add the square of 𝑁𝑅𝐸𝑆𝑖𝑡 to 

capture potential non-linearity in our dependent variable and use logs to interpret as 

elasticities the coefficients of our independent variables, as described in the next section.  

Moreover, 𝜌 is the spatial autoregressive coefficient, which ranges between –1 and 1; 𝑾𝑇 is 

a space-time spatial weight matrix defined as 𝑾𝑇 = 𝑰𝑇 ⊗𝑾, with ⊗ referring to the 

Kronecker product; and 𝑰𝑇 is an identity matrix of dimension T. The definition of 𝑾 is in 

Appendix II. 𝛼𝑖 is the intercept, and 𝛽1…𝛽6 are coefficients to be estimated. T represents 

month or year fixed effects, 𝜃 is the parish fixed effects, and 𝑢𝑖,𝑡 are the i.i.d. error terms. In 

our estimates, we also use the monthly length of power interruptions, log⁡(𝑇𝑇𝐼𝑘𝑗𝑡), as an 

alternative to log⁡(𝐹𝑀𝐼𝑘𝑗𝑡). We expect that the sign and significance are the same. 

In the second empirical estimation, we study the local participation rate in the PCE program 

(𝑃𝐶𝐸𝑖𝑡) using a spatial error model (SEM) as in Equation 2: 

𝑃𝐶𝐸𝑖𝑡 = 𝛼𝑖 + 𝛽1 log(𝑁𝑅𝐸𝑆𝑖𝑡) + 𝛽2 log(𝑁𝑅𝐸𝑆𝑖𝑡
2) + 𝛽3log(𝑒𝐸𝐿𝐷𝑖𝑡) + 𝛽4log⁡(𝑒𝑃𝑂𝑉𝑖𝑡) +

𝛽5log⁡(𝑒𝐴𝐶𝑇𝑉𝑖𝑡) + 𝛽6log⁡(𝐹𝑀𝐼𝑘𝑗𝑡) + 𝑇 + 𝜃 + 𝑢𝑖𝑡,             (2) 

where 𝑢𝑖𝑡 = 𝜆𝑾𝑻𝑢𝑖−1𝑡 + 𝑒𝑖𝑡. 𝜆 is the coefficient of the spatially lagged error term, which 

ranges between –1 and 1, and 𝑒𝑖𝑡 is the i.i.d. error term. As before, we also alternatively use 

the variable log⁡(𝑇𝑇𝐼𝑘𝑗𝑡) instead of log⁡(𝐹𝑀𝐼𝑘𝑗𝑡). Again, we expect that the sign and 

significance are the same. 

The process to select between the SLM and SEM is the following. First, we validate the 

potential spatial autocorrelation of our dependent variables 𝑃𝐶𝐸80𝑖𝑡 and 𝑃𝐶𝐸𝑖𝑡 using 

Moran’s I (see Appendix II). Once spatial autocorrelation is confirmed, we select the 

appropriate spatial econometric model by means of Lagrange multiplier (LM) tests on the 
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residuals of the standard (a-spatial) model. In Appendix III, we show that for 𝑃𝐶𝐸80𝑖𝑡 the 

preferred model is the spatial lag model (SLM), while the spatial error model (SEM) is 

preferred for 𝑃𝐶𝐸𝑖𝑡. 

We must stress that for Equation 1, the interpretation of marginal effects is not 

straightforward. The spatial autoregressive parameter |𝜌| < 1 signals the existence of global 

externalities due to how the spatial multiplier is defined, i.e., (𝑰𝑁𝑇 − 𝜌𝑾𝑇)
−𝟏 = 𝑰𝑁𝑇 +

𝜌𝑾𝑇 + 𝜌2𝑾𝑇
2+. . . +𝜌𝑁𝑾𝑇

𝑁, where 𝑰𝑁𝑇I is an NT×NT identity matrix. Thus, the participation 

rate in the PCE (only for cooking) is determined by a parish’s own characteristics as well as 

those of immediate neighbors (𝜌𝑾𝑇), second-order neighbors (𝜌2𝑾𝑇
2 ), and so forth. Indeed, 

a shock in parish i is transmitted to its neighbors by parameter ρ related to participation rate 

in the PCE by neighbors and, in turn, this is transmitted back to parish i through W, 

reinitiating the process until the effect becomes negligible for N tending towards infinity 

(LeSage and Fischer, 2008). With respect to the marginal effects, we can thus distinguish 

between direct and indirect effects: 

𝜕𝑌

𝜕𝑋𝑖
′ = (𝑰𝑁𝑇 − 𝜌𝑾𝑇)

−1𝑰𝛽𝑖 = (𝑰𝑁𝑇 + 𝜌𝑾𝑇 + 𝜌2𝑾𝑇
2+. . . +𝜌𝑁𝑾𝑇

𝑁)𝛽𝑖. (3) 

LeSage and Pace (2009) define the direct effect as the mean of the diagonal elements of (3) 

and the indirect effect as the mean of the off-diagonal elements, where the off-diagonal row 

elements are summed up and averaged. The sum of the direct and indirect effects gives the 

average total effect.  

5. Dataset 

Our dataset is based on the following information: monthly parish-level data from 2015 to 

2021 by electric utility, provided by the Ecuadorian regulator and the Ministry of Energy and 

Resources (ARCONEL, 2023), and parish-level shapefiles gathered from the National 

Institute of Statistics and Censuses of Ecuador (INEC) in 2020. We selected 753 parishes for 

which we have complete information for all 84 months considered. 

5.1 Variable definitions 

In defining the variables, it is important to highlight that each parish i belongs to each utility 

j. First, we consider the following variables at the parish level i and at time t: 
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1. Size: number of residential points of consumption (𝑁𝑅𝐸𝑆𝑖𝑡);
7 

 

2. Local Participation in the PCE: PCE participation rate for each parish i, constructed 

by dividing the monthly number of participants in the PCE program (𝑁𝑃𝐶𝐸𝑖𝑡) by the 

number of residential points of consumption (𝑁𝑅𝐸𝑆𝑖𝑡): 
 

𝑃𝐶𝐸𝑖𝑡 =
𝑁𝑃𝐶𝐸𝑖𝑡⁡

𝑁𝑅𝐸𝑆𝑖𝑡
.                                          (4) 

Moreover, we calculate the specific parish-level PCE participation rate for cooking 

only, dividing the monthly number of participants in the PCE program (𝑁𝑃𝐶𝐸80𝑖𝑡) 
by the number of residential points of consumption (𝑁𝑅𝐸𝑆𝑖𝑡): 

𝑃𝐶𝐸80𝑖𝑡 =
𝑁𝑃𝐶𝐸80𝑖𝑡⁡

𝑁𝑅𝐸𝑆𝑖𝑡
.                                          (5) 

3. Local subsidized households: average residential expenditure subject to the 

subsidized tariff cost for the poorest (dignity tariff), 𝑒𝑃𝑂𝑉𝑖𝑡, and the tariff for elderly 

people (elderly tariff),8 𝑒𝐸𝐿𝐷𝑖𝑡 per household: 

𝑒𝑃𝑂𝑉𝑖𝑡 =
𝐸𝑃𝑂𝑉𝑖𝑡

𝑁𝑅𝐸𝑆𝑖𝑡
,                                         (6) 

𝑒𝐸𝐿𝐷𝑖𝑡 =
𝐸𝐸𝐿𝐷𝑖𝑡

𝑁𝑅𝐸𝑆𝑖𝑡
,                                         (7) 

where 𝐸𝑃𝑂𝑉𝑖𝑡 is the number of households enjoying the dignity tariff and 𝐸𝐸𝐿𝐷𝑖𝑡 is 

the number of persons enjoying the elderly tariff. 

 

4. Local economic activity: average electricity consumption in industrial, 𝐸𝐼𝑁𝐷𝑖𝑡 and 

commercial activities, 𝐸𝐶𝑂𝑀𝑖𝑡, over the number of residential points of connection: 

 

𝑒𝐴𝐶𝑇𝑉𝑖𝑡 =
𝐸𝐼𝑁𝐷𝑖𝑡+𝐸𝐶𝑂𝑀𝑖𝑡

𝑁𝑅𝐸𝑆𝑖𝑡
.                                         (8) 

Second, we use the following variables at the utility j level and at time t: 

1. Quality of power supply: monthly power supply quality for each utility j, using two 

different indicators (ARCONEL, 2023). The monthly frequency of power 

interruptions is calculated as follows: 

 

𝐹𝑀𝐼𝐾𝑗𝑡 =
∑𝐾𝑉𝐴𝑓𝑠𝑗𝑡

𝐾𝑉𝐴𝑖𝑛𝑠𝑡𝑗𝑡
,    (9) 

                                                 
7 Each point of consumption corresponds to a metering device. Therefore, a point of consumption is equivalent 

a household or similar. 
8 The dignity tariff refers to a subsidy for residential consumers whose electricity consumption is up to 110 

kWh per month in the Sierra Region and up to 130 kWh per month in the Coast/East/Insular Regions. Thus, it 

is a proxy for the number of poor households in each municipality. The elderly tariff applies to residents 65 

years of age or older. (ARCONEL, 2023). 
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where ∑𝐾𝑉𝐴𝑓𝑠𝑗𝑡 is the sum of installed capacity that was subject to power supply 

failure during period t and 𝐾𝑉𝐴𝑖𝑛𝑠𝑡𝑗𝑡 is the sum of installed capacity for utility j in 

the same period t.  

We also consider the monthly length of power interruptions for each utility j, 

calculated as in Equation (7): 

𝑇𝑇𝐼𝐾𝑗𝑡 =
∑𝐾𝑉𝐴𝑓𝑠𝑗𝑡·𝑇𝑓𝑠𝑗𝑡

𝐾𝑉𝐴𝑖𝑛𝑠𝑡𝑗𝑡
,    (10) 

where, 𝑇𝑓𝑠𝑗𝑡 is the interruption time of each 𝐾𝑉𝐴𝑓𝑠𝑗𝑡.
9  

In our dataset, we assign power quality to each parish according to the quality of supply 

provided by the utility feeding its residential points of connection.  

5.2 Descriptive analysis 

Tables 2 and 3 show summary statistic for our dataset at the parish and utility level, 

respectively.  

Table 2. Summary statistics for our variables at the parish level 

First level: Parish (NUTS3) (N=753 ×T=84) 

Description Variable Units Mean Std. Dev. Min. Max. 

Residential points of electricity 

connection 
𝑁𝑅𝐸𝑆𝑖𝑡 Number 4,524.0510 29,570.8700 0.0000 681931.0000 

Number of PCE participants 

(cooking only) 
𝑁𝑃𝐶𝐸80𝑖𝑡 Number 428.1650 3,371.6800 0.0000 114,638.0000 

Number of PCE participants  𝑁𝑃𝐶𝐸𝑖𝑡 Number 521.1714 4,256.9300 0.0000 115,223.0000 

PCE participation rate  𝑃𝐶𝐸𝑖𝑡 p.u. 0.08061 0.1928 0.000 0.97612 

PCE participation rate (cooking 
only) 

𝑃𝐶𝐸80𝑖𝑡 p.u. 0.07223 0.0718 0.000 0.95622 

Electricity expenditure with 

poverty tariffs 
𝐸𝑃𝑂𝑉𝑖𝑡 USD 3,844.0030 16,613.6700 -56,287.6900 508,095.1000 

Average electricity 
consumption with poverty 

tariffs 

𝑒𝑃𝑂𝑉𝑖𝑡 USD 1.0893 0.4757  0.0017 26.2669 

Electricity expenditure with 
elderly tariffs 

𝐸𝐸𝐿𝐷𝑖𝑡 USD 1,268.3590 10,092.2100 -4,290.1300 305,873.20000 

Average electricity expenditure 

with elderly tariffs 
𝑒𝐸𝐿𝐷𝑖𝑡 USD 0.2121 0.1494 0.0001 6.410 

Electricity consumption by 
industrial consumers 

𝐸𝐼𝑁𝐷𝑖𝑡 KWh 423,197.2000 4,090,3250.0000 -995,020.0000 1.4400e+08 

Electricity consumption by 

commercial consumers 
𝐸𝐶𝑂𝑀𝑖𝑡 KWh 318,588.5000 3,530,163.0000 -388,540.000 1.1900e+08 

Average electricity 
consumption by industrial and 

commercial consumers 

𝑒𝐴𝐶𝑇𝑉𝑖𝑡 KWh 2,089.3000 17,255.2400 -19,689.9000 847,410.4000 

Note: i corresponds to the parish and t to the month. 

 

  

                                                 
9 In both cases, 𝐹𝑀𝐼𝐾𝑗𝑡  and  𝑇𝑇𝐼𝐾𝑗𝑡 only consider power interruptions longer than 3 minutes or those related 

with to a major force (unpredictable adverse weather conditions) 
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Table 3. Summary statistics for our variables at the utility level 

Second level: Utilities (N=20 × T=84) 

Description Variable Units Mean Std. Dev. Min. Max. 

Frequency of power interruptions 𝐹𝑀𝐼𝑘𝑗𝑡 Number 10.34 6.29 0.83 41.71 

Length of power interruptions 𝑇𝑇𝐼𝑘𝑗𝑡  Hours   14.29 9.79 0.78 55.50 

Notes: j corresponds to the utility and t to the month. 

Figures 1 and 2 show the average values of our endogenous variables for PCE participation 

rate, ⁡𝑃𝐶𝐸80𝑖𝑡 and 𝑃𝐶𝐸𝑖𝑡, respectively. It is important to note that parishes located in the 

Sierra and coastal regions (Appendix I) have higher participation rates. 

Figure 1. Average value of our endogenous variable (𝑃𝐶𝐸80𝑖𝑡)⁡ in each parish (2015-2020) 
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Figure 2. Average value of our endogenous variable (𝑃𝐶𝐸𝑖𝑡)⁡ in each parish (2015-2020) 

 

Figures 3 and 4 show utility quality of supply (𝐹𝑀𝐼𝑘𝑗𝑡) and the corresponding PCE 

participation rate at the utility level. It is important to note that the coast suffers from 

poorer power supply quality compared to other areas, but the number of interruptions 

decreased substantially in almost all utilities between 2015 and 2021. Blue Bars are the 

average of participation rate in the PEC program by utility. The concentration in the coastal 

areas is higher in PEC participation rate. The utility that gives service to the capital has a 

participation rate relatively higher in all three PEC programs.  
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Figure 3. Average number of power interruptions (𝐹𝑀𝐼𝑘𝑗𝑡) and PCE participation rate by utility, population 

size, and parish administrative boundaries in 2015 

   

Figure 4. Average number of power interruptions and PCE participation rate by utility, population size, and 

parish administrative boundaries in 2021 
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As shown in Figure II.1 in Appendix II, spatial autocorrelation has grown markedly over 

time, i.e., after the launch of the PCE program. From January 2015 to December of the same 

year, spatial autocorrelation rose from around zero to 0.35. From 2018, it stabilized at around 

0.5.   

6. Results 

In this section, we present the results of our empirical estimations for 𝑃𝐶𝐸80, including the 

calculation of the indirect and direct effects. 

6.1. Spatial autoregressive estimations 

We estimate the SLM (Equation 1) and the SEM (Equation 2) for PCE80 and PCE, 

respectively, with individual and monthly time dummies. However, as a robustness check we 

estimate PCE80 by means of an SEM and PCE using SLM, alternatively employing month 

and year fixed effects. The results are shown in Appendix IV. 

Table 4. Selected spatial panel regressions for PCE participation 

  (1) (2) (3) (4) 

 

𝑃𝐶𝐸𝑖𝑡 
(SEM) 

𝑃𝐶𝐸𝑖𝑡  
(SEM) 

𝑃𝐶𝐸80𝑖𝑡 
(SLM) 

𝑃𝐶𝐸80𝑖𝑡  
(SLM) 

log(𝑁𝑅𝐸𝑆𝑖𝑡)  0.0182*** 0.0182*** 0.0143*** 0.0144*** 

 (0.001) (0.0001) (0.0009) (0.0009) 

log(𝑁𝑅𝐸𝑆𝑖𝑡
2)  -0.0023*** -0.0023*** -0.002*** -0.002*** 

 (0.0001) (0.0001) (0.0001) (0.0001) 

log(𝑒𝐸𝐿𝐷𝑖𝑡)  -0.0001 0.00004 -0.0004* -0.0003 

 (0.0002) (0.00002) (0.0002) (0.0002) 

log(𝑒𝑃𝑂𝑉𝑖𝑡)  0.0012*** 0.0012*** 0.0005* 0.0006* 

 (0.0004) (0.0002) (0.0003) (0.0003) 

log(𝑒𝐴𝐶𝑇𝑉𝑖𝑡)  0.0012*** 0.0012*** 0.0015*** 0.0015*** 

 (0.0002) (0.0002) (0.0002) (0.0002) 

log(𝐹𝑀𝐼𝑘j𝑡)  -0.0038***  -0.0024***  

 (0.0007)  (0.0004)  

log(𝑇𝑇𝐼𝑘j𝑡)   -0.0036***  -0.0023*** 

  (0.0006)  (0.0003) 

𝜆  0.5309*** 0.5307***   

 (0.0042) (0.0042)   

𝜌    0. 5757*** 0. 5754*** 

   (0. 0039) (0. 0039) 

Time and individual dummies yes yes yes yes 

Observations 63,252 63,252 63,252 63,252 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses. 
 

Some interesting results emerge from Table 4. First, participation in the PCE program is 

characterized by strong spatial dependence, as the coefficients ρ and λ are significant, 

capturing the spatial autocorrelation in a different form. In particular, as the spatial 

autoregressive parameter ρ is equal to 0.57 for 𝑃𝐶𝐸80 (columns 3 and 4), it corresponds, in 

scalar terms, to a spatial multiplier of 2.32. This implies that around 60% (i.e., 1/2.32) of 

PCE80 is explained by the so-called indirect or spillover effect, referring to the effect arising 

from variation in a variable in neighbors. The remainder is explained by the direct effects, 

i.e., the impact of variation in a variable in the same parish i. Note that if spatial dependence 
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is in the form of a spatial lag and is not accounted for, the regression coefficients are upward-

biased.  

On the other hand, with respect to PCE (column 1 and 2) the spatial dependence is in the 

error term, meaning that there may be spatially autocorrelated variables not accounted for in 

the model, such as cultural factors, for example, which are captured by the error term 

(Anselin et al., 1998). This seems to make sense as the variable PCE includes heating water 

and water in combination with heating in addition to electricity for cooking. This means that 

PCE intrinsically includes several dimensions potentially related to a wide set of explanatory 

factors that may not be accounted for due to the limitations of our data. The fact that spatial 

autocorrelation exists confirms our initial hypothesis and highlights a very interesting point 

related to the design of electrification programs. 

Second, the analysis of the coefficients associated with each explanatory variable also reveals 

some interesting results. We find that parishes with a higher number of residential points of 

connection (NRES) show a higher participation rate. However, the impact is non-linear, as 

the coefficient related to the square of NRES is also significant with a negative sign. In other 

words, parish size fits better with a polynomial function, implying that the share of PCE 

participants increases with the size of the parish, but at a decreasing rate until NRES equals 

5210 and then becoming negative. Considering that the average value of NRES is 4,524, this 

means that the benefits of larger parish size are only applicable to a few parishes. The reason 

may be that residents begin to distrust the reliability of the power grid if many users are 

connected.  

The coefficients related with local economic activity (ACTV) are positive, showing that in 

parishes with a higher level of industrial or commercial activities people tend to participate 

more in the Efficient Cooking Program. This highlights that local economic activity is 

relevant and that there may be a potential affordability problem for participating in the PCE 

program, which may be related to the purchase of the induction cookstove or the need to live 

in dwellings in good condition, as was found regarding the use of electricity for cooking in 

Ecuador (Daví-Arderius et al., 2023).  

The coefficient for expenditure subject to the tariff for the elderly ELD is negative and 

marginally significant only for PCE participation for cooking (column 3). Regarding the 

coefficient associated with expenditure subject to the poverty tariff ePOV, it is always 

positive but significant at the 1% level only for PCE (columns 1 and 2), while for PCE80 the 

significance is at the 10% level. This shows that parishes in which a higher share of 

expenditure is subsidized also show a higher participation rate in the PCE program. This is 

true for PCE in general, but less important when we only consider cooking. This result can 

be explained by several complementary reasons. These subsidized electricity tariffs are 

subject to a maximum monthly electricity expenditure, so customers may decide to join the 

clean-cooking program to receive additional free electricity. These subsidized tariffs can also 

implicitly lower the cost of purchasing an induction stove.11 Finally, the poorest people do 

not have electricity metering and, as a result, often opt for alternative cooking technologies 

such as firewood or coal, especially in rural areas. These people therefore do not receive the 

                                                 
10 Considering the coefficients in column 1 of Table 4, the calculation is as follows: 0.0182⁡ × log(𝑁𝑅𝐸𝑆𝑖𝑡) −
0.0023 × 2 × log⁡(𝑁𝑅𝐸𝑆𝑖𝑡) = 0, thus 𝑁𝑅𝐸𝑆𝑖𝑡 = exp( 0.0182⁡/⁡(2 × 0.0023)) = 52.27. 
11 Our dataset does not allow us to conclude that all poor families consume electricity using poverty tariffs. 
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subsidized tariffs. From a policy perspective, these results show potentially relevant cross-

subsidy effects that should not be underestimated in the design of electrification programs.  

Regarding the quality of power supply, i.e., FMIK and TTIK, it is important to note that the 

coefficients are always negative and highly significant, showing a relevant impact on the 

engagement rate in the PCE program. This suggests that customers are reluctant to electrify 

their consumption if they do not feel that the power system is reliable. From the point of view 

of policy, this highlights that the performance of utilities can limit or boost engagement with 

electrification programs such as the clean-cooking program. In other words, these programs 

may not be successful on their own and require a reliable power grid as a necessary condition. 

As utilities are highly regulated activities, the efficiency of the regulatory framework applied 

to these utilities should incentivize improvements in energy quality.  

6.2. Indirect and direct effects 

In Table 5, we show the direct, indirect, and total spatial effects for cooking, calculated 

according to Equation 3.  

Table 5. Direct, indirect, and total spatial effects related to the coefficients from Table 4 for PEC80  

  (1)  (2) 
 dy/dx dy/dx 

Direct effect 

log(𝑁𝑅𝐸𝑆𝑖𝑡)  0.0158*** 0.0156*** 

log(𝑁𝑅𝐸𝑆𝑖𝑡
2)  -0.0022*** -0.0022*** 

log(𝑒𝐸𝐿𝐷𝑖𝑡)  -0.0003* -0.0004* 

log(𝑒𝑃𝑂𝑉𝑖𝑡)  0.0006** 0.0006* 

log(𝑒𝐴𝐶𝑇𝑉𝑖𝑡)  0.0016*** 0.0016*** 

log(𝐹𝑀𝐼𝑘j𝑡)  -0.0025***  

log(𝑇𝑇𝐼𝑘j𝑡)   -0.0026*** 

Indirect effect (spillover) 

log(𝑁𝑅𝐸𝑆𝑖𝑡)  0.0181*** 0.0180*** 

log(𝑁𝑅𝐸𝑆𝑖𝑡
2)  -0.0025*** -0.0025*** 

log(𝑒𝐸𝐿𝐷𝑖𝑡)  -0.0004 -0.0004* 

log(𝑒𝑃𝑂𝑉𝑖𝑡)  0.0007** 0.0007** 

log(𝑒𝐴𝐶𝑇𝑉𝑖𝑡)  0.0018*** 0.0018*** 

log(𝐹𝑀𝐼𝑘j𝑡)  -0.0028***  

log(𝑇𝑇𝐼𝑘j𝑡)   -0.003*** 

Total effect 
  

log(𝑁𝑅𝐸𝑆𝑖𝑡)  0.0339*** 0.0336*** 

log(𝑁𝑅𝐸𝑆𝑖𝑡
2)  -0.0048*** -0.0047*** 

log(𝑒𝐸𝐿𝐷𝑖𝑡)  -0.0007 -0.0008* 

log(𝑒𝑃𝑂𝑉𝑖𝑡)  0.0013** 0.0013** 

log(𝑒𝐴𝐶𝑇𝑉𝑖𝑡)  0.0034*** 0.0030*** 

log(𝐹𝑀𝐼𝑘j𝑡)  -0.0053***  

log(𝑇𝑇𝑖𝑘j𝑡)   -0.0056*** 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses.  

 

Regarding power quality, we find that the frequency of power interruptions has a coefficient 

of –0.0053, meaning that a 1% increase in FMIk implies a 0.0053% reduction in the share of 

PCE participants. Regarding the length of power interruptions, when the average length 
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increases by 1%, the PCE participation rate (for cooking) decreases by 0.0056%. However, 

these effects are mainly due to the spillovers, meaning that a shock occurring in parish I or 

in a neighboring parish is transmitted to neighbors and then to the neighbors of these 

neighbors, and so on, and then and back again.  

We can understand the rest of the effects in the same way. For instance, the coefficient for 

economic activity is between +0.0030 and +0.0034, meaning that increasing the average 

electricity consumption of industrial and commercial activities by 1% increases the PCE 

participation rate (for cooking only) by 0.0030% and 0.0034%. 

7. Conclusions and policy implications 

In this paper, we study the factors affecting participation in the PCE program in Ecuadorian 

parishes, taking into account spatial dependence. Our hypotheses are that the spatial 

dependence across parishes is relevant and the quality of supply provided by each utility 

affects participation in the PCE. Neither of these aspects have been fully assessed in the 

empirical literature on the implementation of clean cooking in developing countries due to a 

lack of highly detailed datasets. Here, we use an official dataset provided by the Ecuadorian 

regulator instead of the surveys typically used in studies of developing countries. This allows 

us to produce more consistent and replicable outcomes than those provided by surveys, where 

the selection of observations might constrain the results and limit replicability. 

We find that local participation in the PCE program is positively correlated with local 

economic activity, meaning that income from locals sets the local participation rate. The 

subsidized electricity tariff for the poorest (dignity tariff) is positively correlated with 

participation in the PCE program, meaning that already subsidized customers are more likely 

to join. The quality of power provision matters and clearly constrains participation. Finally, 

we find that spillover effects between parishes are also very significant and relevant for this 

cooking program, with local residents being positively influenced by what their neighbors 

do.  

Based on these results, we provide several policy recommendations. First, it is essential to 

perform detailed spatial analyses of the determinants of participation in electrification 

programs. To this end, there are efficient and less costly alternatives to traditional surveys, 

where sample selection can be a limitation. In this paper, we use data from the electricity 

sector as a proxy for local socioeconomic characteristics. This type of data should be 

analyzed using advanced econometric methodologies such as spatial econometrics, the 

approach used here. 

Second, the design of electrification programs should always consider local particularities 

and avoid taking a uniform national approach. As uncovered here, certain local 

characteristics are significant and relevant to participation in such programs. For instance, 

parishes with more economic activity have a higher participation rate, highlighting a potential 

economic cost related with the procurement of an induction cookstove, which residents from 

the wealthiest areas can most easily afford. For other parishes, specific subsidies for the 

procurement of induction cookstoves could be implemented as a complementary solution to 

deal with this economic barrier. 

Third, cross-sectional effects between different subsidized programs cannot be neglected. 

We find that parishes with a higher use of subsidized electricity tariffs also show higher 
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participation rates in the PCE program. This seems to complement the results related to parish 

economic activity, as these participants may face a lower economic barrier to procuring a 

cookstove or join this program to enjoy additional free electricity. Therefore, existing subsidy 

programs should be considered when programs are designed and launched, as unforeseen 

trade-offs might arise between them. 

Fourth, the promotion of electrification programs should take into account social ties, which 

can often involve peer comparison and a tendency to influence each other’s attitudes, values, 

or behaviors. Thus, a place-based approach that contributes to creating opportunities to 

facilitate experience- and knowledge-sharing among peers and stakeholders should be 

prioritized. Based on these results, the dissemination process for electrification programs 

should study these spillover effects between parishes beforehand and incorporate these 

effects into their strategy. Fifth, the quality of supply should also be considered in the 

implementation of electrification programs. We find that the quality of supply provided 

clearly constrains participation, as consumers may feel the need to have a reliable power 

system before they are willing to join such programs. This links the design of electrification 

programs with the regulatory framework for utilities. Regulators should prioritize power 

quality improvements that can be made in different complementary ways. Grid investments 

that improve the reliability of the power system should be prioritized, such as replacing the 

oldest assets, upgrading the insulation of aerial cables, and ensuring the N-1 criteria in case 

of failure of an element, among others. In addition, efficient economic incentives associated 

with the quality of supply provided by each utility should be implemented to improve their 

internal operational processes. Finally, power interruptions should be closely monitored in 

order to determine their root causes and prevent these in the future. 

In summary, we found that local and regional issues should be considered in the design of 

electrification programs in developing countries such as Ecuador. However, our results also 

apply to electrification programs already being implemented in many developed countries, 

such as the electrification of private mobility. As with cooking, consumers will only switch 

to electrical vehicles if they are connected to a reliable power system. Moreover, as in 

developing countries they will often see and possibly replicate what their neighbors do. 

Future analyses of these electrification programs would benefit from incorporating different 

combinations of additional spatial data such as parish censuses or other similar information. 

These results would complement our findings and provide deeper insights to enable the 

design of efficient electrification programs in the future. 
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Appendix I. Ecuadorian Regions 

Figure I.1: Ecuadorian four climatic areas: the Coastal, the Sierra, the Oriental or Amazon and Galápagos. 

Source: Own elaboration. 
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Appendix II – Moran’s I Test for Spatial Autocorrelation 

As our hypothesis is that spatial autocorrelation is present for𝑃𝐶𝐸80𝑖𝑡 and 𝑃𝐶𝐸𝑖𝑡, we test for 

this using the Moran’I based on a row standardized queen spatial weight matrix W, that 

considers neighbours parishes with at least a point of their border in common. Parishes 

without connections are linked to the nearest one. Moran’s I varies between -1 and 1, where 

1 means positive spatial autocorrelation, i.e. locations with similar value of a variable are 

located close each other, and -1 means negative spatial autocorrelation, i.e. locations with 

dissimilar value of a variable are located close each other. Values close to zero denote the 

absence of spatial autocorrelation, which means that a variable is randomly distributed in 

space.  

Figure II.1. Moran’s I of 𝑃𝐶𝐸𝑖𝑡 𝑃𝐶𝐸80𝑖𝑡 ⁡over the period 2015-2021
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Appendix III – Lagrange Multiplier test 

 

According to the decision rule (Anselin et al., 1996), if the LM lag is more significant than 

the LM error, and the robust LM lag is significant, but the robust LM error is not, then the 

appropriate model is the spatial lag model. Conversely, if the LM error is more significant 

than the LM lag, and the robust LM error is significant, but the robust LM lag is not, then the 

appropriate model is the spatial error model. 

Regarding the 𝑃𝐶𝐸80𝑖𝑡 ,⁡in the Table II.1,⁡we find that the preferred model is the spatial lag, 

as the Robust LM lag is preferred to Robust LM err. This is true also when substituting our 

independent variable log(𝑇𝑇𝐼𝑘j𝑡) with log(𝐹𝑀𝐼𝑘j𝑡) and independently from using of year of 

month fixed effects. 

Table III.1. Lagrange Multiplier test for PEC80  

(Panel data with Municipality Fixed Effects) 

 log(𝑇𝑇𝐼𝑘j𝑡) log(𝐹𝑀𝐼𝑘j𝑡) 

 Year FE  Month FE  Year FE  Month FE  

 Statistic p-val. Statistic p-val. Statistic p-val. Statistic p-val. 

LM err 21028.299 0.000 16861.253 0.000 21003.200 0.000 16955.082 0.000 

LM lag 21230.047 0.000 17157.295 0.000 21234.480 0.000 17244.304 0.000 

Robust LM err 3.438 0.064 3.859 0.049 0.741 0.389 3.733 0.053 

Robust LM lag 205.186 0.000 299.901 0.000 232.025 0.000 292.954 0.000 

 

Regarding the 𝑃𝐶𝐸𝑖𝑡, in Table II.2, we find that the Robust LM err is preferred to Robust LM 

lag for both log(𝑇𝑇𝐼𝑘j𝑡) and log(𝐹𝑀𝐼𝑘j𝑡). Consequently, we select a spatial error model. 

This holds also when we use year fixed effects instead of month fixed effects. 

Table III.2. Lagrange Multiplier test for PEC  

(Panel data with Municipality Fixed Effects) 

 log(𝑇𝑇𝐼𝑘j𝑡) log(𝐹𝑀𝐼𝑘j𝑡) 

 Year FE Month FE Year FE Month FE 

 Statistic p-val. Statistic p-val. Statistic p-val. Statistic p-val. 

LM err 16152.400 0.000 12423.556 0.000 16071.242 0.000 12470.202 0.000 

LM lag 16047.510 0.000 12370.482 0.000 15999.891 0.000 12419.779 0.000 

Robust LM err 105.299 0.000 58.720 0.000 76.199 0.000 56.204 0.000 

Robust LM lag 0.414 0.520 5.646 0.018 4.848 0.028 5.781 0.016 
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Appendix IV – OLS, SLM and SEM Estimations 

Table IV.1. OLS estimations for PEC80  

Variable Year FE Month FE Year FE Month FE  

log(𝑁𝑅𝐸𝑆𝑖𝑡)  0.0124 *** 

(0.0010) 

0.0118 *** 

(0.0010) 

0.0124 *** 

(0.0010) 

0.0118 *** 

(0.0010)  
log(𝑁𝑅𝐸𝑆𝑖𝑡

2)  -0.0020 *** 

(0.0001) 

-0.0020 *** 

(0.0001) 

-0.0020 *** 

(0.0001) 

-0.0020 *** 

(0.0001)  
log(𝑒𝐸𝐿𝐷𝑖𝑡)  -0.0013 *** 

(0.0002) 

-0.0011 *** 

(0.0002) 

-0.0013 *** 

(0.0002) 

-0.0011 *** 

(0.0002)  
log⁡(𝑒𝑃𝑂𝑉𝑖𝑡)  -0.0004  

(0.0003) 

0.0004  

(0.0003) 

-0.0004  

(0.0003) 

0.0004  

(0.0003)  
log(𝑒𝐴𝐶𝑇𝑉𝑖𝑡)  0.0017 *** 

(0.0002) 

0.0015 *** 

(0.0002) 

0.0017 *** 

(0.0002) 

0.0015 *** 

(0.0002)  
log(𝑇𝑇𝐼𝑘j𝑡)  -0.0041 *** 

(0.0003) 

 -0.0041 *** 

(0.0003) 

 
 

log(𝐹𝑀𝐼𝑘j𝑡)   -0.0066 *** 

(0.0004) 

 -0.0066 *** 

(0.0004)  

Time and Individual dummies yes yes yes yes  

Observations 63,252 63,252 63,252 63,252  

R2 (Adj.) 0.495 (0.489) 0.526 (0.519) 0.495 (0.489) 0.526 (0.519)  
    Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. 
  

Table IV.2. OLS estimations for PEC 

Variable Year FE Month FE Year FE Month FE  

log(𝑁𝑅𝐸𝑆𝑖𝑡)  0.0100 *** 

(0.0012) 

0.0093 *** 

(0.0011) 

0.0100 *** 

(0.0012) 

0.0093 *** 

(0.0011)  
log(𝑁𝑅𝐸𝑆𝑖𝑡

2)  -0.0016 *** 

(0.0001) 

-0.0017 *** 

(0.0001) 

-0.0016 *** 

(0.0001) 

-0.0017 *** 

(0.0001)  
log(𝑒𝐸𝐿𝐷𝑖𝑡)  -0.0019 *** 

(0.0003) 

-0.0017 *** 

(0.0003) 

-0.0019 *** 

(0.0003) 

-0.0017 *** 

(0.0003)  
log⁡(𝑒𝑃𝑂𝑉𝑖𝑡)  0.0012  

(0.0004) 

0.0004 *** 

(0.0004) 

0.0012  

(0.0004) 

0.0004 *** 

(0.0004)  
log(𝑒𝐴𝐶𝑇𝑉𝑖𝑡)  0.0009 ** 

(0.0002) 

0.0007 *** 

(0.0002) 

0.0009 ** 

(0.0002) 

0.0007 *** 

(0.0002)  
log(𝑇𝑇𝐼𝑘j𝑡)  -0.0048 *** 

(0.0004) 

 -0.0048 *** 

(0.0004) 

 
 

log(𝐹𝑀𝐼𝑘j𝑡)  
 

-0.0082 *** 

(0.0005) 

 -0.0082 *** 

(0.0005)  

Time and Individual dummies yes yes yes yes  
Observations 63,252 63,252 63,252 63,252  

R2 (Adj.) 0.487 (0.481) 0.516 (0.509) 0.487 (0.481) 0.516 (0.509)  
    Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. 
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Table IV.3. SLM estimations for PEC80 

Variable Year FE Month FE Year FE Month FE  

log(𝑁𝑅𝐸𝑆𝑖𝑡)  0.0144*** 

(0.0009) 

0.0139*** 

(0.0009) 

0.0143*** 

(0.0009) 

0.0137*** 

(0.0009)  
log(𝑁𝑅𝐸𝑆𝑖𝑡

2)  -0.0020*** 

(0.0001) 

-0.0020*** 

(0.0001) 

-0.0020*** 

(0.0001) 

-0.0020*** 

(0.0001)  
log(𝑒𝐸𝐿𝐷𝑖𝑡)  -0.0003 

(0.0002) 

-0.0003 

(0.0002) 

-0.0004* 

(0.0002) 

-0.0004* 

(0.0002)  
log⁡(𝑒𝑃𝑂𝑉𝑖𝑡)  0.0006* 

(0.0003) 

0.0002* 

(0.0003) 

0.0005* 

(0.0003) 

0.0002* 

(0.0003)  
log(𝑒𝐴𝐶𝑇𝑉𝑖𝑡)  0.0015*** 

(0,0002) 

0.0014*** 

(0.0002) 

0.0015*** 

(0.0002) 

0.0014*** 

(0.0002)  
log(𝑇𝑇𝐼𝑘j𝑡)  -0.0023*** 

(0.0003) 

-0.0018*** 

(0.0003)    
log(𝐹𝑀𝐼𝑘j𝑡)  

  

-0.0024*** 

(0.0004) 

-0.0012*** 

(0.0004)  
𝜌 (sp. Lag)  0.5754*** 

(0.0039) 

0.5421*** 

(0.0041) 

0.575*** 

(0.0039) 

0.5430*** 

(0.0041)  
Time and Individual dummies yes yes yes yes  

Observations 63,252 63,252 63,252 63,252  
    Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. 
  

 
Table IV.4. SLM estimations for PEC 

Variable Year FE Month FE Year FE Month FE  

log(𝑁𝑅𝐸𝑆𝑖𝑡)   

0.0151*** 

(0.001) 

0.0142*** 

(0.0009) 

0.015*** 

(0.001) 

0.0141*** 

(0.0001)  

log(𝑁𝑅𝐸𝑆𝑖𝑡
2)  

-0.0021*** 

(0.0001) 

-0.0020*** 

(0.0001) 

-0.0020*** 

(0.0001) 

-0.002*** 

(0.0001)  

log(𝑒𝐸𝐿𝐷𝑖𝑡)  

-0.0006** 

(0.0002) 

-0.0006*** 

(0.0002) 

-0.0007*** 

(0.0002) 

-0.0007* 

(0.0002)  

log⁡(𝑒𝑃𝑂𝑉𝑖𝑡)  

0.001** 

(0.0002) 

0.0006* 

(0.0003) 

0.001*** 

(0.0003) 

0.0006* 

(0.0003)  

log(𝑒𝐴𝐶𝑇𝑉𝑖𝑡)   

0.0010*** 

(0,0002) 

0.0009*** 

(0.0002) 

0.0011*** 

(0.0002) 

0.0009*** 

(0.0002)  

log(𝑇𝑇𝐼𝑘j𝑡)   

-0.0030*** 

(0.0003) 

-0.0024*** 

(0.0003)    

log(𝐹𝑀𝐼𝑘j𝑡)     

-0.0036*** 

(0.0004) 

-0.0022*** 

(0.0004)  
𝜌 (sp. Lag) 

  

0.5257*** 

(0.0042) 

0.4870*** 

(0.0044) 

0.5255*** 

(0.0042) 

0.4878*** 

(0.0044)  
Time and Individual dummies yes yes yes yes  
Observations 63,252 63,252 63,252 63,252  
    Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. 
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Table IV.5. SEM estimations for PEC80 

Variable Year FE Month FE Year FE Month FE  

log⁡(𝑁𝑅𝐸𝑆𝑖𝑡)  0.0160*** 

(0.0009) 

0.0156*** 

(0.0009) 

0.0160*** 

(0.0009) 

0.0156*** 

(0.0009)  
log(𝑁𝑅𝐸𝑆𝑖𝑡

2)  -0.0021*** 

(0.0001) 

-0.0021*** 

(0.0001) 

-0.0021*** 

(0.0001) 

-0.0021*** 

(0.0001)  
log(𝑒𝐸𝐿𝐷𝑖𝑡)  0.0000 

(0.0002) 

-0.0000 

(0.0002) 

-0.0000 

(0.0002) 

-0.0000 

(0.0002)  
log⁡(𝑒𝑃𝑂𝑉𝑖𝑡) 

  

0.0008** 

(0.0004) 

0.0005 

(0.0004) 

0.0008** 

(0.0004) 

0.0002 

(0.0004)  
log(𝑒𝐴𝐶𝑇𝑉𝑖𝑡)  0.0015*** 

(0.0002) 

0.0014*** 

(0.0002) 

0.0015*** 

(0.0002) 

0.0014*** 

(0.0002)  
log(𝑇𝑇𝐼𝑘j𝑡)  -0.0025*** 

(0.0005) 

-0.0019*** 

(0.0005)    
log(𝐹𝑀𝐼𝑘j𝑡)  

  

-0.0017*** 

(0.0007) 

-0.0012*** 

(0.0004)  
𝜆 (sp. Err.)  0.5803*** 

(0.0039) 

0.5472*** 

(0.0041) 

0.5811*** 

(0.0039) 

0.5484*** 

(0.0041)   
Time and Individual dummies yes yes yes yes  

Observations 63,252 63,252 63,252 63,252  
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. 

 

Table IV.6. SEM estimations for PEC 

Variable Year FE Month FE Year FE Month FE  

log(𝑁𝑅𝐸𝑆𝑖𝑡)  0.0182*** 

(0.001) 

0.0175*** 

(0.0010) 

0.0182*** 

(0.001) 

0.0175*** 

(0.0010)  
log(𝑁𝑅𝐸𝑆𝑖𝑡

2)  -0.0023*** 

(0.0001) 

-0.0023*** 

(0.0001) 

-0.0023*** 

(0.0001) 

-0.0023*** 

(0.0001)  
log(𝑒𝐸𝐿𝐷𝑖𝑡)  -0.0001 

(0.0002) 

-0.0001 

(0.0002) 

-0.0001 

(0.0002) 

-0.0001 

(0.0002)  
log⁡(𝑒𝑃𝑂𝑉𝑖𝑡)  0.0012*** 

(0.0004) 

0.0009** 

(0.0004) 

0.0012*** 

(0.0004) 

0.0009** 

(0.0004)  
log(𝑒𝐴𝐶𝑇𝑉𝑖𝑡)  0.0012*** 

(0.0002) 

0.0011*** 

(0.0002) 

0.0012*** 

(0.0002) 

0.0011*** 

(0.0002)  
log(𝑇𝑇𝐼𝑘j𝑡)  -0.0025*** 

(0.0005) 

-0.0019*** 

(0.0005)    
log(𝐹𝑀𝐼𝑘j𝑡)  

  

-0.0038*** 

(0.0007) 

-0.0019*** 

(0.0007)  
𝜆 (sp. Err.)  0.5307*** 

(0.0042) 

0.4924*** 

(0.0044) 

0.5309*** 

(0.002) 

0.4934*** 

(0.0044)   
Time and Individual dummies yes yes yes yes  

Observations 63,252 63,252 63,252 63,252  
    Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. 
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