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Título: Robustez de los Modelos Lineales Mixtos Generalizados para Di-
seños Split-Plot con Datos Binarios. 
Resumen: Este artículo examina la robustez del modelo lineal mixto gene-
ralizado (GLMM, por sus siglas en inglés). El GLMM estima efectos fijos y 
efectos aleatorios y es especialmente útil cuando la variable dependiente es 
binaria. También es útil cuando la variable dependiente es de medidas repe-
tidas, ya que puede modelar la correlación. El presente estudio utilizó la 
simulación de Monte Carlo a fin de analizar las tasas de error de Tipo I 
empíricas de los GLMM en diseños split-plot. Las variables manipuladas 
fueron el tamaño de muestra, el tamaño de grupo, el número de medidas 
repetidas y la correlación entre las medidas repetidas. También se conside-
raron condiciones extremas, tales como muestras pequeñas, grupos no ba-
lanceados y diferente correlación en cada grupo (emparejamiento entre ta-
maño de grupo y correlación entre medidas repetidas). Para grupos balan-
ceados, los resultados mostraron que el efecto grupo era robusto en todas 
las condiciones, mientras que para grupos no balanceados el efecto tendía a 
ser conservador con emparejamiento positivo y liberal con emparejamiento 
negativo. Con respecto a los efectos tiempo e interacción, los resultados 
mostraron, tanto para grupos balanceados como para no balanceados, que: 
(a) la prueba fue robusta con baja correlación (.2), pero conservadora para 
valores medios de correlación (.4 y .6), y (b) la prueba tendía a ser conser-
vadora para emparejamiento positivo y negativo, especialmente en este úl-
timo. 
Palabras clave: Modelos lineales mixtos generalizados. Datos binarios. 
Simulación Monte Carlo. Tasa de error Tipo I. 

  Abstract: This paper examined the robustness of the generalized linear 
mixed model (GLMM). The GLMM estimates fixed and random effects, 
and it is especially useful when the dependent variable is binary. It is also 
useful when the dependent variable involves repeated measures, since it 
can model correlation. The present study used Monte Carlo simulation to 
analyze the empirical Type I error rates of GLMMs in split-plot designs. 
The variables manipulated were sample size, group size, number of repeat-
ed measures, and correlation between repeated measures. Extreme condi-
tions were also considered, including small samples, unbalanced groups, 
and different correlation in each group (pairing between group size and 
correlation between repeated measures). For balanced groups, the results 
showed that the group effect was robust under all conditions, while for 
unbalanced groups the effect tended to be conservative with positive pair-
ing and liberal with negative pairing. Regarding time and interaction ef-
fects, the results showed, for both balanced and unbalanced groups, that: 
(a) The test was robust with low correlation (.2), but conservative for me-
dium values of correlation (.4 and .6), and (b) the test tended to be con-
servative for positive and negative pairing, especially the latter. 
Keywords: Generalized linear mixed models. Binary data. Monte Carlo 
simulation. Type I error rate. 

 

Introduction 

 
Scientific researchers are faced with ever more sophisticated 
and innovative data analysis strategies. A good example of 
this is the generalized linear mixed model (GLMM), a flexi-
ble analytical strategy that has evolved from other simpler 
mathematical models and which has been increasingly used 
in recent decades. The general linear model (GLM) is the 
most commonly used approach in the health and social sci-
ences (Blanca et al., 2018), where researchers often perform 
regression analysis, analysis of variance, and analysis of co-
variance. These tests require the fulfillment of a series of as-
sumptions such as a quantitative response variable, normally 
distributed data, homogeneity of variance, and independence 
of errors, assumptions that are not always satisfied with real 
data. The linear mixed model (LMM) is an extension of the 
GLM that allows both fixed and random effects, and it is 
particularly useful when data are not independent (e.g., hier-
archical data, repeated measures) and homogeneity of vari-
ance is not required; robust procedures for dealing with non-
normality when using this model have also been developed 
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(Arnau et al., 2012, 2013; Livacic-Rojas et al., 2010). Another 
extension of the GLM is the generalized linear model 
(GLIM), which is useful for non-normally distributed data 
(e.g., binary, multinomial, ordinal, count, etc.) and which fits 
data with an exponential family distribution through the use 
of non-linear link functions. Finally, the GLMM offers a 
more flexible approach to the analysis of data with a non-
normal distribution (Bolker et al., 2009; Breslow & Clayton, 
1993). The GLMM is a combination of the LMM, which in-
cludes random effects, and the GLIM, which uses different 
link functions that transform the expected value and the lin-
ear predictor to the same scale. In summary, each of the 
aforementioned models has different purposes and is suita-
ble for specific types of data. 

Empirical evidence shows that in the fields of health, ed-
ucation, and social science it is very common for data to be 
non-normally distributed (Arnau et al., 2013; Arnau et al., 
2014a,b; Bauer & Sterba, 2011; Blanca et al., 2013; Bono et 
al., 2017; Lei & Lomax, 2005; Micceri, 1989), or for there to 
be non-independence of observations due to nested sam-
pling or repeated measures (Bandera & Pérez, 2018; Casals 
et al., 2014; Coupé, 2018; Johnson et al., 2015; Thiele & 
Markusen, 2012). These situations, which are very frequent 
in applied research, occur when repeated measurements are 
obtained from the same subjects (Baayen et al., 2017; Dang 
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et al., 2008; Noh et al., 2012; Thiele & Markusen, 2012), as in 
the case of longitudinal studies (Bandera & Pérez, 2018; Cho 
& Goodwin, 2017; Fieberg et al., 2010; Koh et al., 2019; 
Mowen & Culhane, 2017), or when data are hierarchically 
structured (Casals et al., 2014; Elosua & De Boeck, 2020; 
Moscatelli et al., 2012; Mowen & Culhane, 2017). The fact 
that these situations are so common is a primary reason for 
using the GLMM in applied research; additionally, it is one 
of the alternatives to analysis of variance for repeated 
measures designs when the dependent variable is categorical. 
Use of the GLMM for multilevel models and repeated 
measures are further discussed in Stroup (2013). 

With non-normal distributions the GLMM uses different 
link functions. The most frequently used link functions are 
logarithmic (the linear predictor is the natural logarithm of 
the expected value), logit (the linear predictor is the inverse 
of the logistic distribution function of the expected value), 
and probit (the linear predictor is the inverse of the stand-
ardized normal cumulative distribution function of the ex-
pected value). The most common estimation method in 
GLMM is the maximum likelihood (ML) procedure, espe-
cially in the form of variants such as restricted maximum 
likelihood (REML), restricted subject-specific pseudo-
likelihood (RSPL), and penalized quasi-likelihood (PQL). 
Other estimation methods are the Gauss-Hermite quadra-
ture (GHQ), the Laplace approximation (which is a particu-
lar case of the GHQ), hierarchical likelihood (HL), and 
Bayesian methods based on the Markov Chain Monte Carlo 
(MCMC) technique. The algorithm used by the GLMM al-
lows calculation of the best linear unbiased estimator 
(BLUE) of the fixed effects and the best linear unbiased 
predictor (BLUP) of the random effects, which shows the 
lowest root mean square error among all the unbiased linear 
predictors (Bandera & Pérez, 2018; Searle et al., 1992). 

These estimation methods use very complex calculation 
procedures that require increasingly sophisticated statistical 
software, such as proc glimmix in SAS, which generalizes 
two other procedures: proc genmod, by including error 
terms that are not normally distributed, and proc mixed, by 
considering random effects in the model (SAS Institute, 
2013). Proc glimmix is a powerful technique for modeling 
correlated binary outcomes (Dang et al., 2008). By default, 
SAS uses the RSPL approach for parameter estimation 
(Wolfinger & O'Connell, 1993). The RSPL approach esti-
mates random effects models based on residual probability, 
and it is well suited to situations where what is of interest is 
the individual response rather than the population mean or 
marginal model. 

The incorporation of newer procedures into the main 
statistical software packages (SAS, R, STATA, and IBM 
SPSS) has encouraged the use of GLMMs in a wide variety 
of disciplines, including biology (Bandera & Pérez, 2018; 
Thiele & Markussen, 2012), ecology and environmental sci-
ences (Bolker et al., 2009; Johnson et al., 2015; Kain et al., 
2015; Smith et al., 2020), medicine (Brown & Prescott, 2006; 
Casals et al., 2014; Cnnan et al., 1998; Platt et al., 1999; 

Skrondal & Rabe-Hesketh, 2003; Witte et al., 2000), psycho-
physics (Moscatelli & Lacquaniti, 2011; Moscatelli et al., 
2011; Moscatelli et al., 2012), psycholinguistics (Baayen et al., 
2008; Coupé, 2018; Elosua & De Boeck, 2020; Quené & van 
den Bergh, 2008), and psychology (Aiken et al., 2015; Bono 
et al., 2021; Cho & Goodwin, 2017), among others. 

Focusing on the field of psychology, Bono et al. (2021) 
observed a growing trend in the use of these analytic models, 
with the number of GLMM-related articles published in 
2018 (n = 88) being more than double the figure for 2014 (n 
= 39). Bono et al. (2021) also carried out a systematic review 
of 80 empirical articles indexed in JCR journals during 2018, 
and which included a total of 118 different GLMM analyses. 
The results showed that the most common application of 
GLMMs involved the use of repeated measures designs (61.1 
%), with two and three repeated measures (33.33 % and 25 
% of analyses, respectively), and a sample of fewer than 500 
participants (57.6 %). Regarding the characteristics of re-
sponse variables, the most frequent among the studies ana-
lyzed were variables with two response categories (87.7 %). 
The most common distribution used was the binomial dis-
tribution (19.5 %), although in the majority of studies the 
distribution was not specified (52.5 %). Regarding software, 
SAS was the most widely used (36.4 %), with glimmix being 
the most common procedure (32.6 %). 

More generally, the GLMM has most frequently been 
applied in longitudinal studies or repeated measures designs 
with binary response variables (Bakbergenuly & Kulinskaya, 
2018; Cho & Goodwin, 2017; Gawarammana & 
Sooriyarachchi, 2017; Zhang et al., 2011), with count re-
sponse variables (Coupé, 2018; Huang et al., 2016; Kruppa & 
Hothorn, 2021; Sun et al., 2019; Zhang et al., 2012), with 
multinomial outcomes (Jiang & Oleson, 2011) or, to a lesser 
extent, with continuous response variables (Lo & Andrews, 
2015). It is worth noting that binary repeated measures are a 
common occurrence in biology, medicine, psychology, and 
sociology, as well as in many other practical fields 
(Gawarammana & Sooriyarachchi, 2017). These repeated 
measures are often related to each other, and it is common 
practice to use a first-order autoregressive covariance matrix, 
AR(1), to describe this serial dependence. Although the 
GLMM can model serial dependence between repeated bina-
ry responses, its use has not been widespread. Cho et al. 
(2018) show examples in the literature with binary time series 
and illustrate the GLMM AR(1) using empirical data. 

Although, as we have said, GLMMs are now increasingly 
used by researchers in many fields, the robustness of these 
models has not been studied to the same extent as is the case 
for the LMM (e.g., Arnau et al., 2012; Jacqmin-Gadda et al., 
2007; Kowalchuk et al., 2004; Vallejo et al., 2008). Indeed, 
simulation studies on the robustness of GLMMs with re-
peated measures and binary data are still very scarce. For da-
ta of this kind, Fang and Louchin (2013) found that GLMMs 
hold Type I error rates better than does the GLM, while 
Gawarammana and Sooriyarachchi (2017) concluded that the 



334                                                                       Roser Bono et al. 

anales de psicología / annals of psychology, 2023, vol. 39, nº 2 (may) 

GLMM was satisfactory with respect to Type I error for 
sample sizes above 20. 

A further issue to consider is that the results of simula-
tion studies may be of little use to applied researchers in the 
psychological field, because the manipulated variables and 
their values (e.g., sample size, number of groups, number of 
repeated measures, correlation values, etc.) usually vary from 
one study to the next and are unlikely to have been chosen 
based on research practice; consequently, the results may not 
be directly applicable by researchers in this field. In addition, 
a standard criterion has not been used when assessing ro-
bustness, leading to different interpretations of the Type I 
error rate (Blanca et al., 2017, 2018). In this respect, the ro-
bustness of the GLMM has generally been interpreted in 
terms of how close or far the empirical alpha value obtained 
is from the nominal alpha value (Barker et al., 2017; 
Gawarammana & Sooriyarachchi, 2017; Zhang et al., 2012). 

In this paper we report a simulation study conducted 
with the aim of providing empirical evidence on robustness 
(in terms of Type I error rates) of the GLMM in split-plot 
designs with binary response variables. To this end, we sys-
tematically manipulated a broad set of variables and range of 
values, based on research practice. The results of the study 
should help to inform the application of these models in the 
field of psychological or related research. 
 

Method 
 
A Monte Carlo simulation study was performed using the 
IML (interactive matrix language) module and proc glimmix 
of SAS 9.4 (SAS Institute, 2016). The aim was to analyze 
empirical Type I error rates of the GLMM in split-plot de-
signs with binary response variables and a binomial distribu-
tion, involving two groups, two and three repeated measures, 
and a first-order autoregressive covariance matrix, AR(1). 
 

Procedure 
 
A series of macros was created that allowed generation 

of the data, estimation of the model, and the inference of 
fixed effects (adjustment by proc glimmix of SAS). These 
macros are available upon request from the corresponding 
author. Longitudinal binary data were generated with the 
RandMVBinary function (SAS/IML), developed by Wicklin 
(2013) and based on the algorithm of Emrich and Piedmonte 
(1991). This function generates multivariate binary variables 
with a given set of expected values and a specified correla-
tion structure. 

The following variables were manipulated: 
1. Total sample size. Here we considered very small and 

small (N = 24, 36, 48, 60, 72, 84, and 96), moderate (N = 
108, 156, 204, 252, and 300), and large (N = 348, 396, 
444, and 492) sample sizes. Sample sizes less than 500 
were used because they are very frequent in the field of 
psychology (Bono et al., 2021). 

2. Coefficient of group size variation (Δn), which represents 
the amount of inequality in group sample size (Lix & 
Hinds, 2004). Following Blanca et al. (2018), different 
degrees of variation were considered and were grouped 
as null, low, medium, and high (0, .16, .33, and .50, 
respectively). For each N value, equal group sizes 
(balanced groups) and different group sizes (unbalanced 
groups) were considered. With balanced groups, the 
group sizes ranged from 12 to 246 (Tables 1-5), while 
with unbalanced groups the group sizes ranged from 10 
to 369 (Tables 7-12). 

3. Within-subject levels (K). The repeated measures were K 
= 2 and K = 3. According to Bono et al. (2021), these are 
the most commonly used in psychology (58.33 % of 
studies). 

4. Correlation (ϕ1) between repeated measures. The 
correlations with the AR(1) covariance structure were 

low (ϕ1 = .2), medium (ϕ1 = .4 and .6), and high (ϕ1 = 
.8). The same correlation was established in each group. 
Following the simulation study of Bell and Grunwald 

(2011), correlations of ϕ1 = .4 and .8 were used. We also 

considered low and medium correlations (ϕ1 = .2 and ϕ1 
= .6). 

5. Pairing of group size with the correlation between 

repeated measures (ϕ1 = .2 and .8). A different 
correlation was established in each group. Pairing was 
null with balanced groups. With unbalanced groups, the 
pairing was positive when the largest group size was 
associated with the highest correlation and negative when 
the largest group size was associated with the lowest 
correlation. 

 
Table 1  
Empirical Type I error rates (in percentages) for the group effect in balanced groups with 
K = 2. 

  

Null pairing 

Same correlation 
in both groups 

Different correlation 
in the two groups 

N n1, n2 .2 .4 .6 .8 n1 = .2; n2 = .8 

24 12, 12 4.76 3.72 3.36 3.46 2.88 
36 18, 18 5.06 3.52 3.46 6.24 3.52 
48 24, 24 4.86 4.14 4.44 3.72 3.40 
60 30, 30 4.20 3.98 3.56 4.04 4.44 
72 36, 36 5.78 3.82 4.04 5.04 4.26 
84 42, 42 4.92 4.06 4.84 4.40 4.36 
96 48, 48 4.36 4.64 4.26 4.94 4.22 
108 54, 54 4.76 3.86 4.86 4.74 4.68 
156 78, 78 4.44 4.64 4.10 4.38 3.84 
204 102, 102 4.98 4.34 4.72 5.04 4.42 
252 126, 126 4.94 4.42 4.98 5.02 4.50 
300 150, 150 5.00 4.62 4.92 4.96 5.02 
348 174, 174 5.28 4.74 4.74 4.92 4.78 
396 198, 198 4.42 5.12 5.06 4.56 4.56 
444 222, 222 4.82 4.74 5.00 4.90 5.20 
492 246, 246 5.14 4.64 4.58 5.16 4.41 
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Table 2  
Empirical Type I error rates (in percentages) for the time effect in balanced groups with K 
= 2. 

  

Null pairing 

Same correlation 
in both groups 

Different correlation 
in the two groups 

N n1, n2 .2 .4 .6 .8 n1 = .2; n2 = .8 

24 12, 12 3.98 1.82 0.28 0.04 1.24 
36 18, 18 3.88 1.96 1.02 0.10 1.72 
48 24, 24 3.70 3.82 2.14 0.04 3.36 
60 30, 30 4.62 3.48 1.90 0.02 2.84 
72 36, 36 4.44 3.10 1.78 0.00 2.76 
84 42, 42 3.92 3.06 1.88 0.02 3.52 
96 48, 48 3.18 2.98 1.52 0.06 3.30 
108 54, 54 3.06 3.32 1.48 0.00 3.12 
156 78, 78 3.46 2.36 0.96 0.00 3.40 
204 102, 102 3.10 2.24 0.78 0.00 2.90 
252 126, 126 3.10 2.22 0.50 0.02 2.76 
300 150, 150 3.00 1.78 0.70 0.00 2.98 
348 174, 174 3.18 1.86 0.44 0.00 2.70 
396 198, 198 3.02 1.92 0.34 0.02 3.22 
444 222, 222 2.90 1.60 0.60 0.00 2.54 
492 246, 246 2.64 1.52 0.36 0.02 2.60 
Note. In italics = conservative. 

 
Table 3 
Empirical Type I error rates (in percentages) for the interaction effect in balanced groups 
with K = 2. 

  

Null pairing 

Same correlation 
in both groups 

Different correlation 
in the two groups 

N n1, n2 .2 .4 .6 .8 n1 = .2; n2 = .8 

24 12, 12 3.94 1.80 0.44 0.02 1.26 
36 18, 18 3.36 2.04 1.10 0.12 1.60 
48 24, 24 3.80 3.84 1.82 0.06 3.58 
60 30, 30 4.48 3.62 1.86 0.00 3.02 
72 36, 36 3.74 3.10 1.82 0.04 2.82 
84 42, 42 3.78 3.30 1.76 0.02 3.28 
96 48, 48 3.48 2.86 1.64 0.08 3.42 
108 54, 54 3.00 3.26 1.52 0.00 3.36 
156 78, 78 2.78 2.20 1.08 0.00 3.32 
204 102, 102 3.10 2.22 0.90 0.04 3.02 
252 126, 126 3.36 1.86 0.58 0.04 2.50 
300 150, 150 2.98 1.72 0.50 0.06 3.16 
348 174, 174 3.22 2.24 0.40 0.02 2.74 
396 198, 198 2.70 2.10 0.44 0.02 3.26 
444 222, 222 2.84 1.80 0.50 0.02 2.51 
492 246, 246 4.12 1.70 0.54 0.00 2.52 
Note. In italics = conservative. 

 
Table 4 
Empirical Type I error rates (in percentages) for the group effect in balanced groups with 
K = 3. 

  

Null pairing 

Same correlation 
in both groups 

Different correlation 
in the two groups 

N n1, n2 .2 .4 .6 .8 n1 = .2; n2 = .8 
24 12, 12 4.12 3.34 3.16 3.70 3.46 
36 18, 18 4.38 3.68 4.10 3.86 4.46 
48 24, 24 4.76 4.10 4.16 4.32 4.68 
60 30, 30 4.48 4.32 4.44 4.68 4.32 
72 36, 36 5.22 4.42 4.10 4.58 4.74 
84 42, 42 4.08 4.44 4.42 4.22 5.10 

  

Null pairing 

Same correlation 
in both groups 

Different correlation 
in the two groups 

N n1, n2 .2 .4 .6 .8 n1 = .2; n2 = .8 
96 48, 48 4.86 5.02 4.74 4.62 4.40 
108 54, 54 5.28 5.36 4.26 4.38 4.80 
156 78, 78 4.26 4.66 5.12 4.08 4.68 
204 102, 102 4.96 4.60 4.20 4.62 4.66 
252 126, 126 5.20 4.86 5.08 4.98 4.72 
300 150, 150 5.04 4.98 5.06 4.00 4.78 
348 174, 174 4.74 5.24 4.82 4.66 5.54 
396 198, 198 4.48 4.66 4.46 5.14 5.08 
444 222, 222 4.86 4.20 5.10 4.42 5.12 
492 246, 246 5.02 4.78 4.58 4.96 5.18 
 
Table 5 
Empirical Type I error rates (in percentages) for the time effect in balanced groups with K 
= 3. 

  Null pairing 

  
Same correlation 
in both groups 

Different correlation 
in the two groups 

N n1, n2 .2 .4 .6 .8 n1 = .2; n2 = .8 
24 12, 12 3.50 2.92 2.38 1.52 3.98 
36 18, 18 3.61 2.90 2.02 3.32 3.54 
48 24, 24 3.96 2.54 1.86 4.90 2.94 
60 30, 30 3.56 2.50 1.70 3.54 2.64 
72 36, 36 3.16 2.36 1.72 3.56 2.10 
84 42, 42 4.00 1.86 1.70 3.14 1.54 
96 48, 48 3.66 2.30 1.16 3.24 1.36 
108 54, 54 3.32 2.30 1.38 3.88 1.38 
156 78, 78 3.60 2.21 1.14 3.54 1.04 
204 102, 102 3.38 2.06 1.28 4.42 1.16 
252 126, 126 3.36 2.32 0.84 3.70 1.08 
300 150, 150 3.76 1.98 1.36 3.84 1.10 
348 174, 174 3.92 2.36 1.14 3.56 0.94 
396 198, 198 3.38 2.48 1.44 4.00 0.90 
444 222, 222 3.49 2.18 1.32 4.10 1.00 
492 246, 246 3.32 2.24 1.32 3.84 1.14 
Note. In italics = conservative. 
 
Table 6 
Empirical Type I error rates (in percentages) for the interaction effect in balanced groups 
with K = 3. 

  

Null pairing 

Same correlation 
in both groups 

Different correlation 
in the two groups 

N n1, n2 .2 .4 .6 .8 n1 = .2; n2 = .8 

24 12, 12 4.18 2.98 2.40 1.60 4.28 
36 18, 18 4.26 3.02 2.32 3.20 3.52 
48 24, 24 3.90 2.24 1.88 5.30 2.90 
60 30, 30 3.20 2.16 1.58 3.66 2.64 
72 36, 36 3.42 2.32 1.86 3.62 2.24 
84 42, 42 3.96 1.92 1.32 3.18 1.40 
96 48, 48 3.78 2.48 1.28 3.24 1.50 
108 54, 54 3.18 2.04 1.32 3.72 1.24 
156 78, 78 3.30 2.36 1.26 3.58 1.26 
204 102, 102 3.30 2.28 0.88 4.20 1.16 
252 126, 126 3.96 2.12 1.32 3.68 1.10 
300 150, 150 3.60 2.32 0.84 3.88 1.06 
348 174, 174 3.34 2.22 1.16 3.52 1.00 
396 198, 198 3.34 2.44 1.26 4.20 1.06 
444 222, 222 3.81 2.20 0.92 3.86 1.04 
492 246, 246 3.38 2.38 1.50 4.22 1.10 
Note. In italics = conservative. 
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Table 7 
Empirical Type I error rates (in percentages) for the group effect in unbalanced groups 
with K = 2. 

 
N 

 
Δn 

 
n1, n2 

Null pairing Positive 
pairing 

Negative 
pairing .2 .4 .6 .8 

24 

0.16 10, 14 4.88 3.72 2.78 2.98 2.44 3.52 

0.33 8, 16 3.90 2.42 2.42 2.08 1.38 3.42 
0.50 6, 18 2.88 1.78 1.16 0.92 0.86 2.52 

36 

0.16 15, 21 4.38 3.68 3.28 3.88 3.26 3.66 

0.33 12, 24 4.28 3.60 3.64 3.70 2.04 5.24 
0.50 9, 27 3.90 3.36 2.84 2.72 1.86 5.38 

48 

0.16 20, 28 4.52 3.24 3.56 3.74 3.02 4.40 

0.33 16, 32 4.74 3.62 3.80 4.18 2.84 5.12 
0.50 12, 36 5.02 4.20 4.04 4.00 2.32 6.52 

60 

0.16 25, 35 4.94 4.24 4.22 4.42 3.60 4.34 

0.33 20, 40 5.40 3.98 4.58 4.74 3.02 5.52 
0.50 15, 45 5.02 4.54 3.36 3.86 2.66 6.64 

72 

0.16 30, 42 5.56 4.32 3.70 4.56 3.50 5.30 

0.33 24, 48 4.72 4.36 4.64 4.74 2.82 6.20 
0.50 18, 54 5.36 4.28 4.46 4.18 2.50 6.66 

84 

0.16 35, 49 4.50 4.24 4.22 4.56 3.60 5.52 

0.33 28, 56 5.26 4.58 4.18 4.78 3.02 6.26 
0.50 21, 63 4.28 4.44 4.56 4.28 2.56 6.54 

96 

0.16 40, 56 5.02 4.12 4.88 4.40 3.82 5.46 

0.33 32, 64 5.08 4.70 4.42 4.54 3.12 6.58 
0.50 24, 72 4.80 4.46 4.76 4.68 2.54 7.00 

108 

0.16 45, 63 5.10 4.50 4.62 4.50 3.42 5.04 

0.33 36, 72 4.80 4.63 4.32 4.68 3.22 5.62 
0.50 27, 81 4.90 4.32 4.64 4.46 2.68 7.24 

156 

0.16 65, 91 4.64 4.20 4.68 4.78 3.60 5.46 

0.33 52, 104 4.82 4.68 4.78 4.18 3.26 6.64 
0.50 39, 117 5.22 4.86 4.62 4.36 2.92 7.50 

204 

0.16 85, 119 5.20 4.74 4.56 4.70 3.38 5.50 

0.33 68, 136 4.84 4.58 4.34 5.04 3.40 6.74 
0.50 51, 153 5.70 5.28 5.20 5.20 2.88 7.74 

252 

0.16 105, 147 5.24 4.54 4.18 5.22 4.12 5.84 

0.33 84, 168 5.06 4.42 4.94 5.14 3.50 7.20 
0.50 63, 189 5.28 5.02 5.00 4.44 2.60 7.58 

300 

0.16 125, 175 5.02 4.86 4.70 4.32 4.16 6.00 

0.33 100, 200 4.84 5.10 4.82 5.08 3.58 6.62 
0.50 75, 225 4.94 5.42 4.58 4.36 2.66 7.68 

348 

0.16 145, 203 5.02 4.86 4.82 5.04 4.38 5.60 

0.33 116, 232 5.28 4.36 4.98 4.94 3.52 6.32 
0.50 87, 261 4.90 4.40 4.88 5.06 2.54 8.28 

396 

0.16 165, 231 4.84 4.90 4.86 4.96 4.06 5.46 

0.33 132, 264 5.04 5.30 4.70 4.48 3.88 6.72 
0.50 99, 297 4.66 5.26 5.24 4.98 2.86 7.54 

444 

0.16 185, 259 4.70 4.64 4.70 4.70 3.94 6.32 

0.33 148, 296 4.92 5.08 5.12 4.70 3.64 6.58 
0.50 111, 333 4.90 5.46 4.76 4.44 2.78 7.68 

492 

0.16 205, 287 4.76 4.50 5.06 5.62 4.02 5.98 

0.33 164, 328 4.82 4.84 4.70 5.16 3.84 6.12 
0.50 123, 369 4.87 5.18 5.30 5.88 2.92 8.58 

Note. Δn = coefficient of group size variation; null pairing: same correlation 
in the two groups; positive pairing: correlation .2 for n1 and correlation .8 
for n2; negative pairing: correlation .8 for n1 and correlation .2 for n2; in ital-
ics = conservative; in bold = liberal. 
 

Table 8 
Empirical Type I error rates (in percentages) for the time effect in unbalanced groups with 
K = 2. 

 
N 

 
Δn 

 
n1, n2 

Null pairing Positive 
pairing 

Negative 
pairing .2 .4 .6 .8 

24 

0.16 10, 14 4.66 2.02 0.38 0.04 1.10 1.02 

0.33 8, 16 3.58 1.72 0.76 0.00 1.24 0.82 
0.50 6, 18 2.90 1.22 0.20 0.02 0.58 0.70 

36 

0.16 15, 21 3.86 2.20 1.32 0.04 2.52 1.58 

0.33 12, 24 3.46 2.20 0.88 0.08 2.46 1.06 
0.50 9, 27 3.76 1.72 0.98 0.06 2.12 0.84 

48 

0.16 20, 28 4.18 3.50 2.02 0.04 2.94 3.08 

0.33 16, 32 4.72 3.32 2.38 0.04 2.80 2.22 
0.50 12, 36 4.76 3.16 2.06 0.04 3.16 1.90 

60 

0.16 25, 35 4.38 3.73 2.02 0.04 3.32 2.70 

0.33 20, 40 4.02 3.86 1.94 0.04 2.92 2.68 
0.50 15, 45 4.00 3.16 2.40 0.08 2.70 1.40 

72 

0.16 30, 42 3.92 3.36 1.46 0.00 3.32 2.30 

0.33 24, 48 3.88 2.92 1.38 0.02 2.04 1.80 
0.50 18, 54 3.44 2.82 1.66 0.02 2.34 1.14 

84 

0.16 35, 49 3.64 3.02 1.88 0.02 3.54 2.98 

0.33 28, 56 3.50 3.68 1.90 0.00 2.80 1.74 
0.50 21, 63 3.18 3.70 1.78 0.04 2.14 0.96 

96 

0.16 40, 56 3.78 3.08 1.32 0.00 3.50 2.46 

0.33 32, 64 3.28 3.06 1.32 0.02 2.62 1.62 
0.50 24, 72 3.20 3.18 1.18 0.02 2.32 1.02 

108 

0.16 45, 63 3.38 2.66 1.34 0.00 2.96 2.42 

0.33 36, 72 2.82 2.82 1.22 0.00 2.72 1.82 
0.50 27, 81 3.08 2.70 1.28 0.02 2.34 0.90 

156 

0.16 65, 91 2.96 2.18 0.90 0.00 2.70 2.50 

0.33 52, 104 3.14 2.48 0.68 0.00 1.68 0.92 
0.50 39, 117 3.04 2.32 0.66 0.00 1.76 0.36 

204 

0.16 85, 119 2.98 2.22 0.72 0.04 3.14 2.16 

0.33 68, 136 3.22 2.12 0.82 0.00 1.84 1.00 
0.50 51, 153 3.08 2.10 0.90 0.00 1.92 0.28 

252 

0.16 105, 147 3.00 2.22 0.72 0.02 1.90 1.56 

0.33 84, 168 2.90 1.84 0.68 0.02 1.52 0.80 
0.50 63, 189 3.24 1.84 0.54 0.02 1.76 0.16 

300 

0.16 125, 175 3.14 1.82 0.66 0.02 1.98 1.76 

0.33 100, 200 3.76 2.14 0.44 0.00 1.80 0.52 
0.50 75, 225 2.80 1.78 0.58 0.02 1.76 0.14 

348 

0.16 145, 203 2.92 1.90 0.60 0.04 2.16 1.88 

0.33 116, 232 3.06 1.80 0.32 0.02 1.54 0.46 
0.50 87, 261 3.10 1.62 0.46 0.02 1.92 0.14 

396 

0.16 165, 231 2.82 1.62 0.58 0.00 1.90 1.54 

0.33 132, 264 3.64 1.78 0.52 0.02 1.78 0.44 
0.50 99, 297 2.74 1.78 0.52 0.00 1.76 0.18 

444 

0.16 185, 259 3.26 1.58 0.40 0.04 1.94 1.26 

0.33 148, 296 2.96 1.64 0.38 0.06 1.56 0.20 
0.50 111, 333 3.32 1.82 0.56 0.02 1.88 0.24 

492 

0.16 205, 287 2.86 1.50 0.44 0.04 1.96 1.22 

0.33 164, 328 3.00 1.20 0.40 0.02 1.62 0.26 
0.50 123, 369 3.08 1.58 0.42 0.04 1.90 0.16 

Note. Δn = coefficient of group size variation; null pairing: same correlation 
in the two groups; positive pairing: correlation .2 for n1 and correlation .8 for 
n2; negative pairing: correlation .8 for n1 and correlation .2 for n2; in italics = 
conservative. 
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Table 9 
Empirical Type I error rates (in percentages) for the interaction effect in unbalanced 
groups with K = 2. 

 
N 

 
Δn 

 
n1, n2 

Null pairing Positive 
pairing 

Negative 
pairing .2 .4 .6 .8 

24 

0.16 10, 14 4.42 2.12 0.56 0.06 1.38 0.90 

0.33 8, 16 3.68 1.66 0.56 0.00 1.24 0.72 
0.50 6, 18 2.90 0.88 0.22 0.00 0.72 0.76 

36 

0.16 15, 21 3.82 1.86 0.12 0.06 2.08 1.64 

0.33 12, 24 3.58 1.98 0.80 0.08 2.22 1.08 
0.50 9, 27 3.34 1.88 0.82 0.08 1.82 0.94 

48 

0.16 20, 28 4.02 3.20 2.16 0.04 2.88 2.84 

0.33 16, 32 4.70 3.28 2.24 0.00 2.82 2.24 
0.50 12, 36 4.02 3.36 2.12 0.06 2.90 1.88 

60 

0.16 25, 35 4.26 3.70 2.00 0.04 3.46 2.62 

0.33 20, 40 4.10 3.94 1.98 0.02 3.26 2.48 
0.50 15, 45 4.32 3.32 2.32 0.00 2.72 1.56 

72 

0.16 30, 42 3.86 3.34 1.40 0.02 3.22 2.74 

0.33 24, 48 4.44 2.84 1.40 0.00 2.44 1.84 
0.50 18, 54 3.54 2.98 1.62 0.02 2.44 1.02 

84 

0.16 35, 49 3.56 3.22 1.94 0.00 3.50 3.12 

0.33 28, 56 3.56 3.50 1.98 0.00 2.60 1.84 
0.50 21, 63 3.48 3.24 1.70 0.02 2.42 0.90 

96 

0.16 40, 56 3.50 2.90 1.46 0.06 3.52 2.60 

0.33 32, 64 3.04 3.04 1.22 0.04 2.42 1.68 
0.50 24, 72 3.68 3.08 1.22 0.02 2.56 1.12 

108 

0.16 45, 63 3.10 3.04 1.56 0.06 3.30 2.60 

0.33 36, 72 2.70 2.70 1.22 0.02 2.84 1.84 
0.50 27, 81 3.28 2.70 1.16 0.02 2.22 0.92 

156 

0.16 65, 91 2.80 2.68 1.04 0.00 2.62 2.40 

0.33 52, 104 2.70 2.40 0.70 0.06 1.48 1.12 
0.50 39, 117 2.94 2.30 0.72 0.06 2.16 0.40 

204 

0.16 85, 119 3.28 2.24 0.82 0.00 2.96 2.22 

0.33 68, 136 3.06 2.26 0.84 0.02 1.84 1.06 
0.50 51, 153 3.08 1.74 0.88 0.06 1.98 0.22 

252 

0.16 105, 147 3.24 2.14 0.64 0.02 2.10 1.56 

0.33 84, 168 2.86 2.16 0.76 0.08 1.44 0.72 
0.50 63, 189 3.56 2.12 0.54 0.02 1.76 0.12 

300 

0.16 125, 175 2.90 2.00 0.70 0.00 2.04 1.58 

0.33 100, 200 3.38 1.72 0.56 0.02 1.72 0.50 
0.50 75, 225 2.88 1.74 0.66 0.02 1.64 0.20 

348 

0.16 145, 203 2.98 2.12 0.52 0.04 1.82 1.88 

0.33 116, 232 2.86 1.78 0.56 0.02 1.52 0.48 
0.50 87, 261 3.68 1.70 0.38 0.06 1.72 0.16 

396 

0.16 165, 231 2.88 1.70 0.54 0.04 1.76 1.70 

0.33 132, 264 3.44 1.96 0.60 0.00 1.38 0.52 
0.50 99, 297 2.74 1.96 0.38 0.00 1.40 0.20 

444 

0.16 185, 259 3.12 1.62 0.38 0.02 2.06 1.42 

0.33 148, 296 2.82 1.70 0.54 0.02 1.62 0.38 
0.50 111, 333 3.00 1.86 0.50 0.02 1.74 0.14 

492 

0.16 205, 287 2.58 1.32 0.40 0.00 1.92 1.38 

0.33 164, 328 3.18 1.78 0.40 0.00 1.74 0.32 
0.50 123, 369 3.12 1.74 0.48 0.06 1.86 0.12 

Note. Δn = coefficient of group size variation; null pairing: same correlation 
in the two groups; positive pairing: correlation .2 for n1 and correlation .8 
for n2; negative pairing: correlation .8 for n1 and correlation .2 for n2; in ital-
ics = conservative. 
 

Table 10 
Empirical Type I error rates (in percentages) for the group effect in unbalanced groups 
with K = 3. 

 
N 

 
Δn 

 
n1, n2 

Null pairing Positive 
pairing 

Negative 
pairing .2 .4 .6 .8 

24 

0.16 10, 14 3.64 2.96 2.86 2.86 2.32 4.24 

0.33 8, 16 3.74 3.72 2.32 2.40 1.70 5.08 
0.50 6, 18 4.24 2.02 1.24 1.28 0.52 4.38 

36 

0.16 15, 21 4.38 4.34 4.26 4.02 3.14 4.42 

0.33 12, 24 4.26 3.94 4.22 4.42 2.20 7.02 
0.50 9, 27 4.14 4.00 3.44 3.60 1.30 7.92 

48 

0.16 20, 28 4.48 4.40 3.92 4.40 2.88 5.66 

0.33 16, 32 4.58 4.48 3.98 4.46 2.52 7.02 
0.50 12, 36 4.08 4.80 4.14 4.32 1.82 9.00 

60 

0.16 25, 35 4.88 4.44 4.44 4.44 2.88 5.72 

0.33 20, 40 5.00 4.76 4.68 4.20 2.84 7.98 
0.50 15, 45 4.62 4.62 3.88 4.78 1.58 8.62 

72 

0.16 30, 42 4.34 4.84 4.56 4.80 3.36 6.02 

0.33 24, 48 5.12 4.28 4.86 4.76 2.34 7.82 
0.50 18, 54 4.94 4.56 4.14 4.30 1.64 8.64 

84 

0.16 35, 49 4.36 4.60 4.32 4.76 3.26 6.34 

0.33 28, 56 4.76 5.08 4.28 4.52 2.88 7.80 
0.50 21, 63 4.92 4.32 4.42 4.32 1.76 8.96 

96 

0.16 40, 56 4.06 4.72 4.24 4.78 3.46 5.62 

0.33 32, 64 4.82 4.66 4.94 4.28 2.48 7.14 
0.50 24, 72 5.02 4.94 3.84 4.68 1.80 9.52 

108 

0.16 45, 63 4.14 4.52 4.88 4.64 3.80 5.86 

0.33 36, 72 4.70 4.70 4.62 4.96 2.70 7.72 
0.50 27, 81 4.74 4.76 4.70 5.38 1.22 9.90 

156 

0.16 65, 91 4.66 4.88 5.28 4.60 3.72 6.34 

0.33 52, 104 4.96 4.60 4.30 4.20 2.58 8.08 
0.50 39, 117 5.36 4.64 4.62 5.36 1.84 10.84 

204 

0.16 85, 119 4.94 4.86 5.22 4.90 3.78 6.50 

0.33 68, 136 5.48 5.62 5.14 4.58 2.98 8.06 
0.50 51, 153 4.54 4.74 4.96 5.06 1.84 10.06 

252 

0.16 105, 147 4.68 4.66 4.64 3.86 3.38 6.20 

0.33 84, 168 5.10 4.90 4.96 4.78 3.08 7.78 
0.50 63, 189 5.34 4.52 4.54 4.54 1.98 9.78 

300 

0.16 125, 175 4.76 5.22 4.66 4.12 4.04 6.54 

0.33 100, 200 5.22 5.06 4.72 4.84 3.02 8.08 
0.50 75, 225 5.82 4.76 4.74 4.40 2.12 10.36 

348 

0.16 145, 203 5.06 5.02 4.42 4.52 3.78 7.20 

0.33 116, 232 5.00 5.10 5.26 4.64 2.58 8.49 
0.50 87, 261 5.18 4.76 5.16 4.58 1.54 9.76 

396 

0.16 165, 231 5.18 4.58 5.06 5.12 3.16 8.28 

0.33 132, 264 5.08 5.18 5.06 4.30 2.84 8.22 
0.50 99, 297 5.24 4.82 5.26 4.64 2.20 9.92 

444 

0.16 185, 259 5.06 5.22 4.92 4.98 3.26 8.18 

0.33 148, 296 4.94 4.58 4.88 4.90 2.86 8.98 
0.50 111, 333 4.84 5.30 5.10 5.22 1.66 9.32 

492 

0.16 205, 287 5.08 5.10 5.18 4.86 3.18 7.96 

0.33 164, 328 5.70 4.68 4.62 4.96 2.54 8.54 
0.50 123, 369 4.98 5.00 4.82 5.10 1.46 9.14 

Note. Δn = coefficient of group size variation; null pairing: same correlation 
in the two groups; positive pairing: correlation .2 for n1 and correlation .8 
for n2; negative pairing: correlation .8 for n1 and correlation .2 for n2; in ital-
ics = conservative; in bold = liberal. 
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Table 11 
Empirical Type I error rates (in percentages) for the time effect in unbalanced groups with 
K = 3. 

 
N 

 
Δn 

 
n1, n2 

Null pairing Positive 
pairing 

Negative 
pairing .2 .4 .6 .8 

24 

0.16 10, 14 3.64 3.22 2.16 1.32 4.44 3.14 

0.33 8, 16 3.22 2.64 2.10 1.18 4.32 2.40 
0.50 6, 18 3.52 1.84 1.62 1.10 4.54 2.12 

36 

0.16 15, 21 3.44 2.58 2.34 3.52 4.66 1.42 

0.33 12, 24 3.72 2.28 2.32 4.08 5.60 1.68 
0.50 9, 27 2.56 2.26 2.12 3.18 5.86 1.22 

48 

0.16 20, 28 3.70 2.52 2.04 4.38 3.48 1.76 

0.33 16, 32 3.72 2.48 2.08 3.78 5.54 1.18 
0.50 12, 36 3.36 2.30 1.66 4.54 6.52 0.78 

60 

0.16 25, 35 4.20 2.24 1.92 3.00 3.26 1.48 

0.33 20, 40 3.80 2.20 1.72 2.86 4.32 1.10 
0.50 15, 45 3.26 2.40 1.74 3.18 5.80 0.68 

72 

0.16 30, 42 4.14 2.18 1.52 3.48 2.64 1.18 

0.33 24, 48 3.56 2.44 1.22 3.62 4.42 0.68 
0.50 18, 54 3.48 2.42 1.28 3.94 4.74 0.50 

84 

0.16 35, 49 3.22 2.24 1.38 3.92 2.68 1.08 

0.33 28, 56 3.76 2.40 1.38 3.42 3.98 0.44 
0.50 21, 63 3.68 2.20 1.28 3.18 5.92 0.38 

96 

0.16 40, 56 3.64 2.52 0.96 4.00 2.48 0.84 

0.33 32, 64 3.62 2.82 1.34 4.14 3.54 0.40 
0.50 24, 72 3.16 2.32 1.16 3.30 4.60 0.38 

108 

0.16 45, 63 3.20 2.02 1.14 4.08 1.76 0.88 

0.33 36, 72 3.38 2.12 1.40 3.60 2.96 0.32 
0.50 27, 81 3.26 2.06 1.00 3.76 4.56 0.38 

156 

0.16 65, 91 3.66 2.10 1.28 3.40 1.70 0.80 

0.33 52, 104 3.52 2.46 1.20 3.68 2.80 0.38 
0.50 39, 117 2.82 2.14 1.06 3.70 4.18 0.20 

204 

0.16 85, 119 3.62 1.94 1.38 3.92 1.54 0.64 

0.33 68, 136 3.38 2.32 1.18 4.12 2.40 0.44 
0.50 51, 153 3.70 2.16 1.02 4.24 4.00 0.30 

252 

0.16 105, 147 3.16 2.28 1.06 4.00 1.70 1.00 

0.33 84, 168 3.06 1.86 1.34 3.56 2.56 0.44 
0.50 63, 189 3.32 2.44 1.48 4.06 2.94 0.18 

300 

0.16 125, 175 3.64 1.52 0.92 4.24 1.58 0.84 

0.33 100, 200 3.54 2.20 0.96 4.04 2.30 0.44 
0.50 75, 225 3.62 2.20 1.20 3.40 3.68 0.40 

348 

0.16 145, 203 4.26 2.06 1.44 3.58 1.76 0.76 

0.33 116, 232 3.44 2.00 1.20 3.42 2.20 0.42 
0.50 87, 261 3.62 2.32 1.08 3.26 2.96 0.20 

396 

0.16 165, 231 3.42 2.64 1.30 3.32 1.46 0.28 

0.33 132, 264 3.38 2.06 1.10 3.14 2.48 0.28 
0.50 99, 297 3.76 2.02 1.38 3.68 2.78 0.22 

444 

0.16 185, 259 3.36 1.96 1.24 3.26 1.78 0.36 

0.33 148, 296 3.64 2.14 0.90 3.24 2.58 0.26 
0.50 111, 333 3.54 2.16 1.34 4.68 2.98 0.18 

492 

0.16 205, 287 3.54 2.12 0.98 3.22 1.84 0.41 

0.33 164, 328 3.56 2.20 1.08 3.14 2.76 0.36 
0.50 123, 369 4.10 2.06 1.16 4.10 2.82 0.20 

Note. Δn = coefficient of group size variation; null pairing: same correlation 
in the two groups; positive pairing: correlation .2 for n1 and correlation .8 
for n2; negative pairing: correlation .8 for n1 and correlation .2 for n2; in ital-
ics = conservative. 
 
 

Table 12 
Empirical Type I error rates (in percentages) for the interaction effect in unbalanced 
groups with K = 3. 

 
N 

 
Δn 

 
n1, n2 

Null pairing Positive 
pairing 

Negative 
pairing .2 .4 .6 .8 

24 

0.16 10, 14 3.50 3.22 2.26 1.34 4.42 3.30 

0.33 8, 16 3.24 2.46 2.02 1.30 4.28 2.34 
0.50 6, 18 3.70 1.66 1.62 1.04 4.82 2.06 

36 

0.16 15, 21 3.86 3.02 2.60 3.48 4.84 1.32 

0.33 12, 24 3.66 2.50 2.46 4.18 6.02 1.70 
0.50 9, 27 2.84 2.18 2.22 3.14 6.12 1.26 

48 

0.16 20, 28 3.96 2.24 2.30 4.50 3.84 1.92 

0.33 16, 32 3.36 2.50 2.12 3.80 5.70 1.48 
0.50 12, 36 3.42 1.96 1.62 4.42 6.78 0.70 

60 

0.16 25, 35 4.02 2.28 1.82 3.24 2.98 1.56 

0.33 20, 40 3.94 2.24 1.84 2.93 3.88 1.00 
0.50 15, 45 3.46 2.30 1.68 3.36 6.06 0.60 

72 

0.16 30, 42 3.78 1.98 1.56 3.60 2.80 1.20 

0.33 24, 48 3.32 1.94 1.32 3.86 4.96 0.76 
0.50 18, 54 3.12 2.16 1.50 3.90 5.88 0.66 

84 

0.16 35, 49 3.66 2.16 1.56 3.84 2.50 1.16 

0.33 28, 56 3.72 2.20 1.16 3.10 4.04 0.42 
0.50 21, 63 3.44 1.70 1.34 3.22 5.42 0.54 

96 

0.16 40, 56 3.58 2.46 1.08 3.70 2.44 1.02 

0.33 32, 64 3.76 2.16 1.46 3.84 3.34 0.62 
0.50 24, 72 3.10 2.10 1.18 3.30 4.84 0.36 

108 

0.16 45, 63 3.64 2.10 1.40 3.82 2.20 0.94 

0.33 36, 72 3.24 2.14 1.30 3.94 3.16 0.50 
0.50 27, 81 3.76 2.42 1.30 3.78 4.62 0.46 

156 

0.16 65, 91 3.10 2.13 1.16 3.26 2.02 0.64 

0.33 52, 104 3.20 2.26 1.32 3.56 2.68 0.40 
0.50 39, 117 3.16 1.90 1.22 3.82 4.24 0.24 

204 

0.16 85, 119 3.28 2.26 1.38 4.16 1.44 0.78 

0.33 68, 136 3.12 2.12 1.10 3.76 2.14 0.28 
0.50 51, 153 3.32 2.30 0.90 4.04 3.30 0.30 

252 

0.16 105, 147 3.28 2.44 1.44 4.10 1.44 0.64 

0.33 84, 168 3.32 1.92 1.28 3.64 2.66 0.56 
0.50 63, 189 3.08 2.26 1.10 4.04 3.28 0.14 

300 

0.16 125, 175 3.68 2.00 1.36 4.54 1.66 0.60 

0.33 100, 200 3.56 2.20 1.28 4.06 2.18 0.42 
0.50 75, 225 3.92 2.20 1.14 3.26 3.36 0.18 

348 

0.16 145, 203 3.52 2.32 1.12 3.50 1.34 0.74 

0.33 116, 232 3.52 2.26 1.00 3.46 2.26 0.38 
0.50 87, 261 3.56 2.20 1.02 3.50 3.32 0.24 

396 

0.16 165, 231 3.38 2.40 1.12 3.34 1.34 0.40 

0.33 132, 264 3.30 2.06 1.08 3.06 2.28 0.54 
0.50 99, 297 3.72 1.88 1.20 4.00 2.58 0.10 

444 

0.16 185, 259 3.20 2.20 1.24 3.22 1.96 0.44 

0.33 148, 296 3.72 2.20 0.92 3.50 2.14 0.38 
0.50 111, 333 3.68 2.02 1.00 4.12 2.04 0.16 

492 

0.16 205, 287 3.30 2.08 1.34 3.18 1.92 0.50 

0.33 164, 328 3.06 2.16 1.08 3.00 2.04 0.36 
0.50 123, 369 4.46 1.98 1.30 4.08 2.21 0.10 

Note. Δn = coefficient of group size variation; null pairing: same correlation 
in the two groups; positive pairing: correlation .2 for n1 and correlation .8 
for n2; negative pairing: correlation .8 for n1 and correlation .2 for n2; in ital-
ics = conservative. 
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Five thousand replications of each combination of the 
above variables were performed at a significance level of .05. 

Once the data had been generated, the GLMM was ap-
plied using proc glimmix. The classification variables were 
subject, group, and time. The fixed effects of the model were 
group, time, and interaction (group x time). The RSPL ap-
proach was used because its focus is the individual response. 
A binomial distribution was fitted with the logit link func-
tion, which is widely used for binary responses (Malik et al., 
2020). For the adjustment of degrees of freedom, we used 
the Kenward-Roger approximation (Kenward & Roger, 
2009), specifically the improved (KR2) method in SAS. This 
approach uses a less biased precision estimator and is rec-
ommended when analyzing repeated measures data (Stroup 
et al., 2018). This correction further reduces the precision es-
timator bias for the fixed and random effects under nonline-
ar covariance structures. Finally, the random effects were in-
tercept and the slope over time. For the time variable, the 
AR(1) covariance structure was fitted. This correlation struc-
ture is close to an autoregressive structure, which is usually 
expected in repeated measures data (Gawarammana & 
Sooriyarachchi, 2017; Dang et al., 2008; Liu et al., 2012). 

 
Data analysis 
 
Robustness was evaluated by means of Bradley’s (1978) 

criterion, according to which a test is considered robust 
when the empirical Type I error rate is between .025 and 
.075 for a nominal alpha level of .05. When the empirical 
Type I error rate is above the upper limit, the test is consid-
ered liberal, and when it is below the lower limit it is consid-
ered conservative. The effects of the group factor, time fac-
tor, and interaction factor (group x time) were analyzed for 
each combination of manipulated variables. 

 

Results 
 
Balanced groups 
 
In balanced groups, with K = 2 and K = 3, the group ef-

fect was robust in all conditions (Tables 1 and 4), including 
when the groups had different correlation values between 
repeated measures (null pairing between correlation and 
group size). 

For K = 2, time and interaction effects were robust with 
correlation of .2, but the results became increasingly con-
servative as the correlation increased (Tables 2 and 3). They 
were also generally robust with null pairing. 

For K = 3, time and interaction effects were robust with 
correlation of .2 and .8, while with correlation of .4 and .6 
the results were conservative in the majority of conditions 
(Tables 5 and 6). They were also conservative with null pair-
ing between correlation and group size in the majority of 
conditions. 

 

Unbalanced groups 
 
In unbalanced groups, for K = 2 and null pairing the 

group effect was robust in almost all conditions (Table 7), 
except with a small sample size (N = 24), where it can be-
come conservative. For positive pairing between group size 
and correlation the test tended to be conservative with small 
sample sizes, whereas for negative pairing it tended to be lib-
eral when inequality of group sample size was high in mod-
erate and large sample sizes. For K = 3, it was conservative 
with positive pairing and liberal for negative pairing (Table 
10). 

For K = 2, time and interaction effects were robust with 
correlation of .2. However, the effects were increasingly con-
servative as the correlation increased (Tables 8 and 9), espe-
cially with correlation of .6 and .8. They were also conserva-
tive with both positive and negative pairing between group 
size and correlation. 

For K = 3, time and interaction effects were robust with 
correlation .2 and .8, although with correlation of .8 and very 
small samples they were conservative. Results were generally 
conservative with correlation of .4 and .6 (Tables 11 and 12). 
They also tended to be conservative for positive pairing be-
tween group size and correlation as the sample size increased 
(from N = 96), and for negative pairing in all conditions. 

 

Discussion 
 

The aim of this study was to examine the empirical Type I 
error rates associated with the use of GLMMs under the 
most common conditions found in research in psychology 
(sample sizes less than 500, two groups, two and three re-
peated measures, and binary data). The RSPL approach in 
proc glimmix was used because its focus is on individual re-
sponses. In view of the fact that longitudinal data are nor-
mally correlated, the AR(1) covariance structure was fitted, 
and because the simulated samples were smaller than 500 we 
used the improved Kenward-Roger approach.  

The results of this study provide researchers with useful 
information about the performance of these models, espe-
cially under extreme conditions (e.g., small samples, unbal-
anced groups, different correlation between repeated 
measures in each group). The most important conclusions in 
split-plot designs are: 
1. For the group effect and balanced groups, the GLMM 

was always robust, including when the correlation 
between repeated measures of each group was different. 

2. For the group effect and unbalanced groups, the GLMM 
can be (a) conservative when pairing between group size 
and the correlation between repeated measures is 
positive, and (b) liberal when this pairing is negative. 
With negative pairing the test became systematically 
more liberal as the inequality of group sample size 
increased. 

3. For the time and interaction effects, the empirical Type I 
error rates of the GLMM depend on the correlation 
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between repeated measures, the pairing between group 
size and correlation, the inequality of group sample sizes, 
and the number of repeated measures. Specifically: 
a. The GLMM was robust with low correlation between 

repeated measures (.2) for all conditions studied. 
b. When correlations between repeated measures were 

equal in the groups, the GLMM was generally 
conservative for medium values of correlations (.4 
and .6). However, for high values (.8) it was only 
conservative with two repeated measures. 

c. When correlations between repeated measures were 
different in the groups, the GLMM was generally 
conservative for both positive and negative pairing in 
unbalanced designs. It was also conservative for three 
repeated measures and null pairing in balanced 
designs. 

d. As the inequality of group sample sizes increased, the 
GLMM was systematically more conservative for 
negative pairing. 

 
For time and interaction effects, the GLMM analyzed in 

this study is generally robust with low correlation between 
repeated measures. However, with medium correlation it 
tends to be conservative, and researchers would therefore 
need to exercise caution before accepting the null hypothesis 
based on their results. We also found that the test is robust 
with K = 3 when the correlation between measures is .8. It is 
also important to note that for the group effect the test may 
become very liberal in the case of negative pairing between 
group size and correlation, and hence any significant differ-
ences between groups would need to be interpreted with 
care. 

Dang et al. (2008) found that robustness of the GLMM 
in terms of power estimates depends on the within-subject 
correlation of the binary outcomes. Specifically, if the ran-
dom effects remain the same but the within-subject correla-
tions increase, the estimated power decreases. Although oth-
er simulation studies have examined the robustness of the 
GLMM with binary responses (e.g., Fang & Louchin, 2013; 
Gawarammana & Sooriyarachchi, 2017), their results cannot 
be compared with our findings here as the variables manipu-
lated and study objectives were different. 

Gawarammana and Sooriyarachchi (2017) showed that 
with three repeated measures, a binary response variable, the 
logit link function, and quadrature estimation, proc glimmix 
yielded satisfactory results with respect to Type I error for 
sample sizes above 20. Here we used proc glimmix in SAS, 
although other options with binary data are proc nlmixed, 
which is useful for nonlinear mixed models (Zhang et al., 
2011), and proc genmod, which is useful for generalized es-
timating equations (Gawarammana & Sooriyarachchi, 2017; 
Landerman et al., 2011). Zhang et al. (2012) analyzed the use 
of proc nlmixed with binary data, obtaining robust results 
under correct model assumptions and with a relatively small 
number of random effects. Gawarammana and Sooriyarach-
chi (2017) concluded that proc genmod only works well 

when the sample size is very large (250 or over). In the re-
view by Bono et al. (2021), none of the empirical studies 
they analyzed reported using proc nlmixed or proc genmod, 
and hence they did not compare the two procedures. It 
should be noted nonetheless that when applied to the mod-
eling of binary responses, different procedures within a 
package may give quite different results (Zhang et al., 2011). 

The robustness of the GLMM also differs depending on 
the parameter estimation method used (Zhang et al., 2012). 
Here we only used the RSPL, as this is well suited to the ob-
jectives of research in psychology. It is important to note, 
however, that empirical studies in the field of psychology 
that are based on the GLMM rarely report the estimation 
method used (Bono et al., 2021). Furthermore, few studies 
focused on the GLMM have examined methods of correct-
ing the degrees of freedom for small samples (Bell & Grun-
wald, 2011). Li and Redden (2015) compared the Kenward-
Roger procedure with other methods of adjusting the de-
grees of freedom when the GLMM is used to analyze binary 
outcomes in small sample cluster-randomized trials. They 
found that the Kenward-Roger method can provide tests 
with very conservative Type I error rates. 

Many of the results derived from simulation studies may 
be of little use to applied researchers in the psychological 
field, because the manipulated variables and their values (e.g., 
sample size, number of groups, number of repeated 
measures, correlation, etc.) show considerable heterogeneity 
and are rarely chosen based on research practice. Hence our 
aim in this simulation study was to provide empirical evi-
dence about the robustness (in terms of Type I error) of the 
GLMM in split-plot designs with binary response variables. 
To achieve this aim, we systematically manipulated a broad 
set of variables and range of values, based on research prac-
tice in psychology and related fields. 

Our focus here has been on the analysis of repeated bi-
nary data. However, the GLMM can be considered for other 
types of outcomes, such as repeated ordinal responses (Lin, 
2010; Lin & Chen, 2016) or repeated count measures (Bell & 
Grunwald, 2011; Huang et al., 2016; Zhang et al., 2012). 
Other important issues related to the performance of 
GLMMs that are not discussed in this paper are the ap-
proach chosen to deal with missing data or attrition (Amatya 
& Bhaumik, 2018; Miller et al., 2020; Noh et al., 2012), over-
dispersion (Johnson et al., 2015), misspecification of the 
shape of a random effects distribution (Litière et al, 2007; 
McCulloch & Neuhaus, 2011), link function misspecification 
(Yu & Huang, 2019), and the impact of different random ef-
fects covariance matrices for longitudinal data (Hoque & 
Torabi, 2018). Although much more research is still required 
in this area, the results obtained in the present study provide 
useful information about the performance of GLMMs in 
psychological research settings. This is important as applied 
researchers can now use statistical software and specific 
packages (e.g. SAS, R, and SPSS) to conduct GLMM anal-
yses. 
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It should be noted that although we simulated a broad 
set of variables and range of values, the conclusions to be 
drawn are limited by the range of evaluated conditions. For 
example, we studied only one model for binary outcomes, 
and we did not evaluate model performance with alternative 
link functions or estimation methods. These limitations are 
potentially fruitful directions for future research. Finally, the 
robustness of the GLMM can also be studied in terms of 
power (Chen et al., 2016; Stroup, 2013). Despite the increas-
ing use of GLMMs, there are few articles reporting a power 
analysis for these models (e.g., Dang et al., 2008; Jiang & 
Oleson, 2011; Johnson et al., 2015; Kain et al., 2015). A fur-

ther study analyzing the robustness of the GLMM in terms 
of power and calculating the optimal sample, as proposed 
for the LMM (Vallejo et al., 2019), would therefore provide a 
useful complement to the present results. 
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