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Abstract 

Inconsistencies in the research findings on F-test robustness to variance heterogeneity 

could be related to the lack of a standard criterion to assess robustness or to the different 

measures used to quantify heterogeneity. In the present paper we use Monte Carlo simulation to 

systematically examine the Type I error rate of F-test under heterogeneity. One-way, balanced, 

and unbalanced designs with monotonic patterns of variance were considered. Variance ratio 

(VR) was used as a measure of heterogeneity (1.5, 1.6, 1.7, 1.8, 2, 3, 5, and 9), the coefficient of 

sample size variation as a measure of inequality between group sizes (0.16, 0.33, and 0.50), and 

the correlation between variance and group size as an indicator of the pairing between them (1, 

.50, 0, -.50, and -1). Overall, the results suggest that in terms of Type I error a VR above 1.5 may 

be established as a rule of thumb for considering a potential threat to F-test robustness under 

heterogeneity with unequal sample sizes.  
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One-way analysis of variance (ANOVA) is one of the most common statistical 

techniques to test the equality of three or more means in educational and behavioral research 

(Keselman et al., 1998; Kieffer, Reese, & Thompson, 2001), although its use has decreased in 

recent years (Skidmore & Thompson, 2010). The F-test assumes that the outcome variable must 

be normally and independently distributed, and the samples must come from a population with 

common variances. However, the empirical evidence involving real data extracted from review 

of several scientific journals indicates that these assumptions are not always met (Blanca, Arnau, 

López-Montiel, Bono, & Bendayan, 2013; Micceri, 1989; Ruscio & Roche, 2012). 

Specifically, with regard to homogeneity of variance, research reveals that group 

variances are often unequal (Erceg-Hurn & Miroservich, 2008; Grissom, 2000; Keselman et al., 

1998; Ruscio & Roche, 2012; Wilcox, 1987). This inequality may be due to a priori differences 

in groups that are naturally formed or to an effect of experimental treatment which produces 

differences not only in means but also in variances (Bryk & Raudenbash, 1988; Erceg-Hurn & 

Mirosevich, 2008; Grissom, 2000; Grissom & Kim, 2001; Sawilowsky, 2002; Sawilowsky & 

Blair, 1992). Several indexes have been proposed to measure the amount of heterogeneity, 

namely the coefficient of variance variation (Box, 1954; Rogan, Keselman, & Breen, 1977; 

Ruscio & Roche, 2012), the standardized variance heterogeneity index (Ruscio & Roche, 2012), 

and the variance ratio (Keselman et al., 1998; Ruscio & Roche, 2012). The variance ratio, which 

is the simplest measure of heterogeneity, is defined as the ratio of the largest variance to the 

smallest variance of the groups. This is the index most commonly used in Monte Carlo studies 

(e.g., Box, 1954; Cribbie, Wilcox, Bewell, & Keselman, 2007; Fan & Hancock, 2012; Hsu, 

1938; Kang, Harring, & Li, 2015; Mendes & Pala, 2004; Mickelson, 2013; Moder, 2007, 2010; 

Scheffé, 1959; Tomarken & Serling, 1986; Wilcox, Charlin, & Thompson, 1986; Zijlstra, 2004). 
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With real data, Keselman et al. (1998) found that the average value of the variance ratio was 2.0 

(SD = 2.6), with a median of 1.5 and a maximum ratio of 23.8.  Recently, Ruscio and Roche 

(2012) found variance heterogeneity in more than 50% of examined cases, with the mean 

variance ratio being equal to 2.51 when there were two groups, 3.95 when there were three 

groups, and 8.84 when there were four groups in the design.  

As the abovementioned studies show, variance heterogeneity is frequently observed in 

real data. The question that follows logically from this is how heterogeneity affects the 

robustness of the F-test. Robustness, which has been extensively addressed in the literature, 

refers to a statistical test’s insensitivity under violations of its assumptions, specifically in terms 

of its Type I error rates (Box, 1953). Type I error is the probability of rejecting a null hypothesis 

when it is actually true. The robustness of a statistical test can be evaluated via Monte Carlo 

simulation techniques, and in order to ensure the comparability of results from Monte Carlo 

studies a standard criterion to assess robustness must be established. Bradley’s (1978) liberal 

criterion is considered the most appropriate (e.g., Keselman, Algina, Kowalchuk, & Wolfinger, 

1999; Kowalchuk, Keselman, Algina, & Wolfinger, 2004). According to this criterion, a 

statistical test is considered robust if the empirical Type I error rate is between .025 and .075 for 

a nominal alpha level of .05. When the rate is above .075 the test is considered liberal, increasing 

the risk of declaring mean differences that do not exist. When the rate is below .025 the test is 

considered conservative, such that the researcher is assuming an alpha level below the nominal. 

The first Monte Carlo studies that examined F-test robustness to violations of its 

assumptions were carried out between 1930 and 1960 and were summarized by Glass, Peckham, 

and Sanders (1972). With regard to variance heterogeneity, early studies (Box, 1954; David & 

Johnson, 1951; Horsnell, 1953; Horton, 1952, cit. Lindquist, 1953; Hsu, 1938; Scheffé, 1959) 
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suggest two main conclusions: 1) F-test is robust when the groups have equal sample sizes and 

the group size is not very small (e.g., greater than 7; Kohr & Games, 1974); and 2) F-test tends 

not to be robust when the groups have unequal sample sizes, in which case the effect of 

heterogeneity on Type I error depends on the pairing of variance with group size. F-test tends to 

be conservative when the pairing is positive, that is, when the group with the largest sample size 

also has the largest variance and the group with the smallest sample size has the smallest 

variance. Conversely, it tends to be liberal when the pairing is negative, namely when the group 

with the largest sample size has the smallest variance and the group with the smallest sample size 

has the largest variance. Based on these studies, many classical handbooks on research methods 

in education and psychology recommend using equal sample sizes as protection against the 

effect of heterogeneity (e.g., Glass & Stanley, 1970; Hays, 1981; Keepel, 1991; Maxwell & 

Delaney, 1990; Winner, 1971).  

The issue of F-test robustness to variance heterogeneity has continued to be studied since 

1970 until the present day (for a review, see Harwell, Rubinstein, Hayes, & Olds, 1992; Lix, 

Keselman, & Keselman, 1996). However, research to date with equal sample sizes provides 

contradictory results, there being both evidence that F-test is robust to variance heterogeneity 

(Lee & Anh, 2003; Patrick, 2007; Yiǧit & Gökpinar, 2010) and evidence against this (Alexander 

& Govern, 1994; Büning, 1997; Harwell et al., 1992; Lix et al., 1996; Moder, 2010; Rogan & 

Keselman, 1977; Tomarken & Serling, 1986; Wilcox et al., 1986). This inconsistency in the 

results may be due to several factors.  

First, most of the cited studies did not use a standard criterion to assess robustness. 

Results were usually interpreted based on the comparison between empirical and nominal alpha 

without following any standard criterion: if the difference was small, F-test was said to be 
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robust. The problem here is that the meaning of “small” is ambiguous and does not allow a clear 

decision to be made. Indeed, expressions such as “modest inflation” (Harwell et al., 1992) or 

“slightly increase” (Glass et al., 1972) are frequently used when referring to Type I error rates. 

Had Bradley’s criterion of robustness been adopted, many of these results would have been 

interpreted differently.  

Second, the studies in question used different measures to quantify variance 

heterogeneity, thus making it difficult to draw general conclusions. Some studies used the 

coefficient of variance variation (Lix et al., 1996; Rogan & Keselman, 1977), some used their 

own indexes (e.g., Patrick, 2007; Ruscio & Roche, 2012), and others used the variance ratio 

(e.g., Alexander & Govern, 1994; Box, 1954; Hsu, 1938; Moder, 2010; Scheffé, 1959; Tomarken 

& Serling, 1986; Wilcox et al., 1986; Zijlstra, 2004).  

Third, the simulated conditions (e.g., variance values, number of groups, group sizes, 

pattern of variance, number of replications, etc.) were so varied that it is almost impossible to 

compare studies. In this context, the pattern of heterogeneity that is simulated appears to be the 

most relevant variable. The pattern of heterogeneity refers to the way in which the values of the 

group variances can be ordered. Thus, the group variances can monotonically increase (e.g., 

𝜎𝜎12 >  𝜎𝜎22 >  𝜎𝜎32) or decrease (e.g., 𝜎𝜎12 <  𝜎𝜎22 <  𝜎𝜎32) or follow another arbitrary pattern (e.g., 

𝜎𝜎12 =  𝜎𝜎22 >  𝜎𝜎32). Research to date has included a wide variety of these patterns. In general, some 

studies have found that F-test is robust, according to Bradley’s liberal criterion, with a 

monotonic pattern (Lee & Ahn, 2003; Tomarken & Serling, 1986; Wilcox et al., 1986), whereas 

others have found that it is liberal (Alexander & Govern, 1994; Büning, 1997). For example, 

Wilcox et al. (1986), who considered four groups with a variance ratio equal to 4 and a 

monotonic pattern of variance of 1: 2: 3: 4 with equal sample sizes (n = 11), found that F-test 
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was robust (Type I error rate = .068), whereas Alexander and Govern (1994) found it to be 

liberal with a pattern of 1: 2: 4: 6 (Type I error rate = .079). Büning (1997) found that F-test was 

robust with group size equal to 10 and a pattern of 1: 2: 4 (Type I error rate = .062), but liberal 

with a pattern of 1: 3: 7 (Type I error rate = .083). With arbitrary patterns of heterogeneity 

involving a set of groups with similar variances and one with extreme variance (e.g., 1: 1: 1: 6 

and 1: 1: 30) the test has been found to be non-robust (Alexander & Govern, 1994; Lee & Ahn, 

2003; Morder, 2010; Rogan & Keselman; 1977; Wilcox et al., 1986). Overall, these findings 

suggest that F-test robustness with equal group sizes is more affected by a pattern where the 

variance of one group is very different to that of the other groups. However, F-test robustness 

with monotonic patterns of variance is still unclear, and further research is needed to determine 

under which types of these patterns the test can be used.  

The sensitivity of F-test to violations of the variance homogeneity assumption when 

sample sizes are unequal has been reported more consistently (Gamage & Weerahandi, 1998; 

Kohr & Games, 1974; Lee & Ahn, 2003; Moder, 2010; Patrick, 2007; Tomarken & Serling, 

1986; Yiǧit & Gökpinar, 2010; Zijlstra, 2004). The empirical evidence indicates that its 

robustness depends on the pairing of variance with group size, as was found in early studies. 

However, despite the large body of research the specific conditions under which F-test is robust 

have yet to be established, and a number of questions remained unanswered. For example, what 

values of the variance ratio are associated with correct/invalid inferences? How much inequality 

of group sizes can be assumed in order to ensure that F-test controls Type I error rate? What 

other types of pairing between variance and group size can be defined and how do they affect F-

test robustness?  
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Regarding the first and second questions, some authors have suggested several rules of 

thumb, namely that variance homogeneity can probably be assumed when the variance ratio is 

not greater than 3 (Dean & Voss, 1999; Keppel, Saufley, & Tokunaga, 1992; Kirk, 2013), is less 

than 4 or 5 (Wuensch, 2017), or is even as high as 10 provided that the ratio of the largest to 

smallest sample size does not exceed 4 (Tabachnick & Fidell, 2007; 2013).  

Regarding the pairing between variance and group size, previous Monte Carlo studies 

have usually included a perfect pairing with monotonic patterns of variance. For example, 

considering five groups with sample sizes equal to 32, 36, 40, 44, and 48 and variances equal to 

1, 2, 3, 4, and 5, respectively, the pairing between these variables is perfect and positive. If the 

variances were 5, 4, 3, 2, and 1, respectively, the pairing would be perfect and negative.  

However, other types of pairing are also possible. If the pairing is defined by the correlation 

between group size and variance, then different values of this variable can be obtained. For 

example, if the same group sample sizes were associated with variance values of 1, 4, 2, 5, and 3, 

respectively, the pairing would be equal to .50, while for values of 3, 5, 2, 4, and 1 it would be 

equal to -.50. Thus, different values of the pairing could be considered in Monte Carlo studies in 

order to extend our understanding of how F-test robustness is affected by the type of pairing. As 

mentioned, previous research does not provide consistent results about the robustness of F-test 

with monotonic patterns, and it does not consider other possible types of pairing. 

In this context, the main aim of this study is to systematically examine the robustness of 

F-test, in terms of Type I error, to violations of variance heterogeneity, considering a wide range 

of conditions representative of real data in educational and psychological research (Golinski & 

Cribbie, 2009; Keselman et al., 1998; Ruscio & Roche, 2012). To this end, a series of Monte 

Carlo simulation studies are performed for a one-way design with equal and unequal sample 
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sizes and monotonic patterns of variance. The variance ratio is used as a measure of 

heterogeneity, the coefficient of sample size variation as a measure of the amount of inequality in 

group size, and the correlation between variance and group sample size as an indicator of 

different values of pairing. Our goal, based on the results of this study, is to offer a guideline to 

help applied researchers decide whether they can use the F-test when their data do not meet the 

variance homogeneity assumption under certain conditions.  

Method 

With the aim of systematically examining the robustness of F-test to violations of 

variance heterogeneity we conducted a series of Monte Carlo simulation studies for a one-way 

design with equal and unequal sample sizes and monotonic patterns of variance. Simulation 

studies use computer-intensive procedures to assess the appropriateness and accuracy of a variety 

of statistical methods in relation to the known truth (Angelis & Young, 1998), and they are 

especially suitable for evaluating a test’s robustness when the underlying assumptions are not 

fulfilled. For this reason, they are widely used by researchers in the health and social sciences 

(Burton, Altman, Royston, & Holder, 2006).  

In order to examine the isolated effects of variance heterogeneity on F-test robustness, 

and considering a one-way design, data were assumed to be normally distributed. Normal data 

were generated using a series of macros created ad hoc in SAS 9.4 (SAS Institute, 2013). The 

group effect was set to zero in the population model. The following variables were manipulated:  

1. Equal and unequal group sample sizes and number of groups. Data analytic practices for 

ANOVA show that unbalanced designs are more common than balanced designs 

(Golinski & Cribbie, 2009; Keselman et al., 1998). We considered designs with 3, 4, 5, 

and 6 groups with balanced cells, and 3 and 5 groups with unbalanced cells.  
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2. Group sample size and total sample size. A wide range of group sample sizes which can 

be frequently found in real research were considered, enabling us to study small, medium, 

and large sample sizes. With balanced designs, the group sizes were set to 3, 5, 10, 15, 20, 

25, 30, 40, 50, 60, 70, 80, 90, and 100. With unbalanced designs, group sizes were set 

between 3 and 170, with a mean group size from 5 to 100. Total sample size ranged from 

9 to 600, depending on the number of groups considered, this being the result of 

multiplying the number of groups by the minimum and maximum group sample size (e.g., 

with 5 groups the total sample size ranged from 15 to 500).  

3. Coefficient of sample size variation (Δn), which represents the amount of inequality in 

group sizes. This was computed by dividing the standard deviation of the group sample 

size by its mean. Different degrees of variation were considered and were grouped as low, 

medium, and high. A low Δn was fixed at approximately 0.16 (0.141 - 0.178), a medium 

coefficient at 0.33 (0.316 - 0.334), and a high value at 0.50 (0.491 - 0.521). Keselman et 

al. (1998) showed that the ratio of the largest to the smallest group size was greater than 3 

in 43.5% of cases. With Δn = 0.16 this ratio was equal to 1.5, with Δn = 0.33 it was equal 

to either 2.3 or 2.5, and with Δn = 0.50 it ranged from 3.3 to 5.7. 

4. Ratio of the largest to the smallest variance. For one-way designs Keselman et al. (1998) 

found that the average value of the ratio of the largest to the smallest standard deviation 

was 2.0 (SD = 2.6), with a median of 1.5 and a maximum ratio of 23.8. Ruscio and Roche 

(2012), despite the enormous range in variance ratio found, showed that the ratio exceeded 

3 in 23.18% of reviewed studies, with a median of 1.64 and a range for the middle 50% of 

cases of between 1.23 and 2.76. In addition, for 3 groups they found a mean value of 3.95. 

Based on these findings, the values of variance ratio selected for the present study were 
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1.5, 2, 3, 5, and 9 for balanced designs, and 1.5, 1.6, 1.7, 1.8, 2, 3, 5 and 9 for unbalanced 

designs.  

5. Patterns of variance and pairing of variance with group sample size. Monotonic patterns 

of variance were considered, and are presented in Table 1 for each variance ratio. The type 

of pairing between variance and group size indicates the relationship or association 

between the two. Pairing is positive when the largest group size is associated with the 

largest value of the variance and the smallest group size is associated with the smallest 

value of variance. Pairing is negative when the largest group size is associated with the 

smallest value of variance, and vice-versa. Unpairing occurs when there is no association 

between group size and variance. This happens, for example, with equal group sizes 

and/or equal variances, but it can also appear with unequal group sizes. In order to 

consider conditions of pairing which can represent real data (Keselman et al., 1998; 

Ruscio & Roche, 2012), we calculated the correlation between group sample size and 

variance value. Correlations equal, approximately, to 1, .50, 0, -.50, and -1 were 

considered for unbalanced designs. The value of 0 was not included for 3 groups because 

it is a non-possible value. These correlation values were obtained by associating each 

group sample size with different values of variance for the monotonic pattern. Thus, if the 

groups are ordered as a function of their sample sizes, different values of this correlation 

are obtained by changing the value of their variance. Table 2 shows the order of variance 

associated with the group sample sizes, from the smallest sample size to the largest one. 

To ensure reliable results 10,000 replications of each combination of the above conditions 

were performed at a significance level of .05, recording the empirical Type I error rate 

(Bendayan, Arnau, Blanca, & Bono, 2014; Robey & Barcikowski, 1992). 
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Results 

 The empirical Type I error rates associated with the F-test of the group effect were 

analyzed for each combination. The results for equal and unequal sample size are shown in 

Appendices A and B, respectively. Bradley’s liberal criterion (1978) was used to assess the 

robustness of the procedure. To summarize the results, based on Bradley’s criterion the empirical 

Type I error rates were dichotomized into a binary variable with two categories, robust (Type I 

error rate between .025 and .075) and not robust (Type I error rate below .025 or above .075). 

Chi-square tests were then performed to examine the association between robustness and the 

variables of interest.  Results are presented according to equal and unequal sample sizes. 

Equal sample sizes 

As can be seen in Tables A1-A4 (Appendix A), all Type I error rates were inside the boundary of 

Bradley’s liberal criterion. Thus, the results show that F-test is robust for 3, 4, 5, and 6 groups in 

100% of cases, regardless of the total sample size and variance ratio.  

Unequal sample sizes 

Total sample size. The association between total sample size and categorical Type I error 

rate was not statistically significant for any condition of variance ratio and number of groups, 

considering 13 categories of the first variable and two of the second. Moreover, the association 

between group sample size mean and categorical Type I error rate, collapsed across all variance 

ratios, was not significant for either 3 groups, χ2(12) = 1.47, p = .99,  or 5 groups, χ2(12) = 0.38, 

p = .99. The percentages of F-test robustness are shown in Table 3.  

Variance ratio. The relationship between variance ratio (8 categories) and categorical 

Type I error rate was significant both for 3 groups, χ2(7) = 283.59, p < .001, and for 5 groups, 

χ2(7) = 288.57, p < .001. In general, the percentage of robustness decreased as variance ratio 
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increased, with F-test being more robust with 5 groups. Table 4 shows the percentages of F-test 

robustness. 

Pairing of variance with group size. Overall, for both 3 and 5 groups there was a 

significant association between categorical Type I error rate and pairing of variance with group 

size for ratios higher than 1.5. Tables 5 and 6 show the percentage of robustness according to 

variance ratio and pairing. With a ratio of 1.5, F-test was robust in all conditions. With a ratio 

from 1.6 to 2 it was robust except when the pairing was equal to -1. With a ratio of 3 or higher, 

F-test was robust with pairing equal to 0 or .50 and non-robust with pairing equal to 1, -.5, and -

1. Negative pairing had more of an effect than did positive pairing, with the percentage of 

robustness decreasing as the amount of negative pairing increased; it even reached zero with 

pairing equal to -1 and a variance ratio of 9. In addition, when F-test was not robust with positive 

pairing it was always conservative, whereas with negative pairing it was always liberal.  

Coefficient of sample size variation. For both 3 and 5 groups there was a significant 

association between categorical Type I error rate and the coefficient of sample size variation (3 

categories) for each ratio higher than 1.5, with F-test being less robust with the highest values of 

this coefficient. Tables 7 and 8 show the percentage of robustness according to this coefficient. 

For ratios of 2 or higher, the more inequality between groups the less robust F-test was. The 

largest coefficient of sample size variation had an enormous effect on the percentage of 

robustness when the variance ratio was 3 or higher, decreasing it by as much as three-quarters (to 

24%) in the cases for 3 groups. 

All studied conditions. As can be seen in Tables B1 and B2 (Appendix B) there was a 

similar pattern of Type I error rates for 3 and 5 groups. The results are summarized in Table 9. In 

general, it appears that robustness depends on the variance ratio, the pairing of variance with 
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group size, and the coefficient of sample size variation, with the procedure being more robust 

when variance ratios were small, the pairing of variance was either zero or positive, and the 

coefficient of sample size variation was smaller. More specifically: 

Variance ratio of 1.5. As stated above, F-test was robust for all the studied conditions, regardless 

of the pairing or the coefficient of sample size variation. 

Variance ratio ranged from 1.6 to 1.8. F-test was robust for all the considered conditions, except 

when the pairing was equal to -1 and the coefficient of sample size variation was equal to  

0.50, in which case it tended to be liberal. 

Variance ratio of 2. F-test was robust for all the considered conditions, except when the pairing 

was equal to -1 and the coefficient of sample size variation was equal to 0.33 or 0.50; in both 

these cases it was liberal, and in the 0.50 condition it was liberal in 100% of cases.  

Variance ratio of 3. F-test was robust for all the considered conditions, except when the pairing 

of variance with group size was: 

 Equal to 1 and the coefficient of sample size variation was equal to 0.50, in which case it 

tended to be conservative.   

 Equal to -.5 and the coefficient of sample size variation was equal to 0.50, in which case 

it was liberal in almost 100% of cases. 

 Equal to -1 and the coefficient of sample size variation was equal to 0.33 or 0.50, in 

which case it was liberal in 100% of the considered conditions. 

Variance ratios of 5 and 9. The pattern of results here was similar to that for a variance ratio of 

3, although robustness decreased. Specifically, F-test was not robust when the pairing of 

variance with group size was: 
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 Equal to 1 and the coefficient of sample size variation was equal to 0.33 or 0.50, the test 

being conservative in the latter condition in 100% of cases.   

 Equal to -.5 and the coefficient of sample size variation was equal to 0.33, in which case 

it was liberal in fewer than 50% of cases for a variance ratio of 5 and in 100% of them for 

a variance ratio of 9. When the coefficient of sample size variation was equal to 0.50, F-

test was liberal in 100% of cases. 

 Equal to -1 and the coefficient of sample size variation was equal to 0.16, 0.33, or 0.50, 

the test being liberal in the latter two conditions in 100% of cases. 

Discussion 

The aim of this paper was to present a systematic examination of F-test robustness, in 

terms of Type I error, to violations of variance heterogeneity with monotonic patterns of variance 

in one-way balanced and unbalanced designs. We used the variance ratio as a measure of 

heterogeneity, the coefficient of sample size variation as a measure of the amount of inequality in 

group size, and the correlation between variance and group sample size as an indicator of 

different values of pairing of variance with group sizes. The studied variables cover a wide range 

of conditions (2972 conditions), our goal being to provide a guideline that would help applied 

researchers decide whether they can trust F-test results under heterogeneity. Several main 

conclusions can be drawn from the results. 

First, F-test is robust with monotonic patterns of variance when the group sample sizes are 

equal, regardless of the number of groups, of the ratio between the largest and smallest variance, 

and of the total sample size. With a variance ratio as large as 9, F-test can, at least for the number 

of groups and sample sizes considered here, still be used without the Type I error rate being 

affected by heterogeneity when the design is balanced. 
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Second, F-test is not robust with unequal sample sizes under certain conditions. The 

results showed that, in general, robustness depends on the variance ratio, the pairing of variance 

with group size, and the coefficient of sample size variation, with the procedure being more 

robust when variance ratios are small, the pairing of variance is either zero or positive, and the 

coefficient of sample size variation is smaller. These conditions can be specified as follows: 

1. The percentages of robustness tend to be lower for 3 groups than for 5 groups. This may 

indicate that the number of the groups is a variable that has to be considered: the smaller the 

number of groups, the greater the effect on F-test. 

2. The total sample size does not influence F-test robustness under heterogeneity. The use of a 

large sample size does not, therefore, protect against the effect of heterogeneity. 

3. When the pairing of variance with group size is equal to 0 for 3 groups and equal to 0 or .5 for 

5 groups, F-test is not affected by heterogeneity under any considered condition. However, F-

test tends to be conservative with positive pairing and liberal with negative pairing, the latter 

being the most influential variable. Consequently, researchers should pay particular attention 

when the pairing is negative in their data. 

4. The ratio of the largest to the smallest variance, which represents the measure of 

heterogeneity, determines F-test robustness. Its robustness decreases as the variance ratio 

increases, in other words, robustness decreases as the homogeneity assumption is more 

violated. With a ratio of 1.5, F-test is robust in all studied conditions.  

5. For a ratio higher than 1.5 there are two variables that have to be considered: The coefficient 

of sample size variation and the pairing of variance with group size. In general: 

 The coefficient of sample size variation, which represents the amount of inequality in 

group sizes, affects F-test robustness. In several cases its robustness decreases as the 
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coefficient of variation increases, in other words, robustness decreases as the group sizes 

become more unequal.  

 When pairing is equal to 1, F-test tends to be conservative, whereas when pairing is 

negative (equal to -.5 or -1) the procedure tends to be liberal, depending on the variance 

ratio and the coefficient of sample size variation. 

 With a ratio higher than 1.5 and lower than 2, F-test is only affected by heterogeneity 

when pairing is equal to -1 and the coefficient of sample size variation is 0.5. 

 With a ratio equal to 2, F-test is only affected by heterogeneity when pairing is equal to -

1 and the coefficient of sample size variation is as high as 0.33 or 0.5. 

 With a ratio of 3 or higher, F-test tends to be conservative with pairing equal to 1 and a 

coefficient of sample size variation of 0.5. With a ratio of 5 or 9 it is conservative in 

100% of the studied conditions. Likewise, F-test tends to be liberal with pairing equal to -

.5 or -1 under several conditions of sample size variation. The more unequal the sample 

sizes, the less robust the F-test is. 

In general, the results regarding equal sample sizes are consistent with early studies (e.g., 

Box, 1954; Glass et al., 1972; Hsu, 1938; Scheffé, 1959), as well as with more recent ones (Lee 

& Anh, 2003; Patrick, 2007; Yiǧit & Gökpinar, 2010). Specifically, our findings are consistent 

with the early research suggesting that balanced designs can be used as protection against the 

effect of variance heterogeneity. However, the results of the present study go further, since they 

show that this recommendation is accurate — even with small samples and with a variance ratio 

as high as 9 — when there is a monotonic pattern of variance in the groups, that is, when the 

values of group variance increase or decrease monotonically so that the groups can be ordered as 

a function of their respective variances. Other researchers have found that F-test is not robust 
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with a balanced design when the pattern of heterogeneity involves a set of groups with similar 

variances and one with extreme variance (e.g., Alexander & Gover, 1994; Lee & Ahn, 2003; 

Morder, 2010; Rogan & Keselman, 1977; Wilcox et al., 1986). This finding highlights the 

relevance of knowing the pattern of variance in the data when performing F-test.  

With regard to unequal sample sizes, our results appear to be consistent with previous 

findings, showing that Type I error rates vary depending on the degree of variance heterogeneity 

and the pairing of variance with group sample size (Box, 1954; Gamage & Weerahandi, 1998; 

Harwell et al., 1992; Horsnell, 1953; Hsu, 1938; Kohr & Games, 1974; Lee & Ahn, 2003; 

Moder, 2010; Patrick, 2007; Scheffé, 1959; Tomarken & Serling, 1986; Yiǧit & Gökpinar, 2010; 

Zijlstra, 2004). Specifically, with positive pairing, F-test tends to be conservative, with the 

empirical level of alpha being less than the nominal. With negative pairing, F-test tends to be 

liberal, with the empirical level of alpha being higher than the nominal, such that the risk of 

declaring mean differences that do not exist is increased. However, the present study extends the 

findings of previous studies and provides further information about F-test robustness under 

heterogeneity in a wide range of conditions that applied researchers may encounter in their data, 

taking into account specific variables such as different values of the pairing of variance with 

group size, several ratios of variance, and different values of the coefficient of sample size 

variation.  

 Furthermore, the results of this study enable us to offer researchers a specific guideline 

regarding whether or not F-test will be sensitive to departures from the homogeneity assumption 

that may be present in their data. When a monotonic pattern of variance is found in the groups, as 

was the case here, there are three steps that researchers can follow: 
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1. Calculate the variance ratio, dividing the value of the largest variance of the groups by the 

smallest variance. If this ratio is equal to or less than 1.5, F-test can be performed with 

confidence. If this ratio is higher than 1.5, then continue with step 2. 

2. Calculate the correlation between group sample size and the values of variance in order to 

determine the amount of pairing of variance with group sample size. If this correlation is 

either 0 or 0.5, proceed with F-test. Otherwise, continue with step 3. 

3. Calculate the coefficient of sample size variation, dividing the standard deviation of the 

group sample sizes by its mean in order to determine the amount of inequality in group 

sample sizes. 

 If the pairing is equal to 1 and the coefficient of sample size variation is high (close to 

.50), it is not possible to trust the results of F-test for ratios higher than 2 because the 

actual Type I error may be much lower than the nominal alpha of .05, even reaching .01. 

Table 10 shows the specific conditions in which F-test is not robust. 

 If the pairing is equal to -.50 and the coefficient of sample size variation is close to 0.33 

or higher, results from F-test for ratios higher than 2 are not reliable because the actual 

Type I error may be much higher than the nominal alpha of .05. Thus, there is an 

increased likelihood of declaring mean differences that do not actually exist. The highest 

value of Type I error found in this condition was .10. 

 If the pairing is equal to -1, and in this case for the majority of sample size coefficients 

for high variance ratios, results from F-test are distorted because the actual Type I error 

may be much higher than the nominal alpha of .05, even reaching .20 (see Table 10 for 

specific conditions). 
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One of the biggest advantages of following these steps is that applied researchers do not 

need to use any traditional homogeneity tests (e.g., Bartlett, 1937; Cochran, 1941; Hartley, 1950; 

Levene, 1960), which are known to rely on other assumptions that might not be met (Bhat, 

Badade, & Aruna Rao, 2002; Conover, Johnson, & Johnson, 1981; Harwell et al., 1992; Morder, 

2007; Sharma & Kribia, 2013; Zimmerman, 2004). Moreover, researchers can locate the specific 

variance conditions and characteristics of their data in the tables provided and see directly if F-

test is robust or not. 

 To sum up, this study has two main strengths. First, its systematic approach covers the 

largest variety of conditions simulated to date when exploring F-test robustness to variance 

heterogeneity, including conditions representative of real data in educational and psychological 

research. Second, the results yield an easy guideline that can be followed by applied researchers 

from any background, making it easier for them to decide whether F-test can reliably be used 

when variances are not equal between the groups. Moreover, the guideline provided makes this 

process fast and straightforward, avoiding the need for traditional homogeneity tests, which 

cannot be used in a number of conditions. It should be noted, however, that this study has only 

analyzed the effect of monotonic patterns of variance on the Type I error rate of F-test. Future 

studies should therefore aim to examine power and other patterns of variance besides those 

considered here. A further potential limitation of this paper is that it aimed to explore the isolated 

effect of heterogeneity on F-test, without considering other assumptions such as normality. An 

interesting line of future research would be to explore whether or not the violation of normality 

increases the effect of heterogeneity.  

The results of this study suggest that the traditional variance ratio should be used as a 

measure of the degree of heterogeneity, and indicate that special attention should be paid when 
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the design is unbalanced, the pairing is negative, and the ratio is higher than 1.5. Furthermore, a 

variance ratio higher than 1.5 may be established as a rule of thumb for considering a potential 

threat to F-test robustness under heterogeneity with unequal sample sizes. This rule of thumb is 

much more restrictive than the previously recommended maximums of 3 (Dean & Voss, 1999; 

Keppel et al., 1992; Kirk, 2013), 4 or 5 (Wuench, 2017), or 10 (Tabachnick & Fidell, 2007; 

2013). This paper shows that these criteria may lead, under certain conditions, to incorrect 

inferences. 

The next problem to be tackled is how to address heterogeneity of variance when F-test is 

not robust. Although a detailed analysis of this issue is beyond the scope of the present study, we 

would like to offer some general recommendations. A first, practical recommendation is that 

researchers should, if possible, design their study with equal group sample sizes, or, at least, with 

low sample size variation. However, this is not always possible and there may be disagreement 

over whether the study design or the data collection procedure should be driven by the statistical 

analysis.  

Some authors have also recommended using a more stringent alpha level in the condition 

under which an inflated alpha is expected, for example, .025 instead of .05 (Keppel et al., 1992; 

Keppel & Wickens, 2004; Tabachnick & Fidell, 2007; 2013), or .01 with severe violation 

(Tabachnick & Fidell, 2007; 2013). This is the simplest procedure for researchers since they may 

still use F-test while maintaining control of Type I error. For illustrative purposes, and in order to 

examine which alpha level may be used, we conducted simulations under those conditions for 

which F-test is liberal for 3 groups with a nominal alpha of .05, and considering other more 

restricted alpha levels (results are shown in Appendix C). Overall, a nominal alpha level of .025 

controls the Type I error rate within the bounds of Bradley’s criterion for .05 in the conditions 
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associated with Type I error rates around .10, while a nominal alpha level of .01 achieves this 

control in the conditions associated with Type I error rates above .10. However, in some 

conditions with Type I error rates above .15, the level of alpha has to be restricted to .005 to 

maintain empirical Type I error rates within the bounds of Bradley’s criterion for .05. 

Consequently, researchers can adjust the nominal alpha level depending on the specific 

characteristics of their data, bearing in mind that a severe violation of homogeneity requires a 

more restricted level of alpha. 

Another common recommendation for meeting the assumption of variance homogeneity is 

to transform the response variable (e.g., Montgomery, 1991; Tabachnick & Fidell, 2007; 2013; 

Winer, Brown, & Michels, 1991). However, it is often difficult to determine which transformation 

is appropriate for a specific set of data, and results are usually difficult to interpret when data 

transformations are adopted.  

The comparison of means using alternative statistical procedures which have been found 

to provide more robust results has also been proposed (e.g., Alexander & Govern, 1994; Brown-

Forsythe, 1974; Brunner, Dette, & Munk, 1997; Chen & Chen, 1998; James, 1951; 

Krishnamoorthy, Lu, & Mathew, 2007; Kruskal & Wallis, 1952; Lee & Ahn, 2003; Li, Wang & 

Liang, 2011; Lix & Keselman, 1998; Weerahandi, 1995; Welch, 1951; Wilcox, 1995; Wilcox, 

Keselman, & Kowalchuk, 1998). Below we focus on the most common ones. 

The non-parametric Kruskal-Wallis test (Kruskal & Wallis, 1952) is one of the most widely 

recommended tests in classic handbooks on methodology and statistics. However, the Kruskal-

Wallis test has several disadvantages: a) It converts quantitative continuous data into rank-ordered 

data, with a consequent loss of information; b) its null hypothesis differs from that of F-test, unless 
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the distribution of groups has exactly the same shape (see Maxwell & Delaney, 2004); and c) some 

Monte Carlo studies have shown that its Type I error is also affected by variance heterogeneity, 

being liberal (rates greater than .075) with negative pairing (Cribbie et al., 2007; Tomarken & 

Serlin, 1986).  

Another common proposal has been to use parametric modifications of F-test, such as 

Brown-Forsythe (1974) and Welch (1951) tests. Both seem to provide better control over Type I 

error rates than does F-test under heteroscedasticity. With variance patterns similar to those used 

here, Tomarken and Serlin (1986) recommended using the Welch test with normal populations, 

while Clinch and Keselman (1982) recommended the Brown-Forsythe test under both 

heterogeneity and non-normality. More recently, the results obtained by Parra-Frutos (2014) 

suggested that both tests perform well with normal data, although the Brown-Forsythe test offers 

better control of the Type I error rate under several non-normality conditions. Another recently 

proposed alternative is to use the F-test, Brown-Forsythe or Welch tests with bootstrapping in 

order to obtain distributions of the statistics instead of using their theoretical distribution 

(Krishnamoorthy et al., 2007; Parra-Frutos, 2014). Parra-Frutos (2014) showed that the 

bootstrapped F-test and the bootstrapped Brown-Forsythe test exhibit similar and exceptionally 

good behavior under heteroscedasticity and non-normality.  

Finally, methods using robust estimators of location and robust measures of scale have also 

been proposed to compare trimmed means. For example, Lix and Keselman (1998), Wilcox 

(1995), and Wilcox et al. (1998) suggested that the best option was the Welch test on trimmed 

means and Winsorized variance, although the bootstrap procedure proposed by Krishnamoorthy 

et al. (2007), used in conjunction with a robust approach, has been shown to provide better control 

of Type I error under heteroscedasticity (Cribbie, Fiksenbaum, Keselman, & Wilcox, 2012). 
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Whatever the case, we encourage researchers to analyze the specific characteristics of 

their design and the data obtained and, if their data do not meet the assumption of variance 

homogeneity, to choose the best alternative in order to obtain valid results. To this end, the best 

approach is to perform a simulation study involving the specific conditions of the real data so as 

to determine whether or not F-test is robust in the situation being considered. We are aware, 

however, that applied researchers are not usually familiarized with this procedure.  

 

Glossary 

Coefficient of sample size variation: The amount of inequality in group sizes, calculated by 

dividing the standard deviation of the group sample size by its mean. 

Conservative: Empirical Type I error rate below .025. 

Liberal: Empirical Type I error rate above .075 

Pairing of variance with group sample size: The correlation between the two. Pairing is positive 

when the largest group size is associated with the largest value of variance, and vice-versa. 

Pairing is negative when the largest group size is associated with the smallest variance, and 

vice-versa. 

Percentage of robustness: Percentage of Type I error rate within the bounds of Bradley’s criterion 

[.025-.075]. 

Variance ratio: Ratio of the largest to the smallest variance. 
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Table 1  

Patterns of variance considered in relation to variance ratio and number of groups  

Variance ratio Number of groups          Variance pattern 
1.5 3 1: 1.25: 1.5 

 4 1: 1.17: 1.34: 1.5 
 5 1: 1.125: 1.25: 1.375: 1.5 
 6 1: 1.1: 1.2: 1.3: 1.4: 1.5 

1.6 3 1: 1.3: 1.6 
 5 1: 1.15: 1.3: 1.45: 1.6 

1.7 3 1: 1.35: 1.7 
 5 1: 1.175: 1.35: 1.525: 1.7      

1.8 3 1: 1.4: 1.8 
 5 1: 1.2: 1.4: 1.6: 1.8     

2 3 1: 1.5: 2 
 4 1: 1.33: 1.66: 2 
 5 1: 1.25: 1.5: 1.75: 2   
 6 1: 1.2: 1.4: 1.6: 1.8: 2 

3 3 1: 1.5: 3 
 4 1: 1.66: 2.33: 3 
 5 1: 1.5: 2: 2.5: 3   
 6 1: 1.4: 1.8: 2.2: 2.6: 3 

5 3 1: 3: 5 
 4 1: 2.33: 3.66: 5 
 5 1: 2: 3: 4: 5 
 6 1: 1.8: 2.6: 3.4: 4.2: 5 

9 3 1: 5: 9 
 4 1: 3.66: 6.32: 9 
 5 1: 3: 5: 7: 9 
 6 1: 2.6: 4.2: 5.8: 7.4: 9 
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Table 2 

Order of variance associated with the groups according to pairing and number of groups 

Pairing  J = 3 J = 5 
1 1, 2, 3 1, 2, 3, 4, 5 

.50 1, 3, 2 1, 4, 2, 5, 3 

0 - 1, 5, 4, 2, 3 

-.50 2, 3, 1 3, 5, 2, 4, 1 

-1 3, 2, 1 5, 4, 3, 2, 1 

Note. J = number of groups. 
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Table 3 

 Percentage of F-test robustness according to group sample size mean and number of groups 

N/J J = 3 J = 5 
5 77.5 85.0 
10 79.2 85.0 
15 78.1 85.8 
20 81.3 85.8 
25 81.3 85.8 
30 80.2 84.2 
40 82.3 84.2 
50 79.2 85.0 
60 80.2 85.0 
70 80.2 85.0 
80 82.3 85.0 
90 80.2 85.8 

100 79.2 85.0 
Note. N/J = mean of the group sample size; J = number of groups. 
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Table 4 

Percentage of F-test robustness according to variance ratio and number of groups 

Variance ratio J = 3 J = 5 
1.5 100 100 
1.6 97.4 99.0 
1.7 92.2 95.4 
1.8 92.2 94.4 
2 88.3 92.3 
3 69.5 77.4 
5 54.5 64.6 
9 46.8 57.9 

Note. J = number of groups. Robustness: Type I error rate within range [.025-.075]. 
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Table 5 

Percentage of F-test robustness for 3 groups according to the pairing of variance with group size 

and the variance ratio 

Pairing 
Variance ratio 

1.5 1.6 1.7 1.8 2 3 5 9 
1 a 100 100 100 100 100 74.4 64.1 59 
.50 100 100 100 100 100 100 100 100 

-.50b 100 100 100 100 100 71.1 47.4  28.9  
-1b 100 89.7 69.2 69.2 53.8 33.3 7.7 0 
2  12.11** 38.37** 38.37** 60.10** 41.20** 68.42** 84.70** 
df  3 3 3 3 3 3 3 

Note. ** p < .01. Robustness: Type I error rate within range [.025-.075]. When F-test is not robust: a Conservative; b 

Liberal. 
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Table 6 

Percentage of F-test robustness for 5 groups according to the pairing of variance with group size 

and the variance ratio 

Pairing 
Variance ratio 

1.5 1.6 1.7 1.8 2 3 5 9 
1a 100 100 100 100 100 87.2 66.7 66.7 
.50 100 100 100 100 100 100 100 100 
0 100 100 100 100 100 100 100 100 

-.50b 100 100 100 100 100 66.7  35.9 23.1 
-1b 100 94.9 76.9 71.8 61.5 33.3 20.5 0 
2  8.08 37.74** 46.63** 65.01** 70.85** 90.03** 131.02** 
df  4 4 4 4 4 4 4 

Note. ** p < .01. Robustness: Type I error rate within range [.025-.075]. When F-test is not robust: a Conservative; b 

Liberal. 
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Table 7 

Percentage of F-test robustness for 3 groups according to the coefficient of sample size variation 

and the variance ratio  

Δn 
Variance ratio 

1.5 1.6 1.7 1.8 2 3 5 9 
0.16 100 100 100 100 100 100 78.8 71.2 
0.33 100 100 100 100 90.4 75 59.6 44.2 
0.50 100 92 76 76 74 32 24 24 
2  8.54* 27.07** 27.07** 17.02** 56.71** 31.74** 22.96** 
df  2 2 2 2 2 2 2 

Note. Δn = Coefficient of sample size variation; * p < .05; ** p < .01. Robustness: Type I error rate within range [.025-

.075]. 
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Table 8 

Percentage of F-test robustness for 5 groups according to the coefficient of sample size variation 

and the variance ratio  

Δn 
Variance ratio 

1.5 1.6 1.7 1.8 2 3 5 9 
0.16 100 100 100 100 100 100 90.8 73.8 
0.33 100 100 100 100 96.9 80 63.1 60 
0.50 100 96.9 86.2 83.1 80 52.3 40 40 
2  4.04 18.87** 23.32** 21.23** 42.67** 36.73** 15.48** 
df  2 2 2 2 2 2 2 

    Note. Δn = Coefficient of sample size variation; ** p < .01. Robustness: Type I error rate within range [.025-.075]. 
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Table 9 

Percentage of F-test robustness according to the coefficient of sample size variation, the pairing 

of variance with group size, and the variance ratio 

 Variance ratio 
Pairing Δn 1.5 1.6 1.7 1.8 2 3 5 9 

     J = 3     
1a 0.16 100 100 100 100 100 100 100 100 
 0.33 100 100 100 100 100 100 92.3 76.9 
 0.50 100 100 100 100 100 23.1 0 0 

.50 0.16 100 100 100 100 100 100 100 100 
 0.33 100 100 100 100 100 100 100 100 
 0.50 100 100 100 100 100 100 100 100 

-.50b 0.16 100 100 100 100 100 100 92.3 84.6 
 0.33 100 100 100 100 100 100 46.2 0 
 0.50 100 100 100 100 100 8.3 0 0 

-1b 0.16 100 100 100 100 100 100 23.1 0 
 0.33 100 100 100 100 61.5 0 0 0 
 0.50 100 69.2 7.7 7.7 0 0 0 0 
     J = 5     

1a 0.16 100 100 100 100 100 100 100 100 
 0.33 100 100 100 100 100 100 100 100 
 0.50 100 100 100 100 100 61.5 0 0 

.50 0.16 100 100 100 100 100 100 100 100 
 0.33 100 100 100 100 100 100 100 100 
 0.50 100 100 100 100 100 100 100 100 

0 0.16 100 100 100 100 100 100 100 100 
 0.33 100 100 100 100 100 100 100 100 
 0.50 100 100 100 100 100 100 100 100 

-.50b 0.16 100 100 100 100 100 100 92.3 69.2 
 0.33 100 100 100 100 100 100 15.4 0 
 0.50 100 100 100 100 100 0 0 0 

-1b 0.16 100 100 100 100 100 100 61.5 0 
 0.33 100 100 100 100 84.6 0 0 0 
 0.50 100 84.6 30.8 15.4 0 0 0 0 

Note. Δn: Coefficient of sample size variation; J = number of groups; Robustness: Type I error rate within range [.025-.075]. 

When F-test is not robust: a Conservative, b Liberal. 

 



10 
 

Table 10 

Conditions under which F-test is not robust, in terms of Type I error, against violation of the 

homogeneity assumption, according to variance ratio, the pairing of variance with group sample 

size, and the coefficient of sample size variation 

Variance ratio Pairing 
Coefficient of sample  
      size variation 

Type I error 
rate 

1.6, 1.7, 1.8 -1 0.50 Liberal 
2 -1 0.33; 0.50 Liberal 
3 1 0.50 Conservative 
 -.50 0.50 Liberal 
 -1 0.33;  0.50 Liberal 

5 & 9 1 0.50 Conservative 
 -.50 0.33;  0.50 Liberal 
 -1 0.16;  0.33;  0.50 Liberal 
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Appendix A.  Empirical Type I error rates for F-test and equal sample sizes 

Table A1 

Empirical Type I error for F-test with 3 groups and equal sample sizes 

N n 
Variance Ratio  

1.5 2 3 5 9 
9 3 .0486 .0513 .0540 .0603 .0699 
15 5 .0468 .0547 .0584 .0652 .0606 
30 10 .0506 .0529 .0533 .0579 .0629 
45 15 .0480 .0518 .0531 .0581 .0627 
60 20 .0490 .0507 .0517 .0533 .0586 
75 25 .0479 .0533 .0515 .0559 .0576 
90 30 .0485 .0508 .0510 .0600 .0610 

120 40 .0477 .0495 .0554 .0541 .0567 
150 50 .0519 .0507 .0510 .0567 .0569 
180 60 .0479 .0506 .0529 .0583 .0607 
210 70 .0508 .0523 .0525 .0591 .0607 
240 80 .0479 .0482 .0533 .0558 .0553 
270 90 .0520 .0590 .0538 .0561 .0646 
300 100 .0511 .0476 .0523 .0561 .0569 
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Table A2 

Empirical Type I error for F-test with 4 groups and equal sample sizes 

N n 
Variance Ratio  

1.5 2 3 5 9 
12 3 .0481 .0580 .0564 .0605 .0749 
20 5 .0526 .0535 .0579 .0616 .0642 
40 10 .0525 .0560 .0574 .0611 .0590 
60 15 .0510 .0546 .0558 .0581 .0610 
80 20 .0534 .0561 .0604 .0605 .0602 

100 25 .0499 .0515 .0504 .0613 .0594 
120 30 .0501 .0531 .0520 .0614 .0580 
160 40 .0547 .0514 .0568 .0591 .0606 
200 50 .0508 .0518 .0568 .0572 .0611 
240 60 .0488 .0497 .0547 .0577 .0630 
280 70 .0489 .0563 .0525 .0541 .0627 
320 80 .0531 .0535 .0574 .0544 .0599 
360 90 .0534 .0472 .0480 .0610 .0613 
400 100 .0551 .0453 .0577 .0569 .0619 
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Table A3 

Empirical Type I error for F-test with 5 groups and equal sample sizes 

 

N n 
Variance Ratio  

1.5 2 3 5 9 
15 3 .0540 .0544 .0563 .0608 .0721 
25 5 .0529 .0546 .0552 .0632 .0689 
50 10 .0509 .0514 .0574 .0586 .0622 
75 15 .0521 .0513 .0544 .0595 .0667 

100 20 .0480 .0501 .0512 .0612 .0670 
125 25 .0479 .0536 .0521 .0555 .0608 
150 30 .0530 .0477 .0534 .0570 .0640 
200 40 .0487 .0528 .0583 .0574 .0629 
250 50 .0486 .0572 .0563 .0587 .0598 
300 60 .0476 .0498 .0529 .0599 .0600 
350 70 .0513 .0502 .0517 .0551 .0626 
400 80 .0485 .0486 .0551 .0587 .0607 
450 90 .0461 .0513 .0556 .0561 .0614 
500 100 .0486 .0533 .0584 .0565 .0633 
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Table A4 

Empirical Type I error for F-test with 6 groups and equal sample sizes 

N n Variance Ratio  
1.5 2 3 5 9 

25 5 .0521 .0523 .0543 .0585 .0632 
50 10 .0523 .0506 .0532 .0619 .0624 
75 15 .0522 .0517 .0543 .0639 .0658 

100 20 .0497 .0497 .0568 .0616 .0670 
125 25 .0499 .0492 .0534 .0585 .0616 
150 30 .0494 .0516 .0522 .0603 .0675 
200 40 .0489 .0489 .0545 .0573 .0639 
250 50 .0542 .0560 .0574 .0621 .0630 
300 60 .0507 .0487 .0541 .0604 .0630 
350 70 .0469 .0518 .0577 .0608 .0596 
400 80 .0517 .0556 .0508 .0605 .0607 
450 90 .0468 .0547 .0492 .0581 .0602 
500 100 .0493  .0550 .0548 .0592 .0622 
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Appendix B.  Empirical Type I error rates for F-test with unequal sample sizes. 

Table B1 

Empirical Type I error for F-test with 3 groups 

N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Variance ratio 
1.5 1.6 1.7 1.8 2 3 5 9 

15 5 1.5 0.16 4, 5, 6  1 1, 2, 3 .0469 .0494 .0505 .0455 .0443 .0438 .0460 .0466 
     .50 1, 3, 2 .0487 .0448 .0450 .0446 .0529 .0489 .0510 .0544 
     -.50 2, 3, 1 .0552 .0521 .0558 .0586 .0538 .0644 .0787 .0864 
     -1 3, 2, 1 .0551 .0472 .0427 .0454 .0660 .0713 .0816 .0948 
  2.3 0.33 3, 5, 7  1 1, 2, 3 .0451 .0417 .0404 .0355 .0344 .0343 .0260 .0282 
     .50 1, 3, 2 .0478 .0415 .0386 .0393 .0487 .0445 .0428 .0441 
     -.50 2, 3, 1 .0549 .0633 .0683 .0652 .0506 .0677 .0873 .0977 
     -1 3, 2, 1 .0570 .0565 .0566 .0572 .0791 .0897 .1122 .1319 
  3 0.50 3, 3, 9  1 1, 2, 3 .0360 .0415 .0370 .0320 .0283 .0254 .0201 .0188 
     -1 3, 2, 1 .0688 .0719 .0760 .0786 .0794 .1171 .1624 .2077 
30 10 1.5 0.16 8, 10, 12  1 1, 2, 3 .0436 .0483 .0470 .0448 .0448 .0449 .0414 .0400 

     .50 1, 3, 2 .0447 .0476 .0464 .0492 .0511 .0477 .0461 .0525 
     -.50 2, 3, 1 .0498 .0574 .0570 .0544 .0507 .0632 .0668 .0754 
     -1 3, 2, 1 .0581 .0607 .0577 .0626 .0601 .0708 .0788 .0867 
  2.3 0.33 6, 10, 14  1 1, 2, 3 .0428 .0408 .0408 .0351 .0371 .0331 .0292 .0260 
     .50 1, 3, 2 .0416 .0445 .0447 .0437 .0470 .0414 .0416 .0459 
     -.50 2, 3, 1 .0585 .0586 .0598 .0614 .0580 .0654 .0870 .0913 
     -1 3, 2, 1 .0628 .0698 .0625 .0673 .0734 .0863 .1128 .1245 
  4 0.50 4, 10, 16  1 1, 2, 3 .0385 .0362 .0364 .0324 .0320 .0260 .0209 .0201 
     .50 1, 3, 2 .0440 .0425 .0408 .0444 .0464 .0370 .0369 .0387 
     -.50 2, 3, 1 .0609 .0604 .0651 .0633 .0597 .0809 .0926 .1099 
     -1 3, 2, 1 .0725 .0761 .0757 .0761 .0881 .1185 .1486 .1788 

45 15 1.5 0.16 12, 15, 18  1 1, 2, 3 .0444 .0442 .0407 .0445 .0430 .0425 .0417 .0396 
     .50 1, 3, 2 .0476 .0463 .0469 .0463 .0510 .0497 .0469 .0502 
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N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Variance ratio 
1.5 1.6 1.7 1.8 2 3 5 9 

     -.50 2, 3, 1 .0544 .0524 .0513 .0543 .0532 .0589 .0653 .0690 
     -1 3, 2, 1 .0599 .0592 .0614 .0589 .0614 .0699 .0807 .0861 
  2.3 0.33 9, 15, 21  1 1, 2, 3 .0404 .0396 .0370 .0377 .0339 .0310 .0282 .0245 
     .50 1, 3, 2 .0426 .0425 .0500 .0419 .0428 .0434 .0400 .0424 
     -.50 2, 3, 1 .0540 .0601 .0570 .0553 .0554 .0645 .0794 .0876 
     -1 3, 2, 1 .0607 .0621 .0651 .0631 .0761 .0921 .1074 .1302 
  4 0.50 6, 15, 24 1 1, 2, 3 .0342 .0373 .0345 .0317 .0270 .0231 .0174 .0178 
     .50 1, 3, 2 .0406 .0445 .0414 .0393 .0459 .0348 .0344 .0374 
     -.50 2, 3, 1 .0567 .0596 .0661 .0639 .0613 .0785 .0914 .1082 
     -1 3, 2, 1 .0727 .0747 .0788 .0803 .0916 .1132 .1497 .1737 

60 20 1.5 0.16 16, 20, 24 1 1, 2, 3 .0476 .0444 .0454 .0440 .0423 .0407 .0399 .0399 
     .50 1, 3, 2 .0464 .0453 .0449 .0472 .0489 .0468 .0491 .0527 
     -.50 2, 3, 1 .0502 .0533 .0527 .0541 .0548 .0612 .0641 .0735 
     -1 3, 2, 1 .0599 .0611 .0597 .0579 .0637 .0697 .0761 .0905 
  2.3 0.33 12, 20, 28 1 1, 2, 3 .0409 .0433 .0393 .0382 .0344 .0300 .0286 .0270 
     .50 1, 3, 2 .0454 .0446 .0471 .0398 .0458 .0420 .0418 .0425 
     -.50 2, 3, 1 .0569 .0595 .0585 .0559 .0553 .0707 .0748 .0873 
     -1 3, 2, 1 .0601 .0626 .0647 .0672 .0765 .0949 .1072 .1208 
  4 0.50 8, 20, 32 1 1, 2, 3 .0399 .0320 .0325 .0352 .0292 .0248 .0191 .0182 
     .50 1, 3, 2 .0452 .0436 .0441 .0386 .0431 .0353 .0309 .0348 
     -.50 2, 3, 1 .0590 .0592 .0646 .0611 .0532 .0764 .0885 .0953 
     -1 3, 2, 1 .0646 .0710 .0733 .0767 .0911 .1137 .1452 .1739 

75 25 1.5 0.16 20, 25, 30 1 1, 2, 3 .0450 .0448 .0447 .0463 .0409 .0440 .0378 .0391 
     .50 1, 3, 2 .0479 .0487 .0459 .0475 .0521 .0489 .0501 .0491 
     -.50 2, 3, 1 .0490 .0558 .0539 .0574 .0545 .0605 .0665 .0708 
     -1 3, 2, 1 .0560 .0581 .0601 .0615 .0616 .0712 .0748 .0885 
  2.3 0.33 15, 25, 35 1 1, 2, 3 .0433 .0390 .0392 .0397 .0366 .0287 .0281 .0264 
     .50 1, 3, 2 .0415 .0465 .0438 .0422 .0491 .0420 .0420 .0442 
     -.50 2, 3, 1 .0537 .0542 .0605 .0597 .0544 .0702 .0729 .0873 
     -1 3, 2, 1 .0565 .0669 .0670 .0679 .0738 .0829 .1069 .1224 
  4 0.50 10, 25, 40 1 1, 2, 3 .0366 .0323 .0315 .0326 .0270 .0236 .0197 .0186 
     .50 1, 3, 2 .0431 .0448 .0414 .0428 .0453 .0354 .0361 .0363 
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N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Variance ratio 
1.5 1.6 1.7 1.8 2 3 5 9 

     -.50 2, 3, 1 .0579 .0601 .0665 .0708 .0575 .0783 .0902 .1009 
     -1 3, 2, 1 .0691 .0759 .0764 .0806 .0900 .1101 .1420 .1737 

90 30 1.5 0.16 24, 30, 36 1 1, 2, 3 .0419 .0421 .0421 .0441 .0395 .0397 .0395 .0427 
     .50 1, 3, 2 .0454 .0476 .0508 .0403 .0515 .0475 .0488 .0510 
     -.50 2, 3, 1 .0553 .0563 .0557 .0577 .0560 .0577 .0664 .0695 
     -1 3, 2, 1 .0557 .0592 .0509 .0619 .0641 .0681 .0762 .0859 
  2.3 0.33 18, 30, 42 1 1, 2, 3 .0391 .0413 .0379 .0346 .0347 .0300 .0329 .0287 
     .50 1, 3, 2 .0453 .0432 .0424 .0411 .0435 .0405 .0422 .0427 
     -.50 2, 3, 1 .0549 .0556 .0591 .0602 .0573 .0719 .0755 .0812 
     -1 3, 2, 1 .0582 .0632 .0689 .0679 .0731 .0880 .1032 .1242 
  4 0.50 12, 30, 48 1 1, 2, 3 .0365 .0315 .0371 .0318 .0260 .0232 .0199 .0128 
     .50 1, 3, 2 .0403 .0444 .0416 .0403 .0432 .0381 .0351 .0328 
     -.50 2, 3, 1 .0577 .0632 .0640 .0677 .0601 .0755 .0890 .1041 
     -1 3, 2, 1 .0640 .0729 .0756 .0796 .0930 .1085 .1400 .1748 

120 40 1.5 0.16 32, 40, 48 1 1, 2, 3 .0423 .0455 .0437 .0426 .0430 .0399 .0381 .0408 
     .50 1, 3, 2 .0494 .0469 .0479 .0448 .0492 .0445 .0524 .0541 
     -.50 2, 3, 1 .0556 .0543 .0534 .0519 .0539 .0566 .0653 .0697 
     -1 3, 2, 1 .0576 .0560 .0567 .0586 .0601 .0662 .0753 .0846 
  2.3 0.33 24, 40, 56 1 1, 2, 3 .0360 .0383 .0401 .0368 .0352 .0312 .0294 .0253 
     .50 1, 3, 2 .0415 .0450 .0453 .0439 .0453 .0426 .0415 .0457 
     -.50 2, 3, 1 .0576 .0541 .0559 .0589 .0589 .0726 .0779 .0840 
     -1 3, 2, 1 .0627 .0660 .0742 .0663 .0732 .0903 .1061 .1206 
  4 0.50 16, 40, 64 1 1, 2, 3 .0353 .0310 .0283 .0349 .0268 .0259 .0186 .0179 
     .50 1, 3, 2 .0423 .0416 .0400 .0422 .0482 .0368 .0340 .0413 
     -.50 2, 3, 1 .0643 .0620 .0662 .0649 .0552 .0774 .0933 .0967 
     -1 3, 2, 1 .0711 .0726 .0807 .0734 .0880 .1161 .1460 .1646 

150 50 1.5 0.16 40, 50, 60 1 1, 2, 3 .0444 .0473 .0446 .0450 .0391 .0409 .0401 .0390 
     .50 1, 3, 2 .0464 .0459 .0452 .0445 .0494 .0464 .0453 .0490 
     -.50 2, 3, 1 .0522 .0515 .0538 .0535 .0527 .0602 .0603 .0699 
     -1 3, 2, 1 .0563 .0530 .0564 .0597 .0609 .0683 .0764 .0868 
  2.3 0.33 30, 50, 70 1 1, 2, 3 .0399 .0370 .0368 .0356 .0341 .0279 .0269 .0259 
     .50 1, 3, 2 .0458 .0449 .0459 .0440 .0476 .0417 .0450 .0398 
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N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Variance ratio 
1.5 1.6 1.7 1.8 2 3 5 9 

     -.50 2, 3, 1 .0540 .0589 .0596 .0593 .0521 .0673 .0803 .0772 
     -1 3, 2, 1 .0610 .0618 .0634 .0685 .0727 .0879 .1061 .1258 
  4 0.50 20, 50, 80 1 1, 2, 3 .0341 .0345 .0327 .0295 .0251 .0224 .0180 .0174 
     .50 1, 3, 2 .0455 .0387 .0444 .0414 .0437 .0367 .0375 .0343 
     -.50 2, 3, 1 .0614 .0582 .0598 .0660 .0557 .0793 .0881 .0987 
     -1 3, 2, 1 .0685 .0759 .0808 .0831 .0880 .1071 .1424 .1731 

180 60 1.5 0.16 48, 60, 72 1 1, 2, 3 .0427 .0449 .0415 .0404 .0433 .0402 .0390 .0394 
     .50 1, 3, 2 .0444 .0499 .0451 .0468 .0453 .0475 .0452 .0488 
     -.50 2, 3, 1 .0529 .0540 .0534 .0613 .0512 .0582 .0650 .0705 
     -1 3, 2, 1 .0557 .0585 .0567 .0587 .0606 .0691 .0774 .0823 
  2.3 0.33 36, 60, 84 1 1, 2, 3 .0376 .0373 .0387 .0372 .0327 .0322 .0262 .0261 
     .50 1, 3, 2 .0426 .0436 .0448 .0465 .0420 .0394 .0404 .0445 
     -.50 2, 3, 1 .0561 .0592 .0554 .0623 .0563 .0690 .0748 .0834 
     -1 3, 2, 1 .0595 .0643 .0627 .0687 .0716 .0907 .1039 .1190 
  4 0.50 24, 60, 96 1 1, 2, 3 .0349 .0316 .0340 .0329 .0282 .0228 .0206 .0182 
     .50 1, 3, 2 .0410 .0424 .0435 .0399 .0421 .0351 .0409 .0347 
     -.50 2, 3, 1 .0573 .0638 .0624 .0613 .0548 .0762 .0888 .0991 
     -1 3, 2, 1 .0686 .0753 .0775 .0787 .0825 .1167 .1445 .1697 

210 70 1.5 0.16 56, 70, 84 1 1, 2, 3 .0454 .0464 .0422 .0426 .0452 .0408 .0427 .0440 
     .50 1, 3, 2 .0478 .0451 .0449 .0497 .0496 .0502 .0475 .0520 
     -.50 2, 3, 1 .0530 .0565 .0561 .0552 .0548 .0584 .0630 .0699 
     -1 3, 2, 1 .0588 .0591 .0611 .0560 .0610 .0666 .0767 .0855 
  2.3 0.33 42, 70, 98 1 1, 2, 3 .0410 .0367 .0353 .0337 .0356 .0302 .0251 .0244 
     .50 1, 3, 2 .0442 .0451 .0457 .0454 .0438 .0407 .0380 .0417 
     -.50 2, 3, 1 .0550 .0571 .0584 .0599 .0562 .0665 .0750 .0759 
     -1 3, 2, 1 .0603 .0676 .0635 .0715 .0749 .0842 .1074 .1224 
  4 0.50 28, 70, 112 1 1, 2, 3 .0361 .0312 .0337 .0329 .0284 .0225 .0184 .0186 
     .50 1, 3, 2 .0406 .0400 .0436 .0384 .0395 .0340 .0370 .0373 
     -.50 2, 3, 1 .0592 .0579 .0604 .0603 .0570 .0764 .0866 .1019 
     -1 3, 2, 1 .0694 .0734 .0769 .0762 .0843 .1141 .1470 .1639 

240 80 1.5 0.16 64, 80, 96 1 1, 2, 3 .0455 .0457 .0414 .0405 .0400 .0386 .0391 .0363 
     .50 1, 3, 2 .0464 .0470 .0457 .0485 .0465 .0422 .0456 .0532 
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N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Variance ratio 
1.5 1.6 1.7 1.8 2 3 5 9 

     -.50 2, 3, 1 .0490 .0527 .0528 .0569 .0522 .0601 .0629 .0671 
     -1 3, 2, 1 .0520 .0580 .0576 .0587 .0618 .0668 .0698 .0821 
  2.3 0.33 48, 80, 112 1 1, 2, 3 .0415 .0400 .0372 .0368 .0331 .0297 .0265 .0279 
     .50 1, 3, 2 .0470 .0477 .0439 .0459 .0532 .0418 .0406 .0440 
     -.50 2, 3, 1 .0566 .0573 .0571 .0599 .0560 .0686 .0742 .0866 
     -1 3, 2, 1 .0629 .0701 .0658 .0692 .0773 .0859 .1052 .1256 
  4 0.50 32, 80, 128 1 1, 2, 3 .0313 .0301 .0332 .0309 .0284 .0223 .0183 .0175 
     .50 1, 3, 2 .0413 .0409 .0452 .0395 .0437 .0361 .0333 .0367 
     -.50 2, 3, 1 .0567 .0632 .0619 .0610 .0568 .0741 .0880 .0960 
     -1 3, 2, 1 .0634 .0736 .0782 .0762 .0908 .1133 .1429 .1687 

270 90 1.5 0.16 72, 90, 108 1 1, 2, 3 .0438 .0462 .0439 .0388 .0414 .0429 .0426 .0381 
     .50 1, 3, 2 .0460 .0425 .0438 .0457 .0451 .0412 .0468 .0458 
     -.50 2, 3, 1 .0522 .0554 .0552 .0571 .0534 .0608 .0634 .0703 
     -1 3, 2, 1 .0541 .0589 .0575 .0593 .0582 .0662 .0837 .0878 
  2.3 0.33 54, 90, 126 1 1, 2, 3 .0385 .0353 .0378 .0398 .0331 .0295 .0250 .0242 
     .50 1, 3, 2 .0479 .0439 .0481 .0448 .0447 .0428 .0417 .0424 
     -.50 2, 3, 1 .0543 .0579 .0587 .0597 .0532 .0429 .0741 .0827 
     -1 3, 2, 1 .0596 .0672 .0665 .0673 .0743 .0873 .1012 .1140 
  4 0.50 36, 90, 144 1 1, 2, 3 .0359 .0343 .0325 .0318 .0256 .0230 .0188 .0169 
     .50 1, 3, 2 .0362 .0424 .0411 .0401 .0440 .0334 .0363 .0373 
     -.50 2, 3, 1 .0569 .0599 .0589 .0666 .0548 .0782 .0863 .0995 
     -1 3, 2, 1 .0679 .0708 .0786 .0816 .0882 .1075 .1397 .1629 

300 100 1.5 0.16 80, 100, 120 1 1, 2, 3 .0429 .0458 .0399 .0424 .0399 .0383 .0408 .0400 
     .50 1, 3, 2 .0496 .0442 .0482 .0475 .0489 .0462 .0454 .0510 
     -.50 2, 3, 1 .0530 .0550 .0541 .0528 .0513 .0581 .0659 .0621 
     -1 3, 2, 1 .0531 .0568 .0610 .0562 .0607 .0729 .0746 .0853 
  2.3 0.33 60, 100, 140 1 1, 2, 3 .0395 .0385 .0370 .0358 .0330 .0276 .0246 .0278 
     .50 1, 3, 2 .0430 .0441 .0420 .0408 .0493 .0431 .0442 .0426 
     -.50 2, 3, 1 .0579 .0571 .0585 .0592 .0587 .0696 .0752 .0867 
     -1 3, 2, 1 .0628 .0638 .0708 .0645 .0755 .0857 .1106 .1196 
  4 0.50 40, 100, 160 1 1, 2, 3 .0340 .0319 .0307 .0308 .0283 .0228 .0203 .0166 
     .50 1, 3, 2 .0432 .0444 .0380 .0383 .0454 .0343 .0358 .0366 
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N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Variance ratio 
1.5 1.6 1.7 1.8 2 3 5 9 

     -.50 2, 3, 1 .0599 .0616 .0677 .0667 .0572 .0781 .0866 .0981 
     -1 3, 2, 1 .0648 .0698 .0782 .0821 .0816 .1078 .1375 .1713 

Note. N = total sample size; N/J = mean of group sample size; 
Smallest

Largest

n

n = ratio of the largest to the smallest group sample size; Δn = coefficient of sample size 

variation; n = number of units per group. The Type I error rates outside the boundary of Bradley’s liberal criterion are in bold (conservative: < .025; liberal: > .075).  

  



21 
 

Table B2 

Empirical Type I error for F-test with 5 groups 

N N/J 
Smallest

Largest

n

n
Δn n Pairing  

Order of  
variance 

Variance ratio 
1.5  1.6 1.7 1.8 2 3 5 9 

25 5 1.5 0.16 4, 4, 5, 6, 6 1 1, 2, 3, 4, 5 .0489 .0454 .0473 .0454 .0473 .0430 .0435 .0446 
     .50 1, 4, 2, 5, 3 .0506 .0475 .0516 .0525 .0448 .0469 .0507 .0522 
     0 1, 5, 3, 4, 2 .0492 .0531 .0534 .0529 .0551 .0528 .0592 .0654 
     -.50 3, 5, 2, 4, 1 .0529 .0518 .0552 .0544 .0565 .0634 .0764 .0829 
     -1 5, 4, 3, 2, 1 .0548 .0599 .0550 .0578 .0650 .0733 .0873 .0994 
  2.3 0.33 3, 3, 6, 6, 7 1 1, 2, 3, 4, 5 .0421 .0424 .0415 .0411 .0402 .0354 .0348 .0312 
     .50 1, 4, 2, 3, 5 .0444 .0439 .0436 .0439 .0467 .0409 .0469 .0478 
     0 1, 5, 4, 2, 3 .0483 .0463 .0520 .0525 .0480 .0528 .0601 .0622 
     -.50 5, 3, 2, 1, 4 .0550 .0584 .0558 .0598 .0585 .0675 .0799 .0861 
     -1 5, 4, 3, 2, 1 .0653 .0659 .0687 .0594 .0726 .0908 .1088 .1285 
  3.3 0.50 3, 3, 4, 5, 10 1 1, 2, 3, 4, 5 .0414 .0358 .0397 .0359 .0341 .0268 .0221 .0211 
     .50 1, 2, 5, 3, 4 .0441 .0441 .0458 .0500 .0309 .0373 .0363 .0331 
     0 1, 5, 4, 2, 3 .0551 .0557 .0610 .0605 .0546 .0557 .0622 .0659 
     -.50 4, 2, 3, 5, 1 .0561 .0496 .0505 .0492 .0721 .0889 .1088 .1296 
     -1 5, 4, 3, 2, 1 .0669 .0733 .0749 .0712 .0791 .1103 .1511 .1810 

50 10 1.5 0.16 8, 9, 10, 11, 12 1 1, 2, 3, 4, 5 .0471 .0458 .0483 .0441 .0414 .0454 .0416 .0466 
     .50 1, 4, 2, 5, 3 .0495 .0464 .0514 .0479 .0479 .0466 .0534 .0537 
     0 1, 5, 4, 2, 3 .0476 .0478 .0510 .0529 .0502 .0544 .0573 .0640 
     -.50 3, 5, 2, 4, 1 .0522 .0494 .0546 .0525 .0547 .0619 .0693 .0778 
     -1 5, 4, 3, 2, 1 .0549 .0534 .0570 .0576 .0609 .0702 .0803 .0855 
  2.5 0.33 6, 8, 9, 12, 15 1 1, 2, 3, 4, 5 .0432 .0387 .0388 .0393 .0372 .0349 .0315 .0295 
     .50 1, 4, 2, 5, 3 .0470 .0481 .0448 .0454 .0477 .0441 .0464 .0435 
     0 1, 5, 4, 2, 3 .0514 .0488 .0502 .0547 .0497 .0508 .0586 .0634 
     -.50 3, 5, 2, 4, 1 .0560 .0533 .0573 .0591 .0615 .0687 .0791 .0864 
     -1 5, 4, 3, 2, 1 .0599 .0660 .0685 .0707 .0722 .0872 .1088 .1309 
  5.7 0.50 3, 6, 10, 14, 17 1 1, 2, 3, 4, 5 .0358 .0371 .0316 .0315 .0317 .0252 .0228 .0206 
     .50 1, 4, 2, 5, 3 .0448 .0425 .0371 .0453 .0418 .0340 .0374 .0351 
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N N/J 
Smallest

Largest

n

n
Δn n Pairing  

Order of  
variance 

Variance ratio 
1.5  1.6 1.7 1.8 2 3 5 9 

     0 1, 5, 4, 2, 3 .0511 .0514 .0491 .0497 .0502 .0550 .0537 .0638 
     -.50 3, 5, 2, 4, 1 .0590 .0599 .0610 .0697 .0674 .0822 .0983 .1124 
     -1 5, 4, 3, 2, 1 .0700 .0711 .0740 .0801 .0852 .1148 .1511 .1918 

75 15 1.5 0.16 12, 13, 15, 17, 18 1 1, 2, 3, 4, 5 .0481 .0484 .0435 .0447 .0465 .0472 .0415 .0464 
     .50 1, 4, 2, 5, 3 .0471 .0489 .0489 .0465 .0488 .0473 .0498 .0531 
     0 1, 5, 4, 2, 3 .0550 .0495 .0482 .0528 .0549 .0544 .0616 .0665 
     -.50 3, 5, 2, 4, 1 .0529 .0517 .0529 .0558 .0583 .0589 .0687 .0727 
     -1 5, 4, 3, 2, 1 .0580 .0582 .0529 .0611 .0604 .0692 .0746 .0867 
  2.5 0.33 9, 12, 13, 18, 23 1 1, 2, 3, 4, 5 .0405 .0422 .0385 .0410 .0365 .0360 .0332 .0304 
     .50 1, 4, 2, 5, 3 .0421 .0456 .0446 .0451 .0471 .0449 .0427 .0447 
     0 1, 5, 4, 2, 3 .0512 .0510 .0526 .0554 .0529 .0516 .0586 .0603 
     -.50 3, 5, 2, 4, 1 .0567 .0533 .0582 .0594 .0617 .0690 .0798 .0882 
     -1 5, 4, 3, 2, 1 .0640 .0653 .0686 .0680 .0693 .0875 .1059 .1277 
  5 0.50 5, 9, 15, 21, 25 1 1, 2, 3, 4, 5 .0341 .0375 .0336 .0309 .0308 .0252 .0204 .0193 
     .50 1, 4, 2, 5, 3 .0437 .0433 .0427 .0429 .0480 .0405 .0370 .0389 
     0 1, 5, 4, 2, 3 .0540 .0479 .0460 .0512 .0536 .0563 .0589 .0607 
     -.50 3, 5, 2, 4, 1 .0603 .0635 .0556 .0594 .0670 .0820 .0920 .1096 
     -1 5, 4, 3, 2, 1 .0670 .0711 .0778 .0834 .0848 .1117 .1462 .1759 

100 20 1.5 0.16 16, 18, 20, 22, 24 1 1, 2, 3, 4, 5 .0484 .0457 .0438 .0467 .0467 .0483 .0442 .0466 
     .50 1, 4, 2, 5, 3 .0460 .0459 .0432 .0481 .0458 .0486 .0527 .0542 
     0 1, 5, 4, 2, 3 .0491 .0536 .0492 .0511 .0526 .0527 .0573 .0643 
     -.50 3, 5, 2, 4, 1 .0520 .0532 .0585 .0548 .0579 .0579 .0632 .0728 
     -1 5, 4, 3, 2, 1 .0577 .0586 .0585 .0548 .0611 .0688 .0714 .0824 
  2.5 0.33 12, 16, 18, 24, 30 1 1, 2, 3, 4, 5 .0413 .0421 .0388 .0402 .0364 .0350 .0331 .0339 
     .50 1, 4, 2, 5, 3 .0465 .0472 .0459 .0437 .0472 .0415 .0465 .0421 
     0 1, 5, 4, 2, 3 .0516 .0533 .0496 .0537 .0510 .0557 .0611 .0604 
     -.50 3, 5, 2, 4, 1 .0560 .0561 .0583 .0569 .0634 .0665 .0786 .0911 
     -1 5, 4, 3, 2, 1 .0622 .0597 .0661 .0664 .0704 .0900 .1059 .1235 
  5.7 0.50 6, 12, 20, 28, 34 1 1, 2, 3, 4, 5 .0319 .0349 .0329 .0333 .0300 .0252 .0208 .0214 
     .50 1, 4, 2, 5, 3 .0440 .0397 .0420 .0452 .0387 .0386 .0333 .0377 
     0 1, 5, 4, 2, 3 .0513 .0483 .0489 .0481 .0512 .0606 .0551 .0621 
     -.50 3, 5, 2, 4, 1 .0560 .0593 .0611 .0626 .0676 .0806 .0970 .1122 
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N N/J 
Smallest

Largest

n

n
Δn n Pairing  

Order of  
variance 

Variance ratio 
1.5  1.6 1.7 1.8 2 3 5 9 

     -1 5, 4, 3, 2, 1 .0672 .0769 .0716 .0809 .0880 .1090 .1471 .1797 
125 25 1.5 0.16 20, 22, 25, 28, 30 1 1, 2, 3, 4, 5 .0470 .0492 .0437 .0469 .0436 .0446 .0481 .0459 
     .50 1, 4, 2, 5, 3 .0469 .0465 .0492 .0459 .0467 .0476 .0519 .0520 
     0 1, 5, 4, 2, 3 .0480 .0533 .0521 .0534 .0518 .0569 .0598 .0667 
     -.50 3, 5, 2, 4, 1 .0540 .0523 .0582 .0518 .0545 .0621 .0674 .0750 
     -1 5, 4, 3, 2, 1 .0550 .0571 .0576 .0599 .0616 .0676 .0791 .0813 
  2.5 0.33 15, 20, 22, 30, 38 1 1, 2, 3, 4, 5 .0398 .0465 .0419 .0396 .0357 .0350 .0313 .0325 
     .50 1, 4, 2, 5, 3 .0453 .0480 .0454 .0428 .0443 .0429 .0454 .0501 
     0 1, 5, 4, 2, 3 .0506 .0523 .0521 .0527 .0517 .0486 .0571 .0620 
     -.50 3, 5, 2, 4, 1 .0572 .0579 .0591 .0528 .0650 .0697 .0771 .0865 
     -1 5, 4, 3, 2, 1 .0595 .0599 .0652 .0707 .0713 .0883 .1058 .1281 
  5.3 0.50 8, 15, 25, 35, 42 1 1, 2, 3, 4, 5 .0325 .0369 .0312 .0319 .0291 .0279 .0248 .0207 
     .50 1, 4, 2, 5, 3 .0415 .0412 .0430 .0405 .0400 .0373 .0371 .0380 
     0 1, 5, 4, 2, 3 .0481 .0486 .0497 .0466 .0545 .0615 .0544 .0607 
     -.50 3, 5, 2, 4, 1 .0576 .0501 .0653 .0610 .0645 .0768 .0908 .1042 
     -1 5, 4, 3, 2, 1 .0684 .0745 .0804 .0738 .0867 .1112 .1447 .1803 
150 30 1.5 0.16 24, 27, 30, 33, 36 1 1, 2, 3, 4, 5 .0452 .0440 .0459 .0493 .0475 .0414 .0440 .0431 
     .50 1, 4, 2, 5, 3 .0486 .0450 .0499 .0491 .0474 .0449 .0545 .0506 
     0 1, 5, 4, 2, 3 .0460 .0490 .0512 .0473 .0487 .0526 .0574 .0608 
     -.50 3, 5, 2, 4, 1 .0506 .0542 .0534 .0566 .0542 .0616 .0715 .0766 
     -1 5, 4, 3, 2, 1 .0519 .0568 .0583 .0573 .0586 .0707 .0804 .0914 
  2.5 0.33 18, 24, 27, 36, 45 1 1, 2, 3, 4, 5 .0408 .0414 .0390 .0390 .0384 .0337 .0326 .0289 
     .50 1, 4, 2, 5, 3 .0453 .0453 .0413 .0493 .0403 .0458 .0456 .0452 
     0 1, 5, 4, 2, 3 .0503 .0484 .0534 .0537 .0513 .0548 .0569 .0591 
     -.50 3, 5, 2, 4, 1 .0548 .0544 .0588 .0524 .0608 .0703 .0785 .0858 
     -1 5, 4, 3, 2, 1 .0615 .0677 .0667 .0664 .0682 .0853 .1043 .1221 
  5.7 0.50 9, 18, 30, 42, 51 1 1, 2, 3, 4, 5 .0320 .0351 .0316 .0312 .0287 .0252 .0224 .0195 
     .50 1, 4, 2, 5, 3 .0438 .0419 .0409 .0398 .0410 .0362 .0355 .0361 
     0 1, 5, 4, 2, 3 .0503 .0523 .0486 .0486 .0496 .0535 .0540 .0599 
     -.50 3, 5, 2, 4, 1 .0611 .0618 .0640 .0630 .0700 .0784 .0966 .1041 
     -1 5, 4, 3, 2, 1 .0705 .0732 .0801 .0789 .0905 .1172 .1451 .1783 
200 40 1.5 0.16 32, 36, 40, 44, 48 1 1, 2, 3, 4, 5 .0428 .0410 .0433 .0452 .0397 .0418 .0468 .0431 
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N N/J 
Smallest

Largest

n

n
Δn n Pairing  

Order of  
variance 

Variance ratio 
1.5  1.6 1.7 1.8 2 3 5 9 

     .50 1, 4, 2, 5, 3 .0474 .0469 .0452 .0503 .0460 .0512 .0508 .0521 
     0 1, 5, 4, 2, 3 .0499 .0481 .0461 .0472 .0550 .0528 .0539 .0641 
     -.50 3, 5, 2, 4, 1 .0535 .0501 .0506 .0543 .0534 .0635 .0663 .0753 
     -1 5, 4, 3, 2, 1 .0543 .0577 .0573 .0588 .0559 .0648 .0741 .0848 
  2.5 0.33 24, 32, 36, 48, 60 1 1, 2, 3, 4, 5 .0399 .0422 .0360 .0394 .0329 .0331 .0313 .0288 
     .50 1, 4, 2, 5, 3 .0466 .0466 .0439 .0447 .0430 .0451 .0416 .0436 
     0 1, 5, 4, 2, 3 .0519 .0555 .0530 .0512 .0517 .0550 .0584 .0620 
     -.50 3, 5, 2, 4, 1 .0551 .0537 .0558 .0575 .0655 .0711 .0799 .0844 
     -1 5, 4, 3, 2, 1 .0576 .0628 .0636 .0634 .0769 .0805 .1080 .1177 
  5.7 0.50 12, 24, 40, 56, 68 1 1, 2, 3, 4, 5 .0348 .0369 .0327 .0363 .0290 .0254 .0221 .0198 
     .50 1, 4, 2, 5, 3 .0439 .0408 .0420 .0393 .0382 .0368 .0356 .0379 
     0 1, 5, 4, 2, 3 .0499 .0497 .0474 .0491 .0480 .0524 .0600 .0615 
     -.50 3, 5, 2, 4, 1 .0627 .0591 .0585 .0627 .0722 .0782 .0775 .1003 
     -1 5, 4, 3, 2, 1 .0715 .0737 .0756 .0789 .0907 .1136 .1480 .1874 
250 50 1.5 0.16 40, 45, 50, 55, 60 1 1, 2, 3, 4, 5 .0466 .0437 .0455 .0422 .0421 .0449 .0495 .0452 
     .50 1, 4, 2, 5, 3 .0481 .0465 .0454 .0453 .0428 .0520 .0511 .0556 
     0 1, 5, 4, 2, 3 .0497 .0449 .0505 .0509 .0513 .0496 .0576 .0622 
     -.50 3, 5, 2, 4, 1 .0549 .0511 .0505 .0530 .0506 .0650 .0605 .0697 
     -1 5, 4, 3, 2, 1 .0552 .0586 .0596 .0614 .0600 .0679 .0733 .0818 
  2.5 0.33 30, 40, 45, 60, 75 1 1, 2, 3, 4, 5 .0397 .0408 .0385 .0391 .0350 .0309 .0296 .0308 
     .50 1, 4, 2, 5, 3 .0433 .0478 .0482 .0473 .0443 .0447 .0410 .0481 
     0 1, 5, 4, 2, 3 .0504 .0492 .0497 .0538 .0509 .0571 .0596 .0609 
     -.50 3, 5, 2, 4, 1 .0531 .0566 .0573 .0569 .0626 .0627 .0738 .0840 
     -1 5, 4, 3, 2, 1 .0605 .0604 .0660 .0643 .0707 .0878 .1017 .1200 
  5.7 0.50 15, 30, 50, 70, 85 1 1, 2, 3, 4, 5 .0352 .0324 .0342 .0297 .0303 .0232 .0207 .0188 
     .50 1, 4, 2, 5, 3 .0410 .0429 .0442 .0405 .0419 .0353 .0371 .0354 
     0 1, 5, 4, 2, 3 .0480 .0486 .0526 .0512 .0527 .0520 .0552 .0601 
     -.50 3, 5, 2, 4, 1 .0577 .0513 .0612 .0596 .0677 .0778 .0944 .1036 
     -1 5, 4, 3, 2, 1 .0711 .0774 .0777 .0772 .0853 .1184 .1427 .1828 
300 60 1.5 0.16 48, 54, 60, 66, 72 1 1, 2, 3, 4, 5 .0491 .0459 .0424 .0428 .0403 .0414 .0448 .0464 
     .50 1, 4, 2, 5, 3 .0497 .0516 .0482 .0453 .0474 .0479 .0494 .0538 
     0 1, 5, 4, 2, 3 .0484 .0538 .0498 .0502 .0523 .0541 .0587 .0637 
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N N/J 
Smallest

Largest

n

n
Δn n Pairing  

Order of  
variance 

Variance ratio 
1.5  1.6 1.7 1.8 2 3 5 9 

     -.50 3, 5, 2, 4, 1 .0540 .0530 .0508 .0547 .0578 .0594 .0670 .0737 
     -1 5, 4, 3, 2, 1 .0535 .0540 .0571 .0558 .0603 .0708 .0722 .0872 
  2.5 0.33 36, 48, 54, 72, 90 1 1, 2, 3, 4, 5 .0371 .0385 .0432 .0392 .0360 .0317 .0320 .0330 
     .50 1, 4, 2, 5, 3 .0473 .0499 .0436 .0429 .0472 .0426 .0416 .0485 
     0 1, 5, 4, 2, 3 .0476 .0531 .0555 .0530 .0486 .0516 .0581 .0655 
     -.50 3, 5, 2, 4, 1 .0531 .0557 .0595 .0546 .0661 .0723 .0765 .0851 
     -1 5, 4, 3, 2, 1 .0588 .0651 .0646 .0721 .0732 .0890 .1031 .1185 
  5.7 0.50 18, 36, 60, 84, 102 1 1, 2, 3, 4, 5 .0351 .0378 .0322 .0289 .0283 .0246 .0225 .0188 
     .50 1, 4, 2, 5, 3 .0413 .0408 .0398 .0408 .0411 .0370 .0363 .0360 
     0 1, 5, 4, 2, 3 .0515 .0443 .0464 .0516 .0490 .0515 .0560 .0553 
     -.50 3, 5, 2, 4, 1 .0607 .0578 .0603 .0654 .0679 .0790 .0881 .1124 
     -1 5, 4, 3, 2, 1 .0714 .0725 .0786 .0817 .0853 .1154 .1437 .1802 
350 70 1.5 0.16 56, 63, 70, 77, 84 1 1, 2, 3, 4, 5 .0459 .0451 .0414 .0416 .0454 .0444 .0447 .0447 
     .50 1, 4, 2, 5, 3 .0465 .0488 .0444 .0499 .0469 .0498 .0514 .0509 
     0 1, 5, 4, 2, 3 .0477 .0497 .0516 .0506 .0520 .0559 .0562 .0567 
     -.50 3, 5, 2, 4, 1 .0503 .0532 .0566 .0506 .0585 .0597 .0637 .0709 
     -1 5, 4, 3, 2, 1 .0551 .0548 .0542 .0570 .0630 .0722 .0804 .0850 
  2.5 0.33 42, 56, 63, 84, 105 1 1, 2, 3, 4, 5 .0419 .0424 .0437 .0405 .0334 .0337 .0310 .0279 
     .50 1, 4, 2, 5, 3 .0466 .0444 .0427 .0461 .0380 .0436 .0408 .0446 
     0 1, 5, 4, 2, 3 .0473 .0539 .0537 .0474 .0506 .0527 .0572 .0659 
     -.50 3, 5, 2, 4, 1 .0570 .0562 .0586 .0629 .0596 .0681 .0742 .0874 
     -1 5, 4, 3, 2, 1 .0580 .0629 .0612 .0629 .0700 .0818 .1031 .1216 
  5.7 0.50 21, 42, 70, 98, 119 1 1, 2, 3, 4, 5 .0356 .0389 .0332 .0296 .0282 .0245 .0237 .0196 
     .50 1, 4, 2, 5, 3 .0414 .0418 .0410 .0401 .0384 .0383 .0345 .0356 
     0 1, 5, 4, 2, 3 .0492 .0542 .0491 .0453 .0510 .0544 .0586 .0614 
     -.50 3, 5, 2, 4, 1 .0588 .0574 .0581 .0631 .0731 .0827 .0900 .1085 
     -1 5, 4, 3, 2, 1 .0666 .0721 .0812 .0780 .0870 .1148 .1583 .1811 
400 80 1.5 0.16 64, 72, 80, 88, 96 1 1, 2, 3, 4, 5 .0469 .0428 .0437 .0478 .0455 .0403 .0424 .0440 
     .50 1, 4, 2, 5, 3 .0455 .0487 .0487 .0484 .0491 .0486 .0530 .0523 
     0 1, 5, 4, 2, 3 .0515 .0517 .0493 .0464 .0478 .0527 .0597 .0591 
     -.50 3, 5, 2, 4, 1 .0495 .0555 .0492 .0535 .0554 .0571 .0638 .0675 
     -1 5, 4, 3, 2, 1 .0538 .0529 .0558 .0582 .0600 .0657 .0717 .0845 
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N N/J 
Smallest

Largest

n

n
Δn n Pairing  

Order of  
variance 

Variance ratio 
1.5  1.6 1.7 1.8 2 3 5 9 

  2.5 0.33 48, 64, 72, 96, 120 1 1, 2, 3, 4, 5 .0402 .0405 .0431 .0382 .0372 .0330 .0343 .0314 
     .50 1, 4, 2, 5, 3 .0475 .0456 .0451 .0441 .0406 .0420 .0426 .0398 
     0 1, 5, 4, 2, 3 .0500 .0487 .0476 .0499 .0550 .0524 .0611 .0669 
     -.50 3, 5, 2, 4, 1 .0581 .0532 .0585 .0542 .0632 .0683 .0820 .0839 
     -1 5, 4, 3, 2, 1 .0628 .0630 .0673 .0693 .0710 .0905 .1024 .1257 
  5.7 0.50 24, 48, 80, 112, 136 1 1, 2, 3, 4, 5 .0333 .0363 .0325 .0316 .0289 .0224 .0202 .0186 
     .50 1, 4, 2, 5, 3 .0426 .0455 .0401 .0404 .0386 .0364 .0357 .0403 
     0 1, 5, 4, 2, 3 .0493 .0501 .0490 .0499 .0511 .0506 .0582 .0634 
     -.50 3, 5, 2, 4, 1 .0619 .0529 .0620 .0620 .0701 .0762 .0966 .1055 
     -1 5, 4, 3, 2, 1 .0661 .0688 .0769 .0828 .0818 .1172 .1506 .1840 
450 90 1.5 0.16 72, 81, 90, 99, 108 1 1, 2, 3, 4, 5 .0441 .0439 .0473 .0484 .0460 .0431 .0464 .0432 
     .50 1, 4, 2, 5, 3 .0494 .0483 .0463 .0462 .0475 .0507 .0525 .0521 
     0 1, 5, 4, 2, 3 .0501 .0510 .0490 .0482 .0541 .0510 .0557 .0599 
     -.50 3, 5, 2, 4, 1 .0507 .0567 .0531 .0505 .0572 .0641 .0660 .0739 
     -1 5, 4, 3, 2, 1 .0550 .0599 .0574 .0605 .0599 .0711 .0737 .0833 
  2.5 0.33 54, 72, 81, 108, 135 1 1, 2, 3, 4, 5 .0435 .0376 .0404 .0397 .0375 .0349 .0303 .0301 
     .50 1, 4, 2, 5, 3 .0439 .0459 .0450 .0425 .0429 .0439 .0467 .0416 
     0 1, 5, 4, 2, 3 .0456 .0493 .0555 .0552 .0503 .0530 .0609 .0647 
     -.50 3, 5, 2, 4, 1 .0541 .0512 .0557 .0565 .0601 .0687 .0794 .0874 
     -1 5, 4, 3, 2, 1 .0646 .0624 .0645 .0652 .0719 .0900 .0995 .1215 
  5.7 0.50 27, 54, 90, 126, 153 1 1, 2, 3, 4, 5 .0353 .0352 .0329 .0349 .0300 .0244 .0208 .0231 
     .50 1, 4, 2, 5, 3 .0443 .0446 .0430 .0381 .0386 .0336 .0391 .0390 
     0 1, 5, 4, 2, 3 .0485 .0485 .0492 .0511 .0525 .0549 .0569 .0606 
     -.50 3, 5, 2, 4, 1 .0585 .0611 .0584 .0585 .0684 .0762 .0937 .1083 
     -1 5, 4, 3, 2, 1 .0666 .0686 .0743 .0809 .0906 .1107 .1429 .1794 
500 100 1.5 0.16 80, 90, 100, 110, 120 1 1, 2, 3, 4, 5 .0460 .0434 .0428 .0432 .0472 .0454 .0450 .0408 

     .50 1, 4, 2, 5, 3 .0477 .0462 .0470 .0481 .0497 .0490 .0503 .0546 
     0 1, 5, 4, 2, 3 .0519 .0527 .0506 .0502 .0504 .0492 .0553 .0608 
     -.50 3, 5, 2, 4, 1 .0533 .0579 .0516 .0542 .0506 .0603 .0679 .0747 
     -1 5, 4, 3, 2, 1 .0529 .0550 .0574 .0560 .0625 .0707 .0724 .0867 
  2.5 0.33 60, 80, 90, 120, 150 1 1, 2, 3, 4, 5 .0414 .0432 .0420 .0399 .0385 .0325 .0315 .0300 
     .50 1, 4, 2, 5, 3 .0461 .0430 .0495 .0486 .0462 .0419 .0411 .0465 
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N N/J 
Smallest

Largest

n

n
Δn n Pairing  

Order of  
variance 

Variance ratio 
1.5  1.6 1.7 1.8 2 3 5 9 

     0 1, 5, 4, 2, 3 .0507 .0478 .0483 .0525 .0531 .0517 .0591 .0589 
     -.50 3, 5, 2, 4, 1 .0548 .0489 .0603 .0604 .0636 .0647 .0779 .0792 
     -1 5, 4, 3, 2, 1 .0648 .0675 .0680 .0699 .0753 .0866 .1042 .1180 
  5.7 0.50 30, 60, 100, 140, 170 1 1, 2, 3, 4, 5 .0377 .0361 .0315 .0322 .0294 .0302 .0213 .0197 
     .50 1, 4, 2, 5, 3 .0428 .0448 .0410 .0385 .0434 .0352 .0375 .0331 
     0 1, 5, 4, 2, 3 .0502 .0478 .0529 .0536 .0523 .0534 .0553 .0632 
     -.50 3, 5, 2, 4, 1 .0630 .0639 .0623 .0642 .0651 .0810 .0962 .1042 
     -1 5, 4, 3, 2, 1 .0694 .0738 .0755 .0766 .0869 .1139 .1461 .1776 
Note. N = total sample size; N/J = mean of group sample size; 

Smallest

Largest

n

n = ratio of the largest to the smallest group sample size; Δn = coefficient of sample size 

variation; n = number of units per group. The Type I error rates outside the boundary of Bradley’s liberal criterion are in bold (conservative: <.025; liberal: >.075).  

 

 

 

 

   



28 
 

Appendix C.  Empirical Type I error rates for F-test with unequal sample sizes for several nominal alpha levels in the conditions under 
which it is not robust against heterogeneity for a nominal alpha level equal to .05 

N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Alpha 
Variance ratio 

1.6 1.7 1.8 2 3 5 9 
15 5 1.5 0.16 4, 5, 6 -.50 2, 3, 1 .05      .0787 .0864 
       .025      .0390 .0590 
       .01      .0240 .0200 
     -1 3, 2, 1 .05      .0816 .0948 
       .025      .0540 .0540 
       .01      .0260 .0310 
  2.3 0.33 3, 5, 7 -.50 2, 3, 1 .05      .0873 .0977 
       .025      .0570 .0600 
       .01      .0250 .0230 
     -1 3, 2, 1 .05    .0791 .0897 .1122 .1319 
       .025    .0413 .0520 .0730 .1000 
       .01    .0200 .0180 .0430 .0450 
  3 0.50 3, 3, 9 -1 3, 2, 1 .05  .0760 .0786 .0794 .1171 .1624 .2077 
       .025  .0350 .0420 .0458 .0650 .1080 .1390 
       .01  .0140 .0250 .0170 .0306 .0510 .0660 
30 10 1.5 0.16 8, 10, 12 -1 3, 2, 1 .05      .0788 .0867 
       .025      .0500 .0550 
       .01      .0270 .0200 
  2.3 0.33 6, 10, 14 -.50 2, 3, 1 .05      .0870 .0913 
       .025      .0590 .0510 
       .01      .0270 .0310 
     -1 3, 2, 1 .05     .0863 .1128 .1245 
       .025     .0535 .0630 .0830 
       .01     .0230 .0310 .0430 
  4 0.50 4, 10, 16 -.50 2, 3, 1 .05     .0809 .0926 .1099 
       .025     .0466 .0610 .0550 
       .01     .0280 .0310 .0380 
     -1 3, 2, 1 .05 .0761 .0757 .0761 .0881 .1185 .1486 .1788 
       .025 .0400 .0390 .0500 .0515 .0620 .1040 .1300 
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N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Alpha 
Variance ratio 

1.6 1.7 1.8 2 3 5 9 
       .01 .0190 .0230 .0170 .0190 .0379 .0580 .0660 

45 15 1.5 0.16 12, 15, 18 -1 3, 2, 1 .005      .0807 .0861 
       .025      .0460 .0570 
       .01      .0220 .0190 
  2.3 0.33 9, 15, 21 -.50 2, 3, 1 .05      .0794 .0876 
       .025      .0540 .0570 
       .01      .0250 .0290 
     -1 3, 2, 1 .05    .0761 .0921 .1074 .1302 
       .025    .0399 .0502 .0760 .1000 
       .01    .0130 .0240 .0310 .0340 
  4 0.50 6, 15, 24 -.50 2, 3, 1 .05     .0785 .0914 .1082 
       .025     .0481 .0680 .0720 
       .01     .0240 .0340 .0380 
     -1 3, 2, 1 .05  .0788 .0803 .0916 .1132 .1497 .1737 
       .025  .0460 .0530 .0506 .0830 .0900 .1100 
       .01  .0160 .0180 .0250 .0374 .0660 .0520 

60 20 1.5 0.16 16, 20, 24 -1 3, 2, 1 .05      .0761 .0905 
       .025      .0540 .0630 
       .01      .0230 .0230 
  2.3 0.33 12, 20, 28 -.50 2, 3, 1 .05       .0873 
       .025       .0490 
       .01       .0330 
     -1 3, 2, 1 .05    .0765 .0949 .1072 .1208 
       .025    .0384 .0497 .0700 .0630 
       .01    .0190 .0200 .0470 .0530 
  4 0.50 8, 20, 32 -.50 2, 3, 1 .05     .0764 .0885 .0953 
       .025     .0462 .0680 .0630 
       .01     .0200 .0530 .0420 
     -1 3, 2, 1 .05   .0767 .0911 .1137 .1452 .1739 
       .025   .0520 .0483 .0769 .1140 .1170 
       .01   .0200 .0270 .0340 .0570 .0800 
       .005       .0520 
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N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Alpha 
Variance ratio 

1.6 1.7 1.8 2 3 5 9 
75 25 1.5 0.16 20, 25, 30 -1 3, 2, 1 .05       .0885 
       .025       .0590 
       .01       .0270 
  2.3 0.33 15, 25, 35 -.50 2, 3, 1 .05       .0873 
       .025       .0580 
       .01       .0200 
     -1 3, 2, 1 .05     .0829 .1069 .1224 
       .025     .0494 .0620 .0730 
       .01     .0250 .0450 .0550 
  4 0.50 10, 25, 40 -.50 2, 3, 1 .05     .0783 .0902 .1009 
       .025     .0489 .0670 .0570 
       .01     .0270 .0400 .0390 
     -1 3, 2, 1 .05 .0759 .0764 .0806 .0900 .1101 .1420 .1737 
       .025 .0480 .0420 .0500 .0475 .0672 .0880 .1340 
       .01 .0140 .0180 .0310 .0230 .0370 .0690 .0720 

90 30 1.5 0.16 24, 30, 36 -1 3, 2, 1 .05      .0762 .0859 
       .025      .0470 .0560 
       .01      .0290 .0290 
  2.3 0.33 18, 30, 42 -.50 2, 3, 1 .05      .0755 .0812 
       .025      .0530 .0450 
       .01      .0340 .0320 
     -1 3, 2, 1 .05     .0880 .1032 .1242 
       .025     .0523 .0780 .0780 
       .01     .0220 .0320 .0460 
  4 0.50 12, 30, 48 -.50 2, 3, 1 .05     .0755 .0890 .1041 
       .025     .0463 .0760 .0590 
       .01     .0203 .0400 .0410 
     -1 3, 2, 1 .05  .0756 .0796 .0930 .1085 .1400 .1748 
       .025  .0530 .0460 .0504 .0649 .1120 .1100 
       .01  .0240 .0190 .0230 .0370 .0660 .0540 

120 40 1.5 0.16 32, 40, 48 -1 3, 2, 1 .05      .0753 .0846 
       .025      .0450 .0530 
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N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Alpha 
Variance ratio 

1.6 1.7 1.8 2 3 5 9 
       .01      .0270 .0290 
  2.3 0.33 24, 40, 56 -.50 2, 3, 1 .05      .0779 .0840 
       .025      .0590 .0480 
       .01      .0300 .0270 
     -1 3, 2, 1 .05     .0903 .1061 .1206 
       .025     .0513 .0680 .0770 
       .01     .0280 .0400 .0370 
  4 0.50 16, 40, 64 -.50 2, 3, 1 .05     .0774 .0933 .0967 
       .025     .0422 .0770 .0510 
       .01     .0210 .0400 .0390 
     -1 3, 2, 1 .05  .0807 .0734 .0880 .1161 .1460 .1646 
       .025  .0470 .0340 .0518 .0643 .1030 .1190 
       .01  .0180 .0240 .0190 .0290 .0540 .0630 

150 50 1.5 0.16 40, 50, 60 -1 3, 2, 1 .05      .0764 .0868 
       .025      .0460 .0440 
       .01      .0170 .0260 
  2.3 0.33 30, 50, 70 -.50 2, 3, 1 .05      .0803 .0772 
       .025      .0510 .0530 
       .01      .0270 .0260 
     -1 3, 2, 1 .05     .0879 .1061 .1258 
       .025     .0507 .0680 .0900 
       .01     .0310 .0480 .0480 
  4 0.50 20, 50, 80 -.50 2, 3, 1 .05     .0793 .0881 .0987 
       .025     .0436 .0660 .0820 
       .01     .0190 .0460 .0350 
     -1 3, 2, 1 .05 .0759 .0808 .0831 .0880 .1071 .1424 .1731 
       .025 .0410 .0400 .0370 .0471 .0706 .1110 .1200 
       .01 .0140 .0210 .0160 .0180 .0330 .0510 .0660 

180 60 1.5 0.16 48, 60, 72 -1 3, 2, 1 .05      .0774 .0823 
       .025      .0520 .0410 
       .01      .0210 .0250 
  2.3 0.33 36, 60, 84 -.50 2, 3, 1 .05       .0834 
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N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Alpha 
Variance ratio 

1.6 1.7 1.8 2 3 5 9 
       .025       .0600 
       .01       .0270 
     -1 3, 2, 1 .05     .0907 .1039 .1190 
       .025     .0482 .0570 .0650 
       .01     .0270 .0280 .0480 
  4 0.50 24, 60, 96 -.50 2, 3, 1 .05     .0762 .0888 .0991 
       .025     .0380 .0680 .0650 
       .01     .0261 .0430 .0330 
     -1 3, 2, 1 .05 .0753 .0775 .0787 .0825 .1167 .1445 .1697 
       .025 .0410 .0370 .0460 .0503 .0760 .0890 .1140 
       .01 .0120 .0200 .0250 .0200 .0420 .0610 .0380 

210 70 1.5 0.16 56, 70, 84 -1 3, 2, 1 .05      .0767 .0855 
       .025      .0460 .0430 
       .01      .0310 .0320 
  2.3 0.33 42, 70, 98 -.50 2, 3, 1 .05       .0759 
       .025       .0530 
       .01       .0220 
     -1 3, 2, 1 .05     .0842 .1074 .1224 
       .025     .0590 .0580 .0840 
       .01     .0290 .0420 .0380 
  4 0.50 28, 70, 112 -.50 2, 3, 1 .05     .0764 .0866 .1019 
       .025     .0402 .0590 .0680 
       .01     .0160 .0430 .0440 
     -1 3, 2, 1 .05  .0769 .0762 .0843 .1141 .1470 .1639 
       .025  .0410 .0330 .0497 .0780 .1130 .1000 
       .01  .0250 .0160 .0250 .0320 .0670 .0840 
       .005       .0460 

240 80 1.5 0.16 64, 80, 96 -1 3, 2, 1 .05       .0821 
       .025       .0470 
       .01       .0310 
  2.3 0.33 48, 80, 112 -.50 2, 3, 1 .05       .0866 
       .025       .0540 
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N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Alpha 
Variance ratio 

1.6 1.7 1.8 2 3 5 9 
       .01       .0310 
     -1 3, 2, 1 .05    .0773 .0859 .1052 .1256 
       .025    .0429 .0600 .0660 .0770 
       .01     .0230 .0300 .0470 
  4 0.50 32, 80, 128 -.50 2, 3, 1 .05      .0880 .0960 
       .025      .0720 .0640 
       .01      .0390 .0390 
     -1 3, 2, 1 .05  .0782 .0762 .0908 .1133 .1429 .1687 
       .025  .0400 .0410 .0503 .0660 .1010 .1110 
       .01  .0150 .0130 .0250 .0420 .0560 .0770 
       .005       .0440 

270 90 1.5 0.16 72, 90, 108 -1 3, 2, 1 .05      .0837 .0878 
       .025      .0550 .0440 
       .01      .0250 .0250 
  2.3 0.33 54, 90, 126 -.50 2, 3, 1 .05       .0827 
       .025       .0550 
       .01       .0290 
     -1 3, 2, 1 .05     .0873 .1012 .1140 
       .025     .0620 .0720 .0910 
       .01     .0330 .0340 .0520 
  4 0.50 36, 90, 144 -.50 2, 3, 1 .05     .0782 .0863 .0995 
       .025     .0470 .0704 .0630 
       .01     .0390 .0390 .0490 
     -1 3, 2, 1 .05  .0786 .0816 .0882 .1075 .1397 .1629 
       .025  .0410 .0600 .0493 .0600 .0930 .1250 
       .01  .0200 .0180 .0320 .0340 .0590 .0640 

300 100 1.5 0.16 80, 100, 120 -1 3, 2, 1 .05       .0853 
       .025       .0450 
       .01       .0160 

300 100 2.3 0.33 60, 100, 140 -.50 2, 3, 1 .05      .0752 .0867 
       .025      .0420 .0550 
       .01      .0310 .0300 
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N N/J 
Smallest

Largest

n

n  Δn n Pairing  
Order of  
variance 

Alpha 
Variance ratio 

1.6 1.7 1.8 2 3 5 9 
     -1 3, 2, 1 .05    .0755 .0857 .1106 .1196 
       .025    .0377 .0500 .0670 .0640 
       .01    .0120 .0250 .0400 .0510 
  4 0.50 40, 100, 160 -.50 2, 3, 1 .05     .0781 .0866 .0981 
       .025     .0430 .0610 .0840 
       .01     .0190 .0450 .0360 
     -1 3, 2, 1 .05  .0782 .0821 .0816 .1078 .1375 .1713 
       .025  .0410 .0390 .0489 .0740 .0780 .0830 
       .01  .0180 .0200 .0290 .0450 .0580 .0560 

Note. N = total sample size; N/J = mean of group sample size; 
Smallest

Largest

n

n = ratio of the largest to the smallest group sample size; Δn = coefficient of sample size 

variation; n = number of units per group. The Type I error rates outside the boundary of Bradley’s liberal criterion for nominal alpha level of .05 are in bold 
(conservative: < .025; liberal: > .075).  
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