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Abstract

Inconsistencies in the research findings on F-test robustness to variance heterogeneity
could be related to the lack of a standard criterion to assess robustness or to the different
measures used to quantify heterogeneity. In the present paper we use Monte Carlo simulation to
systematically examine the Type I error rate of F-test under heterogeneity. One-way, balanced,
and unbalanced designs with monotonic patterns of variance were considered. Variance ratio
(VR) was used as a measure of heterogeneity (1.5, 1.6, 1.7, 1.8, 2, 3, 5, and 9), the coefficient of
sample size variation as a measure of inequality between group sizes (0.16, 0.33, and 0.50), and
the correlation between variance and group size as an indicator of the pairing between them (1,
.50, 0, -.50, and -1). Overall, the results suggest that in terms of Type I error a VR above 1.5 may
be established as a rule of thumb for considering a potential threat to F-test robustness under
heterogeneity with unequal sample sizes.
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One-way analysis of variance (ANOVA) is one of the most common statistical
techniques to test the equality of three or more means in educational and behavioral research
(Keselman et al., 1998; Kieffer, Reese, & Thompson, 2001), although its use has decreased in
recent years (Skidmore & Thompson, 2010). The F-test assumes that the outcome variable must
be normally and independently distributed, and the samples must come from a population with
common variances. However, the empirical evidence involving real data extracted from review
of several scientific journals indicates that these assumptions are not always met (Blanca, Arnau,
Lopez-Montiel, Bono, & Bendayan, 2013; Micceri, 1989; Ruscio & Roche, 2012).

Specifically, with regard to homogeneity of variance, research reveals that group
variances are often unequal (Erceg-Hurn & Miroservich, 2008; Grissom, 2000; Keselman et al.,
1998; Ruscio & Roche, 2012; Wilcox, 1987). This inequality may be due to a priori differences
in groups that are naturally formed or to an effect of experimental treatment which produces
differences not only in means but also in variances (Bryk & Raudenbash, 1988; Erceg-Hurn &
Mirosevich, 2008; Grissom, 2000; Grissom & Kim, 2001; Sawilowsky, 2002; Sawilowsky &
Blair, 1992). Several indexes have been proposed to measure the amount of heterogeneity,
namely the coefficient of variance variation (Box, 1954; Rogan, Keselman, & Breen, 1977;
Ruscio & Roche, 2012), the standardized variance heterogeneity index (Ruscio & Roche, 2012),
and the variance ratio (Keselman et al., 1998; Ruscio & Roche, 2012). The variance ratio, which
is the simplest measure of heterogeneity, is defined as the ratio of the largest variance to the
smallest variance of the groups. This is the index most commonly used in Monte Carlo studies
(e.g., Box, 1954; Cribbie, Wilcox, Bewell, & Keselman, 2007; Fan & Hancock, 2012; Hsu,
1938; Kang, Harring, & Li, 2015; Mendes & Pala, 2004; Mickelson, 2013; Moder, 2007, 2010;

Scheffé, 1959; Tomarken & Serling, 1986; Wilcox, Charlin, & Thompson, 1986; Zijlstra, 2004).



With real data, Keselman et al. (1998) found that the average value of the variance ratio was 2.0
(SD = 2.6), with a median of 1.5 and a maximum ratio of 23.8. Recently, Ruscio and Roche
(2012) found variance heterogeneity in more than 50% of examined cases, with the mean
variance ratio being equal to 2.51 when there were two groups, 3.95 when there were three
groups, and 8.84 when there were four groups in the design.

As the abovementioned studies show, variance heterogeneity is frequently observed in
real data. The question that follows logically from this is how heterogeneity affects the
robustness of the F-test. Robustness, which has been extensively addressed in the literature,
refers to a statistical test’s insensitivity under violations of its assumptions, specifically in terms
of its Type I error rates (Box, 1953). Type I error is the probability of rejecting a null hypothesis
when it is actually true. The robustness of a statistical test can be evaluated via Monte Carlo
simulation techniques, and in order to ensure the comparability of results from Monte Carlo
studies a standard criterion to assess robustness must be established. Bradley’s (1978) liberal
criterion is considered the most appropriate (e.g., Keselman, Algina, Kowalchuk, & Wolfinger,
1999; Kowalchuk, Keselman, Algina, & Wolfinger, 2004). According to this criterion, a
statistical test is considered robust if the empirical Type I error rate is between .025 and .075 for
a nominal alpha level of .05. When the rate is above .075 the test is considered liberal, increasing
the risk of declaring mean differences that do not exist. When the rate is below .025 the test is
considered conservative, such that the researcher is assuming an alpha level below the nominal.

The first Monte Carlo studies that examined F-test robustness to violations of its
assumptions were carried out between 1930 and 1960 and were summarized by Glass, Peckham,
and Sanders (1972). With regard to variance heterogeneity, early studies (Box, 1954; David &

Johnson, 1951; Horsnell, 1953; Horton, 1952, cit. Lindquist, 1953; Hsu, 1938; Schefté, 1959)



suggest two main conclusions: 1) F-test is robust when the groups have equal sample sizes and
the group size is not very small (e.g., greater than 7; Kohr & Games, 1974); and 2) F-test tends
not to be robust when the groups have unequal sample sizes, in which case the effect of
heterogeneity on Type I error depends on the pairing of variance with group size. F-test tends to
be conservative when the pairing is positive, that is, when the group with the largest sample size
also has the largest variance and the group with the smallest sample size has the smallest
variance. Conversely, it tends to be liberal when the pairing is negative, namely when the group
with the largest sample size has the smallest variance and the group with the smallest sample size
has the largest variance. Based on these studies, many classical handbooks on research methods
in education and psychology recommend using equal sample sizes as protection against the
effect of heterogeneity (e.g., Glass & Stanley, 1970; Hays, 1981; Keepel, 1991; Maxwell &
Delaney, 1990; Winner, 1971).

The issue of F-test robustness to variance heterogeneity has continued to be studied since
1970 until the present day (for a review, see Harwell, Rubinstein, Hayes, & Olds, 1992; Lix,
Keselman, & Keselman, 1996). However, research to date with equal sample sizes provides
contradictory results, there being both evidence that F-test is robust to variance heterogeneity
(Lee & Anh, 2003; Patrick, 2007; Yigit & Gokpinar, 2010) and evidence against this (Alexander
& Govern, 1994; Biining, 1997; Harwell et al., 1992; Lix et al., 1996; Moder, 2010; Rogan &
Keselman, 1977; Tomarken & Serling, 1986; Wilcox et al., 1986). This inconsistency in the
results may be due to several factors.

First, most of the cited studies did not use a standard criterion to assess robustness.
Results were usually interpreted based on the comparison between empirical and nominal alpha

without following any standard criterion: if the difference was small, F-test was said to be



robust. The problem here is that the meaning of “small” is ambiguous and does not allow a clear
decision to be made. Indeed, expressions such as “modest inflation” (Harwell et al., 1992) or
“slightly increase” (Glass et al., 1972) are frequently used when referring to Type I error rates.
Had Bradley’s criterion of robustness been adopted, many of these results would have been
interpreted differently.

Second, the studies in question used different measures to quantify variance
heterogeneity, thus making it difficult to draw general conclusions. Some studies used the
coefficient of variance variation (Lix et al., 1996; Rogan & Keselman, 1977), some used their
own indexes (e.g., Patrick, 2007; Ruscio & Roche, 2012), and others used the variance ratio
(e.g., Alexander & Govern, 1994; Box, 1954; Hsu, 1938; Moder, 2010; Scheffé, 1959; Tomarken
& Serling, 1986; Wilcox et al., 1986; Zijlstra, 2004).

Third, the simulated conditions (e.g., variance values, number of groups, group sizes,
pattern of variance, number of replications, etc.) were so varied that it is almost impossible to
compare studies. In this context, the pattern of heterogeneity that is simulated appears to be the
most relevant variable. The pattern of heterogeneity refers to the way in which the values of the
group variances can be ordered. Thus, the group variances can monotonically increase (e.g.,
of > of > 0%) or decrease (e.g., 0f < 0% < o%) or follow another arbitrary pattern (e.g.,

02 = 07 > 0%). Research to date has included a wide variety of these patterns. In general, some
studies have found that F-test is robust, according to Bradley’s liberal criterion, with a
monotonic pattern (Lee & Ahn, 2003; Tomarken & Serling, 1986; Wilcox et al., 1986), whereas
others have found that it is liberal (Alexander & Govern, 1994; Biining, 1997). For example,
Wilcox et al. (1986), who considered four groups with a variance ratio equal to 4 and a

monotonic pattern of variance of 1: 2: 3: 4 with equal sample sizes (n = 11), found that F-test



was robust (Type I error rate = .068), whereas Alexander and Govern (1994) found it to be
liberal with a pattern of 1: 2: 4: 6 (Type I error rate =.079). Biining (1997) found that F-test was
robust with group size equal to 10 and a pattern of 1: 2: 4 (Type I error rate = .062), but liberal
with a pattern of 1: 3: 7 (Type I error rate = .083). With arbitrary patterns of heterogeneity
involving a set of groups with similar variances and one with extreme variance (e.g., 1: 1: 1: 6
and 1: 1: 30) the test has been found to be non-robust (Alexander & Govern, 1994; Lee & Ahn,
2003; Morder, 2010; Rogan & Keselman; 1977; Wilcox et al., 1986). Overall, these findings
suggest that F-test robustness with equal group sizes is more affected by a pattern where the
variance of one group is very different to that of the other groups. However, F-test robustness
with monotonic patterns of variance is still unclear, and further research is needed to determine
under which types of these patterns the test can be used.

The sensitivity of F-test to violations of the variance homogeneity assumption when
sample sizes are unequal has been reported more consistently (Gamage & Weerahandi, 1998;
Kohr & Games, 1974; Lee & Ahn, 2003; Moder, 2010; Patrick, 2007; Tomarken & Serling,
1986; Yigit & Gokpinar, 2010; Zijlstra, 2004). The empirical evidence indicates that its
robustness depends on the pairing of variance with group size, as was found in early studies.
However, despite the large body of research the specific conditions under which F-test is robust
have yet to be established, and a number of questions remained unanswered. For example, what
values of the variance ratio are associated with correct/invalid inferences? How much inequality
of group sizes can be assumed in order to ensure that F-test controls Type I error rate? What
other types of pairing between variance and group size can be defined and how do they affect F-

test robustness?



Regarding the first and second questions, some authors have suggested several rules of
thumb, namely that variance homogeneity can probably be assumed when the variance ratio is
not greater than 3 (Dean & Voss, 1999; Keppel, Saufley, & Tokunaga, 1992; Kirk, 2013), is less
than 4 or 5 (Wuensch, 2017), or is even as high as 10 provided that the ratio of the largest to
smallest sample size does not exceed 4 (Tabachnick & Fidell, 2007; 2013).

Regarding the pairing between variance and group size, previous Monte Carlo studies
have usually included a perfect pairing with monotonic patterns of variance. For example,
considering five groups with sample sizes equal to 32, 36, 40, 44, and 48 and variances equal to
1,2, 3,4, and 5, respectively, the pairing between these variables is perfect and positive. If the
variances were 5, 4, 3, 2, and 1, respectively, the pairing would be perfect and negative.
However, other types of pairing are also possible. If the pairing is defined by the correlation
between group size and variance, then different values of this variable can be obtained. For
example, if the same group sample sizes were associated with variance values of 1, 4, 2, 5, and 3,
respectively, the pairing would be equal to .50, while for values of 3, 5, 2, 4, and 1 it would be
equal to -.50. Thus, different values of the pairing could be considered in Monte Carlo studies in
order to extend our understanding of how F-test robustness is affected by the type of pairing. As
mentioned, previous research does not provide consistent results about the robustness of F-test
with monotonic patterns, and it does not consider other possible types of pairing.

In this context, the main aim of this study is to systematically examine the robustness of
F-test, in terms of Type I error, to violations of variance heterogeneity, considering a wide range
of conditions representative of real data in educational and psychological research (Golinski &
Cribbie, 2009; Keselman et al., 1998; Ruscio & Roche, 2012). To this end, a series of Monte

Carlo simulation studies are performed for a one-way design with equal and unequal sample



sizes and monotonic patterns of variance. The variance ratio is used as a measure of
heterogeneity, the coefficient of sample size variation as a measure of the amount of inequality in
group size, and the correlation between variance and group sample size as an indicator of
different values of pairing. Our goal, based on the results of this study, is to offer a guideline to
help applied researchers decide whether they can use the F-test when their data do not meet the
variance homogeneity assumption under certain conditions.

Method

With the aim of systematically examining the robustness of F-test to violations of
variance heterogeneity we conducted a series of Monte Carlo simulation studies for a one-way
design with equal and unequal sample sizes and monotonic patterns of variance. Simulation
studies use computer-intensive procedures to assess the appropriateness and accuracy of a variety
of statistical methods in relation to the known truth (Angelis & Young, 1998), and they are
especially suitable for evaluating a test’s robustness when the underlying assumptions are not
fulfilled. For this reason, they are widely used by researchers in the health and social sciences
(Burton, Altman, Royston, & Holder, 2006).

In order to examine the isolated effects of variance heterogeneity on F-test robustness,
and considering a one-way design, data were assumed to be normally distributed. Normal data
were generated using a series of macros created ad hoc in SAS 9.4 (SAS Institute, 2013). The
group effect was set to zero in the population model. The following variables were manipulated:

1. Equal and unequal group sample sizes and number of groups. Data analytic practices for
ANOVA show that unbalanced designs are more common than balanced designs
(Golinski & Cribbie, 2009; Keselman et al., 1998). We considered designs with 3, 4, 5,

and 6 groups with balanced cells, and 3 and 5 groups with unbalanced cells.



2. Group sample size and total sample size. A wide range of group sample sizes which can
be frequently found in real research were considered, enabling us to study small, medium,
and large sample sizes. With balanced designs, the group sizes were set to 3, 5, 10, 15, 20,
25, 30, 40, 50, 60, 70, 80, 90, and 100. With unbalanced designs, group sizes were set
between 3 and 170, with a mean group size from 5 to 100. Total sample size ranged from
9 to 600, depending on the number of groups considered, this being the result of
multiplying the number of groups by the minimum and maximum group sample size (e.g.,
with 5 groups the total sample size ranged from 15 to 500).

3. Coefficient of sample size variation (An), which represents the amount of inequality in
group sizes. This was computed by dividing the standard deviation of the group sample
size by its mean. Different degrees of variation were considered and were grouped as low,
medium, and high. A low An was fixed at approximately 0.16 (0.141 - 0.178), a medium
coefficient at 0.33 (0.316 - 0.334), and a high value at 0.50 (0.491 - 0.521). Keselman et
al. (1998) showed that the ratio of the largest to the smallest group size was greater than 3
in 43.5% of cases. With An = 0.16 this ratio was equal to 1.5, with 4n = 0.33 it was equal
to either 2.3 or 2.5, and with An = 0.50 it ranged from 3.3 to 5.7.

4. Ratio of the largest to the smallest variance. For one-way designs Keselman et al. (1998)
found that the average value of the ratio of the largest to the smallest standard deviation
was 2.0 (SD = 2.6), with a median of 1.5 and a maximum ratio of 23.8. Ruscio and Roche
(2012), despite the enormous range in variance ratio found, showed that the ratio exceeded
3 in 23.18% of reviewed studies, with a median of 1.64 and a range for the middle 50% of
cases of between 1.23 and 2.76. In addition, for 3 groups they found a mean value of 3.95.

Based on these findings, the values of variance ratio selected for the present study were



1.5,2, 3,5, and 9 for balanced designs, and 1.5, 1.6, 1.7, 1.8, 2, 3, 5 and 9 for unbalanced
designs.

5. Patterns of variance and pairing of variance with group sample size. Monotonic patterns
of variance were considered, and are presented in Table 1 for each variance ratio. The type
of pairing between variance and group size indicates the relationship or association
between the two. Pairing is positive when the largest group size is associated with the
largest value of the variance and the smallest group size is associated with the smallest
value of variance. Pairing is negative when the largest group size is associated with the
smallest value of variance, and vice-versa. Unpairing occurs when there is no association
between group size and variance. This happens, for example, with equal group sizes
and/or equal variances, but it can also appear with unequal group sizes. In order to
consider conditions of pairing which can represent real data (Keselman et al., 1998;
Ruscio & Roche, 2012), we calculated the correlation between group sample size and
variance value. Correlations equal, approximately, to 1, .50, 0, -.50, and -1 were
considered for unbalanced designs. The value of 0 was not included for 3 groups because
it is a non-possible value. These correlation values were obtained by associating each
group sample size with different values of variance for the monotonic pattern. Thus, if the
groups are ordered as a function of their sample sizes, different values of this correlation
are obtained by changing the value of their variance. Table 2 shows the order of variance
associated with the group sample sizes, from the smallest sample size to the largest one.
To ensure reliable results 10,000 replications of each combination of the above conditions

were performed at a significance level of .05, recording the empirical Type I error rate

(Bendayan, Arnau, Blanca, & Bono, 2014; Robey & Barcikowski, 1992).
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Results

The empirical Type I error rates associated with the F-test of the group effect were
analyzed for each combination. The results for equal and unequal sample size are shown in
Appendices A and B, respectively. Bradley’s liberal criterion (1978) was used to assess the
robustness of the procedure. To summarize the results, based on Bradley’s criterion the empirical
Type I error rates were dichotomized into a binary variable with two categories, robust (Type |
error rate between .025 and .075) and not robust (Type I error rate below .025 or above .075).
Chi-square tests were then performed to examine the association between robustness and the
variables of interest. Results are presented according to equal and unequal sample sizes.
Equal sample sizes
As can be seen in Tables A1-A4 (Appendix A), all Type I error rates were inside the boundary of
Bradley’s liberal criterion. Thus, the results show that F-test is robust for 3, 4, 5, and 6 groups in
100% of cases, regardless of the total sample size and variance ratio.
Unequal sample sizes

Total sample size. The association between total sample size and categorical Type I error
rate was not statistically significant for any condition of variance ratio and number of groups,
considering 13 categories of the first variable and two of the second. Moreover, the association
between group sample size mean and categorical Type I error rate, collapsed across all variance
ratios, was not significant for either 3 groups, x*(12) = 1.47, p=.99, or 5 groups, yx*(12) = 0.38,
p =.99. The percentages of F-test robustness are shown in Table 3.

Variance ratio. The relationship between variance ratio (8 categories) and categorical
Type 1 error rate was significant both for 3 groups, %*(7) = 283.59, p <.001, and for 5 groups,

v2(7) = 288.57, p < .001. In general, the percentage of robustness decreased as variance ratio
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increased, with F-test being more robust with 5 groups. Table 4 shows the percentages of F-test
robustness.

Pairing of variance with group size. Overall, for both 3 and 5 groups there was a
significant association between categorical Type I error rate and pairing of variance with group
size for ratios higher than 1.5. Tables 5 and 6 show the percentage of robustness according to
variance ratio and pairing. With a ratio of 1.5, F-test was robust in all conditions. With a ratio
from 1.6 to 2 it was robust except when the pairing was equal to -1. With a ratio of 3 or higher,
F-test was robust with pairing equal to 0 or .50 and non-robust with pairing equal to 1, -.5, and -
1. Negative pairing had more of an effect than did positive pairing, with the percentage of
robustness decreasing as the amount of negative pairing increased; it even reached zero with
pairing equal to -1 and a variance ratio of 9. In addition, when F-test was not robust with positive
pairing it was always conservative, whereas with negative pairing it was always liberal.

Coefficient of sample size variation. For both 3 and 5 groups there was a significant
association between categorical Type I error rate and the coefficient of sample size variation (3
categories) for each ratio higher than 1.5, with F-test being less robust with the highest values of
this coefficient. Tables 7 and 8 show the percentage of robustness according to this coefficient.
For ratios of 2 or higher, the more inequality between groups the less robust F-test was. The
largest coefficient of sample size variation had an enormous effect on the percentage of
robustness when the variance ratio was 3 or higher, decreasing it by as much as three-quarters (to
24%) in the cases for 3 groups.

All studied conditions. As can be seen in Tables B1 and B2 (Appendix B) there was a
similar pattern of Type I error rates for 3 and 5 groups. The results are summarized in Table 9. In

general, it appears that robustness depends on the variance ratio, the pairing of variance with
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group size, and the coefficient of sample size variation, with the procedure being more robust
when variance ratios were small, the pairing of variance was either zero or positive, and the
coefficient of sample size variation was smaller. More specifically:
Variance ratio of 1.5. As stated above, F-test was robust for all the studied conditions, regardless
of the pairing or the coefficient of sample size variation.
Variance ratio ranged from 1.6 to 1.8. F-test was robust for all the considered conditions, except
when the pairing was equal to -1 and the coefficient of sample size variation was equal to
0.50, in which case it tended to be liberal.
Variance ratio of 2. F-test was robust for all the considered conditions, except when the pairing
was equal to -1 and the coefficient of sample size variation was equal to 0.33 or 0.50; in both
these cases it was liberal, and in the 0.50 condition it was liberal in 100% of cases.
Variance ratio of 3. F-test was robust for all the considered conditions, except when the pairing
of variance with group size was:
= Equal to 1 and the coefficient of sample size variation was equal to 0.50, in which case it
tended to be conservative.
= Equal to -.5 and the coefficient of sample size variation was equal to 0.50, in which case
it was liberal in almost 100% of cases.
= Equal to -1 and the coefficient of sample size variation was equal to 0.33 or 0.50, in
which case it was liberal in 100% of the considered conditions.
Variance ratios of 5 and 9. The pattern of results here was similar to that for a variance ratio of
3, although robustness decreased. Specifically, F-test was not robust when the pairing of

variance with group size was:
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= Equal to 1 and the coefficient of sample size variation was equal to 0.33 or 0.50, the test
being conservative in the latter condition in 100% of cases.
= Equal to -.5 and the coefficient of sample size variation was equal to 0.33, in which case
it was liberal in fewer than 50% of cases for a variance ratio of 5 and in 100% of them for
a variance ratio of 9. When the coefficient of sample size variation was equal to 0.50, F-
test was liberal in 100% of cases.
= Equal to -1 and the coefficient of sample size variation was equal to 0.16, 0.33, or 0.50,
the test being liberal in the latter two conditions in 100% of cases.
Discussion
The aim of this paper was to present a systematic examination of F-test robustness, in
terms of Type I error, to violations of variance heterogeneity with monotonic patterns of variance
in one-way balanced and unbalanced designs. We used the variance ratio as a measure of
heterogeneity, the coefficient of sample size variation as a measure of the amount of inequality in
group size, and the correlation between variance and group sample size as an indicator of
different values of pairing of variance with group sizes. The studied variables cover a wide range
of conditions (2972 conditions), our goal being to provide a guideline that would help applied
researchers decide whether they can trust F-test results under heterogeneity. Several main
conclusions can be drawn from the results.

First, F-test is robust with monotonic patterns of variance when the group sample sizes are
equal, regardless of the number of groups, of the ratio between the largest and smallest variance,
and of the total sample size. With a variance ratio as large as 9, F-test can, at least for the number
of groups and sample sizes considered here, still be used without the Type I error rate being

affected by heterogeneity when the design is balanced.
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Second, F-test is not robust with unequal sample sizes under certain conditions. The
results showed that, in general, robustness depends on the variance ratio, the pairing of variance
with group size, and the coefficient of sample size variation, with the procedure being more
robust when variance ratios are small, the pairing of variance is either zero or positive, and the
coefficient of sample size variation is smaller. These conditions can be specified as follows:

1. The percentages of robustness tend to be lower for 3 groups than for 5 groups. This may
indicate that the number of the groups is a variable that has to be considered: the smaller the
number of groups, the greater the effect on F-test.

2. The total sample size does not influence F-test robustness under heterogeneity. The use of a
large sample size does not, therefore, protect against the effect of heterogeneity.

3. When the pairing of variance with group size is equal to 0 for 3 groups and equal to 0 or .5 for
5 groups, F-test is not affected by heterogeneity under any considered condition. However, F-
test tends to be conservative with positive pairing and liberal with negative pairing, the latter
being the most influential variable. Consequently, researchers should pay particular attention
when the pairing is negative in their data.

4. The ratio of the largest to the smallest variance, which represents the measure of
heterogeneity, determines F-test robustness. Its robustness decreases as the variance ratio
increases, in other words, robustness decreases as the homogeneity assumption is more
violated. With a ratio of 1.5, F-test is robust in all studied conditions.

5. For aratio higher than 1.5 there are two variables that have to be considered: The coefficient
of sample size variation and the pairing of variance with group size. In general:
= The coefficient of sample size variation, which represents the amount of inequality in

group sizes, affects F-test robustness. In several cases its robustness decreases as the
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coefficient of variation increases, in other words, robustness decreases as the group sizes
become more unequal.

When pairing is equal to 1, F-test tends to be conservative, whereas when pairing is
negative (equal to -.5 or -1) the procedure tends to be liberal, depending on the variance
ratio and the coefficient of sample size variation.

With a ratio higher than 1.5 and lower than 2, F-test is only affected by heterogeneity
when pairing is equal to -1 and the coefficient of sample size variation is 0.5.

With a ratio equal to 2, F-test is only affected by heterogeneity when pairing is equal to -
1 and the coefficient of sample size variation is as high as 0.33 or 0.5.

With a ratio of 3 or higher, F-test tends to be conservative with pairing equal to 1 and a
coefficient of sample size variation of 0.5. With a ratio of 5 or 9 it is conservative in
100% of the studied conditions. Likewise, F-test tends to be liberal with pairing equal to -
.5 or -1 under several conditions of sample size variation. The more unequal the sample
sizes, the less robust the F-test is.

In general, the results regarding equal sample sizes are consistent with early studies (e.g.,

Box, 1954; Glass et al., 1972; Hsu, 1938; Schefté, 1959), as well as with more recent ones (Lee

& Anh, 2003; Patrick, 2007; Yigit & Gokpinar, 2010). Specifically, our findings are consistent

with the early research suggesting that balanced designs can be used as protection against the

effect of variance heterogeneity. However, the results of the present study go further, since they

show that this recommendation is accurate — even with small samples and with a variance ratio

as high as 9 — when there is a monotonic pattern of variance in the groups, that is, when the

values of group variance increase or decrease monotonically so that the groups can be ordered as

a function of their respective variances. Other researchers have found that F-test is not robust
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with a balanced design when the pattern of heterogeneity involves a set of groups with similar
variances and one with extreme variance (e.g., Alexander & Gover, 1994; Lee & Ahn, 2003;
Morder, 2010; Rogan & Keselman, 1977; Wilcox et al., 1986). This finding highlights the
relevance of knowing the pattern of variance in the data when performing F-test.

With regard to unequal sample sizes, our results appear to be consistent with previous
findings, showing that Type I error rates vary depending on the degree of variance heterogeneity
and the pairing of variance with group sample size (Box, 1954; Gamage & Weerahandi, 1998;
Harwell et al., 1992; Horsnell, 1953; Hsu, 1938; Kohr & Games, 1974; Lee & Ahn, 2003;
Moder, 2010; Patrick, 2007; Schefté, 1959; Tomarken & Serling, 1986; Yigit & Gokpinar, 2010;
Zijlstra, 2004). Specifically, with positive pairing, F-test tends to be conservative, with the
empirical level of alpha being less than the nominal. With negative pairing, F-test tends to be
liberal, with the empirical level of alpha being higher than the nominal, such that the risk of
declaring mean differences that do not exist is increased. However, the present study extends the
findings of previous studies and provides further information about F-test robustness under
heterogeneity in a wide range of conditions that applied researchers may encounter in their data,
taking into account specific variables such as different values of the pairing of variance with
group size, several ratios of variance, and different values of the coefficient of sample size
variation.

Furthermore, the results of this study enable us to offer researchers a specific guideline
regarding whether or not F-test will be sensitive to departures from the homogeneity assumption
that may be present in their data. When a monotonic pattern of variance is found in the groups, as

was the case here, there are three steps that researchers can follow:
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Calculate the variance ratio, dividing the value of the largest variance of the groups by the

smallest variance. If this ratio is equal to or less than 1.5, F-test can be performed with

confidence. If this ratio is higher than 1.5, then continue with step 2.

Calculate the correlation between group sample size and the values of variance in order to

determine the amount of pairing of variance with group sample size. If this correlation is

either 0 or 0.5, proceed with F-test. Otherwise, continue with step 3.

Calculate the coefficient of sample size variation, dividing the standard deviation of the

group sample sizes by its mean in order to determine the amount of inequality in group

sample sizes.

= If the pairing is equal to 1 and the coefficient of sample size variation is high (close to
.50), it is not possible to trust the results of F-test for ratios higher than 2 because the
actual Type I error may be much lower than the nominal alpha of .05, even reaching .01
Table 10 shows the specific conditions in which F-test is not robust.

= If the pairing is equal to -.50 and the coefficient of sample size variation is close to 0.33
or higher, results from F-test for ratios higher than 2 are not reliable because the actual

Type I error may be much higher than the nominal alpha of .05. Thus, there is an

increased likelihood of declaring mean differences that do not actually exist. The highest

value of Type I error found in this condition was .10.

= If the pairing is equal to -1, and in this case for the majority of sample size coefficients
for high variance ratios, results from F-test are distorted because the actual Type I error
may be much higher than the nominal alpha of .05, even reaching .20 (see Table 10 for

specific conditions).
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One of the biggest advantages of following these steps is that applied researchers do not
need to use any traditional homogeneity tests (e.g., Bartlett, 1937; Cochran, 1941; Hartley, 1950;
Levene, 1960), which are known to rely on other assumptions that might not be met (Bhat,
Badade, & Aruna Rao, 2002; Conover, Johnson, & Johnson, 1981; Harwell et al., 1992; Morder,
2007; Sharma & Kribia, 2013; Zimmerman, 2004). Moreover, researchers can locate the specific
variance conditions and characteristics of their data in the tables provided and see directly if F-
test is robust or not.

To sum up, this study has two main strengths. First, its systematic approach covers the
largest variety of conditions simulated to date when exploring F-test robustness to variance
heterogeneity, including conditions representative of real data in educational and psychological
research. Second, the results yield an easy guideline that can be followed by applied researchers
from any background, making it easier for them to decide whether F-test can reliably be used
when variances are not equal between the groups. Moreover, the guideline provided makes this
process fast and straightforward, avoiding the need for traditional homogeneity tests, which
cannot be used in a number of conditions. It should be noted, however, that this study has only
analyzed the effect of monotonic patterns of variance on the Type I error rate of F-test. Future
studies should therefore aim to examine power and other patterns of variance besides those
considered here. A further potential limitation of this paper is that it aimed to explore the isolated
effect of heterogeneity on F-test, without considering other assumptions such as normality. An
interesting line of future research would be to explore whether or not the violation of normality
increases the effect of heterogeneity.

The results of this study suggest that the traditional variance ratio should be used as a

measure of the degree of heterogeneity, and indicate that special attention should be paid when
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the design is unbalanced, the pairing is negative, and the ratio is higher than 1.5. Furthermore, a
variance ratio higher than 1.5 may be established as a rule of thumb for considering a potential
threat to F-test robustness under heterogeneity with unequal sample sizes. This rule of thumb is
much more restrictive than the previously recommended maximums of 3 (Dean & Voss, 1999;
Keppel et al., 1992; Kirk, 2013), 4 or 5 (Wuench, 2017), or 10 (Tabachnick & Fidell, 2007;
2013). This paper shows that these criteria may lead, under certain conditions, to incorrect
inferences.

The next problem to be tackled is how to address heterogeneity of variance when F-test is
not robust. Although a detailed analysis of this issue is beyond the scope of the present study, we
would like to offer some general recommendations. A first, practical recommendation is that
researchers should, if possible, design their study with equal group sample sizes, or, at least, with
low sample size variation. However, this is not always possible and there may be disagreement
over whether the study design or the data collection procedure should be driven by the statistical

analysis.

Some authors have also recommended using a more stringent alpha level in the condition
under which an inflated alpha is expected, for example, .025 instead of .05 (Keppel et al., 1992;
Keppel & Wickens, 2004; Tabachnick & Fidell, 2007; 2013), or .01 with severe violation
(Tabachnick & Fidell, 2007; 2013). This is the simplest procedure for researchers since they may
still use F-test while maintaining control of Type I error. For illustrative purposes, and in order to
examine which alpha level may be used, we conducted simulations under those conditions for
which F-test is liberal for 3 groups with a nominal alpha of .05, and considering other more
restricted alpha levels (results are shown in Appendix C). Overall, a nominal alpha level of .025

controls the Type I error rate within the bounds of Bradley’s criterion for .05 in the conditions
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associated with Type I error rates around .10, while a nominal alpha level of .01 achieves this
control in the conditions associated with Type I error rates above .10. However, in some
conditions with Type I error rates above .15, the level of alpha has to be restricted to .005 to
maintain empirical Type I error rates within the bounds of Bradley’s criterion for .05.
Consequently, researchers can adjust the nominal alpha level depending on the specific
characteristics of their data, bearing in mind that a severe violation of homogeneity requires a

more restricted level of alpha.

Another common recommendation for meeting the assumption of variance homogeneity is
to transform the response variable (e.g., Montgomery, 1991; Tabachnick & Fidell, 2007; 2013;
Winer, Brown, & Michels, 1991). However, it is often difficult to determine which transformation
is appropriate for a specific set of data, and results are usually difficult to interpret when data

transformations are adopted.

The comparison of means using alternative statistical procedures which have been found
to provide more robust results has also been proposed (e.g., Alexander & Govern, 1994; Brown-
Forsythe, 1974; Brunner, Dette, & Munk, 1997; Chen & Chen, 1998; James, 1951,
Krishnamoorthy, Lu, & Mathew, 2007; Kruskal & Wallis, 1952; Lee & Ahn, 2003; Li, Wang &
Liang, 2011; Lix & Keselman, 1998; Weerahandi, 1995; Welch, 1951; Wilcox, 1995; Wilcox,

Keselman, & Kowalchuk, 1998). Below we focus on the most common ones.

The non-parametric Kruskal-Wallis test (Kruskal & Wallis, 1952) is one of the most widely
recommended tests in classic handbooks on methodology and statistics. However, the Kruskal-
Wallis test has several disadvantages: a) It converts quantitative continuous data into rank-ordered

data, with a consequent loss of information; b) its null hypothesis differs from that of F-test, unless
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the distribution of groups has exactly the same shape (see Maxwell & Delaney, 2004); and ¢) some
Monte Carlo studies have shown that its Type I error is also affected by variance heterogeneity,
being liberal (rates greater than .075) with negative pairing (Cribbie et al., 2007; Tomarken &

Serlin, 1986).

Another common proposal has been to use parametric modifications of F-test, such as
Brown-Forsythe (1974) and Welch (1951) tests. Both seem to provide better control over Type I
error rates than does F-test under heteroscedasticity. With variance patterns similar to those used
here, Tomarken and Serlin (1986) recommended using the Welch test with normal populations,
while Clinch and Keselman (1982) recommended the Brown-Forsythe test under both
heterogeneity and non-normality. More recently, the results obtained by Parra-Frutos (2014)
suggested that both tests perform well with normal data, although the Brown-Forsythe test offers
better control of the Type I error rate under several non-normality conditions. Another recently
proposed alternative is to use the F-test, Brown-Forsythe or Welch tests with bootstrapping in
order to obtain distributions of the statistics instead of using their theoretical distribution
(Krishnamoorthy et al., 2007; Parra-Frutos, 2014). Parra-Frutos (2014) showed that the
bootstrapped F-test and the bootstrapped Brown-Forsythe test exhibit similar and exceptionally

good behavior under heteroscedasticity and non-normality.

Finally, methods using robust estimators of location and robust measures of scale have also
been proposed to compare trimmed means. For example, Lix and Keselman (1998), Wilcox
(1995), and Wilcox et al. (1998) suggested that the best option was the Welch test on trimmed
means and Winsorized variance, although the bootstrap procedure proposed by Krishnamoorthy
et al. (2007), used in conjunction with a robust approach, has been shown to provide better control

of Type I error under heteroscedasticity (Cribbie, Fiksenbaum, Keselman, & Wilcox, 2012).
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Whatever the case, we encourage researchers to analyze the specific characteristics of
their design and the data obtained and, if their data do not meet the assumption of variance
homogeneity, to choose the best alternative in order to obtain valid results. To this end, the best
approach is to perform a simulation study involving the specific conditions of the real data so as
to determine whether or not F-test is robust in the situation being considered. We are aware,

however, that applied researchers are not usually familiarized with this procedure.

Glossary
Coefficient of sample size variation: The amount of inequality in group sizes, calculated by

dividing the standard deviation of the group sample size by its mean.

Conservative: Empirical Type I error rate below .025.

Liberal: Empirical Type I error rate above .075

Pairing of variance with group sample size: The correlation between the two. Pairing is positive
when the largest group size is associated with the largest value of variance, and vice-versa.
Pairing is negative when the largest group size is associated with the smallest variance, and

vice-versa.

Percentage of robustness: Percentage of Type I error rate within the bounds of Bradley’s criterion

[.025-.075].

Variance ratio: Ratio of the largest to the smallest variance.

References

23



Alexander, R. A., & Govern, D. M. (1994). A new and simpler approximation of ANOVA under
variance heterogeneity. Journal of Educational Statistics, 19,91-101. doi: 10.2307/1165140
Angelis, D., & Young, G. A. (1998). Bootstrap method. Encyclopedia of Biostatistics.
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal
Society, Series A, 160, 268-282. doi:10.1098/rspa.1937.0109
Bendayan, R., Arnau, J., Blanca, M. J., & Bono, R. (2014). Comparison of the procedures of
Fleishman and Ramberg et al. for generating non-normal data in simulation studies.
Anales de Psicologia, 30, 364-371. doi:10.6018/analesps.30.1.135911
Bhat, B. R., Badade, M. N., & Aruna Rao, K. (2002). A new test for equality of variances for k
normal populations. Communication in Statistics-Simulation and Computation, 31, 567-
587. doi: 10.1081/SAC-120004313
Blanca, M. J., Arnau, J., Lopez-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and
kurtosis in real data samples. Methodology, 9, 78-84. d0i:10.1027/1614-2241/a000057
Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40, 318-335.
doi:10.1093/biomet/40.3-4.318
Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis of
variance problem, 1. Effect of inequality of variance in one-way classification. The
Annals of Mathematical Statistics, 25,290-302. doi:10.1214/aoms/1177728786
Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology,
31, 144-152. doi:10.1111/§.2044-8317.1978.tb00581.x
Brown, M. B., & Forsythe, A. B. (1974). The small sample behaviour of some statistics which test
the equality of several means. Technomectrics, 16, 129-132.

doi:10.1080/00401706.1974.10489158

24


https://doi.org/10.2307/1165140

Brunner, E., Dette, H., & Munk, A. (1997). Box-type approximations in nonparametric factorial
designs. Journal of the American Statistical Association, 92, 1494-1502.
doi:10.1080/01621459.1997.10473671

Bryk, A. S., & Raudenbush, S. W. (1988). Heterogeneity of variance in experimental studies: A

challenge to conventional interpretations. Psychological Bulletin, 104, 396-404.
doi:10.1037/0033-2909.104.3.396

Biining, H. (1997). Robust analysis of variance. Journal of Applied Statistics, 24, 319-332.

doi:10.1080/02664769723710

Burton, A., Altman, D. G., Royston, P., & Holder, R. L. (2006). The design of simulation studies
in medical statistics. Statistics in Medicine, 25, 4279-4292.

Chen, S. Y., & Chen, H. J. (1998). Single-stage analysis of variance under heteroscedasticity.
Communications in Statistics — Simulation and Computation, 27, 641-666.
doi:10.1080/03610919808813501

Clinch, J. J., & Keselman, H. J. (1982). Parametric alternatives to the analysis of variance. Journal
of Educational Statistics, 7,207-214. doi:10.2307/1164645

Cochran, W. (1941). The distribution of the largest of a set of estimated variances as a fraction of

their total. Annals of Human Genetics, 11,47-52. doi:10.1111/j.1469-
1809.1941.tb02271.x

Conover, W. J., Johnson, M. E., & Johnson, M. M. (1981). A comparative study of test for

homogeneity of variances, with applications to the outer continental shelf bidding data.

Technometrics, 23,351-361. doi:10.2307/1268225

25



Cribbie, R. A., Fiksenbaum, L., Keselman, H. J., & Wilcox, R.R. (2012). Effect of non-normality
on test statistics for one-way independent group designs British Journal of Mathematical
and Statistical Psychology, 65, 56—73. doi:10.1111/;.2044-8317.2011.02014.x

Cribbie, R. A., Wilcox, R. R., Bewell, C., & Keselman, H. J. (2007). Tests for treatment group
equality when data are nonnormal and heteroscedastic. Journal of Modern Applied
Statistical Methods, 6, 117-132.

David, F. N., & Johnson, N. L. (1951). The effect of non-normality on the power function of the
F-test in the analysis of variance. Biometrika, 38, 43-57. doi:10.1093/biomet/38.1-2.43

Dean, A., & Voss, D. (1999). Design and analysis of experiments. New York, NY: Springer-
Verlag. doi:10.1007/b97673

Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods: An easy
way to maximize the accuracy and power of your research. American Psychologist, 63,
591-601. doi:10.1037/0003-066X.63.7.591.

Fan, W., & Hancock, G. R. (2012). Robust means modeling: An alternative for hypothesis
testing of independent means under variance heterogeneity and nonnormality. Journal of
Educational and Behavioral Statistics, 37, 137-156. d01:10.3102/1076998610396897

Gamage, J., & Weerahandi, S. (1998). Size performance of some tests in one-way ANOVA.
Communications in Statistics - Simulation and Computation, 27, 625-640.
doi:10.1080/03610919808813500

Glass, G. V., & Stanley, J. C. (1970). Statistical Methods in Education and Psychology.

Englewood Cliffs, NJ: Prentice-Hall.

26



Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet
assumptions underlying the fixed effects analyses of variance and covariance. Review of
Educational Research, 42,237-288. doi:10.3102/00346543042003237

Golinski, C., & Cribbie, R. A. (2009). The expanding role of quantitative methodologists in
advancing psychology. Canadian Psychology, 50, 83-90. doi:10.1037/a0015180

Grissom, R. J. (2000). Heterogeneity of variance in clinical data. Journal of Consulting and
Clinical Psychology, 68, 155-165. doi:10.1037/0022-006X.68.1.155

Grissom, R. J., & Kim, J. J. (2001). Review of assumptions and problems in the appropriate
conceptualization of effect size. Psychological Methods, 6, 135-146. doi:10.1037//1082-
989X.6.2.135

Hartley, H. O. (1950). The use of range in analysis of variance. Biometrika, 37, 271-280.
doi:10.1093/biomet/37.3-4.271

Harwell, M. R., Rubinstein, E. N., Hayes, W. S., & Olds, C. C. (1992). Summarizing Monte
Carlo results in methodological research: The one- and two-factor fixed effects ANOVA
cases. Journal of Educational and Behavioral Statistics, 17, 315-339.
doi:10.3102/10769986017004315

Hays, W. L. (1981). Statistics (3rd ed.). New York, NY: Holt, Rinechart & Winston.

Horsnell, G. (1953). The effect of unequal group variances on the F-test for the homogeneity of
group means. Biometrika, 40, 128-136. doi:10.2307/2333104

Hsu, P. L. (1938). Contribution to the theory of “Student’s” ¢-test as applied to the problem of
two samples. Statistical Research Memoirs, 2, 1-24.

James, G. S. (1951). The comparison of several groups of observations when the ratios of the

population variances are unknown. Biometrika, 38, 324-329. doi:10.1093/biomet/38.3-4.324

27



Kang, Y., Harring, J. R., & Li, M. (2015). Reexamining the impact of nonnormality in two-group
comparison procedures. The Journal of Experimental Education, 83, 147-174.
doi:10.1080/00220973.2013.876605

Keppel, G. (1991). Design and analysis: A researcher’s handbook (3rd ed.). Englewood Cliffs,
NIJ: Prentice-Hall.

Keppel, G., Saufley, W. H., & Tokunaga, H. (1992). Introduction to design and analysis: A
student’s handbook (2nd ed.). New York, NY: W. H. Freeman.

Keppel, G., & Wickens, T. D. (2004). Design and analysis: A researcher's handbook (4th ed.).

Englewood Cliffs, NJ: Prentice Hall.

Keselman, H. J., Algina, J., Kowalchuk, R. K., & Wolfinger, R. D. (1999). A comparison of
recent approaches to the analysis of repeated measurements. British Journal of
Mathematical and Statistical Psychology, 52, 63-78. doi:10.1348/000711099158964

Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B.,... Levin, J.
R. (1998). Statistical practices of educational researchers: An analysis of their ANOVA,
MANOVA, and ANCOVA analyses. Review of Educational Research, 68, 350-386.
doi:10.3102/00346543068003350

Kieffer, K. M., Reese, R. J., & Thompson, B. (2001). Statistical techniques employed in AERJ
and JCP articles from 1988 to 1997: A methodological review. The Journal of
Experimental Education, 69, 280-309. doi: 10.1080/00220970109599489

Kirk, R. E. (2013). Experimental design. Procedures for the behavioral sciences (4th ed.).

Thousand Oaks, CA: Sage Publications.

28



Krishnamoorthy, K., Lu, F., & Mathew, T. (2007). A parametric bootstrap approach for ANOVA
with unequal variances: Fixed and random models. Computational Statistics & Data
Analysis, 51, 5731-5742. doi:10.1016/j.csda.2006.09.039
Kohr, R. L., & Games, P. A. (1974). Robustness of the analysis of variance, the Welch procedure
and a Box procedure to heterogeneous variances. The Journal of Experimental
Education, 43, 61-69. doi:10.1080/00220973.1974.10806305

Kowalchuk, R. K., Keselman, H. J., Algina, J., & Wolfinger, R. D. (2004). The analysis of
repeated measurements with mixed-model adjusted F tests. Educational and
Psychological Measurement, 64, 224-242. doi:10.1177/0013164403260196

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal
of the American Statistical Association, 47, 538-621. doi:10.1080/01621459.1952.10483441

Lee, S., & Ahn, C. H. (2003). Modified ANOVA for unequal variances. Communications in

Statistics - Simulation and Computation, 32, 987-1004. doi:10.1081/SAC-120023874

Levene, H. (1960). Robust tests for equality of variance. In 1. Olkin and H. Hotelling (Eds.),

Contributions to probability and statistics (pp. 278-292). Palo Alto, CA: Stanford
University Press.

Li, X., Wang, J., & Liang, H. (2011). Comparison of several means: A fiducial based approach.
Computational Statistics and Data Analysis, 55, 1993-2002.
doi:10.1016/j.csda.2010.12.009

Lindquist, E. F. (1953). Design and analysis of experiments in psychology and education.

Boston, MA: Houghton Mifflin.

29



Lix, L. M., & Keselman, H. J. (1998). To trim or not to trim: Tests of mean equality under
heteroscedasticity and nonnormality. Educational and Psychological Measurement, 58, 409-
429. doi:10.1177/0013164498058003004

Lix, L. M., Keselman, J. C., & Keselman, H. J. (1996). Consequences of assumption violations
revisited: A quantitative review of alternatives to the one-way analysis of variance F' test.
Review of Educational Research, 66, 579-619. doi:10.3102/00346543066004579

Maxwell, S. E., & Delaney, H. D. (1990). Designing experiments and analyzing data: A model
comparison perspective. Belmont, CA: Wadsworth.

Maxwell, S. E. & Delaney, H. D. (2004). Designing experiments and analyzing data: A model
comparison perspective (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

Mendes, M., & Pala, A. (2004). Evaluation of four tests when normality and homogeneity of
variance assumptions are violated. Journal of Applied Sciences, 4, 38-42.
doi:10.3923/jas.2004.38.42

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures.
Psychological Bulletin, 105, 156-166. doi:10.1037/0033-2909.105.1.156

Mickelson, W. T. (2013). A Monte Carlo simulation of the robust rank-order test under various
population symmetry conditions. Journal of Modern Applied Statistical Methods, 12, 21-
33.

Moder, K. (2007). How to keep the Type I error rate in ANOVA if variances are heteroscedastic.
Austrian Journal of Statistics, 36, 179-188.

Moder, K. (2010). Alternatives to F-test in one way ANOVA in case of heterogeneity of
variances (a simulation study). Psychological Test and Assessment Modeling, 52, 343-

353.

30



Montgomery, D. C. (1991). Design and analysis of experiments (3rd Ed.). New York, NY: John
Wiley & Sons, Inc.

Patrick, J. D. (2007). Simulations to analyze Type I error and power in the ANOVA F test and
nonparametric alternatives (Master’s thesis, University of West Florida). Retrieved from
http://etd.fcla.edu/WF/WFE0000158/Patrick Joshua Daniel 200905 MS.pdf

Parra-Frutos, 1. (2014). Controlling the Type I error rate by using the nonparametric bootstrap
when comparing means. British Journal of Mathematical and Statistical Psychology, 67,
117-132. doi:10.1111/bmsp.12011

Robey, R. R., & Barcikowski, R. S. (1992). Type I error and the number of iterations in Monte
Carlo studies of robustness. British Journal of Mathematical and Statistical Psychology,
45,283-288. doi:10.1111/1.2044-8317.1992.tb00993.x

Rogan, J. C., & Keselman, H. J. (1977). Is the ANOVA F-test robust to variance heterogeneity
when sample sizes are equal? An investigation via a coefficient of variation. American
Educational Research Journal, 14, 493-498. doi:10.3102/00028312014004493

Rogan, J. C., Keselman, H. J., & Breen, L. J. (1977). Assumption violations and rates of Type I
error for the Tukey multiple comparison test: A review and empirical investigation via a
coefficient of variance variation. Journal of Experimental Education, 46, 20-25.
doi:10.1080/00220973.1977.11011605

Ruscio, J., & Roche, B. (2012). Variance heterogeneity in published psychological research: A
review and a new index. Methodology, 8, 1-11. doi1:10.1027/1614-2241/a000034

SAS Institute Inc. (2013). SAS® 9.4 guide to software Updates. Cary, NC: SAS Institute Inc.

31



Sawilowsky, S. S. (2002). Fermat, Shubert, Einstein, and Behrens-Fisher: The probable
difference between two means when 612 # 62°. Journal of Modern Applied Statistical
Methods, 1,461-472.

Sawilowsky, S. S., & Blair, R. C. (1992). A more realistic look at the robustness and Type II
error properties of the ¢ test to departures from population normality. Psychological
Bulletin, 111, 352-360. doi:10.1037/0033-2909.111.2.352

Scheffé, H. (1959). The analysis of variance. New York, NY: John Wiley & Sons, Inc.

Sharma, D. & Kibria, B. M. G. (2013). On some test statistics for testing homogeneity of
variances: A comparative study. Journal of Statistical Computation and Simulation, 83,
1944-1963. doi:10.1080/00949655.2012.675336

Skidmore, S. T., & Thompson, B. (2010). Statistical techniques used in published articles: A
historical review of reviews. Educational and Psychological Measurement, 70, 777-795.
doi:10.1177/0013164410379320

Tabachnick, B. G., & Fidell, L. S. (2007). Experimental design using ANOVA. Belmont, CA:
Thomson Brooks/Cole.

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston, MA:

Pearson Education, Inc.

Tomarken, A. J., & Serling, R. C. (1986). Comparison of ANOVA alternatives under variance
heterogeneity and specific noncentrality structures. Psychological Bulletin, 99, 90-99.
doi:10.1037/0033-2909.99.1.90

Weerahandi, S. (1995). ANOVA under unequal error variances. Biometrics, 51 589-599.

doi:10.2307/2532947

32



Welch, B. L. (1951). On the comparison of several mean values: An alternative approach.
Biometrika, 38, 330-336. doi:10.1093/biomet/38.3-4.330
Wilcox, R. R. (1995). ANOVA: The practical importance of heteroscedastic methods, using
trimmed means versus means, and designing simulation studies. British Journal of
Mathematical and  Statistical — Psychology, 48, 99-114. doi:10.1111/5.2044-
8317.1995.tb01052.x
Wilcox, R. R. (1987). New designs in analysis of variance. Annual Review of Psychology, 38,
29-60. doi:10.1146/annurev.ps.38.020187.000333
Wilcox, R. R., Charlin, V. L., & Thompson, K. L. (1986). New Monte Carlo results on the
robustness of the ANOVA F, W and F statistics. Communications in Statistics -
Simulation and Computation, 15, 933-943. doi:10.1080/03610918608812553
Wilcox, R. R., Keselman, H. J., & Kowalchuk, R. H. (1998). Can tests for treatment group equality
be improved? The bootstrap and trimmed means conjecture. British Journal of Mathematical
and Statistical Psychology, 51, 123-143. doi:10.1111/5.2044-8317.1998.tb00670.x
Winner, B. J. (1971). Statistical principles in experimental designs (2nd ed.). New York, NY:
McGraw-Hill.
Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in experimental design
(3rd ed.). New York, NY: McGraw-Hill.
Wuensch, K. L. (2017). One-way independent samples analysis of variance. Retrieved from

http://core.ecu.edu/psyc/wuenschk/docs30/anoval.pdf.

Yigit, E., & Gokpinar, F. (2010). A simulation study on tests for one-way ANOVA under the
unequal variance assumption. Communications Faculty of Sciences University of Ankara,

Series A1, 59, 15-34. doi:10.1501/Commual 0000000660

33


http://core.ecu.edu/psyc/wuenschk/docs30/anova1.pdf

Zijlstra, W. (2004). Comparing the Student’s t and the ANOVA contrast procedure with five
alternative procedures (Master’s thesis, Rijksuniversiteit Groningen). Retrieved from
http://www.ppsw.rug.nl/~kiers/ReportZijlstra.pdf

Zimmerman, D. W. (2004). A note on preliminary tests of equality of variances. British Journal

of Mathematical and Statistical Psychology, 57, 173-181. doi:10.1348/000711004849222

Acknowledgement: This research was supported by grant PS12012-32662 from the Spanish

Ministry of Economy and Competitiveness.

34



Table 1

Patterns of variance considered in relation to variance ratio and number of groups

Variance ratio  Number of groups Variance pattern

1.5 :1.25: 1.5
:1.17:1.34: 1.5
:1.125:1.25:1.375: 1.5
:1.1:1.2:1.3:14: 1.5
:1.3:1.6
:1.15:1.3:1.45:1.6
:1.35:1.7
:1.175:1.35:1.525: 1.7
:14:1.8
:1.2:14:1.6:1.8
:1.5:2

:1.33:1.66: 2
:1.25:1.5:1.75: 2
:1.2:14:1.6:1.8:2
:1.5:3

:1.66:2.33:3
:1.5:2:2.5:3
:1.4:18:22:2.6:3
:3:5

:2.33:3.66: 5
:2:3:4:5
:1.8:2.6:34:4.2:5
:5:9

:3.66:6.32: 9
:3:5:7:9
:2.6:4.2:58:7.4:9

1.6

1.7

1.8
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Table 2

Order of variance associated with the groups according to pairing and number of groups

Pairing J=3 J=5
1 1,2,3 1,2,3,4,5
.50 1,3,2 1,4,2,5,3
0 - 1,5,4,2,3
-.50 2,3,1 3,5,2,4,1
-1 3,2, 1 5,4,3,2,1

Note. J=number of groups.



Table 3

Percentage of F-test robustness according to group sample size mean and number of groups

N/J J=3 J=5
5 71.5 85.0
10 79.2 85.0
15 78.1 85.8
20 81.3 85.8
25 81.3 85.8
30 80.2 84.2
40 82.3 84.2
50 79.2 85.0
60 80.2 85.0
70 80.2 85.0
80 82.3 85.0
90 80.2 85.8

100 79.2 85.0

Note. N/J = mean of the group sample size; J = number of groups.



Table 4

Percentage of F-test robustness according to variance ratio and number of groups

Variance ratio J=3 J=5
1.5 100 100
1.6 97.4 99.0
1.7 92.2 95.4
1.8 92.2 94.4
2 88.3 92.3
3 69.5 77.4
5 54.5 64.6
9 46.8 57.9

Note. J=number of groups. Robustness: Type I error rate within range [.025-.075].



Table 5

Percentage of F-test robustness for 3 groups according to the pairing of variance with group size

and the variance ratio

Pairi Variance ratio

arme - s 16 17 1.8 2 3 5 9

12 100 100 100 100 100 744 641 59

50 100 100 100 100 100 100 100 100
2500 100 100 100 100 100 711 474 289
b 100 897 692 692 538 333 7.7 0

' 12.11%% 3837+ 3837+% 60.10%* 4120%* 68.42%*% 84.70%*
df 3 3 3 3 3 3 3

Note. ** p < .01. Robustness: Type I error rate within range [.025-.075]. When F-test is not robust: * Conservative; b
Liberal.



Table 6

Percentage of F-test robustness for 5 groups according to the pairing of variance with group size

and the variance ratio

Variance ratio

Pairmg - —=——¢ 1.7 18 2 3 5 9

1 100 100 100 100 100 872 667 66.7
50 100 100 100 100 100 100 100 100
0 100 100 100 100 100 100 100 100
250 100 100 100 100 100 667 359 23.1
1P 100 949 769 718 615 333 205 0
" .08  37.74%% 46.63%* 65.01%*% 70.85%% 90.03** [31.02%*
df 4 4 4 4 4 4 4

Note. ** p < .01. Robustness: Type I error rate within range [.025-.075]. When F-test is not robust: * Conservative; b
Liberal.



Table 7

Percentage of F-test robustness for 3 groups according to the coefficient of sample size variation

and the variance ratio

Variance ratio
An 15 16 17 18 2 3 5 9
0.16 100 100 100 100 100 100 78.8 71.2
0.33 100 100 100 100 904 75 59.6 442
0.50 100 92 76 76 74 32 24 24
X2 8.54*  27.07** 27.07** 17.02*%* 56.71** 31.74** 22 96%*
df 2 2 2 2 2 2 2

Note. An = Coefficient of sample size variation; * p <.05; ** p <.01. Robustness: Type I error rate within range [.025-
.075].



Table 8

Percentage of F-test robustness for 5 groups according to the coefficient of sample size variation

and the variance ratio

An Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9
0.16 100 100 100 100 100 100 90.8 73.8
0.33 100 100 100 100 96.9 80 63.1 60
0.50 100 96.9 86.2 83.1 80 52.3 40 40
x> 4.04 18.87** 23.32%* 2123%* 42.67** 36.73%*% 1548**
df 2 2 2 2 2 2 2

Note. An = Coefficient of sample size variation; ** p <.01. Robustness: Type I error rate within range [.025-.075]



Table 9

Percentage of F-test robustness according to the coefficient of sample size variation, the pairing

of variance with group size, and the variance ratio

Variance ratio

Pairing An 1.5 1.6 1.7 1.8 2 3 5 9
J=3
1? 0.16 100 100 100 100 100 100 100 100
0.33 100 100 100 100 100 100 923 76.9
0.50 100 100 100 100 100 23.1 0 0
.50 0.16 100 100 100 100 100 100 100 100
0.33 100 100 100 100 100 100 100 100
0.50 100 100 100 100 100 100 100 100
-.50° 0.16 100 100 100 100 100 100 923 84.6
0.33 100 100 100 100 100 100 46.2 0
0.50 100 100 100 100 100 8.3 0 0
-1° 0.16 100 100 100 100 100 100 23.1 0
0.33 100 100 100 100 61.5 0 0 0
0.50 100 09.2 7.7 7.7 0 0 0 0
J=5
1? 0.16 100 100 100 100 100 100 100 100
0.33 100 100 100 100 100 100 100 100
0.50 100 100 100 100 100 61.5 0 0
.50 0.16 100 100 100 100 100 100 100 100
0.33 100 100 100 100 100 100 100 100
0.50 100 100 100 100 100 100 100 100
0 0.16 100 100 100 100 100 100 100 100
0.33 100 100 100 100 100 100 100 100
0.50 100 100 100 100 100 100 100 100
-.50° 0.16 100 100 100 100 100 100 923 69.2
0.33 100 100 100 100 100 100 15.4 0
0.50 100 100 100 100 100 0 0 0
-1° 0.16 100 100 100 100 100 100 61.5 0
0.33 100 100 100 100 84.6 0 0 0
0.50 100 84.6 30.8 15.4 0 0 0 0

Note. An: Coefficient of sample size variation; J = number of groups; Robustness: Type I error rate within range [.025-.075].

When F-test is not robust: * Conservative, b Liberal.



Table 10

Conditions under which F-test is not robust, in terms of Type I error, against violation of the

homogeneity assumption, according to variance ratio, the pairing of variance with group sample

size, and the coefficient of sample size variation

Variance ratio Pairing Coefﬁcient .of‘sample Type I error
size variation rate

1.6,1.7,1.8 -1 0.50 Liberal
2 -1 0.33; 0.50 Liberal

3 1 0.50 Conservative
-.50 0.50 Liberal
-1 0.33; 0.50 Liberal

5&9 1 0.50 Conservative
-.50 0.33; 0.50 Liberal
-1 0.16; 0.33; 0.50 Liberal
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Appendix A. Empirical Type I error rates for F-test and equal sample sizes

Table Al

Empirical Type I error for F-test with 3 groups and equal sample sizes

Variance Ratio

NoonmoTs 2 3 5 9
9 3 048 .0513 .0540 .0603 .0699
15 5 .0468 .0547 0584 0652 .0606
30 10 .0506 .0529 .0533 .0579 .0629
45 15 0480 .0518 .0531 .0581 .0627
60 20 .0490 .0507 .0517 .0533 .0586
75 25 0479 .0533 .0515 .0559 .0576
90 30 .0485 .0508 .0510 .0600 .0610
120 40 .0477 .0495 .0554 .0541 .0567
150 50 .0519 .0507 .0510 .0567 .0569
180 60 .0479 0506 .0529 .0583 .0607
210 70 .0508 .0523 .0525 .0591 .0607
240 80 .0479 0482 0533 .0558 .0553
270 90 .0520 .0590 .0538 .0561 .0646
300 100 .0511 .0476 .0523 .0561 .0569
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Table A2

Empirical Type I error for F-test with 4 groups and equal sample sizes

Variance Ratio

Noon TS 2 3 5 9

12 3 0481 0580 .0564 0605 .0749
20 5 0526 .0535 0579 0616 .0642
40 10 0525 0560 0574 0611 .0590
60 15 0510 .0546 0558 .0581 .0610
80 20  .0534 0561 .0604 0605 0602
100 25 0499 0515 0504 0613 .0594
120 30 0501 .0531 0520 .0614 .0580
160 40 0547 0514 0568 .0591 .0606
200 50 .0508 0518 .0568 .0572 0611
240 60 .0488 0497 0547 0577 0630
280 70 .0489 0563 0525 .0541 .0627
320 80 0531 0535 0574 0544 0599
360 90 0534 0472 0480 0610 0613
400 100 0551 0453 0577 .0569 0619
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Table A3

Empirical Type I error for F-test with 5 groups and equal sample sizes

Variance Ratio

N 1.5 2 3 5 9

15 3 0540 0544 0563 .0608 .0721
25 5 0529 0546 0552 .0632 .0689
50 10 .0509 .0514 0574 0586 .0622
75 15 0521 .0513 .0544 0595 .0667
100 20  .0480 0501 .0512 .0612 .0670
125 25 0479 0536 .0521 .0555 .0608
150 30  .0530 .0477 .0534 .0570 .0640
200 40  .0487 0528 .0583 .0574 .0629
250 50  .0486 .0572 .0563 .0587 .0598
300 60  .0476 .0498 0529 .0599 .0600
350 70  .0513  .0502 .0517 .0551 .0626
400 80  .0485 0486 .0551 .0587 .0607
450 90  .0461 0513 .0556 .0561 .0614
500 100 .0486 .0533 0584 .0565 .0633
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Table A4

Empirical Type I error for F-test with 6 groups and equal sample sizes

N n Variance Ratio

1.5 2 3 5 9

25 5 0521  .0523 .0543 .0585 .0632
50 10 .0523  .0506 .0532 .0619 .0624
75 15 .0522  .0517 .0543 .0639 .0658
100 20 .0497 .0497 .0568 .0616 .0670
125 25 .0499 .0492 .0534 .0585 .0616
150 30 .0494 0516 .0522 .0603  .0675
200 40  .0489  .0489 .0545 .0573 .0639
250 50 .0542 .0560 .0574 .0621 .0630
300 60  .0507 .0487 .0541 .0604 .0630
350 70  .0469 .0518 .0577 .0608 .0596
400 80 .0517 .0556 .0508 .0605 .0607
450 90  .0468 .0547 .0492 .0581 .0602
500 100 .0493  .0550 .0548 .0592 .0622




Appendix B. Empirical Type I error rates for F-test with unequal sample sizes.

Table B1

Empirical Type I error for F-test with 3 groups

T argest o Order of Variance ratio

N NJ Rgattest An " Pairing variance 1.5 1.6 1.7 1.8 2 3 5 9
15 5 1.5 0.16 4,5,6 1 1,2,3 .0469 .0494 .0505 .0455 .0443 .0438 .0460 .0466
.50 1,3,2 .0487 .0448 .0450 .0446 .0529 .0489 .0510 .0544
-.50 2,3,1 .0552 .0521 .0558 .0586 .0538 .0644 0787 .0864
-1 3,2, 1 .0551 .0472 .0427 .0454 .0660 .0713 .0816 .0948
2.3 0.33 3,5,7 1 1,2,3 .0451 .0417 .0404 .0355 .0344 .0343 .0260 0282
.50 1,3,2 .0478 .0415 .0386 .0393 .0487 .0445 .0428 .0441
-.50 2,3,1 .0549 .0633 .0683 .0652 .0506 .0677 .0873 0977
-1 3,2, 1 .0570 0565 .0566 .0572 0791 .0897 1122 1319
3 0.50 3,3,9 1 1,2,3 .0360 .0415 .0370 .0320 .0283 .0254 .0201 .0188
-1 3,2, 1 .0688 .0719 0760 0786 0794 A171 1624 2077
30 10 1.5 0.16 8,10, 12 1 1,2,3 .0436 .0483 .0470 .0448 .0448 .0449 .0414 .0400
.50 1,3,2 .0447 .0476 .0464 .0492 0511 .0477 .0461 .0525
-.50 2,3,1 .0498 .0574 .0570 .0544 .0507 .0632 .0668 0754
-1 3,2, 1 .0581 .0607 .0577 .0626 .0601 .0708 .0788 .0867
2.3 0.33 6, 10, 14 1 1,2,3 .0428 .0408 .0408 .0351 .0371 .0331 .0292 .0260
.50 1,3,2 .0416 .0445 .0447 .0437 .0470 .0414 .0416 .0459
-.50 2,3,1 .0585 .0586 .0598 .0614 .0580 .0654 .0870 .0913
-1 3,2, 1 .0628 .0698 .0625 .0673 .0734 .0863 1128 1245
4 0.50 4,10, 16 1 1,2,3 .0385 .0362 .0364 .0324 .0320 .0260 .0209 L0201
.50 1,3,2 .0440 .0425 .0408 .0444 .0464 .0370 .0369 .0387
-.50 2,3,1 .0609 .0604 .0651 .0633 .0597 .0809 0926 .1099
-1 3,2, 1 .0725 0761 0757 0761 .0881 1185 .1486 .1788
45 15 1.5 0.16 12,15,18 1 1,2,3 .0444 .0442 .0407 .0445 .0430 .0425 .0417 .0396
.50 1,3,2 .0476 .0463 .0469 .0463 .0510 .0497 .0469 .0502

>
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T Largest Order of Variance ratio

NoONT ST An n Pairing - 0 ance 1.5 16 17 18 2 3 5 9
~50 2.3.1 0544 0524 0513 0543 0532 0589 .0653 0690
B 3.2.1 0599 0592 0614 0589 0614 .0699 .0807 .0861
23 033 915,21 1 1.2.3 0404 0396 0370 0377 .0339 0310 .0282  .0245
50 1.3.2 0426 0425 0500 0419 0428 0434 0400 0424
-50 2.3.1 0540 0601 0570 0553 .0554 0645 .0794  .0876
1 3.2.1 0607 0621 0651 0631 .0761 .0921 .1074  .1302
4 050 615,24 1 1.2.3 0342 0373 0345 0317 0270 .0231 .0174 .0178
50 1.3.2 0406 0445 0414 0393 0459 0348 0344 0374
-50 2.3.1 0567 059 0661 0639 0613 .0785 .0914  .1082
1 3.2.1 0727 0747 0788  .0803 .0916 .1132 .1497  .1737
60 20 15 016  16,20,24 1 1.2.3 0476 0444 0454 0440 0423 0407 0399  .0399
50 1.3.2 0464 0453 0449 0472 0489 0468 0491 0527
-50 2.3.1 0502 0533 0527 0541 0548 0612 .0641 0735
1 3.2.1 0599 0611 0597 0579 0637 .0697 .0761  .0905
23 033 12,20,28 1 1.2.3 0409 0433 .0393 0382 .0344 0300 .0286  .0270
50 1.3.2 0454 0446 0471 0398 0458 0420 0418 0425
-50 2.3.1 0569 0595 0585 0559 0553 0707 .0748  .0873
1 3.2.1 0601 0626 0647 0672 .0765 .0949 .1072  .1208
4 050 820,32 1 1.2.3 0399 0320 0325 0352 .0292 .0248 .0191  .0182
50 1.3.2 0452 0436 0441 0386 0431 0353 .0309 0348
-50 2.3.1 0590 0592 0646 0611 0532 .0764 .0885  .0953
1 3.2.1 0646 0710 0733 .0767 .0911 .1137 .1452  .1739
75 25 15 016 20,2530 1 1.2.3 0450 0448 0447 0463 0400 0440 0378 0391
50 1.3.2 0479 0487 0459 0475 0521 0489  .0501  .0491
-50 2.3.1 0490 0558 0539 0574 0545 0605 .0665 0708
1 3.2.1 0560 0581 0601 .0615 0616 0712 0748  .0885
23 033 15,25.35 1 1.2.3 0433 0390 .0392 0397 .0366 0287 .0281  .0264
50 1.3.2 0415 0465 0438 0422 0491 0420 0420 0442
-50 2.3.1 0537 0542 0605 0597 0544 0702 0729 .0873
1 3.2.1 0565 0669 0670 0679 0738 .0829 .1069  .1224
4 050  10,25,40 1 1.2.3 0366 0323 0315 0326 0270 .0236 .0197  .0186
50 1.3.2 0431 0448 0414 0428 0453 0354 .036] 0363

>
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T Largest Order of Variance ratio

NoONT ST An n Pairing - 0 ance 1.5 16 17 18 2 3 5 9
~50 2.3.1 0579 0601 0665 0708 .0575 .0783 .0902 .1009
B 3.2.1 0691 0759 .0764 .0806 .0900 .1101  .1420 .1737
9 30 15 016 24.30,36 1 1.2.3 0419 0421 0421 0441 0395 0397 .0395 0427
50 1.3.2 0454 0476 0508 0403 0515 0475 .0488 0510
-50 2.3.1 0553 0563 0557 0577 0560 0577 .0664 0695
1 3.2.1 0557 0592 0509 0619 0641 0681 .0762 .0859
23 033 18,30,42 1 1.2.3 0391 0413 0379 0346 .0347 0300 .0329 0287
50 1.3.2 0453 0432 0424 0411 0435 0405 0422 0427
-50 2.3.1 0549 0556 0591 0602 0573 0719 .0755 .0812
1 3.2.1 0582 0632 0689 0679 0731  .0880 .1032  .1242
4 050  12,30,48 1 1.2.3 0365 0315 .0371 0318 0260 .0232 .0199 .0128
50 1.3.2 0403 0444 0416 0403 0432 0381 0351  .0328
-50 2.3.1 0577 0632 0640 0677 0601 .0755  .0890  .1041
1 3.2.1 0640 0729 0756 .0796 .0930 .1085 .1400  .1748
120 40 15 016  32,40,48 1 1.2.3 0423 0455 0437 0426 0430 0399 0381  .0408
50 1.3.2 0494 0469 0479 0448 0492 0445 0524 0541
-50 2.3.1 0556 0543 0534 0519 0539 0566 .0653 0697
1 3.2.1 0576 0560 0567 0586 0601 .0662 .0753  .0846
23 033 24,40,56 1 1.2.3 0360 0383 .0401 0368 .0352 0312 .0294 0253
50 1.3.2 0415 0450 0453 0439 0453 0426 0415 0457
-50 2.3.1 0576 0541 0559 0589  .0589 0726 .0779  .0840
1 3.2.1 0627 0660 0742 0663 0732 .0903 .1061 .1206
4 050 16,40, 64 1 1.2.3 0353 0310 .0283 0349 0268 0259 .0186 .0179
50 1.3.2 0423 0416 .0400 0422 0482 0368  .0340 0413
-50 2.3.1 0643 0620 0662 0649 0552 .0774  .0933  .0967
1 3.2.1 0711 0726 .0807 .0734 .0880 .1161 .1460  .1646
150 50 15 016 40,50, 60 1 1.2.3 0444 0473 0446 0450 0391 0409  .0401  .0390
50 1.3.2 0464 0459 0452 0445 0494 0464 0453 0490
-50 2.3.1 0522 0515 0538 0535 .0527 0602 .0603 0699
1 3.2.1 0563 0530 0564 0597 0609 .0683 .0764 .0868
23 033 30,50,70 1 1.2.3 0399 0370 .0368 0356 .0341 0279 0269 0259
50 1.3.2 0458 0449 0459 0440 0476 0417 0450  .0398

>
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T Largest Order of Variance ratio

NoONT ST An n Pairing - 0 ance 1.5 16 17 18 2 3 5 9
~50 2.3.1 0540 0589 0596 0593 0521 0673 .0803 .0772
B 3.2.1 0610 0618 0634 0685 0727 .0879 .1061  .1258
4 050  20,50,80 1 1.2.3 0341 0345 0327 0295 .0251 .0224 .0180 .0174
50 1.3.2 0455 0387 0444 0414 0437 0367 0375 0343
-50 2.3.1 0614 0582 0598 0660 .0557 .0793 .0881  .0987
1 3.2.1 0685 .0759 .0808 .0831 .0880 .1071 .1424 .1731
180 60 15 016  48,60,72 1 1.2.3 0427 0449 0415 0404 0433 0402 .0390 0394
50 1.3.2 0444 0499 0451 0468 0453 0475 0452 0488
-50 2.3.1 0529 0540 0534 0613 0512 0582  .0650  .0705
1 3.2.1 0557 0585 0567 0587 0606 0691 .0774  .0823
23 033 36,60, 84 1 1.2.3 0376 0373 0387 0372 .0327 0322 0262 0261
50 1.3.2 0426 0436 0448 0465 0420 0394 0404 0445
-50 2.3.1 0561 0592 0554 0623 0563 0690 .0748  .0834
1 3.2.1 0595 0643 0627 0687 0716 .0907 .1039  .1190
4 050  24,60,9 1 1.2.3 0349 0316 .0340 0329 0282 .0228 .0206 .0182
50 1.3.2 0410 0424 0435 0399 0421 0351 .0409 0347
-50 2.3.1 0573 0638 0624 0613 0548 .0762 .0888  .0991
1 3.2.1 0686 .0753 0775 0787 0825 .1167 .1445  .1697
200 70 15 016 56,70, 84 1 1.2.3 0454 0464 0422 0426 0452 0408  .0427 0440
50 1.3.2 0478 0451 0449 0497 0496 0502 .0475 0520
-50 2.3.1 0530 0565 0561 0552 .0548 0584  .0630 0699
1 3.2.1 0588 0591 0611 0560 0610 .0666 .0767 .0855
23 033 42,70,98 1 1.2.3 0410 0367 .0353 0337 .0356 0302 .0251  .0244
50 1.3.2 0442 0451 0457 0454 0438 0407 0380 0417
-50 2.3.1 0550 0571 0584 0599 0562 0665 .0750  .0759
1 3.2.1 0603 0676 0635 0715 0749 .0842 .1074  .1224
4 050 28,70,112 1 1.2.3 0361 0312 0337 0329 0284 .0225 .0184  .0186
50 1.3.2 0406 0400 0436 0384 0395 0340 .0370 0373
-50 2.3.1 0592 0579 0604 0603 .0570 .0764 .0866 .1019
1 3.2.1 0694 0734 0769 .0762 .0843 .1141  .1470  .1639
240 80 15 016  64,80,9 1 1.2.3 0455 0457 0414 0405 0400 0386 .0391 0363
50 1.3.2 0464 0470 0457 0485 0465 0422 0456 0532

>
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T L argest .. Variance ratio
NoONT ST An " Pairing 15 16 17 18 2 3 5 9
~50 2.3.1 0490 0527 0528 0569 0522 0601 0629 0671
B 3.2.1 0520 .0580 0576 .0587 0618 .0668 0698  .0821
23 033 48,80, 112 1 1.2.3 0415 0400 .0372 0368 .0331 0297 .0265 .0279
50 1.3.2 0470 0477 0439 0459 0532 0418  .0406 0440
-50 2.3.1 0566 0573 0571 0599 0560 0686 .0742  .0866
1 3.2.1 0629 0701 0658 .0692 .0773 .0859 .1052  .1256
4 050 32,80,128 1 1,23 0313 0301 .0332 0309 .0284 .0223 .0183  .0175
50 1.3.2 0413 0409 0452 0395 0437 0361 .0333 0367
-50 2.3.1 0567 0632 0619 0610 .0568 0741  .0880  .0960
1 3.2.1 0634 0736 .0782 .0762 .0908 .1133 .1429  .1687
270 90 15 016 72,90, 108 1 1.2.3 0438 0462 0439 0388 0414 0429 0426 0381
50 1.3.2 0460 0425 0438 0457 0451 0412 0468 0458
-50 2.3.1 0522 0554 0552 0571 0534 0608 .0634 0703
1 3.2.1 0541 0589 0575 0593 0582 0662 .0837 .0878
23 033 54,90,126 1 1.2.3 0385 0353 0378 0398 .0331 0295 .0250  .0242
50 1.3.2 0479 0439 0481 0448 0447 0428 0417 0424
-50 2.3.1 0543 0579 0587 0597 0532 0429 0741  .0827
1 3.2.1 059 0672 0665 0673 0743 .0873 .1012  .1140
4 050 36,90, 144 1 1.2.3 0359 0343 0325 0318 0256 .0230 .0188  .0169
50 1.3.2 0362 0424 0411 0401 0440 0334 0363 0373
-50 2.3.1 0569 0599 0589 0666 .0548 .0782  .0863  .0995
1 3.2.1 0679 0708 .0786 .0816 .0882 .1075 .1397  .1629
300 100 1.5 016 80,100, 120 1 1.2.3 0429 0458 .0399 0424 0399 0383 .0408 0400
50 1.3.2 0496 0442 0482 0475 0489 0462 0454 0510
-50 2.3.1 0530  .0550 0541 0528 0513 0581 0659  .0621
1 3.2.1 0531 0568 0610 0562 0607 0729 .0746  .0853
23 033 60,100, 140 1 1.2.3 0395 0385 0370 0358 .0330 0276 .0246 0278
50 1.3.2 0430 0441 0420 0408 0493 0431 0442 0426
-50 2.3.1 0579 0571 0585 0592 .0587 0696 .0752  .0867
1 3.2.1 0628 0638 0708 .0645 .0755 .0857 .1106 .1196
4 050 40,100,160 1 1.2.3 0340 0319 .0307 0308 .0283 .0228 .0203  .0166
50 1.3.2 0432 0444 0380 0383 0454 0343 0358 0366

>
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T Largest Order of Variance ratio

NoONT ST An n Pairing | riance 1.5 16 1.7 18 2 3 5 9
-.50 2,3,1 .0599 .0616 .0677 .0667 0572 0781 .0866 L0981
-1 3,2, 1 .0648 .0698 .0782 0821 .0816 1078 1375 1713
Note. N = total sample size; N/J = mean of group sample size; Lueest = ratio of the largest to the smallest group sample size; An = coefficient of sample size

n Smallest

variation; n = number of units per group. The Type I error rates outside the boundary of Bradley’s liberal criterion are in bold (conservative: <.025; liberal: > .075).
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Table B2

Empirical Type I error for F-test with 5 groups

M argest . Order of Variance ratio

NN An " Pairing - Hance 15 16 17 18 2 3 5 9
25 5 1.5 0.16 4,4,5,6,6 1 1,2,3,4,5 0489  .0454 0473  .0454  .0473 0430  .0435  .0446
.50 1,4,2,5,3 .0506 .0475 .0516  .0525 0448  .0469  .0507  .0522
0 1,5,3,4,2 .0492 .0531 .0534  .0529  .0551 0528  .0592  .0654
-.50 3,5,2,4,1 0529  .0518  .0552 .0544 .0565 .0634 .0764 .0829
-1 5,4,3,2,1 0548 .0599  .0550 .0578 .0650 .0733  .0873  .099%4
2.3 0.33 3,3,6,6,7 1 1,2,3,4,5 0421  .0424  .0415 .0411 .0402  .0354 .0348 .0312
.50 1,4,2,3,5 .0444 0439 0436  .0439 .0467 .0409 .0469  .0478
0 1,5,4,2,3 .0483  .0463 .0520  .0525 .0480  .0528  .0601 .0622
-.50 5,3,2,1,4 .0550 .0584 .0558 .0598 .0585 .0675 .0799 .0861
-1 5,4,3,2,1 0653 .0659 .0687 .0594 0726 .0908 .1088 .1285
33 0.50 3,3,4,5,10 1 1,2,3,4,5 .0414  .0358 .0397 .0359 .0341 0268  .0221  .0211
.50 1,2,5,3,4 .0441 .0441 .0458  .0500 .0309 .0373 .0363 .0331
0 1,5,4,2,3 0551 .0557 .0610 .0605 0546  .0557 .0622  .0659
-.50 4,2,3,5,1 0561 .0496 .0505 .0492 .0721 .0889  .1088  .1296
-1 5,4,3,2,1 .0669  .0733 .0749 0712 .0791 .1103 .1511 .1810
50 10 1.5 0.16 8,9,10,11,12 1 1,2,3,4,5 0471  .0458  .0483 .0441 0414  .0454  .0416  .0466
.50 1,4,2,5,3 .0495 0464 0514 .0479 .0479 .0466  .0534  .0537
0 1,5,4,2,3 0476 0478 0510 .0529 .0502 .0544 .0573 .0640
-.50 3,5,2,4,1 0522 .0494 0546  .0525 0547  .0619 .0693  .0778
-1 5,4,3,2,1 .0549  .0534 0570 .0576  .0609 .0702  .0803 .0855
2.5 0.33 6,8,9,12,15 1 1,2,3,4,5 .0432  .0387 .0388  .0393 0372  .0349  .0315 .0295
.50 1,4,2,5,3 .0470  .0481 0448  .0454  .0477  .0441 .0464  .0435
0 1,5,4,2,3 0514 0488  .0502  .0547 .0497 .0508 .0586 .0634
-.50 3,5,2,4,1 .0560 .0533 .0573  .0591 0615  .0687 .0791  .0864
-1 5,4,3,2,1 .0599 0660 .0685 .0707 .0722 .0872 .1088 .1309
5.7 0.50 3,6,10, 14,17 1 1,2,3,4,5 .0358  .0371 .0316  .0315 0317  .0252  .0228 .0206
.50 1,4,2,5,3 .0448  .0425 .0371 .0453 0418  .0340 .0374  .0351

-
-
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7 T L argest A Variance ratio
NN A 1.5 1.6 1.7 1.8 2 3 5 9
1,5,4,2,3 0511 0514 0491 0497 0502 0550 .0537 .0638
3,5,2,4,1  .0590 .0599 0610 .0697 .0674 .0822 .0983 .1124
5,4,3,2,1 .0700 0711 .0740 .0801 .0852 .1148 .1511 .1918
75 15 15 0.6 12,13, 15,17, 18 1,2,3,4,5 0481 .0484 0435 0447 0465 0472 .0415  .0464
1,4,2,5,3 0471 .0489 .0489 .0465 .0488 .0473  .0498  .0531
1,5,4,2,3 0550 .0495 .0482 .0528 .0549 0544 0616 .0665
3,52,4,1 .0529 0517 .0529 .0558 .0583 .0589 .0687 .0727
5,4,3,2,1 .0580 .0582 .0529 .0611 .0604 .0692 .0746  .0867
25 033 9,12, 13, 18,23 1,2,3,4,5 .0405 0422 .0385 .0410 .0365 .0360 .0332  .0304
1,4,2,5,3 0421 .0456 .0446 0451 0471 0449 0427  .0447
1,5,4,2,3 0512 .0510 .0526 .0554 .0529 0516 .0586 .0603
3,5,2,4,1 .0567 .0533 .0582 .0594 0617 .0690 .0798  .0882
54,3,2,1  .0640 0653 0686 .0680 .0693 .0875 .1059 .1277
5 0.0 5,9,15,21,25 1,2,3,4,5 0341 .0375 .0336  .0309 .0308 .0252  .0204 .0193
1,4,2,5,3 0437 .0433  .0427 .0429 0480 .0405 .0370  .0389
1,5,4,2,3 0540 0479 .0460 .0512 .0536 .0563 .0589  .0607
3,5,2,4,1  .0603 0635 .0556 .0594 0670 .0820 .0920 .1096
54,3,2,1 .0670 0711 .0778 .0834  .0848 .1117 .1462 .1759
100 20 1.5 016  16,18,20,22,24 1,2,3,4,5 0484 0457 .0438 .0467 .0467 0483 0442 0466
1,4,2,5,3  .0460 .0459 0432 0481  .0458  .0486 .0527  .0542
1,5,4,2,3 0491 .0536  .0492 .0511 .0526 .0527 0573  .0643
3,5,2,4,1 .0520 .0532 .0585 .0548 0579 .0579 .0632  .0728
5,4,3,2,1 0577 058 .0585 .0548 0611 .0688 .0714 .0824
25 033 12, 16, 18, 24, 30 1,2,3,4,5 0413 .0421 0388  .0402 .0364 .0350 .0331 .0339
1,4,2,5,3 0465 0472 .0459 .0437 .0472 0415 0465 .0421
1,5,4,2,3 0516 .0533 .0496 .0537 .0510 .0557 .0611 .0604
3,52,4,1 .0560 .0561 .0583 0569 .0634 .0665 .0786  .0911
54,3,2,1  .0622 0597 0661 .0664 .0704 .0900 .1059 .1235
57 050 6, 12,20, 28, 34 1,2,3,4,5 0319 .0349 .0329 .0333 .0300 .0252 .0208 .0214
1,4,2,5,3 .0440 0397 .0420 .0452 .0387 .038  .0333  .0377
1,5,4,2,3 0513 .0483 .0489 .0481 .0512 .0606 .0551  .0621
3,52,4,1  .0560 .0593 0611 .0626 .0676 .0806 .0970 .1122

>
>
>
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P iargest Order of Variance ratio

NN S An n Pairing - ance 15 16 17 18 2 3 5 9
1 5.4.3.2.1 0672 0769 0716 0809 0880 .1090 .1471 .1797
125 25 15 016 20,22, 25, 28,30 ! 1.2.3.4.5 0470 0492 0437 0469 0436 0446 0481  .0459
50 1.4.2.5.3 0469 0465 0492 0459 0467 0476 0519  .0520
0 1.5.4.2.3 0480 0533 0521 0534 0518 0569 0598  .0667
50 3.5.2.4.1 0540 0523 0582 0518 0545 0621 0674  .0750
1 5.4.3.2.1 0550 0571 .0576 0599 0616 0676 .0791 .0813
25 033 15,20,22, 30,38 1 1.2.3.4.5 0398 0465 0419 0396 0357 .0350 0313  .0325
50 1.4.2.5.3 0453 0480 0454 0428 0443 0429 0454  .0501
0 1.5.4.2.3 0506 0523 0521 0527 0517 048 0571  .0620
50 3.5.2.4.1 0572 0579 0591 0528 0650 0697 .0771  .0865
1 5.4.3.2.1 0595 0599 0652 0707 0713 .0883 .1058 .1281
53 050 8, 15,25, 35,42 1 1.2.3.4.5 0325 0369 0312 .0319 0291 0279 .0248  .0207
50 1.4.2.5.3 0415 0412 0430 0405 .0400 0373 .0371  .0380
0 1.5.4.2.3 0481 0486 0497 0466 0545 0615 0544 0607
50 3.5.2.4.1 0576 0501 0653 0610 0645 .0768 .0908 .1042
1 5.4.3.2.1 0684 0745 .0804 .0738 .0867 .1112 .1447 .1803
150 30 15 016  24,27,30,33.36 ! 1.2.3.4.5 0452 0440 0459 0493 0475 0414 0440 0431
50 1.4.2.5.3 0486 0450 0499 0491 0474 0449 0545  .0506
0 1.5.4.2.3 0460 0490 0512 0473 0487 0526 0574  .0608
50 3.5.2.4.1 0506 0542 0534 0566 0542 0616 0715  .0766
1 5.4.3.2.1 0519 0568 .0583 0573 .0586 0707 .0804 .0914
25 033 18,2427, 36,45 1 1.2.3.4.5 0408 0414 0390 0390 0384 0337 0326 .0289
50 1.4.2.5.3 0453 0453 0413 0493 0403 0458 0456  .0452
0 1.5.4.2.3 0503 0484 0534 0537 0513 0548 0569 .0591
50 3.5.2.4.1 0548 0544 0588 0524 0608 .0703 .0785 .0858
1 5.4.3.2.1 0615 0677 0667 0664 0682 .0853 .1043 1221
57 050 9, 18,30,42,51 1 1.2.3.4.5 0320 0351 0316 0312 0287 0252 .0224  .0195
50 1.4.2.5.3 0438 0419 0409 0398 0410 0362 0355 .036l
0 1.5.4.2.3 0503 0523 0486 048 0496 .0535 0540 .0599
50 3.5.2.4.1 0611 0618 .0640 0630 0700 .0784 .0966 .1041
1 5.4.3.2.1 0705 0732 .0801 .0789 .0905 .1172 .1451 .1783
200 40 15 0.6  32.36,40, 44, 48 I 1.2.3.4.5 0428 0410 .0433 0452 0397 0418 0468 .0431

>
>
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P iargest Order of Variance ratio

NN S An n Pairing - ance 15 16 17 18 2 3 5 9
50 1.4.2.5.3 0474 0469 0452 0503 0460 0512 0508 .0521
0 1.5.4.2.3 0499 0481 0461 0472 0550 0528 0539  .0641
50 3.5.2.4.1 0535 0501 0506 .0543 0534 0635 0663 .0753
1 5.4.3.2.1 0543 0577 0573 0588 .0559 0648 0741  .0848
25 033 24,32,36,48, 60 1 1.2.3.4.5 0399 0422 0360 .0394 0329 .0331 0313 .0288
50 1.4.2.5.3 0466 0466 0439 0447 0430 0451 0416  .0436
0 1.5.4.2.3 0519 0555 0530 0512 0517 0550 0584 .0620
50 3.5.2.4.1 0551 0537 0558 0575 0655 0711 .0799 .0844
1 5.4.3.2.1 0576 0628 0636 0634 .0769 .0805 .1080 1177
57 050 12,24, 40,56, 68 1 1.2.3.4.5 0348 0369 0327 0363 0290 0254 .0221 .0198
50 1.4.2.5.3 0439 0408 0420 0393 0382 .0368 0356 .0379
0 1.5.4.2.3 0499 0497 0474 0491 0480 0524 0600 .0615
50 3.5.2.4.1 0627 0591 .0585 0627 0722 .0782 0775  .1003
1 5.4.3.2.1 0715 0737 .0756 .0789 .0907 .1136 .1480 .1874
250 50 1.5 016  40,45,50,55, 60 1 1.2.3.4.5 0466 0437 0455 0422 0421 0449 0495 0452
50 1.4.2.5.3 0481 0465 0454 0453 0428 0520 0511  .0556
0 1.5.4.2.3 0497 0449 0505 0509 0513 0496 0576  .0622
50 3.5.2.4.1 0549 0511 0505 .0530 0506 .0650 0605 .0697
1 5.4.3.2.1 0552 0586 0596 0614 0600 0679 0733 .0818
25 033 30,40, 45, 60,75 | 1.2.3.4.5 0397 0408 .0385 0391 .0350 0309 .0296 0308
50 1.4.2.5.3 0433 0478 0482 0473 0443 0447 0410  .0481
0 1.5.4.2.3 0504 0492 0497 0538 0509 0571 0596 .0609
50 3.5.2.4.1 0531 0566 0573 0569 0626 0627 0738  .0840
1 5.4.3.2.1 0605 0604 0660 0643 0707 .0878 .1017  .1200
57 050  15,30,50,70, 85 ! 1.2.3.4.5 0352 0324 0342 0297 0303 .0232 .0207 .0188
50 1.4.2.5.3 0410 0429 0442 0405 0419 0353 0371 .0354
0 1.5.4.2.3 0480 0486 0526 0512 0527 0520 0552 .0601
50 3.5.2.4.1 0577 0513 0612 0596 0677 0778 .0944  .1036
1 5.4.3.2.1 0711 0774 0777 0772 0853 .1184 1427 .1828
300 60 15 0.6 48,54, 60, 66,72 1 1.2.3.4.5 0491 0459 0424 0428 0403 0414 0448 0464
50 1.4.2.5.3 0497 0516 0482 0453 0474 0479 0494  .0538
0 1.5.4.2.3 0484 0538 0498 0502 0523 0541 0587 .0637

>
>
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P iargest Order of Variance ratio

NN S An n Pairing - ance 15 16 17 18 2 3 5 9
750 3.5.2.4.1 0540 0530 0508 0547 0578 0594 0670 0737
1 5.4.3.2.1 0535 0540 0571 0558 .0603 0708 .0722 .0872
25 033 36,48, 54,72,90 1 1.2.3.4.5 0371 0385 0432 0392 0360 .0317 0320 .0330
50 1.4.2.5.3 0473 0499 0436 04290 0472 0426 0416 0485
0 1.5.4.2.3 0476 0531 0555 .0530 0486 .0516 .0581  .0655
50 3.5.2.4.1 0531 0557 0595 0546 0661 0723 .0765 .0851
1 5.4.3.2.1 0588 0651 0646 0721 0732 .0890 .1031 .1185
57 050  18,36,60, 84, 102 I 1.2.3.4.5 0351 0378 .0322 0289 0283 .0246 .0225 .0188
50 1.4.2.5.3 0413 0408 .0398 0408 0411 .0370 0363 .0360
0 1.5.4.2.3 0515 0443 0464 0516 0490 0515 0560 .0553
50 3.5.2.4.1 0607 0578 0603 0654 0679 .0790 .0881 .1124
1 5.4.3.2.1 0714 0725 .0786 .0817 .0853 .1154 .1437  .1802
350 70 15 0.6  56,63,70,77,84 ! 1.2.3.4.5 0459 0451 0414 0416 0454 0444 0447 0447
50 1.4.2.5.3 0465 0488 0444 0499 0469 0498 0514  .0509
0 1.5.4.2.3 0477 0497 0516 0506 0520 0559 0562 .0567
50 3.5.2.4.1 0503 0532 0566 .0506 0585 .0597 0637 .0709
1 5.4.3.2.1 0551 0548 0542 0570 0630 0722 .0804 .0850
25 033 42,56,63, 84,105 1 1.2.3.4.5 0419 0424 0437 0405 0334 0337 0310 .0279
50 1.4.2.5.3 0466 0444 0427 0461 0380 0436 0408  .0446
0 1.5.4.2.3 0473 0539 0537 0474 0506 0527 0572  .0659
50 3.5.2.4.1 0570 0562 058 .0629 0596 .0681 0742  .0874
1 5.4.3.2.1 0580 0629 0612 0629 0700 .0818 .1031 .1216
57 050  21,42,70,98,119 1 1.2.3.4.5 0356 0389 0332 0296 0282 .0245 .0237  .0196
50 1.4.2.5.3 0414 0418 0410 0401 0384 0383 0345  .0356
0 1.5.4.2.3 0492 0542 0491 0453 0510 .0544 0586 .0614
50  3.5.2.4.1 0588 0574 0581 0631 0731 .0827 .0900 .1085
1 5.4.3.2.1 0666 0721 .0812 .0780 .0870 .1148 .1583  .1811
400 80 1.5 016 64,72, 80,88, 96 I 1.2.3.4.5 0469 0428 0437 0478 0455 0403 0424  .0440
50 1.4.2.5.3 0455 0487 0487 0484 0491 0486 0530 .0523
0 1.5.4.2.3 0515 0517 0493 0464 0478 0527 0597 .0591
50 3.5.2.4.1 0495 0555 0492 0535 0554 0571 0638  .0675
1 5.4.3.2.1 0538 0529 0558 0582 .0600 0657 0717 .0845

>
>
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P iargest Order of Variance ratio

NN S An n Pairing - ance 15 16 17 18 2 3 5 9
25 033 48,64 72,96, 120 1 1.2.3.4.5 0402 0405 0431 0382 0372 0330 0343 0314
50 1.4.2.5.3 0475 0456 0451 0441 0406 .0420 0426  .0398
0 1.5.4.2.3 0500 0487 0476 0499 0550 0524 0611  .0669
50 3.5.2.4.1 0581 0532 0585 0542 0632 .0683 .0820 .0839
1 5.4.3.2.1 0628 0630 0673 0693 0710 .0905 .1024 .1257
5.7 050 24,4880, 112, 136 1 1.2.3.4.5 0333 0363 0325 0316 0289 .0224 .0202 .0186
50 1.4.2.5.3 0426 0455 0401 0404 0386 0364 0357 .0403
0 1.5.4.2.3 0493 0501 .0490 0499 0511 .0506 0582 .0634
50 3.5.2.4.1 0619 0529 0620 .0620 0701 .0762 .0966 .1055
1 5.4.3.2.1 0661 0688 .0769 .0828 .0818 .1172 .1506 .1840
450 90 15 016  72,81,90,99, 108 1 1.2.3.4.5 0441 0439 0473 0484 0460 0431 0464 0432
50 1.4.2.5.3 0494 0483 0463 0462 0475 0507 0525 .0521
0 1.5.4.2.3 0501 0510 .0490 0482 0541 .0510 0557 .0599
50 3.5.2.4.1 0507 0567 0531 0505 0572 0641 0660 .0739
1 5.4.3.2.1 0550 0599 0574 0605 0599 0711 .0737 .0833
25 033 54,72,81, 108, 135 1 1.2.3.4.5 0435 0376 .0404 0397 0375 0349 0303 .0301
50 1.4.2.5.3 0439 0450 0450 0425 0429 0439 0467 .0416
0 1.5.4.2.3 0456 0493 0555 0552 0503 .0530 0609 .0647
50 3.5.2.4.1 0541 0512 0557 0565 0601 .0687 .0794 .0874
1 5.4.3.2.1 0646 0624 0645 0652 0719 .0900 .0995 .1215
57 050 27,5490, 126, 153 1 1.2.3.4.5 0353 0352 0329 .0349 0300 .0244 .0208 .0231
50 1.4.2.5.3 0443 0446 0430 0381 0386 .0336  .0391 .0390
0 1.5.4.2.3 0485 0485 0492 0511 0525 0549 0569  .0606
50 3.5.2.4.1 0585 0611 0584 .0585 0684 .0762 .0937 .1083
1 5.4.3.2.1 0666 0686 0743 .0809 .0906 .1107 .1429  .1794
500 100 15 0.6 80,90, 100, 110, 120 1 1.2.3.4.5 0460 0434 0428 0432 0472 0454 0450  .0408
50 1.4.2.5.3 0477 0462 0470 0481 0497 0490 0503  .0546
0 1.5.4.2.3 0519 0527 0506 .0502 0504 .0492 0553 .0608
50 3.5.2.4.1 0533 0579 0516 .0542 0506 .0603 0679 .0747
1 5.4.3.2.1 0529 0550 0574 0560 0625 0707 0724  .0867
25 033 60,80,90, 120, 150 1 1.2.3.4.5 0414 0432 0420 0399 0385 .0325 0315 .0300
50 1.4.2.5.3 0461 0430 .0495 0486 0462 0419 0411 0465

>
>
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M L gest o Order of Variance ratio
NN S An n Pairing - ance 15 16 17 18 2 3 5 9
0 1.5.4.2.3 0507 0478 0483 0525 0531 0517 0591 .0589
50 3.5.2.4.1 0548 0489 0603 0604 0636 0647 0779  .0792
1 5.4.3.2.1 0648 0675 0680 0699 .0753 .0866 .1042 .1180
57 050 30,60, 100, 140, 170 I 1.2.3.4.5 0377 0361 0315 .0322 0294 0302 .0213 .0197
50 1.4.2.5.3 0428 0448 0410 0385 0434 0352 0375 0331
0 1.5.4.2,3 0502 0478 0529 0536  .0523 0534 0553  .0632
50 3.5.2.4.1 0630 0639 0623 0642 0651 .0810 .0962 .1042
1 5.4.3.2.1 0694 0738 0755 .0766 .0869 .1139 .1461 .1776

Note. N = total sample size; N/J = mean of group sample size; "Luzest = ratio of the largest to the smallest group sample size; An = coefficient of sample size

n Smallest

variation; n = number of units per group. The Type I error rates outside the boundary of Bradley’s liberal criterion are in bold (conservative: <.025; liberal: >.075).
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Appendix C. Empirical Type I error rates for F-test with unequal sample sizes for several nominal alpha levels in the conditions under

which it is not robust against heterogeneity for a nominal alpha level equal to .05

n Largest

Order of

Variance ratio

NN A n Pairing — iance  APha T 17 18 2 3 5 9
5 5 15 016  4.5.6 50 2.3.1 .05 0787 0864
025 0390 0590

01 0240 0200

q 3.2.1 05 0816 .0948

025 0540 0540

01 0260 0310

23 033 3,57 50 231 .05 0873 0977

025 0570 0600

01 0250 .0230

1 3.2.1 05 0791 0897 .1122  .1319

025 0413 0520 .0730  .1000

01 0200 0180 0430 0450

3050  3.3,9 q 3.2.1 05 0760 0786 0794 1171 1624 2077

025 0350 0420 0458 0650 .1080  .1390

01 0140 0250 0170 0306 .0510  .0660

30 10 15 016 810,12 q 3.2.1 05 0788 0867
025 0500 0550

01 0270 .0200

23 033 610,14 50 231 .05 0870 .0913

025 0590 0510

01 0270 0310

1 3.2.1 05 0863 1128  .1245

025 0535 0630 .0830

01 0230 0310 0430

4 050 4,10,16 50 231 .05 0809  .0926  .1099

025 0466 0610 0550

01 0280 0310 0380

q 3.2.1 05 0761 0757 .0761 0881 1185 .1486 .1788

025 0400 0390 0500  .0515 .0620 .1040  .1300
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7 Largest .. Order of Variance ratio
NN A " Pairing - dance  APP T 1.8 2 3 5 9
.01 0190 .0230 0170 0190 .0379  .0580  .0660
45 15 1.5 0.16 12, 15,18 -1 3,2, 1 .005 .0807 .0861
.025 .0460  .0570
.01 0220 .0190
2.3 0.33 9, 15,21 -.50 2,3, 1 .05 0794 .0876
.025 .0540  .0570
.01 .0250  .0290
-1 3,2,1 .05 0761  .0921 .1074 .1302
.025 .0399 .0502 0760 1000
.01 0130 .0240 .0310 .0340
4 0.50 6, 15,24 -.50 2,3, 1 .05 0785  .0914 .1082
.025 .0481 .0680  .0720
.01 .0240 .0340 .0380
-1 3,2,1 .05 .0788 .0803 0916 1132  .1497 1737
.025 .0460 .0530 .0506 .0830 .0900 .1100
.01 0160 0180 0250 .0374  .0660 .0520
60 20 1.5 0.16 16, 20, 24 -1 3,2, 1 .05 0761 .0905
.025 .0540  .0630
.01 0230 .0230
2.3 0.33 12,20, 28 -.50 2,3,1 .05 0873
.025 .0490
.01 .0330
-1 3,2,1 .05 0765 .0949 .1072 .1208
.025 .0384  .0497 .0700 .0630
.01 .0190 .0200 .0470 .0530
4 0.50 8,20, 32 -.50 2,3, 1 .05 0764  .0885  .0953
.025 0462  .0680  .0630
.01 0200 .0530  .0420
-1 3,2, 1 .05 0767 0911 1137 1452 1739
.025 .0520 .0483  .0769 .1140 .1170
.01 .0200 .0270  .0340 .0570 .0800
.005 .0520
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T Largest Order of Variance ratio

NN A n Pairing — iance  APha T 1.7 18 2 3 5 9
75 25 15 016 20,25.30 1 3.2.1 05 0885
025 0590

01 0270

23 033 15,2535  -50 2.3.1 05 0873

025 0580

01 0200

1 3.2.1 05 0829 1069 .1224

025 0494 0620 0730

01 0250 0450 0550

4 050 10,2540  -50 2.3.1 05 0783 .0902  .1009

025 0489 0670 0570

01 0270 0400 0390

B 3,2.1 05 0759 0764  .0806  .0900 .1101 .1420 .1737

025 0480 0420 0500 0475 0672 .0880  .1340

01 .0140 .0180 0310  .0230 0370 0690 .0720

9 30 15 016  24,30,36 1 3,2.1 05 0762 .0859
025 0470 0560

01 0290 0290

23 033 18.30,42  -50 2.3.1 05 0755 0812

025 0530 0450

01 0340 0320

1 3.2.1 05 0880 1032  .1242

025 0523 .0780  .0780

01 0220 0320 0460

4 050 12.30,48  -.50 2.3.1 05 0755 0890  .1041

025 0463 0760 0590

01 0203 0400 0410

1 3,2.1 05 0756 .0796  .0930 .1085 .1400 .1748

025 0530 .0460 0504 0649 .1120  .1100

01 0240 0190 0230 0370 0660 .0540

120 40 15 016  32,40,48 1 3,2.1 05 0753 .0846
025 0450 0530
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7 Largest .. Order of Variance ratio
NN A " Pairing - dance  APN2 TG 1.8 2 3 5 9
.01 .0270  .0290
2.3 0.33 24,40, 56 -.50 2,3, 1 .05 0779 .0840
.025 .0590  .0480
.01 .0300 .0270
-1 3,2, 1 .05 .0903 1061 1206
.025 0513  .0680 .0770
.01 .0280  .0400  .0370
4 0.50 16,40, 64 -.50 2,3, 1 .05 0774  .0933  .0967
.025 .0422 0770 .0510
.01 L0210 .0400  .0390
-1 3,2,1 .05 .0734 0880 .1161 .1460 .1646
.025 .0340 0518  .0643 .1030 .1190
.01 .0240 .0190 .0290 .0540 .0630
150 50 1.5 0.16 40,50, 60 -1 3,2,1 .05 0764  .0868
.025 .0460  .0440
.01 0170  .0260
2.3 0.33 30, 50, 70 -.50 2,3, 1 .05 .0803 0772
.025 .0510  .0530
.01 .0270  .0260
-1 3,2,1 .05 0879 .1061  .1258
.025 .0507 .0680 .0900
.01 .0310  .0480  .0480
4 0.50 20, 50,80 -.50 2,3, 1 .05 0793  .0881 .0987
.025 .0436  .0660 .0820
.01 .0190 .0460 .0350
-1 3,2,1 .05 0759 .0831 0880 .1071  .1424 1731
.025 .0410 .0370 .0471 .0706  .1110  .1200
.01 0140 0160 0180 .0330 .0510 .0660
180 60 1.5 0.16 48,60, 72 -1 3,2, 1 .05 0774 .0823
.025 .0520  .0410
.01 0210 .0250
2.3 0.33 36, 60, 84 -.50 2,3,1 .05 .0834
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T Largest Order of Variance ratio

NN A n Pairing — iance  APha T 1.7 18 2 3 5 9
025 0600

01 0270

1 3.2.1 05 0907 1039 .1190

025 0482 0570 0650

01 0270 0280 0480

4 050 24.60,96  -50 2.3.1 05 0762 .0888  .0991
025 0380 0680 0650

01 0261 0430 0330

B 3,2.1 05 0753 0775 0787 0825 1167 .1445  .1697

025 0410 0370 0460  .0503 .0760  .0890  .1140

01 .0120 .0200 0250  .0200 0420 0610 .0380

200 70 15 016 56,70, 84 1 3,2.1 05 0767 0855
025 0460 0430

01 0310 0320

23 033 42,7098  -50 2.3.1 05 0759
025 0530

01 0220

1 3.2.1 05 0842 1074 .1224

025 0590 0580  .0840

01 0290 0420 0380

4 050 28,70.112  -50 2.3.1 05 0764 0866 .1019
025 0402 0590 0680

01 0160 0430 0440

1 3,2.1 05 0769 0762 0843 1141 .1470  .1639

025 0410 .0330  .0497 .0780 .1130  .1000

01 0250 .0160 0250 0320 0670  .0840

005 0460

240 80 15 016  64,80,96 1 3,2.1 05 0821
025 0470

01 0310

23 033 48.80,112  -50 2.3.1 05 0866
025 0540
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7 Largest .. Order of Variance ratio

N N/J e An n Pairing variance Alpha 5 3 5 9
.01 .0310
-1 3,2,1 .05 0773  .0859 .1052 .1256
.025 .0429  .0600 .0660 .0770
.01 0230 .0300 .0470
4 0.50 32,80, 128 -.50 2,3, 1 .05 0880  .0960
.025 .0720  .0640
.01 .0390  .0390
-1 3,2,1 .05 0908 1133  .1429 .1687
.025 .0503  .0660 .1010 .1110
.01 .0250  .0420 .0560 .0770
.005 .0440
270 90 1.5 0.16 72,90, 108 -1 3,2,1 .05 0837 .0878
.025 .0550  .0440
.01 .0250  .0250
2.3 0.33 54,90, 126 -.50 2,3,1 .05 0827
.025 .0550
.01 .0290
-1 3,2,1 .05 0873 1012  .1140
.025 0620  .0720 .0910
.01 .0330 .0340 .0520
4 0.50 36,90, 144 -.50 2,3, 1 .05 0782  .0863 .0995
.025 .0470  .0704  .0630
.01 .0390 .0390 .0490
-1 3,2,1 .05 0882 .1075 .1397 .1629
.025 .0493  .0600 .0930 .1250
.01 .0320 .0340 .0590 .0640
300 100 1.5 0.16 80, 100, 120 -1 3,2,1 .05 .0853
.025 .0450
.01 0160
300 100 2.3 0.33 60, 100, 140 -.50 2,3,1 .05 0752  .0867
.025 .0420  .0550
.01 .0310  .0300
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n Largest

Order of

Variance ratio

NN A n Pairing — iance  APha T 17 18 2 3 5 9
1 3.2.1 05 0755 0857 .1106 .119%

025 0377 0500 0670 0640

01 0120 0250 .0400 .0510

4 050 40,100,160  -50 2.3.1 05 0781  .0866  .0981

025 0430 0610 0840

01 0190 0450  .0360

1 3,2.1 05 0782 0821  .0816 .1078 .1375 .1713

025 0410 0390 0489 0740 .0780  .0830

01 0180  .0200 0290 0450 0580  .0560

Note. N = total sample size; N/J = mean of group sample size; "Luzest = ratio of the largest to the smallest group sample size; An = coefficient of sample size

n Smallest

variation; n = number of units per group. The Type I error rates outside the boundary of Bradley’s liberal criterion for nominal alpha level of .05 are in bold

(conservative: <.025; liberal: > .075).
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