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“This ability to generalize is the key to learning. What would be the point of a machine that
could recognize a picture that it has already seen, or win a game of Go that it has already
played? Obviously, the real aim is to recognize any picture, or to win against any player
[...].”

Stephané Dehaene. How we learn: The new science of education and the brain.
Penguin UK, 2020.
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Generalizability in multi-centre cardiac image analysis with machine learning

by Víctor Manuel CAMPELLO ROMÁN

The field of Artificial Intelligence (AI) has undergone a revolution in recent years
with the advent of more efficient computing hardware and well-documented soft-
ware for model development. Many fields are being transformed. Medicine is one
of the fields that has seen the appearance of models that can solve complex tasks
such as automatic image segmentation or diagnosis. However, there are important
challenges that need to be overcome for a successful application in clinical practice.
One important challenge is the generalization of models to unseen domains inde-
pendently of other factors, such as the scanner manufacturer, the scanning protocol,
the sample size or the image quality. In this thesis, we aim to investigate the effects of
the domain shift in medical imaging, specifically for cardiovascular studies, which
present a particular challenge since the heart is a moving organ. Furthermore, we
aim to contribute to methods to overcome or reduce the model performance gap.

First, we establish a collaboration with clinical researchers from six different cen-
tres from three countries and assemble a large multi-centre dataset to tackle one
of the greatest challenges in research: the domain gap problem. We process and
annotate the data and develop a benchmark study by organizing an international
competition to compare and analyse different techniques to bridge the generaliza-
tion gap. The dataset is later open-sourced to foster innovation within the research
community, becoming the first open multi-centre cardiac dataset.

Then, we perform an exhaustive comparison of domain generalization and adap-
tation methods, including the best-performing methods in the aforementioned com-
petition, for late gadolinium-enhanced image segmentation for the first time. We
show that extensive data augmentation is very important for generalization and that
model fine-tuning can reach or even surpass multi-centre models.

Finally, we investigate the effects of differences in image appearance for the first
time in a multi-centre study with cardiovascular imaging and compare several har-
monisation techniques both at the feature and image levels for improved diagnosis.
We show that histogram matching-based harmonisation results in image features
(radiomics) that are more generalizable across centres.
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age preprocessing techniques applied at the whole image level, while
in the row below they are applied at the ROI level. HCM: Hyper-
trophic cardiomyopathy, O: original images (without normalisation),
R: image intensity recaling, N: image intensity normalisation, HM:
histogram matching and PLHM: piecewise linear histogram match-
ing. An “R.” in front of a method means that it is applied at ROI level. 82
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Chapter 1

Introduction

The field of Artificial Intelligence (AI) has undergone a revolution in recent years
with the development of more efficient computing hardware and well-documented
software for model development. AI has become a tool with the potential to be
applied in many and varied fields, such as transportation, art design or medicine.
In some of the potential applications, such as medicine, these methods must meet
specific requirements before they can be widely implemented in clinical practice. In
this Thesis, we analyse a list of challenges for AI methods in the field of medical
imaging and present a collection of results that focus on the challenge of domain
shift for multi-centre cardiovascular datasets.

1.1 What is artificial intelligence?

AI can be defined as the intelligence demonstrated by a computer to solve a task.
This intelligence can simply be a set of rules defined under human supervision, such
as in a decision tree, or a method that extracts information from experience (train-
ing data) to build a predictive model. Techniques that follow the second paradigm
are known as machine learning (ML) methods, which are superior to other methods
because they automatically estimate a model or function that predicts the expected
output given some input data. This is done through a process called training, where
the function parameters are adjusted iteratively until the prediction error reaches a
desired threshold. Among ML methods, deep learning (DL) refers to models that
are inspired by the brain’s neural network and that depend on a large number of pa-
rameters that need to be adjusted. These models are characterized by having greater
expressivity, which can be defined as the capacity of the model to estimate increas-
ingly complex functions. As a result, DL models have attracted the community’s
attention and have become the best-performing method in many applications. This
Thesis focuses on ML methods, so we will hereafter refer only to ML or DL methods.

1.2 Cardiovascular imaging

Cardiovascular images are mostly acquired in clinical practice when a precise assess-
ment of the heart’s function and disease is needed. There are different modalities
depending on the specific application. Some examples of image modalities are mag-
netic resonance imaging (MRI), computed tomography (CT) or ultrasound images.
Some modalities are used because of their higher spatial resolution, others because
they do not involve radiation or because are cheap and fast. In this Thesis, we focus
on one of these modalities: MRI. The advantage of using MRI over other modalities
is that is a non-invasive technique without radiation and the resulting images have
a good temporal resolution. As a disadvantage, the exact MRI signal intensity is not
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defined by the tissue properties – contrary to CT – and the spatial resolution is lim-
ited to around 1 millimetre (mm) and depends on the MRI magnet’s strength. These
characteristics make MRI scans suitable for functional and viability assessments of
the heart [126]

MRI studies are acquired in two-dimensional slices that are stacked to form a 3D
volume with a slice thickness of around 10 mm. Additionally, images are acquired
repeatedly at different time points to obtain the whole cardiac cycle with a good
temporal resolution. The whole process involves several periods when the patients
are holding their breath to avoid respiratory movement causing artefacts in the im-
ages. Commonly, four different views are acquired that correspond to the heart’s
natural planes: the short axis – slices that are orthogonal to the heart’s longitudinal
axis – and three different views for the long axis – where the different chambers of
the heart are visualized in the heart’s longitudinal direction. Two of these views are
depicted in Figure 1.1. A collection of sequences exists depending on the study be-
ing conducted (more details about sequences and specific protocols can be found in
Pons-Lladó [126]). After the images have been acquired with acceptable quality, the
clinical experts analyse them visually and quantitatively. The quantitative analysis
involves a time-consuming annotation process that consists of identifying specific
time points and delineating important areas of the heart for the extraction of key
biomarkers.

In this Thesis, we will work with two different modalities. On one hand, we will
use steady-state free precession or cine MRI sequences that are suited for the func-
tional study of the heart. In these images, the blood is bright and muscular tissues,
like the myocardium, are darker. On the other hand, we will consider contrast-
enhanced MRI sequences, that are used for heart viability assessment and present
greater image appearance variability. These images are qualitatively similar to cine
MRI, but one may encounter bright spots within the myocardium depending on the
viability of the tissue.

1.3 Artificial intelligence in medical imaging

In the last ten years, AI has been used to automatize a great variety of complex
tasks in fields such as natural language processing [168] or computer vision [57]
achieving impressive performance, and frequently surpassing state-of-the-art meth-
ods. Among the different fields, medical imaging is very active with a great number
of publications demonstrating the added value of AI and an increasing number of
AI-enabled devices being licensed and approved by the Food and Drug Administra-
tion in the United States for clinical practice applications [38]. These recent advance-
ments anticipate a promising future for AI in healthcare with the potential to reduce
the most time-consuming and tedious tasks as well as support expert clinicians in
their day-to-day clinical practice. Among other applications, AI methods have been
used for speeding up the processing of medical data, increasing the level of precision
for diagnosis, discovering new disease biomarkers or decreasing medical errors in
clinical workflows [169].

Multiple examples of the application of ML methods in medical imaging can be
found in the literature and for a wide variety of tasks within the clinical workflow
[71]. Starting with image acquisition, ML models have been used to speed up the
acquisition process by reconstructing the final image with fewer input data or for
improving the quality of the final image when a smaller dose of the contrast agent
is injected into the patient [54]. Once an image is acquired, ML methods can be
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used to improve its resolution [114, 125]. These models are trained to approximate
the distribution of high-resolution images from a set of low-resolution images. As a
result, one can generate a scan with full coverage of an organ from a limited number
of slices or leverage images acquired with a lower radiation dose by improving their
spatial resolution.

When analysing medical images, several applications have been proposed. For
instance, DL methods are the current state-of-the-art for the segmentation of regions
of interest in radiological images [5]. Important biomarkers, such as volume, are ex-
tracted from these regions of interest and then used for the patient diagnosis. Sim-
ilarly, these tools have also been employed for the localization of points of interest
and the detection of objects in medical images, such as nodules in breast mammo-
grams or cells in histological imaging. Another potential application tested in the
literature is the registration of images, which consists of finding the transformation
that aligns two images based on the underlying anatomical structures [43]. This task
is particularly useful for comparing images acquired with different modalities or at
different moments in time and may require the application of non-trivial deforma-
tion mappings to obtain a good registration.

At the end of the pipeline, ML methods are also able to extract and utilize fea-
tures from medical images or regions of interest previously segmented for the di-
agnosis of diseases [106]. These features are usually referred to as radiomics. The
predictive power of these models lies in the ability to extract non-linear relationships
between input data and the outcome without human intervention for feature selec-
tion. In some cases, these methods can even extract information from patterns in
images that were not previously identified by human experts, such as patient race
from different chest imaging modalities [52] or patient sex from fundus images [77].

Other emerging applications are appearing as well inspired directly by the spe-
cific needs of ML methods, such as the generation of realistic synthetic data for train-
ing better and more robust models [39]. Additionally, recent publications are also
targeting the prediction of patient prognosis [23] or the determination of the risk of
suffering an adverse event [128].

Overall, the ML community’s activity is buoyant in the field of medical imaging
and new and better ways to solve diverse medical tasks are being proposed at a very
fast speed every year. In the next subsections, we are going to delve into specific
details for each of the applications mentioned previously when proposed within
the particular field of interest in this Thesis: cardiovascular imaging. Moreover,
while medical imaging refers to a range of imaging modalities such as computed
tomography, echography or magnetic resonance, the references provided as well as
the results of this Thesis will focus on magnetic resonance imaging (MRI). However,
the majority of methods presented can be applied to other modalities as well.

1.3.1 Artificial intelligence in cardiovascular imaging

Four main tasks can be found in the literature for cardiovascular image analysis that
are summarized in Figure 1.1. For each of them, we provide a brief description and
an overview of recent works using ML.

Image reconstruction

Cardiovascular medicine presents a special difficulty within medicine because the
heart is a moving organ. This makes the image acquisition process more challenging
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FIGURE 1.1: Visualization of the heart orientation in the chest with
the two main MRI views used in the literature and a depiction of four
important steps in cardiovascular image analysis where AI has been
used.

due to the need to acquire the image under several breath-holds to avoid respiratory-
related anatomical deformations. The scanning time may therefore take a long time.
One way of reducing scanning time and patient discomfort is to reduce the number
or duration of breath-holds, with the consequent decrease in spatial or temporal
resolution. Alternatively, one can perform a free-breathing acquisition [159] with a
longer scanning time and apply a post-processing alignment later to correct possible
slice misalignments.

The versatility of DL methods has enabled the proposal of solutions to the two
approaches presented to speed up the acquisition and reduce patient discomfort. On
one hand, convolutional neural network (CNN) models can be trained to derive a
full-coverage stack from a reconstructed sparse 3D cardiac volume [157]. Addition-
ally, the k-space information can be leveraged together with the lower-resolution
image to compute a 3D cardiac sequence under a single breath-hold in less than 10
seconds, which results in clinical biomarkers with good agreement with reference
values [80]. On the other hand, a model for respiratory motion correction can be ap-
plied as post-processing to complement the free-breathing acquisition protocol [51].

Image registration

A second image post-processing step may be applied depending on the specific goal
in mind for the acquired imaging modality. For instance, image registration is neces-
sary for perfusion studies where MRI images are acquired during several heartbeats
to be able to see the contrast agent washing out. This allows cardiologists to identify
damaged regions in the heart walls, called myocardium. However, to compare accu-
rately the images at different time points, these need to be morphologically aligned.
DL can accurately register these images with only one optimization step [109], faster
than traditional iterative methods such as ELASTIX [75] or ANTS [6].
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Another potential application of registration algorithms is the construction of
anatomical models of the heart from MRI scans with compromised myocardial tis-
sue regions for revascularization therapy. The tissue information can be extracted
from late gadolinium-enhanced (LGE) imaging and later registered to the MRI scan
using manual annotations of the left and right ventricles and the left ventricle myo-
cardium [158]. The deformation fields, extracted from an MRI scan, can also be used
for extracting local metrics and assessing heart deformation for improved diagnosis
[101].

Segmentation

When the MRI scan has been acquired and has undergone all necessary preprocess-
ing steps, the expert clinician needs to manually delineate regions of interest in the
heart for biomarker extraction and patient assessment that vary depending on the
scan application. For instance, for studying the function of the heart cine sequences
are considered and the basic annotated regions are the left and right ventricles and
the left ventricular myocardium. Other regions of interest can also be included for a
more exhaustive or targeted analysis such as the left and right atria, the left ventricle
papillary muscles or the right ventricular myocardium. The whole annotation pro-
cess takes an important amount of work and it is subject to interrater variability. To
optimise time and effort, usually, a clinician only delineates the critical parts, such
as specific frames and cardiac regions. In the example of functional assessment, only
the time points of maximum contraction (end-systolic phase) and maximum dilation
(end-diastolic phase) are annotated while the right ventricle epicardial contour and
the papillary muscles are usually left out [126].

Multiple works have been presented in the academic literature for automatic
segmentation of cardiac regions of interest and DL has stood out in recent years,
becoming the state-of-the-art tool [24]. Diverse models have been proposed for the
segmentation of cine sequences and enhancement imaging. The first fully convolu-
tional neural network for short-axis cardiac MRI was proposed in 2016 by Tran [151].
From then on, networks with more advanced training pipelines and more effective
architectures have been proposed (see the review by Chen et al. [24] and references
therein) and optimised segmentation pipelines have been constructed that can be
applied to varied medical image modalities [67]. Other cardiac modalities explored
in the literature are late-gadolinium enhanced and T2 imaging [181] or perfusion
imaging [140].

All the aforementioned models need in general a relatively large amount of stud-
ies annotated by clinical experts for training. To overcome this limitation, several
approaches have been proposed to effectively learn from a few annotated samples
leveraging also the information from unannotated studies. Some of these methods
propose semi-supervised learning techniques, by learning to reconstruct the input
images [96] for example, or self-supervised learning, where pretext tasks are created
with other available information in a scan, such as orientation information [9].

Diagnosis

ML methods have been applied to cardiovascular imaging for the diagnosis of sev-
eral cardiomyopathies based on features extracted from the scans. A large number
of works have proposed different ML techniques for the diagnosis of diverse car-
diovascular diseases such as myocardial infarction, left-ventricular non-compaction,
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atherosclerosis or valvular heart disease, among others (see the review by Martin-
Isla et al. [106] and references therein). One of the most common approaches in
these works is based on the extraction of radiomics features (from regions of inter-
est in the medical image) and the implementation of an ML pipeline that includes
feature selection, cross-validation of the model in several folds or partitions of the
training set and the selection of the final model to be evaluated. Other methods
apply directly DL models to the images to classify them into positive (diseased) or
negative (healthy). The latter approaches require less human interaction but need
larger datasets to achieve comparative accuracy.

1.4 Challenges

The potential added value of AI tools in the clinical workflow has been widely
demonstrated in multiple works, as shown by the variety of applications and the
large number of academic contributions presented in the previous section. They can
reduce acquisition times to a few seconds while reducing or removing the patient’s
breath-hold, improve the registration performance, output an automatic segmenta-
tion in less than a second or compute a risk score or a suggested diagnosis with
high accuracy. However, important implementation challenges remain unsolved.
As an example, consider the work conducted by Schaffter et al. [142], where the
authors demonstrated that a combination of radiologists’ predictions and ML out-
comes achieves the highest overall accuracy for mammography screening. How-
ever, the specific implementation of these tools is important. Lehman et al. [84]
showed that the number of detection failures increases when radiologists interpret
mammography scans assisted by an automated system. This example highlights the
importance of identifying and solving the challenges necessary for the successful
implementation of AI in clinical practice.

In the following, we present some technical challenges related to the implemen-
tation of ML models and the interpretation of results. This Thesis will focus on the
first one, domain shift, but there are other challenges that are worth introducing to
provide more context due to their importance. Furthermore, there are other impor-
tant challenges related to the infrastructure and knowledge gap of potential users
that we do not discuss, as they are out of the scope of this Thesis.

Domain shift

One of the key recipes for a high-performance model is the use of a large number of
parameters. In this way, the training algorithm can better fit the training data. This
also allows the model to memorize certain patterns of the training data (imaging
characteristics, traits for a specific population, biases from the data annotator) that
might not be generalizable, limiting their applicability to new datasets [112].

AI models learn from existing datasets and may reproduce, as a consequence,
existing biases. For instance, if the dataset has an ethnicity or sex-related imbalance,
the model trained on it can show disparities in performance depending on the ethnic
group or sex [129, 130]. Thus, creating an unfair treatment if deployed in real-life
scenarios. Active research is being conducted to find methods that enforce fairness
in model predictions [107], i.e. to improve the generalizability to underrepresented
or missing groups.

Another type of bias may come from rapidly changing clinical settings with new
scanner models or imaging modalities being introduced for a better assessment of
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patients’ health [45]. AI tools must be able to adapt to these changes without the
need to repeat the training process every time the settings are modified. In this
Thesis, we will focus on this particular challenge and will choose cardiovascular
imaging as the application.

Interpretability

ML models are characterized by their ability to extract patterns from input data and
build relations between features indirectly while training to optimise an objective
function (e.g., the prediction accuracy). This property, together with the large num-
ber of parameters used in DL models, has resulted in the consideration of these
models as ‘black boxes’, that is, of systems that generate an outcome without any
explanation for how it was produced. However, if AI models are to be used in clini-
cal practice they need to be trusted by clinicians by providing explanations and the
level of uncertainty for their predictions. A human expert should be able to under-
stand which factors motivated the model decision [143]. This lack of understanding
of the decisive factors for a prediction has motivated the research community to fo-
cus on the interpretability of these methods.

As illustrated previously with an example for breast mammography screening,
potential mistakes by automatized systems might be difficult to identify due to the
black-box nature of many ML methods [170]. DL models tend to be overconfident
in predictions even when these are incorrect. An automated model should be able
to model the level of uncertainty in the prediction and output “I am not sure” when
necessary.

Limited data and/or annotations

Clinical data is difficult to obtain due to legal constraints and when available, obtain-
ing human annotations might be prohibitively expensive. For this reason, AI tools
applied to the medical field must be very efficient. Several techniques are tackling
this challenge by designing methods that learn from limited data (few-shot learning)
or non-expert annotations (noisy labels), that select challenging samples and ask a
clinical expert for feedback (active learning), that synthesize realistic samples using
generative models or that fine-tune a model pre-trained with an unrelated dataset to
leverage the optimised parameters.

Unbalanced data and rare diseases

AI models tend to overfit to the training set, resulting in several undesired be-
haviours such as a lack of generalizability to new cohorts or diseases with a lim-
ited representation in the whole population. Unfortunately, a balanced dataset or a
dataset with the same number of patients for different diseases may not always be
available. Therefore, there is a need for techniques that can handle these datasets
and be adjusted according to possible imbalances. This is a key aspect to obtain
fair models, i.e. models that perform with similar accuracy independently of the
population subgroup.

Lack of evidence on prospective datasets

Very often existing academic publications report the performance on a retrospec-
tive cohort similar to the one used for training the model. This might lead to over-
optimistic results that are not preserved on new cohorts from a different population
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or acquired with a new scanner model or an updated acquisition protocol. As a
consequence, one gets an undetermined performance gap when the models are im-
plemented. Prospective validations are needed to assess the model performance in
different and real clinical settings [170].

Trustworthiness and clinical acceptance

Apart from solving all of the aforementioned challenges, ML models need to obtain
the clinical expert’s acceptance to be applied in day-to-day practice. For that, strong
evidence of its usefulness and added value is necessary.

1.5 Domain shift

In this Thesis, we will focus on one of the aforementioned challenges: domain shift.
Domain shift refers to the existing differences between datasets due to different pop-
ulation characteristics, different acquisition protocols or different acquisition devices
used, among other factors. These differences may cause the AI models to decrease
their performance or simply fail when tested on new target domains. For this rea-
son, the research community has been investigating how to adapt features learnt
from one or more source domains to new domains or how to learn generalizable
features directly during the training phase.

A clear example of a domain shift that results in poor generalizability can be
obtained when training an ML model for skin cancer detection only with a specific
population, such as white-skinned people. When the model is applied to a black-
skinned person, it fails to detect cancer because many of the patterns learnt were
specific to brighter skin images. The same may happen for models that use other
types of imaging, such as computed tomography or MRI, where the extracted pat-
terns and the differences among populations are usually less interpretable.

Depending on the availability of data and annotations from source and target
domains, the problem of domain shift can be tackled using different methodologies.
Let us assume we have always annotated data from the source domains1 and that
we want to train a model with the least performance gap between source and target
domains with very limited human effort regarding data acquisition and annotation.
Then, we are interested in methods that leverage differences between source do-
mains to build a generalizable model (the problem of Domain Generalization) and
methods that can be adapted to the new domain with few target samples with or
without annotations (the problem of Domain Adaptation).

1.5.1 Domain generalization

Domain generalization methods use variations in one or more source domains to fit
a model that can perform accurately in an unseen target domain.

A majority of works focus on building a feature representation that is the result
of reducing the dissimilarity of features extracted across training domains [50, 62, 92,
110, 119]. The motivation lies in the (more or less justified) intuition that a feature
representation with minimal dissimilarities across domains can generalize better to
unseen domains. Khosla et al. [74] even disentangles these representations into two
components – a domain-specific one and a domain-invariant one – and uses the

1If we did not have annotated data for training, we would need to focus on unsupervised learning
methods.
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latter for training generalizable models. Most of these works embed the representa-
tions in a reproducing kernel Hilbert space, but recent approaches minimize other
metrics like the Wasserstein distance [4]. Or let the model learn the representation
through an encoder-decoder model that reconstructs the original image for different
source domains using one single latent representation [49].

Other approaches focus on building an ensemble of models trained with diverse
datasets to obtain averaged and robust predictions on unseen domains [163].

Finally, recent proposals rely on adversarial training to enforce the model to learn
parameters or latent features that are indistinguishable across domains [87, 91]. Or
use meta-learning [36] or metric-learning [177] methodologies to build feature repre-
sentations that preserve class relationships and enforce the clustering of data points
from the same class independently of the domain.

1.5.2 Domain adaptation

The problem of domain adaptation (DA) has the largest list of contributions. Early
methods were based on the alignment of vectorial representations of images, re-
ferred to as shallow DA methods, while more recent methods rely on deep learning-
based features or are end-to-end DL methods [31, 174].

Among the shallow DA methods, the majority are based on the application of
small perturbations to the data points – to better approximate the target domain
distribution – or to the model parameters – to adapt the model decision boundary
to the target data representation. Csurka [31] provides a detailed review of methods
such as Transfer Adaptive Boosting [33] or Adaptive Support Vector Machine [164]
among many others.

The advent of DL methods has resulted in improved feature representations of
images as compared to handcrafted features by using the DL model as a feature ex-
tractor. When the source and target domains are sufficiently close, these DL-based
features perform generally better [35]. However, if the difference between domains
is larger, one needs to apply transfer learning techniques to fine-tune the model pa-
rameters – and thus the image deep representations – to the new domain using some
annotated samples from the target domain [29, 116].

Lastly, recent works have focused on the development of end-to-end techniques
fully based on DL models referred to as deep DA. These models leverage the expres-
sivity of complex neural networks to boost performance. We classify them into two
groups:

• Image reconstruction-based approaches. This approach consists of learning
a latent space invariant to domain differences through an encoder-decoder-
based model. This has been enforced by reconstructing paired images with
small variations (rotations, dilations or different views of them) from a single
vectorial representation of an original image [48]. Or by using synthetically
generated images with the same class as the original image to simulate alter-
native domains [11, 12]. Finally, some works have proposed models based
on generative adversarial networks (GANs) [53] to learn a domain-invariant
representation without the need for paired images [93].

• Classification-based approaches. These approaches utilize siamese networks
– i.e. two copies of the same network – trained together, one with data from the
source domain and the other with data from the target domain. During train-
ing, these methods minimize a loss that measures the discrepancy between
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model parameters from both domains [99, 146], a classification loss or an ad-
versarial loss to enforce that the model features are not able to predict the orig-
inal image domain [153, 154] or a combination of several or all of them [46,
61, 98, 100]. In some works, the model parameters are learnt independently
but in the majority of cases, the weights are shared partially or entirely across
networks.

1.5.3 Domain shift in medical imaging

The problem of domain shift is particularly relevant in computer vision, where im-
ages are a representation of the real world and have always an implicit bias, that
depends on the acquisition process [150]. Medical imaging in particular poses a nar-
rower problem — meaning that the variability of images is lower — when compared
with general computer vision tasks where different objects with varied backgrounds
need to be identified or classified. Medical images are in general acquired within
a specific range of the target region of interest or organ, with similar orientations
and similar devices. However, differences in acquisition parameters of protocols or
scanning devices result in subtle differences in the images that affect model general-
ization, which results in unwanted disparities in prediction accuracy. In general, few
public datasets or works existed in the literature to study the domain shift problem
in medical imaging, but they have been collected and open-sourced in recent years.
For instance, Prados et al. [127] collected a multi-centre and multi-vendor dataset
with 80 cases for a spinal cord segmentation challenge, although the authors did not
address the domain shift problem explicitly.

Several recent studies have reported on the performance degradation of state-of-
the-art ML tools in medical imaging. For instance, Ting et al. [149] showed dispari-
ties in performance for disease classification of retinal images when the model was
tested on external data, with an area under the curve score ranging from 0.889 to
0.983 depending on the dataset population and acquisition clinic. For radiological
images, the first results evidencing the domain gap of CNNs were presented by Al-
Badawy, Saha, and Mazurowski [2], Bai et al. [7] and Zech et al. [173]. The authors of
these studies demonstrated the level of degradation of CNN-based models for brain
MRI, cardiac MRI and chest X-ray datasets, respectively, when tested on external
datasets. To address and surmount the performance gap, existing works rely on DA
and DG techniques depending on the availability of samples from the target domain
during training. We will discuss both approaches separately next.

Domain generalization in medical imaging

To optimise performance on an unseen target domain, Yao et al. [165] collected ten
chest X-ray datasets from different clinical centres and demonstrated that combining
several datasets during training improves domain generalization. In cardiac imag-
ing, Tao et al. [148] published the first study comparing automatic segmentation
results on varied manufacturers from multiple clinical centres. The authors demon-
strated that the best-performing model was again trained with a varied dataset com-
bining data from several institutions and manufacturers. However, the results of the
study could not be reproduced since the datasets are not publicly available. Later,
Chen et al. [25] proposed a method to improve the generalization of the model across
domains by using extensive transformations of the input images during training,
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usually referred to as data augmentation. This provided more variability to the train-
ing data and limited the accuracy drop to around 0.1 in Dice score in two external
datasets with the majority of images acquired with scanners from one manufacturer.

Domain adaptation in medical imaging

When data is available from the target domain, a greater variety of proposals ex-
ists. For example, some studies have proposed the use of GANs to generate realistic
synthetic images based on images from other modalities and increase the number of
training samples [14, 26, 104, 105], or directly transform the images from the target
domain to the source domain via image-to-image translation models [27, 37, 176].

Other works have used techniques for deep DA (introduced in the subsection
1.5) based on domain classifiers for medical imaging applications [68, 70, 81].

Finally, a different approach by Perone et al. [123] presents a self-ensembling
method on the model weights for unsupervised DA for spinal cord MRI image seg-
mentation. This model uses unlabeled images from the target domain and computes
the prediction consistency between the teacher and student networks.

1.6 Aim and contributions

In this Thesis, we aim to investigate the effects of the domain shift in medical imag-
ing and to contribute to methods to bridge or reduce the model performance gap.
In particular, we focus on the differences found in cardiovascular MRI scans ac-
quired at several institutions with different scanners and protocols and varied car-
diac pathologies.

The contributions of this Thesis can be summarized as follows:

• We assembled a multi-centre dataset containing 375 cardiovascular magnetic
resonance images from different scanner manufacturers and diverse patholo-
gies and established the largest benchmark for multi-centre generalizable seg-
mentation methods.

• We demonstrated the effect of diverse domain generalization and adaptation
techniques for the segmentation of the more challenging late gadolinium-enhanced
imaging.

• We investigated the effect of several harmonisation methods on classification
models when tested on unseen data from other centres.

More in detail, to tackle the domain gap problem between clinical centres, we
established a collaboration with several institutions in Spain, Germany and Canada
within the context of the Horizon 2020 EU project euCanSHare to assemble a diverse
dataset of cardiac magnetic resonance (CMR) images. A total of 375 studies were
collected from six clinical centres from four different scanner manufacturers with
a diversity of pathologies that are present in a real clinical setting. The dataset was
later curated, annotated and transformed into the appropriate format for subsequent
image analysis. The processed data were then used for organizing an international
competition in the Medical Image Computing and Computer Assisted Intervention
(MICCAI) 2020 conference to compare solutions for the domain generalization prob-
lem in a controlled setting. A specific setting was designed for the competition to
assess performance on three scenarios depending on the availability of data for each
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scanner manufacturer: 1) annotated data is available, 2) unannotated data is avail-
able and 3) no data is available. A total of 14 international teams submitted a final
proposal for the challenge. Further details of the competition settings as well as the
results and conclusions extracted from the participating methods were published in
the journal paper:

Campello, Víctor M. et al. (2021). “Multi-Centre, Multi-Vendor and Multi-
Disease Cardiac Segmentation: The M&Ms Challenge”. In: IEEE Transactions
on Medical Imaging. Doi: 10.1109/TMI.2021.3090082.
JCR IF: 10.6 Q1.

The collected dataset was then released, becoming the first open-source multi-centre
and multi-vendor dataset in cardiovascular imaging. This contribution increases the
amount of openly accessible cardiac datasets for further validation and quantifica-
tion of the generalization gap of ML models.

Subsequently, having addressed the problem in cine MRI we studied the more
challenging contrast-enhanced modality. The best-performing methodologies from
the M&Ms Challenge were compared against transfer learning approaches for model
generalization of late enhanced CMR image segmentation for the first time. Late-
enhanced imaging is a technique that uses MRI to visualize regions of interest when
a ferromagnetic contrast agent has been injected into the bloodstream. This al-
lows for the detailed analysis of tissue viability, that is to assess whether the blood
flow is normal within a tissue. These images present greater variability due to
the disparities in time elapsed between the image acquisition and the time of con-
trast injection. We show that single-centre models can generalize well to new do-
mains when trained with appropriate data augmentation and that transfer learn-
ing achieves comparable accuracy to the best models with fewer computational re-
sources. The whole analysis has been published in the journal paper:

Sendra-Balcells, Carla, Campello, Víctor M., et al. “Domain generalization
in deep learning for contrast-enhanced imaging.” Computers in Biology and
Medicine 149 (2022): 106052. Doi: 10.1016/j.compbiomed.2022.106052.
JCR IF: 7.7 Q1.

Finally, having addressed generalizability in segmentation we focus on model
generalization on imaging features, that are useful for diagnosis. We studied the
effect of centre-related variability on features extracted from CMR images. These
features are combined with clinical biomarkers to improve diagnostic performance.
However, they can be affected by subtle differences in scanner manufacturers or ac-
quisition protocols that are not related to biological factors. To reduce the impact of
scanner-related variability, image and feature harmonisation techniques were com-
pared to obtain standardized features from images across different centres with dif-
ferent scanner manufacturers. The quality of the harmonisation was assessed in
terms of feature similarity across centres for groups of healthy and pathological sub-
jects separately and in terms of diagnosis generalization to unseen domains. For the
first time, the effect of image harmonisation on cardiovascular multi-centre studies
was reported. The results have been published in the journal paper:

Campello, Víctor M., et al. “Minimising multi-centre radiomics variability
through image normalisation: a pilot study.” Scientific Reports 12, 12532 (2022).
Doi: 10.1038/s41598-022-16375-0.
JCR IF: 4.6 Q2.

https://doi.org/10.1109/TMI.2021.3090082
https://doi.org/10.1016/j.compbiomed.2022.106052
https://doi.org/10.1038/s41598-022-16375-0
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1.7 Thesis outline

This dissertation is based on a compendium of research works published in top-tier
journals that are presented as separate chapters. Preceding these works, in Chapter
1 the motivation of this Thesis has been presented together with an introduction to
AI, cardiovascular imaging and a description of different applications in cardiovas-
cular image analysis. Also, a list of existing challenges for AI in medical imaging
is introduced and a review of state-of-the-art applications for the specific challenge
of domain shift is provided. This chapter intends to provide a general overview of
the state-of-the-art of the two connecting fields of this Thesis (computer science and
medical imaging) so that the document is self-contained. Finally, the contributions
of this Thesis have been presented.

Chapter 2 describes the details of the M&Ms Challenge, including the data pre-
processing, design and metrics as well as the solutions proposed by the participating
teams. These results are then analysed to extract conclusions about model general-
izability.

In Chapter 3, several adaptation techniques for DL segmentation are compared
when working with multi-centre LGE images.

In Chapter 4, several pre-processing methods are compared to harmonize fea-
tures extracted from images from different centres with different scanner manufac-
turers. Methods that are applied both at the image and feature level are compared
and their effects are assessed for a diagnosis task.

Finally, Chapter 5 summarises the results obtained during the PhD programme
and highlights future directions to be investigated.
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Chapter 2

Domain shift for multi-centre
image segmentation
Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation:
The M&Ms Challenge

This chapter contains material from:

Campello, Víctor M. and Gkontra, Polyxeni and Izquierdo, Cristian and
Martín-Isla, Carlos and Sojoudi, Alireza and Full, Peter M. and Maier-
Hein, Klaus and Zhang, Yao and He, Zhiqiang and Ma, Jun and Par-
reño, Mario and Albiol, Alberto and Kong, Fanwei and Shadden, Shawn
C. and Acero, Jorge Corral and Sundaresan, Vaanathi and Saber, Mina
and Elattar, Mustafa and Li, Hongwei and Menze, Bjoern and Khader,
Firas and Haarburger, Christoph and Scannell, Cian M. and Veta, Mitko
and Carscadden, Adam and Punithakumar, Kumaradevan and Liu, Xiao
and Tsaftaris, Sotirios A. and Huang, Xiaoqiong and Yang, Xin and Li,
Lei and Zhuang, Xiahai and Viladés, David and Descalzo, Martín L.
and Guala, Andrea and La Mura, Lucia and Friedrich, Matthias G. and
Garg, Ria and Lebel, Julie and Henriques, Filipe and Karakas, Mahir and
Çavuş, Ersin and Petersen, Steffen E. and Escalera, Sergio and Seguí,
Santi and Rodríguez-Palomares, José F. and Lekadir, Karim. “Multi-
Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The
M&Ms Challenge”. In: IEEE Transactions on Medical Imaging (2021). Doi:
10.1109/TMI.2021.3090082.

2.1 Introduction

Accurate segmentation of cardiovascular magnetic resonance (CMR) images is an
important pre-requisite in clinical practice to reliably diagnose and assess several
major cardiovascular diseases [19, 106]. Currently, the process typically requires the
clinician to provide a significant amount of manual input and correction to accu-
rately and consistently annotate the cardiac boundaries across all image slices and
cardiac phases. The automation of such a tedious and time-consuming task has
been pursued for a long time by using multiple approaches, such as statistical shape
models [3] or cardiac atlases [8]. In the last few years, the advent of the deep learn-
ing paradigm has motivated the development of many neural network-based tech-
niques for improved CMR segmentation, as listed in a recent review [24]. However,

https://doi.org/10.1109/TMI.2021.3090082
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most of these techniques have been all too often trained and evaluated using car-
diac imaging samples collected from single clinical centres using similar imaging
protocols. While these works have advanced the state-of-the-art in deep learning-
based cardiac image segmentation, their high performances were reported on sam-
ples with relatively homogeneous imaging characteristics.

As an example, the CMR datasets from the Automated Cardiac Diagnosis Chal-
lenge (ACDC) dataset [10] have been extensively used to build and test new imple-
mentations of deep neural networks for cardiac image segmentation. The top per-
forming technique in the ACDC challenge, proposed by Isensee et al. [66], obtained
a very high segmentation accuracy for both the left and right ventricles. However,
the ACDC datasets were compiled from 150 subjects scanned at a single clinical cen-
tre using the same imaging protocol, which limits the ability of the researchers to
develop and test models that can generalize suitably across multiple centres and
scanner vendors. Other researchers attempted to encode higher variability by build-
ing and testing their models based on much larger datasets obtained from the UK
Biobank [20]. For instance, Bai et al. [7] implemented a fully convolutional network
that achieved highly accurate results on this large dataset (over 4,875 cases), but the
authors concluded that their model might not generalize well to other vendor or
sequence datasets.

Some researchers proposed to improve CMR segmentation by training neural
networks with images from multiple cohorts [148, 151], but these works do not in-
clude methods for addressing domain shifts between training and new unseen co-
horts. Other works used data augmentation on models built from single cohorts
such as the ACDC [73] or the UK Biobank [25], then tested their techniques on other
existing public cohorts, including the Sunnybrook Cardiac Data [131], LV Segmenta-
tion Challenge Dataset (LVSC) [145] or RV Segmentation Challenge Dataset (RVSC)
[124]. However, these studies are limited by the fact that these different CMR cohorts
have been annotated with distinct standard operating procedures (SOPs), which
makes it difficult to draw conclusions from the multi-cohort comparative results.
Furthermore, such an approach requires a large training dataset from the single cen-
tre to model high variability across subjects. Another multi-centre and multi-vendor
study conducted by Tao et al. [148] relied solely on private data, which makes it dif-
ficult to replicate the results and perform community-driven benchmarking. While
these recent works confirmed the difficulties encountered by deep learning mod-
els to generalize beyond the training samples, they also support the need for well-
defined heterogeneous public datasets that can be used by the community to im-
prove model generalizability through scientific benchmarking.

In this context, the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Seg-
mentation (M&Ms) Challenge was proposed and organized as part of the Statistical
Atlases and Computational Modelling of the Heart (STACOM) Workshop, held in
conjunction with the MICCAI 2020 Conference. The M&Ms challenge was set up
as part of the euCanSHare international project1, which is aimed at developing in-
teroperable data sharing and analytics solutions for multi-centre cardiovascular re-
search data. Together with clinical collaborators from six different hospitals in Spain,
Canada and Germany, a public CMR dataset was established from 375 participants,
scanned with four different scanners (Siemens, Philips, General Electric (GE) and
Canon) and annotated using a consistent contouring SOP across centres.

To our knowledge, this dataset is the most diverse resource of CMR studies,

1euCanSHare project website: www.eucanshare.eu
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which is provided as open-access2 to promote further research and scientific bench-
marking in the development and evaluation of future generalizable deep learning
models in cardiac image segmentation. In this paper, we also present and discuss the
results of the M&Ms challenge in detail, to which a total of 14 international teams
submitted a range of solutions, including different strategies of transfer learning,
domain adaptation and data augmentation, to accommodate for the differences in
scanner vendors and imaging protocols. The obtained results show the extent of the
problem, the promise of the proposed solutions, as well as the need for further re-
search to build fully generalizable tools that can be translated reliably and deployed
in routine clinical practice across the globe.

FIGURE 2.1: Visual appearance of a CMR short axis middle slice for
anatomically similar subjects in the four different vendors consid-
ered.

2.2 Challenge framework

2.2.1 Data preparation

TABLE 2.1: Information from centres included in this work.

Name City Country
1 Hospital Vall d’Hebron Barcelona Spain
2 Clínica Sagrada Familia Barcelona Spain
3 Universitätsklinikum Hamburg-Eppendorf Hamburg Germany
4 Hospital Universitari Dexeus Barcelona Spain
5 Clínica Creu Blanca Barcelona Spain
6 McGill University Health Centre Montreal Canada

2The dataset is publicly available at www.ub.edu/mnms
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TABLE 2.2: Distribution of the most frequent pathologies and healthy
volunteers between centres. The abbreviations correspond to hyper-
trophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), hy-
pertensive heart disease (HHD), abnormal right ventricle (ARV), ath-
lete heart syndrome (AHS), ischemic heart disease (IHD) and left ven-
tricle non-compaction (LVNC).

Centre 1 2 3 4 5 6
Pathology

Healthy vol. 22 33 32 21 14 3
HCM 25 37 14 8 15 4
DCM 37 - 5 - 9 -
HHD - 4 - 19 1 1
ARV 12 - - 2 1 1
AHS - - - 3 - -
IHD - - - 4 1 3

LVNC - - - - 2 2
Other - - - 18 7 15

TABLE 2.3: Average specifications for the images acquired in the dif-
ferent centres.

Centre Vendor Model Field
strength (T)

In-plane
resolution (mm)

Slice
thickness (mm)

Number
of slices

Number of
time frames

1 Siemens MAGNETOM Avanto 1.5 1.32 9.2 12 25
2 Philips Achieva 1.5 1.20 9.9 10 30
3 Philips Achieva 1.5 1.45 9.9 11 26
4 GE Signa Excite 1.5 1.36 10 12 25
5 Canon Vantage Orian 1.5 0.85 10 13 29
6 Siemens MAGNETOM Skyra 3.0 0.98 9.7 12 29

A total of six clinical centres from Spain, Canada and Germany (numbered 1 to 6
in this work) contributed to this challenge by providing a different number of CMR
studies from different scanner vendors, as detailed in Table 2.1. In total, 375 stud-
ies were included in this challenge. The subjects considered for this multi-disease
study were selected among groups of various cardiovascular diseases, such as hy-
pertrophic cardiomyopathy, dilated cardiomyopathy, coronary heart disease, abnor-
mal right ventricle, myocarditis and ischemic cardiomyopathy as well as healthy
volunteers (see Table 2.2 for more details on the distribution of these cases). The
specific scanner manufacturers are 1) Siemens (Siemens Healthineers, Germany), 2)
Philips (Philips Healthcare, Netherlands), 3) General Electric (GE, GE Healthcare,
USA) and 4) Canon (Canon Inc., Japan). These four manufacturers were coded as A,
B, C and D during the challenge, respectively. The CMR images derived from these
four vendors are illustrated in Fig. 2.1. More specific details on the studies are given
in Table 4.2.

Every CMR study was annotated manually by an expert clinician from the centre
of origin, with experiences ranging from 3 to more than 10 years. Following the
clinical protocol, short-axis views were annotated at the end-diastolic (ED) and end-
systolic (ES) phases, as they correspond to the phases used to compute the relevant
clinical biomarkers for cardiac diagnosis and follow-up. Three main regions were
considered: the left and right ventricle (LV and RV, respectively) cavities and the left
ventricle myocardium (MYO). In order to reduce the inter-observer and inter-centre
variability in the contours, in particular at the apical and basal regions, a detailed
revision of the provided segmentations was performed by four researchers in pairs.
They applied the same SOP across all CMR datasets to obtain the final ground truth.
To generate consistent annotations for the research community, we chose to apply
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the SOP that was already used by the ACDC challenge, as follows:

a) The LV and RV cavities must be completely covered, including the papillary
muscles.

b) No interpolation of the MYO boundaries must be performed at the basal re-
gion.

c) The RV must have a larger surface at the ED time-frame compared to ES.

d) The RV does not include the pulmonary artery.

Clinical delineations as well as later corrections were performed using CVI42
software (Circle Cardiovascular Imaging Inc., Calgary, Alberta, Canada). All studies
were provided in DICOM format and contours were extracted in cvi42 workspace
format (.cvi42ws). An in-house software was then used to extract the contours and
transform the images into the NIFTI format, representing the final files delivered to
the challenge participants.

TABLE 2.4: Number of studies for each step of the challenge pre-
sented by centre and scanner vendor.

Siemens Philips GE Canon Total
Label A B C D
Centres 1 6 2 3 4 5
Training 75 0 50 25 25 0 175
Validation 5 5 5 5 10 10 40
Testing 16 24 19 21 40 40 160
Overall 96 29 74 51 75 50 375

2.2.2 Model training

The 375 CMR studies were divided into three sets, namely training, validation and
testing, as detailed in Table 2.4. To decide on a particular subdivision, we first es-
timated the degree of generalizability of models trained from the four vendors, as
shown in Figure 2.2. We have thus decided to combine the datasets from vendors A,
which generalize relatively well, with datasets from B, which generalize poorly to
new vendors, as training datasets. The participants received the 175 training cases
on 1st May 2020, including 75 annotated CMRs from vendor A, 75 annotated CMRs
from vendor B, 25 CMRs from vendor C but without any annotations (only the raw
images) and no datasets from vendor D, to test generalizability to different situa-
tions (e.g. image protocol included or not included in the training). Note that in the
case of vendor A, the 75 CMRs were included from centre 1 but none from centre 6,
to test generalizability across vendors but also across centres for the same vendors.
Regarding vendor B, we included more training datasets from centre 2 (50 cases)
than from centre 3 (25 cases) to assess the impact of imbalanced training data and
fairness in multi-centre cardiac image segmentation. For optimizing the models, the
participants were allowed to remotely validate against 40 additional CMRs, i.e. 10
from each of the four vendors. A maximum of 7 submissions were allowed per team
during the validation process. Note that during training, it was not allowed to use
any external datasets or pre-trained models, to enable a fair comparison between the
proposed solutions.
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FIGURE 2.2: Degree of generalizability of models trained from
the four vendors. Four 2D UNet models [137] were trained with
datasets from the four vendors separately (rows) and subsequently
tested their segmentation performance on datasets from all vendors
(columns). The heatmap shows the Dice similarity coefficient, with a
colour scale that goes from blue (good generalizability) to red (poor
generalizability). The results are the average of 5 models cross-
validated on subsets of 30 training subjects.

2.2.3 Model evaluation

The testing period for the challenge started on 8th June 2020 and concluded on 15th
July 2020. The participants had to evaluate their models remotely to ensure the
unseen datasets were totally hidden from the segmentation methods. As such, for
example, the participants had no prior information on the images provided by ven-
dor D. To evaluate the models, the participants were asked to build a Singularity
image3 and share it with the organizers via a MEGA4 folder shared by the organiz-
ers or by any other secure cloud storage service. This Singularity image allows its
execution on a similar architecture machine without the need to install all the diver-
sity of used libraries. The necessary computing power was sponsored by NVIDIA,
who provided the organizers with access to an NVIDIA V100 GPU card with 16GB
of memory, as well as the Barcelona Supercomputing Center (BSC) who provided
access to two K80 NVIDIA GPU cards.

To assess the quality of the automatically segmented masks P with respect to the
ground truth G, four measures were proposed, namely:

(i) Dice similarity coefficient (DSC):

DSC(P, G) =
2|P ∩ G|
|P|+ |G| (2.1)

that measures the degree of overlapping of two volumes.
(ii) Jaccard index (JI):

J I(P, G) =
|P ∩ G|
|P ∪ G| =

|P ∩ G|
|P|+ |G| − |P ∩ G| (2.2)

3https://sylabs.io
4https://mega.nz
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that measures overlapping as well but is more sensitive to results with average per-
formance.

(iii) Average symmetric surface distance (ASSD):

ASSD(P, G) =
1

|P|+ |G|

(
∑
p∈P

d(p, G) + ∑
g∈G

d(g, P)

)

d(p, G) := inf
g∈G

d(p, g) (2.3)

that measures the average distance between the two volumes.
(iv) Hausdorff distance (HD):

HD(P, G) = max

{
sup
p∈P

d(p, G), sup
g∈G

d(g, P)

}
(2.4)

that measures the largest disagreement between the volumes and it is useful for
identifying small outliers. All these metrics were computed using the public library
medpy5.

These metrics were computed for the three target labels: LV, RV, and MYO, re-
sulting in a total of 12 measures. In case one participant had a prediction missing for
a specific subject, a value of zero was assumed for DSC and JI and maximum val-
ues of 150 and 50 millimetres were assumed for HD and ASSD, respectively, based
on the worst results obtained by the participating methods. Any value above the
thresholds on surface distances was set to the maximum value.

To obtain the final ranking for each team, a weighted average was computed
giving greater importance to the unlabelled and unseen scanner vendors. Therefore,
if vA and vB are defined as the labelled vendors, vC, the unlabelled one and vD, the
unseen one, the weighted sum for a metric M is obtained as follows:

M =
1
6

MvA +
1
6

MvB +
1
3

MvC +
1
3

MvD (2.5)

Then, a min-max normalization was applied across participants for each measure
and a final average over the normalized metrics yielded the performance (P) ranging
from 0 to 1, being 1 the value that a team would obtain if it had the best results for
every metric.

2.3 Participating methods

In total, 80 teams registered to download the M&Ms training dataset, 16 submitted
a solution for the final testing phase and 14 teams submitted their methodology as a
paper to the STACOM Workshop (see Table 2.5 for details on these teams). All par-
ticipants used deep learning as their segmentation approach. Table 2.6 summarizes
the main characteristics of the submitted techniques, including the backbone archi-
tectures and domain adaptation strategies, which are described in more detail in the
following subsections. Furthermore, details on the hardware used during training
and the times that each method took for training and inference as well as the number
of parameters for each model are presented in Table 2.7.

5https://github.com/loli/medpy
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TABLE 2.5: List and details of the participating teams in the challenge.

Team Institution Location Name during
challenge Reference

P1 German Cancer Research Center (DKFZ) Heidelberg, Germany Mountain goat [44]
P2 Chinese Academy of Sciences Beijing, China Dugong [175]
P3 Nanjing University of Science and Tech. Nanjing, China Opossum [103]
P4 Universitat Politècnica de València València, Spain Ox [120]
P5 University of California Berkeley, USA Monkey [76]
P6 University of Oxford Oxford, UK Donkey [30]
P7 Nile University Cairo, Egypt Porpoise [139]
P8 Technical University of Munich Munich, Germany Owl [88]
P9 Aristra GmbH Berlin, Germany Lovebird [72]
P10 King’s College London London, UK Mandrill [141]
P11 University of Alberta Edmonton, Canada Muskox [18]
P12 University of Edinburgh Edinburgh, UK Springbok [94]
P13 Shenzhen University Shenzhen, China Seagull [63]
P14 Fudan University Shanghai, China Steer [90]

TABLE 2.6: Characteristics of participating models. Abbr: rotations
(R), flipping (F), scaling (S), deformations (D), histogram matching
(HM), Gaussian noise (GN), brightness (B), gamma (G), test time aug-
mentation (TTA).

Method Backbone
architecture

Data augmentation
TTA Domain

adapt.Spatial augmentations Intensity-based augmentations
R (◦) F S D HM GN B G Synthesis Others

P1 nnUNet ±180 ✓ ✓ ✓ ✓ ✓ ✓ contrast ✓ No

P2 nnUNet ±180 ✓ ✓ ✓ ✓ ✓
label

propagation ✓ No

P3 nnUNet ±180 ✓ ✓ ✓ ✓ ✓ ✓ No

P4 UNet
(ResNet-34) ±45 ✓ ✓ translations Yes

P5 Attention UNet ±10 ✓ CycleGAN low-level
frequency No

P6 UNet+DA
+DUNN ±180 ✓ translations Yes

P7 UNet ±15 ✓ ✓ ✓ No
P8 DRUNet ±15 ✓ ✓ ✓ ✓ CycleGAN blurring No
P9 nnUNet ±180 ✓ ✓ ✓ No
P10 UNet ±22.5 ✓ ✓ ✓ ✓ translations Yes

P11 UNet++
(ResNet101) No

P12 SDNet ✓ VAE No

P13 UNet ±90 ✓ ✓ ✓
WaveCT-AIN

[97] contrast ✓ No

P14 UNet CycleGAN No

2.3.1 Backbone architectures

There is a degree of variability in the backbone architectures used between the dif-
ferent participants, as shown in Table 2.6. Four teams used the nnUNet [67] (which
includes UNet architectures in 2D and 3D as well as a cascaded UNet) as their base-
line segmentation model (P1-P3 & P9). Four participants used a traditional UNet
[137] (P6, P10, P13, P14), while other variants of UNets were adopted by the rest of
the teams. In particular, UNets combined with residual connections were applied
by three teams (P4, P8, P11), with P8 preferring a residual UNet with dilated con-
volutions (DRUNet) [89]. P5 proposed the use of an attention UNet [113], while
P7 developed a modified UNet based on multi-gate and dilated inception blocks
to extract multi-scale features. Lastly, one team (P12) proposed a modified Spatial
Decomposition Network (SDN) [21] with an AdaIN [64] decoder.

As pre-processing techniques, all models that provided detailed information about
this step performed either image normalization to a unit Gaussian distribution or
pixel value rescaling to the range [0,1] (only P6 chose the range [0,255] instead).
With regards to image resolution, images were resized based on target size or pixel
resolution values in 10 out of 14 methods, while the other methods preferred to
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keep the original image resolution (P4, P7, P8, P11). In order to obtain squared im-
ages, cropping and zero padding were used depending on the desired image size for
each case. Additionally, some methods applied intensity clipping between varying
ranges to get rid of bright artefacts (P5, P6, P11). Finally, P8 was the only method to
apply also a non-local means denoising filter prior to the training process.

FIGURE 2.3: The effect of data augmentation on a single CMR slice. In
the top row, the original image and spatial augmentations are shown.
In the bottom row, intensity-based augmentations.

2.3.2 Data augmentation

All participants in the challenge (except P11) used some form of data augmenta-
tion to enhance their models. Specifically, two families of data augmentations were
considered: (1) spatial transformations to increase sample size through rotation, flip-
ping, scaling or deformation of the original images; (2) intensity-driven techniques,
which maintain the spatial configuration of the anatomical structures but modify
their image appearance. The second type of augmentation seems particularly rele-
vant for the M&Ms as it may increase the variability in image appearance, with the
hypothesis that this may lead to improved adaptation to varying imaging protocols
and scanner vendors. Two teams performed data augmentation using only spatial
transformations (P4, P6). Eleven teams additionally implemented intensity-based
transformations using one of two main approaches: (i) standard image transfor-
mations such as histogram matching, blurring, change in brightness, gamma and
contrast, or addition of Gaussian noise (P1-P3, P7-P8, P10, P13) (see 2.3 for a visual-
ization of a subset of these transformations on a training slice); (ii) advanced image
synthesis by using generative adversarial networks (GANs) (P5, P8, P14) or varia-
tional auto-encoders (VAE) (P12). For the latter one, the generation of synthetic im-
ages for the unseen vendor D is not feasible since it was not included in the training.
Note that the majority of the teams participating in the challenge (10 out of 14) re-
lied solely on data augmentation of the training sample to address the domain-shift
problem posed by the M&Ms challenge.

Additionally, some teams (P1-P3, P9, P13) applied test-time augmentation tech-
niques, which consist of passing to the model two or more transformed versions of
the same inference image to obtain several predictions. These predictions are then
combined to obtain one final outcome, usually by averaging them. This method has
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been shown to improve the final performance in small data size scenarios and a net
improvement with a scale effect that depends on the model architecture [144].

2.3.3 Domain adaptation

Of all participants, only three teams (P4, P6, P10) implemented a method to explicitly
address the differences in the image distributions between the unseen and trained
vendors. At training, P4 constructed a classifier to distinguish between scanner ven-
dors and used it to modify the training images (through error propagation) until the
classifier could not distinguish between the domain. In other words, this method
resulted in training images and a trained model that are less dependent on the spe-
cific vendors. P6 and P10 proposed to train two models simultaneously with shared
features, one for segmentation and one for classification, such that the classification
loss is high while the segmentation loss is low, generating features that are robust to
vendor-specific variations as well as optimal for segmentation.

TABLE 2.7: Training and inference time, and hardware used, for all
participating methods. h, m, s and Mil. stand for hours, minutes,
seconds and millions, respectively.

Team Training
time

Inference
time (s)

Model para-
meters (Mil.) GPU (NVIDIA)

P1 60 h 26 30 Titan XP
P2 48 h 4.8 30 Tesla V100
P3 96-120 h n/a 30 Tesla V100
P4 6 h 0.35 36 RTX 2080
P5 11 h 10.4 33 GTX 1080 Ti
P6 15 m/epoch 10 28 Tesla V100
P7 8 h 0.0022 6 GTX 1080 Ti
P8 8 h 10 9 Titan V 12GB
P9 96 h 1.2 30 GTX 1080 Ti

P10 10 h 1 4 Tesla K20
P11 11 h 4.48 38 Tesla P100 12GB
P12 3.4 h 0.014 18 GTX 1080 Ti
P13 3 h 0.087 20 GTX 2080 Ti
P14 n/a 15 24 Titan X GPU

FIGURE 2.4: Weighted average DSC and HD for all participating
methods, according to equation (2.5).

2.4 Results

As shown in Table 2.4, a balanced dataset across the four vendors was prepared for
evaluating the final submissions (40 CMRs per vendor, total 160 datasets). In this
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section, we analyse the obtained results per (1) team, (2) vendor, (3) clinical centre,
and (4) show some qualitative results. For analysing the obtained results, we also
implemented two baseline models to better appreciate the added value of the data
augmentation and domain adaptation techniques used in this challenge:

B1: A 2D UNet without any data augmentation as described in the original refer-
ence [137], trained with weighted cross-entropy loss.

B2: The nnUNet pipeline, with a 2D UNet module and default parameters as given
in [67] (the best fold according to the validation set was selected).

In particular, B2 differed from those in P1-P3 in that it only included one architec-
ture type [2D UNet] and ±180 degrees rotations, flippings, scalings, deformations,
gamma transformations and test-time augmentation as data augmentation. In con-
trast, P1, P2 and P3 methods included further augmentation techniques such as his-
togram matching, noise addition, brightness modification, contrast modification and
pseudo-label generation by label propagation in time-space.

2.4.1 Analysis per team

Fig. 2.4 displays the results of the challenge for all participants according to two
evaluation metrics (DSC and HD). It can be seen that the curves are flat for about
half of the participating teams, which indicates comparable performances overall.
Note that these methods (P1 to P7) are also the ones that performed better than the
baseline methods and we hypothesize that the other models (P8 to P14) suffered
from some form of over-fitting (see also the shapes of the curves in Fig. 2.4). Team
P1 provided the most consistent results across all metrics. However, the difference
to other teams was relatively small and in many cases not statistically significant,
as presented in Table 2.8. The three best-performing teams, P1 to P3, used nnUNet
as the baseline pipeline, as well as standard intensity-based data augmentation (e.g.
blurring, noise addition, histogram matching), but no domain adaptation, showing a
significative improvement with respect to the standard nnUNet implementation B2.
For similar performance, P5 used an Attention UNet as the backbone architecture
and CycleGANs for data augmentation through image synthesis. P4 and P6 also
obtained similar performances overall but implemented instead domain adaptation
methods and no image-driven data augmentation.

Fig. 2.5 displays the average DSC for all participating teams organised this time
per pathology, showing better segmentation performance for healthy cases and di-
lated cardiomyopathy (DCM), followed by hypertrophic cardiomyopathy (HCM)
and other pathologies. It can be seen that the performances of the 14 techniques
relative to each other do not change when analysed per pathology.

2.4.2 Analysis per vendor

Fig. 2.6 summarizes the segmentation results for all teams for each vendor sepa-
rately (A, B, C & D). It can be seen that overall, the differences in the segmentation
errors between the vendors are reduced with respect to the results obtained by the
two baseline methods as detailed in Table 2.9. Specifically, it can be seen that for
the baseline methods, there is a loss of accuracy of up to -6% in the segmentation of
images from vendors C and D compared to A and B. However, this loss is reduced,
for example, to -1.5% for P1 (e.g. from DSC = 0.92 for vendor A to 0.90 in vendor C
and D, for the LV), -2.1% for P2 (e.g. from DSC = 0.87 in vendor B to 0.82 in vendor
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FIGURE 2.5: Average DSC for all participants for the most common
pathologies in the dataset. HCM and DCM stand for hypertrophic
and dilated cardiomyopathy, respectively.

TABLE 2.8: DSC and HD for the final submissions of all participants
and the two baseline models. Boldface numbers are the best results
for each column and blue numbers are non-significantly lower results
when compared to the P1 results (p-value > 0.01 for the Welch’s t-
test). HD is measured in millimeters.

Method
ED ES

LV MYO RV LV MYO RV
DSC HD DSC HD DSC HD DSC HD DSC HD DSC HD

P1 0.939 9.1 0.839 12.8 0.910 11.8 0.886 9.1 0.867 10.6 0.860 12.7
P2 0.938 9.3 0.830 12.9 0.909 12.3 0.880 9.5 0.861 10.8 0.850 13.0
P3 0.935 9.5 0.825 13.3 0.906 12.3 0.875 10.5 0.856 11.6 0.844 13.0
P4 0.939 11.3 0.826 15.2 0.886 15.4 0.884 11.4 0.856 14.0 0.829 16.7
P5 0.931 10.0 0.816 13.7 0.893 14.3 0.877 9.8 0.850 11.3 0.827 15.2
P6 0.927 11.2 0.815 14.0 0.892 13.6 0.877 9.7 0.852 11.1 0.834 15.0
P7 0.933 13.4 0.812 17.1 0.876 15.7 0.867 14.0 0.839 18.2 0.815 18.1
P8 0.922 15.5 0.809 18.0 0.867 16.6 0.857 17.5 0.836 17.2 0.802 19.1
P9 0.914 12.1 0.768 17.2 0.850 17.5 0.853 12.0 0.814 15.2 0.794 17.0
P10 0.905 13.6 0.772 17.2 0.876 16.2 0.848 15.5 0.820 17.5 0.809 19.6
P11 0.913 14.5 0.776 17.8 0.791 30.7 0.851 13.0 0.809 14.5 0.732 32.9
P12 0.889 16.0 0.785 22.1 0.814 22.1 0.835 14.2 0.808 18.9 0.758 22.0
P13 0.896 15.7 0.761 17.9 0.820 21.0 0.772 23.0 0.721 20.2 0.698 29.5
P14 0.797 21.9 0.668 31.6 0.552 49.1 0.716 25.8 0.673 33.0 0.517 52.0

B1 0.918 12.9 0.801 15.5 0.881 15.7 0.866 11.5 0.842 12.6 0.817 16.3
B2 0.930 10.8 0.817 15.7 0.889 14.8 0.863 13.2 0.835 14.8 0.818 16.8

TABLE 2.9: DSC results stratified by vendor and heart substructure.
The last two columns are the average DSC loss for vendors C and D
with respect to the combined average DSC results from vendors A
and B.

Vendor A Vendor B Vendor C Vendor D DSC %
loss for
ven. C

DSC %
loss for
ven. DLV MYO RV LV MYO RV LV MYO RV LV MYO RV

P1 0.923 0.857 0.887 0.915 0.876 0.888 0.903 0.842 0.884 0.909 0.838 0.882 -1.7 -1.6
P2 0.919 0.848 0.885 0.916 0.872 0.887 0.899 0.834 0.876 0.903 0.827 0.871 -2.0 -2.4
P3 0.915 0.843 0.877 0.914 0.868 0.879 0.894 0.827 0.873 0.898 0.824 0.870 -2.0 -2.1
P4 0.908 0.831 0.864 0.913 0.867 0.879 0.906 0.833 0.870 0.918 0.833 0.816 -0.9 -2.4
P5 0.912 0.834 0.869 0.910 0.859 0.870 0.891 0.817 0.819 0.903 0.820 0.882 -3.8 -0.8
P6 0.912 0.837 0.880 0.912 0.858 0.877 0.893 0.816 0.861 0.892 0.823 0.833 -2.6 -3.4
P7 0.891 0.804 0.820 0.904 0.859 0.870 0.898 0.821 0.838 0.908 0.817 0.853 -0.7 +0.1
P8 0.889 0.821 0.817 0.900 0.854 0.877 0.880 0.799 0.842 0.889 0.815 0.802 -2.3 -2.9
P9 0.879 0.765 0.800 0.889 0.816 0.827 0.881 0.787 0.831 0.885 0.797 0.829 +0.5 +1.0
P10 0.894 0.812 0.860 0.887 0.822 0.841 0.849 0.753 0.803 0.877 0.796 0.865 -6.1 -0.8
P11 0.885 0.781 0.778 0.899 0.846 0.846 0.875 0.787 0.773 0.869 0.758 0.650 -3.3 -9.8
P12 0.831 0.769 0.795 0.909 0.860 0.867 0.859 0.786 0.792 0.847 0.771 0.690 -3.1 -8.3
P13 0.820 0.712 0.684 0.885 0.823 0.858 0.868 0.779 0.803 0.762 0.650 0.691 +2.5 -12.1
P14 0.805 0.668 0.492 0.872 0.818 0.794 0.822 0.740 0.703 0.528 0.456 0.147 +2.3 -50.9

B1 0.908 0.834 0.861 0.901 0.850 0.865 0.863 0.790 0.800 0.894 0.813 0.870 -6.0 -1.3
B2 0.905 0.832 0.860 0.902 0.846 0.857 0.890 0.806 0.836 0.886 0.821 0.861 -2.7 -1.3
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FIGURE 2.6: Boxplots with vendor-wise results for DSC and HD
when all participants’ predictions are considered. Vendors are pre-
sented in order: Siemens (A), Philips (B), GE (C) and Canon (D).

FIGURE 2.7: Boxplots with centre-wise results for DSC and HD when
all participants’ predictions are considered. The same colour-coding
as in Fig. 2.6 is used for scanner vendors.

D, for the RV), and almost to 0% for P7. This indicates that while there is a need for
further research to bring segmentation accuracy in unseen and unlabelled vendors
at the same level as the one obtained in trained vendors, data augmentation and data
adaptation enable to close the gap and improve the generalizability of deep learning
models.

2.4.3 Analysis per centre

In the previous subsection, centres were combined in the analysis despite having
different machines or scanning protocols. In doing so, possible variabilities between
centres using the same scanner may be overstated, making it necessary to consider
also Fig. 2.7, where the segmentation results are summarized according to the six
clinical centres. Here too, it can be seen that there remains some degree of variation
in the segmentation of the CMR images from the different centres. In more detail,
there is a decrease in segmentation accuracy between centres 1 and 6 even though
their images are from the same scanner vendor A. However, this difference can be
explained by two facts: 1) the scanners in these two centres are different models
and have different field strengths, as shown in Table 4.2, and 2) all the 75 datasets
included during training for vendor A were from centre 1 (Spain) and none from
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FIGURE 2.8: Boxplots for DSC and HD results for centres that had
labelled samples in the training set, unlabelled samples in the training
set and no samples at all.

centre 6 (Canada). In this case, even though the images are from the same ven-
dor, differences in scanner specifications resulted in the lack of generalizability. In
contrast, images from both centres 2 and 3 were included in the training of vendor
B, which resulted in segmentation accuracies for these two centres that are compa-
rable. Finally, the datasets from centres 4 and 5 correspond to vendors C and D,
respectively, which were not included in the training, which explains the loss of ac-
curacy compared to centres 1, 2 and 3. In Fig. 2.8, the results are grouped for all
centres according to their inclusion (or not) in the training. It can be seen that the
segmentation accuracy is the highest for centres that are part of the training together
with their labels, followed by those with images but no labels, and finally, the per-
formance is the lowest and most variable for images from fully unseen centres. This
result confirms the need for further developments to optimise the generalizability of
deep learning solutions in future tools for cardiac image segmentation.

2.4.4 Qualitative results

Fig. 2.9 presents the effect of the slice position in the final segmentation DSC for the
top three performing teams, quantifying the loss of accuracy, especially prominent
in the apical and basal slices. To illustrate this, Fig. 2.10 provides some visual exam-
ples from team P1 to further show the added value of the implemented techniques,
as well as their limitations when applied to unseen vendors. In the two examples
above, the segmentation techniques enabled us to accurately identify the cardiac
boundaries even though these imaging protocols were not included in the training
set. However, in the two examples below, despite the use of data augmentation and
domain adaptation, the models were unsuccessful in the segmentation of these un-
seen cases and diverged more notably from the ground truth in basal slices. These
examples illustrate the need for future work to further improve the generalizability
of deep learning models in cardiac image segmentation.

2.5 Discussion

In this paper, we presented a comprehensive analysis of a range of deep learning
solutions for the automated segmentation of multi-centre, multi-vendor and multi-
disease CMR datasets. Roughly speaking, the 14 participants in the challenge de-
veloped varying workflows combining a baseline neural network, intensity-based
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FIGURE 2.9: Boxplots for DSC results for the top 3 performing meth-
ods depending on different cardiac structures (LV, MYO and RV) and
different slice positions for both ED and ES. The apex and the base are
defined as the last and first annotated slices, respectively. The mid-
dle slice is the slice located in between the apex and base slices. The
remaining slices are defined based on their relative position with re-
spect to the middle slice.

and/or spatial data augmentation, and in some cases a data adaptation strategy. In
addition to a relatively large sample of 175 cases for training, the authors were given
a total of seven attempts to optimise the parameters and characteristics of their mod-
els during the validation process, to ensure an optimal design of the solutions.

2.5.1 Analysis of the methods

The obtained results, first of all, indicate that data augmentation, though its pri-
mary purpose is to increase training size and reduce over-fitting, can perform well
in addressing some of the differences in image appearance between vendors. In par-
ticular, by varying the parameters and types of intensity transformations (e.g. his-
togram matching, contrast modification, noise addition, image synthesis), one can
generate new training images that enhance the generalizability of the models. As
an example, one can look at the performance of the baselines models B1 and B2 and
augmented models, such as P1, P2 and P3. While for the baseline models, the results
do not differ significantly for specific cases, such as at ES, P1-P3 used many more
data augmentation types, such as histogram matching, noise addition, brightness
modification and contrast modification, and obtained a more marked improvement
(e.g. the DSC for the myocardium at ES increased from 0.84 for B1 to 0.86 for P1, the
DSC for the RV at ES increased from 0.81 for B1 to 0.84 for P3). This indicates the
added value of more advanced image-driven data augmentation for multi-vendor
image segmentation as well as that the domain shift between different scanners or
protocols can be potentially solved by using an exhaustive set of image transfor-
mations during training. However, the results also clearly show that the obtained
segmentations remain generally more stable in trained vendors compared to unseen
vendors, as intensity-driven data augmentation alone cannot enable full coverage of
the variety of imaging protocols that can exist across clinical centres.

As for domain adaptation, while it is theoretically suitable for multi-vendor im-
age segmentation, as it can adapt on the spot to the imaging distribution of unseen
images, it did not result in better segmentations than when using exhaustive data
augmentation alone. In fact, the three first techniques in the ranking did not use any
domain adaptation, though it is important to reiterate that the first seven solutions
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FIGURE 2.10: Prediction examples for method P1 for vendors C (GE)
and D (Canon). The top two rows show satisfactory results, while the
two bottom rows present some errors in the final contours. Colour
correspondence: left ventricle endocardium (red), left ventricle epi-
cardium (green) and right ventricle endocardium (yellow). Ground
truth is drawn in white colour.

obtained relatively similar results overall. It is worth noting that the choice of the
baseline model may play a role, as again the first three techniques used the same
model, namely the nnUNet. Finally, while the results indicate the potential of data
augmentation and domain adaption, they also show that there is still a loss in seg-
mentation accuracy when segmenting labelled versus unlabelled or unseen image
samples. Note also that training and testing a model on two datasets from the same
vendor does not guarantee good generalizability. This is particularly true if the two
sets of images are from two different centres and scanner types, such as 1.5T (e.g.
centre 1) and 3T (e.g. centre 6) as shown in Figure 2.7.

The results also show that advanced workflows integrating, for instance, data
augmentation or generative adversarial networks, are not guaranteed to lead to ro-
bust segmentations. In fact, half of the submitted techniques had a lower perfor-
mance than the two baselines implemented for comparison. This shows that over-
fitting remains a challenge that requires special attention during the calibration and
validation of complex deep-learning solutions for cardiac image segmentation, in
particular in the presence of highly heterogeneous data.

Lastly, the presented methods show a vast diversity in hardware performance,
with training times ranging from 6 to 100 hours and inference times from tenths of
seconds to almost half a minute. However, the amount of training and inference
time does not correlate well with the final accuracy, indicating excessive use of com-
putational power for some techniques. For example, the methods implemented by
P1 and P2, despite using the same baseline model as P3, needed around half the time
for training and obtained slightly better results (1.2% average improvement in DSC),
while P4 used around one tenth of computing time for similar loss of accuracy with
respect to P1 (1.6% average loss in DSC). Furthermore, clinical centres usually lack
dedicated hardware for deep learning models thus increasing, even more, the seg-
mentation time. In this sense, a good equilibrium between accuracy and processing
time needs to be attained, with methods such as P4 serving as a good example with
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competitive performance and a prediction rate of around 3 images per second.
In summary, the main findings are:

a) Exhaustive data augmentation reduced considerably the domain gap, although
the results were still more stable within the domains used during training.

b) Domain adaptation did not result in better performance when compared to
nnUNet models trained with spatial and intensity-driven data augmentation.

c) Complex workflows did not always lead to better results, resulting sometimes
in excessive use of computing resources.

2.5.2 Analysis of the segmentation results

Compared to other publicly available and annotated multi-structure (LV, MYO, RV)
datasets in the field of CMR segmentation, M&Ms is the largest as well as the most
diverse (375 cases from four vendors, six centres and three countries, vs. 150 cases
for ACDC from one centre). However, given that ACDC is an established database,
we selected to use its contouring SOP in this challenge to derive standardized anno-
tations for the community, as well as to enable the combination of these datasets in
future studies.

Note that our study, while it focuses on multi-scanner generalizable segmenta-
tion, confirms several of the results already obtained by the ACDC challenge and
other previous works. Specifically:

a) The segmentations at ED were more accurate than at ES for LV and RV cavities,
but not for the myocardium, which becomes thicker and therefore easier to
segment when the heart contracts.

b) The segmentation accuracy according to the DSC was the highest for the LV
blood pool, followed by the RV and MYO, in this order, but it was the lowest
for the RV for the distance-based measures, given its shape complexity.

c) The segmentation accuracy was at its maximum at the mid-ventricular slices,
while the performance decreased for the apical and basal slices, where there is
higher variability and complexity.

On average, the best-performing method in this challenge obtained 0.88 as DSC
and 11 mm as HD versus the values 0.93 and 9 mm obtained in the ACDC chal-
lenge, respectively, with the greatest difference shown at ES. This gap can be easily
explained by the single-centre nature of the ACDC studies in comparison to a multi-
centre scenario in this work, although other effects such as the training size may play
a role and should be assessed (150 vs. 100 studies, respectively).

2.5.3 Future work

In addition to the results and analyses presented in this paper on multi-scanner car-
diac image segmentation, we also provide the M&Ms dataset open-access for the
community, which can be downloaded from the M&Ms website6. It represents one
of the most heterogeneous datasets ever compiled in cardiac image analysis, com-
prising CMRs from a variety of imaging protocols and cardiology units, and in-
cluding a range of cardiovascular diseases as distinct as coronary heart disease, car-
diomyopathies, abnormal right ventricle or myocarditis. We thus hope the dataset

6www.ub.edu/mnms
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will be of high value for the community to address several research topics in the
field, such as multi-scanner image registration, multi-structure segmentation, car-
diac quantification, motion analysis and image synthesis.

It is important to note that a follow-up challenge is being organised on multi-
centre, multi-vendor and multi-disease cardiac diagnosis. The diagnoses for the 375
cases are being gathered from the different hospitals in a legally compliant manner
and the clinical information will be made available after the end of the next chal-
lenge, thus allowing the community to work on cardiac image analysis as well as
on computer-aided diagnosis in a multi-centre setting. Note that the participants
had less than three months to implement, optimise and test their techniques, which
did not allow them to go beyond the existing state-of-the-art techniques in data
augmentation and domain adaptation. With more time at their disposal beyond
the constraints of the challenge, we expect that researchers will have a valuable re-
source with the M&Ms dataset to investigate, develop and test new theories and
frameworks for addressing the difficulties posed by domain-shift in cardiac image
analysis.

2.5.4 Conclusions

The M&Ms challenge is the first study to evaluate a range of deep learning solutions
for the automated segmentation of multi-centre, multi-vendor and multi-disease car-
diac images. The results show the promise of existing data augmentation and do-
main adaptation methods but also call for further research to develop highly gener-
alizable solutions given the inherent heterogeneity in cardiac imaging between cen-
tres, vendors and protocols. More generally, there is a need for more research and
development to realise the much-needed shift from single-centre image analysis to-
wards multi-domain approaches that will enable the wider translation and usability
of future artificial intelligence tools in cardiac imaging and clinical cardiology.
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Chapter 3

Domain shift for contrast-enhanced
imaging segmentation
Domain shift in deep learning for contrast-enhanced imaging

This chapter contains material from:

Sendra-Balcells, Carla and Campello, Víctor M. and Martín-Isla, Car-
los and Viladés, David and Descalzo, Martín L. and Guala, An-
drea and Rodríguez-Palomares, José F. and Lekadir, Karim. “Do-
main generalization in deep learning for contrast-enhanced imag-
ing.” Computers in Biology and Medicine 149 (2022): 106052. Doi:
10.1016/j.compbiomed.2022.106052.

3.1 Introduction

3.1.1 Problem and motivation

Over the last years, the domain shift problem has attracted increased attention in
the medical image analysis community [56]. Several studies have evaluated the
level of generalization of deep learning techniques across domains [24]. For exam-
ple, a recent challenge on this topic was organized in the cardiac magnetic reso-
nance imaging (MRI) domain at the 2020 Medical Image Computing & Computer-
Assisted Intervention Conference (MICCAI 2020), in collaboration with six Spanish,
German and Canadian clinical centres. Entitled "Multi-Centre, Multi-Vendor and
Multi-Disease Cardiac Segmentation (M&Ms)", the study demonstrated that single-
centre, single-vendor neural networks do not generalize naturally when segmenting
cine-MRI images with distinct imaging domains [15]. The lack of generalizability of
neural networks to unseen domains limits their clinical applicability at scale. Thus
far, several approaches have been attempted to address this problem in non-contrast
imaging, such as methods based on extensive spatial- and intensity-based data aug-
mentation [25], the use of synthetic images from generative models [76], explicit
domain adaptation (by forcing the model to learn a similar representation across
domains) [30, 120, 141], transfer learning [28, 79] and meta-learning [86, 95]. How-
ever, it is unclear whether such approaches can improve generalizability in the case
of complex imaging modalities, such as contrast-enhanced imaging, which is the
subject of this paper.

In many clinical applications, contrast-enhanced imaging is applied to further
improve the visibility of internal body structures and lesions in MRI [16], Computed

https://doi.org/10.1016/j.compbiomed.2022.106052
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Tomography [122] or Ultrasound [118] imaging. For example, late gadolinium en-
hancement MRI (LGE-MRI) is an essential imaging modality for several applications
such as angiography [136], neuroimaging [40], oncology [115], hepatology [161] and
cardiology [155]. Contrast-enhanced imaging is faced with additional challenges,
compared to non-contrast imaging, due to the intensity heterogeneity arising from
the accumulation of the contrast agent in the target areas and the artefacts intro-
duced, which reduce the quality of the images and modify the data distributions.
Furthermore, the time between contrast injection and image acquisition can vary
greatly between patients and centres, typically between 7 minutes up to a total of
10 minutes, resulting in differences in contrast wash-out and image formation. As
a result, the final image appearance, both globally and locally, can have marked
differences as clearly illustrated in Figure 3.1 based on images from four different
hospitals. At the same time, the limited numbers of available LGE-MRI datasets in
existing open-access cohorts compared to non-contrast MRI images, combined with
legal and organizational obstacles across centres and countries, has made access to
interoperable multi-centre LGE-MRI datasets more difficult. Hence, there is a need
for new tools for generalizing single-domain, single-centre deep learning models
across new unseen domains and clinical centres in contrast-enhanced imaging such
as in LGE-MRI.

FIGURE 3.1: Four LGE-MRI cardiac images acquired in four differ-
ent hospitals, together with the average intensity distribution of each
dataset. Each histogram has a very different shape and shows marked
variability between centres in terms of intensity distributions.

3.1.2 Goals and contributions

In this paper, we present an exhaustive evaluation of deep learning techniques to
achieve generalizability to unseen clinical centres for contrast-enhanced imaging.
To this end, several techniques are investigated, optimised and systematically eval-
uated, including data augmentation, domain mixing, transfer learning and domain
adaptation. To demonstrate the potential of domain generalization for contrast-
enhanced imaging, the methods are evaluated for ventricular segmentation in car-
diac LGE-MRI [34]. For this important clinical application, existing deep learning
techniques have been almost systematically trained and validated with an LGE-MRI
sample from a single clinical centre ([78, 171, 172, 181]). As a result, while many re-
search and commercial tools are already in use for non-contrast cardiac MRI, image
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segmentation in cardiac LGE-MRI still relies on labour-intensive manual delineation
in clinical practice. Our work is based on a unique multi-centre cardiac LGE-MRI
dataset acquired with three distinct scanner vendors (Siemens, Philips and General
Electric) in four hospitals located in three countries (France, Spain and China).

3.2 Methods

In this section, an end-to-end pipeline is investigated for generalizable image seg-
mentation in multi-centre LGE-MRI datasets. It is applied for deep learning-based
segmentation of the left ventricle (LV), including the blood pool and the myocar-
dium, in multi-centre LGE-MRI cardiac images. To this end, four different approaches
are explored to enhance the generalizability across clinical sites of existing deep neu-
ral networks for LGE-MRI segmentation, as schematically represented in Figure 3.2.
These include:

1. Data augmentation techniques to artificially extend the data distribution cap-
tured by the trained models.

2. Image harmonisation to align the data distributions of the training and testing
images.

3. Transfer learning to adjust the neural network to the new clinical centre based
on very few unseen images.

4. Multi-centre models directly trained with data from multiple clinical centres,
which are used for comparative evaluation of the different generalization mech-
anisms.

FIGURE 3.2: The four different approaches implemented in this work
to enhance the generalisability of LGE-MRI segmentation models
across distinct clinical sites.

We confirm that all experiments were performed in accordance with relevant
guidelines and regulations.
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TABLE 3.1: Details of the multi-centre LGE-MRI datasets and char-
acteristics of the acquired images used in this work. Imaging time =
Acquisition time after contrast injection.

Dataset Clinical
centre Country MRI

scanner

Imaging
time

(mins)

In-plane
resolution

(mm)

Slice
thickness

(mm)

Number
of slices

Sample
size

EMIDEC
University
Hospital
of Dijon

France
1.5T

and 3T
Siemens

10 1.37-1.88 8-13 4-10 100

MSCMR
Shanghai

Renji
Hospital

China 1.5T
Philips - 0.75 5 10-18 45

VH
Vall

d'Hebron
Hospital

Spain 1.5T GE 10 1.48-1.68 10 8-15 41

STPAU Sant Pau
Hospital Spain 1.5T

Philips 7-10 1.18 5 18-24 30

3.2.1 Datasets

The multi-centre and multi-vendor dataset used in this study consists of 216 car-
diac LGE-MRI datasets acquired in four different clinical centres as detailed in Table
3.1. Two out of four samples are publicly available datasets from France and China,
while the two other samples correspond to new LGE-MRI images acquired in two
different hospitals in Spain. The subjects have been scanned by using a range of
scanner vendors from Siemens, Philips or General Electric (GE). In addition to hav-
ing distinct intensity distributions as observed in Figure 3.1, the multi-centre LGE-
MRI images also differ in the image resolution (0.75-1.88 mm), slice thickness (5-13
mm), and acquisition time after contrast injection (7 to 10 minutes). The samples
from each clinical site are described in more detail in the next subsections.

EMIDEC dataset: University Hospital Dijon, France

This dataset was compiled as part of the automatic Evaluation of Myocardial In-
farction from Delayed-Enhancement Cardiac MRI challenge (EMIDEC) [82]. The
EMIDEC volunteers included 33 healthy and 67 diseased subjects, for a total of 100
studies. The data was acquired at the University Hospital of Dijon, France, using
Area 1.5 T as well as Skyra 3T Siemens MRI scanners. Slice thickness and in-plane
spatial resolution varied greatly, being comprised of between 8 and 13 mm and 1.37
and 1.88 mm, respectively. The manual segmentation of the LV blood pool and myo-
cardium was performed by a cardiologist with over 10 years of experience. It is the
largest of the four samples and hence it was used as the reference sample for training
the single-centre neural networks.

MSCMR dataset: Shanghai Renji Hospital, China

The MSCMR dataset was obtained from the Multi-sequence Cardiac MR Segmen-
tation Challenge and it comprises a total of 45 patients suffering from various car-
diomyopathies ([179], [180]). The images were acquired at the Shanghai Renji Hos-
pital, China, which will allow us to evaluate generalizability across countries as well
as continents in this study. Compared to EMIDEC, the MSCMR dataset has a higher
image resolution (in-plane resolution = 0.75 mm, slice thickness = 5 mm for all scans)
and all images were acquired with a 1.5 T Philips scanner. The manual delineations
were initially performed by trainees and later validated by expert cardiologists.
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VH dataset: Vall d’Hebron Hospital, Spain

The VH dataset consists of 41 LGE-MRI datasets acquired at the Vall d’Hebron
University Hospital, located in Barcelona, Spain. In addition to covering a new
geographical location, namely Spain, the VH sample has several differences with
EMIDEC and MSCMR, including the disease group (MI) and the MRI scanner (1.5 T
GE scanner). Manual annotations of the LV boundaries were generated by a trained
rater using the cvi42 software. The study was approved by the ethics committee
of the Vall d’Hebron Hospital and written informed consent was obtained from all
participants.

STPAU dataset: Sant Pau Hospital, Spain

The STPAU dataset comprises 30 LGE-MRI cases acquired at the Sant Pau Hospital
in Barcelona, Spain. While the clinical centre is located in the same region as for the
VH sample, the dataset covers a different disease group (ischemic and non-ischemic
cardiomyopathy) and was acquired using an MRI scanner from a different vendor
(Philips Achieva 1.5T) and a higher-resolution imaging protocol. Furthermore, the
time delay between contrast injection and image acquisition varies between 7 and 10
minutes, which adds extra variability. The manual annotations were also performed
using cvi42, as in the previous case. All patients signed the informed consent, the
study protocol was approved by the Ethical Committee for Clinical Research of our
region, and it follows the ethical guidelines of the Declaration of Helsinki.

3.2.2 Single-centre model with data augmentation

FIGURE 3.3: Both spatial and intensity-based data augmentation
techniques are applied together with a probability of 0.2 each. From
only one slice many samples can be generated, increasing the size of
the original dataset significantly.

In this work, we first investigate the potential of data augmentation to enhance
the generalizability of LGE-MRI segmentation models (Method 1 in Figure 3.2). Data
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augmentation has been widely used to create more robust neural networks by in-
creasing the size as well as the heterogeneity of training samples synthetically. How-
ever, the promise of data augmentation is yet to be examined for LGE-MRI, where
there is higher complexity due to inherent variability in scar characteristics and con-
trast appearance.

In this work, we investigate several operators for data augmentation in the con-
text of LGE-MRI as illustrated in Figure 3.3 and described as follows.

1. Spatial-based data augmentation: In addition to the natural variability be-
tween cardiac anatomies, especially across countries and ethnic groups, pa-
tients undergoing LGE-MRI typically suffer from regional remodelling of the
ventricles due to the presence of scar tissue. Hence, spatial-based data aug-
mentation is proposed using the following operators:

• Horizontal and vertical flips to generate images with different orienta-
tions.

• Random rotations of up to ±30 degrees, to simulate different positions of
the heart.

• Random rescaling in the [0.75, 1.88] mm range so that the model can pro-
cess images and hearts that vary in size. This range is defined by the
minimum and maximum voxel size of our multi-centre dataset.

• Random cropping, such that the training images have the same dimen-
sions of 256x256 pixels but with a variation in the position of the heart in
the image.

2. Intensity-based data augmentation: Because the LGE-MRI appearance can
vary between images acquired using different MRI scanners and scanning pro-
tocols, such as due to differences in acquisition time after contrast injection, we
implemented the following intensity-based data augmentation techniques:

• Bilateral filtering to generate blurred and less detailed copies of the origi-
nal images.

• Gaussian noise with a standard deviation ranging between [0, 0.03] to
generate artificial noise and image artefacts.

• Gamma and inverse Gamma function with magnitude [0.7, 1.5] to gener-
ate synthetic images with different lighting.

• Brightness and contrast with magnitude [-0.5, 0.5] to support brightness
and contrast variations in the training images.

Each data augmentation technique is applied with a probability of 0.2 during the
training of the model. Then, this data augmentation pipeline is evaluated by mea-
suring the final generalization ability of the network (Method 1 in Figure 3.2). Table
3.2 summarizes the split of the data used for the training, validation and testing of
the model in each experiment.

3.2.3 Image harmonisation at testing

While the data augmentation operations focused on improving model generalizabil-
ity at training, we propose to apply image harmonisation at the testing stage to fur-
ther reduce the discrepancies between the multi-centre LGE-MRI images (Method
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TABLE 3.2: Number of subjects for each of the four datasets used dur-
ing the training, validation and testing phases when data augmenta-
tion is implemented in a single-centre setting.

Dataset Training Validation Testing

EMIDEC 68 17 15

MSCMR 24 6 15

VH 21 5 15

STPAU 12 3 15

TABLE 3.3: Number of samples used for the training and validat-
ing each CycleGAN model built to harmonise the imaging properties
from the different clinical centres.

Dataset Training Validation

Source Target Source Target Source Target

EMIDEC MSCMR 24 24 6 6

EMIDEC VH 21 21 5 5

EMIDEC STPAU 12 12 3 3

MSCMR VH 21 21 5 5

MSCMR STPAU 12 12 3 3

VH STPAU 12 12 3 3

2 in Figure 3.2). Image harmonisation enables the transformation of testing LGE-
MRI images from a new clinical centre such that their intensity distribution matches
as much as possible the imaging characteristics of the single centre used to train
the baseline neural network. Concretely, two main image harmonisation techniques
were implemented:

1. Histogram matching: It consists of transforming the testing images from the
unseen centre such that the histogram of the pixel intensity values is superim-
posed as much as possible with the corresponding histogram extracted from
the training images from the training clinical centre. The transformation from
the testing data (B: target data) to the training data (A: source data) is illus-
trated in Figure 3.4(i).

2. CycleGAN: Another strategy to address the domain shift between multiple
centres is domain adaptation, which can be used to learn the image transla-
tion from the source domain to the target domain. To this end, we choose
to implement a CycleGAN architecture [178], based on an unpaired image-to-
image translation. Given that CycleGAN uses cycle consistency, it would learn
the translation from the target domain (B) to the source domain (A), and vice
versa (Figure 3.4(ii)). Both target-to-source and source-to-target generators are
saved in each implementation, reducing to 6 the number of implementations
needed. The number of samples used to train each of the CycleGAN models
is summarised in Table 3.3, adjusting for each case the percentage of images
from each centre so that it is adequately balanced (50% source and 50% target
data).
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FIGURE 3.4: Schematic illustration of the image harmonisation tech-
niques used in this work to make the intensity distributions from the
different clinical sites as aligned as possible. First, histogram match-
ing is used to learn a transformation of the histogram of each image
from the unseen clinical sites (B) onto the original training clinical
centre (A). Second, CycleGAN architecture is used to learn the map-
ping between the training and the testing clinical centre.

3.2.4 Transfer learning from the original to the new clinical site

Another strategy investigated in this work to improve the scalability of single-centre
models consisted of applying the so-called transfer learning paradigm, by fine-tuning
specific layers of the neural network with a reduced number of LGE-MRI images
from the new clinical site (Method 3 in Figure 3.2). The approach has shown promise
for multi-centre image segmentation in cardiac cine-MRI [102] but is yet to be demon-
strated for multi-centre LGE-MRI imaging, where there is increased variability. The
following steps are implemented in this work:

1. Initiate the training of the neural network with the EMIDEC dataset, then eval-
uate the minimum number of fine-tuned layers, in both the decoder and the
encoder, that are needed during transfer learning to obtain the maximal seg-
mentation performance on the new LGE-MRI datasets from the remaining clin-
ical centres.

2. Compare the previous results with the segmentations obtained based on a
multi-centre model directly trained each time with images from two clinical
centres (EMIDEC and the new centre).

3. Estimate the minimum percentage of images needed from the second clinical
centre during the fine-tuning to obtain the desired level of performance.

4. Implement the same approach from the previous point but this time by using a
model pre-trained on a large dataset (n=350) from cine-MRI (M&Ms dataset),
to evaluate transfer learning from a related cardiac MRI modality for which
data is abundantly available.



3.2. Methods 41

TABLE 3.4: List and number of samples used for training and validat-
ing multi-centre models in this study.

Dataset Training Validation

EMIDEC 42 10

EMIDEC+MSCMR 21+21 5+5

EMIDEC+VH 21+21 5+5

EMIDEC+MSCMR+VH 14+14+14 3+3+3

EMIDEC+MSCMR+VH+STPAU 11+11+11+11 3+3+3+3

3.2.5 Multi-centre model

A fourth and last modelling strategy, i.e. training the neural networks directly from
multiple centres (Method 4 in Figure 3.2), is used for comparative evaluation of the
three extended single-centre models described in the previous section, i.e. enriched
with data augmentation, image harmonisation and transfer learning. In this study,
we investigated the number of new centres/domains that are needed to bridge the
domain gap in LGE-MRI segmentation, by using a balanced dataset with the same
number of subjects for each multi-centre data combination, namely EMIDEC, EMIDEC
+ MSCMR, EMIDEC + VH, EMIDEC + MSCMR + VH and ALL centres. The samples
used for training the multi-centre models in each combination of datasets/centres
are listed in Table 3.4. In all experiments, the same testing dataset is used for com-
parative evaluations (n=15).

3.2.6 Baseline workflow

Pre-processing

Min-max normalization is used after cropping the image to keep the same intensity
range in images from the same dataset.

Post-processing

Post-processing is applied to all predictions generated by the model by keeping only
the largest connected component of the segmentation volume. This step is com-
monly used in medical image segmentation, especially in organ imaging, to help in
the detection of false positives.

Network architecture

As a baseline model, a U-Net architecture is implemented to perform the LV bound-
ary segmentations in LGE-MRI based on some of the modifications proposed by [67]
for improved model training as follows. First, Leaky ReLU is used as the activation
function, and then instance normalization is applied after each hidden convolutional
layer to stabilise the training. Deep supervision is included to allow gradients to be
injected deeper into the network and facilitate the training of all layers. Further-
more, a 2D architecture is selected as it is suitable to address the differences in slice
thickness between clinical centres, as well as slice misalignment due to respiratory
and cardiac motion artefacts. The encoder and decoder architecture of the model are
illustrated in Figure 3.5.
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FIGURE 3.5: U-Net architecture composed by 6 layers, increasing
progressively the number of feature maps until 1024. Additionally,
deep supervision layers are included in the decoder.

Implementation details

PyTorch is the open-source machine learning library for Python used for the imple-
mentation of the model learning process. Stochastic gradient descent (SGD) opti-
mization is performed with Adam and the batch size of 16 slices is constrained by
the 8 GB of memory of the NVIDIA GeForce RTX 2080 Ti GPU. The learning rate is
kept to 1·10−3 during every training, while the dice and cross-entropy losses are cal-
culated at every iteration to optimise the network parameters. The neural network
is trained 250 epochs each time and takes half an hour approximately to converge.
During testing, each LGE-MRI image segmentation takes less than one second. The
main criterion followed to split each dataset into subgroups is 80% for the training
and 20% for the validation while keeping 15 subjects for the testing.

Performance evaluation

For all experiments and results, the performance of each method will be assessed
with the average 3D Dice Coefficient (DC), which calculates the overlap ratio be-
tween the automatically generated and ground truth segmentations. The measure is
estimated by:

DC =
2 · (X ∩ Y)

X + Y
=

2 · TP
2 · TP + FP + FN

, (3.1)

where X and Y are the set of pixels from the automated and true labels of the target
structures, while TP, FP, and FN are the corresponding true positives, false positives
and false negatives, respectively.

3.3 Results

This section presents detailed experimental results obtained by evaluating and com-
paring the different strategies proposed for enhancing model generalizability in LGE-
MRI segmentation. Four experiments are proposed to study model generalizability:
(1) effect of data augmentation, (2) image harmonisation, (3) transfer learning and
(4) multi-centre training. The results are summarized in Table 3.5, where a similar
limited generalization performance is achieved for experiments (1) and (2) while ex-
periments (3) and (4) show a significant improvement. Each experiment is analysed
in detail next.
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TABLE 3.5: Dice score coefficient for the different domain generaliza-
tion experiments performed. The results are averaged over five runs
of models. All models used EMIDEC for training. In experiment 3,
every model is transferred to the corresponding target centre and in
experiment 4, every model is trained with EMIDEC and a training
set from the corresponding target centre. Standard deviation is pre-
sented as a subscript for five independent runs of each model.

Test
Centre

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Effect of data augm.

(single-centre training) Image harmonisation Transfer
learning

Multi-centre
training

No augm. Spatial Spatial &
intensity CycleGAN Hist. match.

EMIDEC 0.850.05 0.880.03 0.780.08 - - - -

MSCMR 0.300.15 0.620.19 0.720.12 0.640.17 0.780.07 0.870.03 0.890.03

STPAU 0.540.16 0.610.12 0.680.09 0.700.08 0.680.08 0.850.04 0.850.04

VH 0.320.21 0.260.23 0.620.13 0.530.17 0.580.12 0.780.11 0.820.06

3.3.1 Experiment 1: Effect of data augmentation

In the first experiment, the added value of the different types of data augmentation
is evaluated, including spatial and intensity-based data augmentations. Figure 3.6
shows the comparative results obtained by three different models: (i) a single-centre
model without data augmentation (blue line), (ii) a single-centre model with spatial
data augmentation (orange), and (iii) a single-centre model enriched with both spa-
tial and intensity based data augmentations (green). As observed in the results, data
augmentation consistently improves the segmentation performance for LGE-MRI
independently of the clinical centre used for training, increasing the DC value up
to 0.6 units when compared to the baseline model without data augmentation. Fur-
thermore, the results in Figure 3.6 show that while most of the improvement can be
achieved by spatial data augmentation (orange line), intensity-based data augmen-
tation adds value to the approach, in particular when training on the largest sam-
ple (EMIDEC) and testing on smaller samples (MSCMR, VH and STPAU). Having
demonstrated the added value of data augmentation, all subsequent experiments
are performed using spatial- and intensity-based data augmentation.

FIGURE 3.6: Comparison of the subject-wise Dice coefficient ob-
tained for models trained with a single-centre with and without data
augmentation, including spatial- and intensity-based augmentations.
Models are tested on subjects from the testing set for every centre.
The results are averaged over five different runs of each model.
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3.3.2 Experiment 2: Effect of image harmonisation

Here, the impact of image harmonisation is evaluated when applied to match the
intensity distribution and appearance of LGE-MRI images from a new clinical cen-
tre to that of the training set. Specifically, we evaluate three approaches, namely (i)
the baseline model with data augmentation from Experiment 1 but without any nor-
malization, (ii) the baseline model with histogram matching, and (iii) the baseline
model with CycleGAN normalization. The results are given in Figure 3.7, clearly
showing that, overall, the two harmonisation operations (green and orange lines) do
not improve significantly the LGE-MRI segmentations over the baseline model with-
out harmonisation (blue line). There are, however, few cases where the mean Dice
score is slightly improved, as for histogram matching when training with EMIDEC
and testing in MSCMR or when using CycleGAN for models trained with VH.

FIGURE 3.7: Effect of histogram matching and CycleGAN harmoni-
sation for LGE-MRI segmentation in unseen clinical centres. X corre-
sponds to each testing centre not included in the training dataset and
the results are averaged over five different runs of each model.

3.3.3 Experiment 3: Effect of transfer learning

This section evaluates the potential value of fine-tuning a model pre-trained on a
larger dataset (such as EMIDEC) via transfer learning and the effect of the sample
size used during the tuning process. Figure 3.8 shows the performance of transfer
learning for a model pre-trained with EMIDEC and fine-tuned for each new clini-
cal centre (MSCMR, VH and STPAU). The red and blue lines in the figure show the
segmentation accuracy when the fine-tuning is performed on the encoder and de-
coder of the neural network, respectively, while the remaining parts of the model
are frozen. The black line corresponds to a model trained and tested in the same
centre. The results show an increase in DC with the number of fine-tuned blocks
and the maximum is obtained when 5 or all blocks of the encoder are fine-tuned,
reaching nearly the same performance as the single-centre model of the new centre
(black line). Furthermore, in Figure 3.9, the single-centre models fine-tuned based on
5 encoding blocks are directly compared to multi-centre models trained based on all
images from the original and new clinical centres. Based on the results, fine-tuned
models (green bars) –despite being fine-tuned on the new LGE-MRI images– achieve
similar segmentation performances to models directly trained from multi-centre im-
age data (orange bars). This shows the potential of transfer learning to adjust and
optimise a few layers of the existing single-centre model based on unseen LGE-MRI
images from a new clinical centre.

However, transfer learning requires manual annotations of some images from
the new clinical sites. Hence, ideally, the number of new annotated images required
to suitably adapt the existing model to the new centre should be minimal. In Figure
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3.10, we evaluated the impact of the number of new LGE-MRI images used for fine-
tuning. The results indicate that the fine-tuning of single-centre models with a small
percentage of the target data is sufficient to reach a desirable segmentation accuracy.
Such generalization is achieved, for example, in the case of a single-centre model pre-
trained with the EMIDEC dataset and fine-tuned using only 10% (about 1-3 subjects)
from the new dataset. A similar pattern is found when training with a different
modality, as shown by the model pre-trained with cine-MRI images from the M&Ms
dataset (grey line), except for better performance when testing on the VH centre.

FIGURE 3.8: Evaluation of a single-centre model pre-trained on the
EMIDEC dataset and fine-tuned with a new clinical dataset (MSCMR,
VH or STPAU). Red: Fine-tuning of several blocks in the encoder.
Blue: Fine-tuning of several blocks in the decoder. Black: Model
trained from scratch with data from the same centre. The bars and
the grey band stand for the standard deviation of the five indepen-
dent model runs.

FIGURE 3.9: Model trained from scratch using EMIDEC and a second
dataset (X), which can be MSCMR, VH or STPAU (orange). Then, a
model was pre-trained with EMIDEC, and fine-tuned and evaluated
on X (green). The black bars represent the standard deviation for five
independent runs of each model. TL: transfer learning.

FIGURE 3.10: Impact of sample size (percentage) of a new LGE-MRI
dataset used for fine-tuning existing single-centre models for differ-
ent training datasets (fuchsia and grey) and compared to single-centre
models (yellow). Results are averaged over five independent model
runs.
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3.3.4 Experiment 4: Comparison to a multi-centre scenario

In this last experiment, the added value of training multi-centre models for LGE-MRI
segmentation is evaluated by including training images from multiple clinical sites
(i.e. from 1 to 4 centres). In Figure 3.11 different combinations of the four datasets
considered in this study were explored, either by using a baseline model, data aug-
mentation or histogram matching. As observed in the results, when the model is
trained with no data augmentation (baseline), the multi-centre data enhanced the
generalization ability as demonstrated by the increase in average DC values and
the reduction of the standard deviation. However, when data augmentation is in-
cluded in the pipeline, no gain is found by adding new clinical sites to the training
stage, as the data augmentation alone is sufficiently powerful for training the model
with reduced over-fitting when tested in new centres. The results also confirm that
histogram matching does not show a significant positive impact on the final perfor-
mance.

FIGURE 3.11: Average DC achieved by models trained on different
combinations of clinical datasets, with and without data augmenta-
tion, as well as with histogram matching. The first model is initially
trained with the EMIDEC dataset, and then new datasets are included
progressively from the three other clinical sites. Results are averaged
over five independent model runs.

3.3.5 Qualitative analysis

Finally, we show a qualitative comparison in Figure 3.12 of model predictions (coloured
overlay) for selected cases that demonstrate the common mistakes of the models
as compared to the ground truth (white delineations). For instance, the first three
columns show how data augmentation improves the model’s ability to identify and
segment the left ventricle while for some cases (like for the second row, with the VH
sample), it is still insufficient. The fourth and fifth columns show the effect of the im-
age harmonisation experiments, which help in segmenting failing cases but do not
improve significantly the accuracy of the segmentation as observed in the disagree-
ment between ground truth and predictions. Finally, the last two columns show the
predictions for transfer learning and multi-centre models, respectively. These final
predictions are the most accurate among all the columns, but one can still identify
some disagreements in challenging regions annotated with orange arrows where
scars can be found.

3.4 Discussion

In this work, several strategies were implemented and evaluated for generalizable
segmentation of left ventricular anatomy in multi-centre LGE-MRI. The pipeline was
built with the purpose of training single-centre models that can maintain a good
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FIGURE 3.12: Qualitative comparison of model predictions for se-
lected slices of test subjects. The ground truth is delineated with
white lines while the overlayed colour represents the model predic-
tion. Each row corresponds to a different dataset and each column
corresponds to each model as presented in Table 3.5. Challenges re-
gions with scars are highlighted with orange arrows in the first and
last columns.

level of performance when used to segment out-of-sample images from new hos-
pitals. The results highlight the importance of using data augmentation, including
both spatial and intensity-based transformations, in particular when there is a high
domain shift between the training and unseen clinical site, e.g. EMIDEC in our re-
sults. After applying adequate data augmentation to existing single-centre models,
it was found that neither multi-centre training nor image harmonisation techniques
are needed to obtain additional generalizability, confirming the results obtained by
[15] in the M&Ms study for a multi-centre and multi-vendor cine-MRI. This find-
ing shows that single-centre LGE-MRI models can generalize well if appropriately
enriched with data augmentation, which results in an important practical benefit:
Multi-centre training is difficult in practice as there is a lack of labelling harmoni-
sation between centres, in addition to the legal and other obstacles that make diffi-
cult cross-site data sharing. Moreover, multi-centre models are still specific to those
clinical centres that contributed data, whereas there is a need for models that can
generalize well beyond the training data.

Regarding domain adaptation, which theoretically is a promising solution, ex-
isting research has shown that histogram matching could lead to hidden noise in
some images after the post-processing [47], while CycleGANs would typically re-
quire substantial training data from the new clinical centre to achieve a good model
performance. In addition to data augmentation, the results demonstrated that trans-
fer learning can positively impact the model performance across sites. This method
is based on the fine-tuning of an existing model initially pre-trained on a single-
centre dataset and adjusted with a few datasets from the new clinical site. The ob-
tained results indicate that fine-tuning the first 5 blocks of the encoder of the model
with the 10% of the dataset, ranging from 1 to 3 subjects, is sufficient to achieve the
desired LV segmentation accuracy in LGE-MRI. For example, a neural network pre-
trained based on the EMIDEC dataset and fine-tuned with one subject/image only
from STPAU (DC: 0.76± 0.07) performs similarly when compared to a model trained
from scratch with 100% of the STPAU images (DC: 0.79 ± 0.13). In terms of compu-
tational time, the first model is completely trained in half an hour and the posterior
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fine-tuning requires only 5 minutes.
In addition to transfer learning focused on LGE-MRI, we evaluated the poten-

tial of fine-tuning a pre-existing model trained on larger cine-MRI datasets from the
M&Ms dataset, which consists of 350 training images. Despite the different imaging
characteristics between cine and LGE-MRI images, in particular the additional pres-
ence of scar tissue and contrast enhancements in the LGE-MRI images, the results
showed that such cross-modality transfer learning results in enhanced generalizabil-
ity. This can be easily explained by the fact that such pre-trained multi-centre and
multi-disease model encodes additional inter-subject variability which aids general-
izability also in multi-centre and multi-disease LGE-MRI context.

Finally, to illustrate the success of data augmentation and transfer learning to
build models with good generalization ability, Figure 3.13 provides two examples of
challenging LGE-MRI cases, with varying imaging and anatomical characteristics.
Even though these images are from two different clinical centres and vary greatly in
the appearance, size, shape and location of the scar tissues, the proposed enriched
models are capable of accurately identifying the LV boundaries consistently across
the LGE-MRI examples.

FIGURE 3.13: Challenging cases leading to good model predictions
on two patients from two different hospitals. First row: original im-
age, second row: prediction, third row: ground truth. Each of the two
columns corresponds to images obtained from MSCMR or STPAU
datasets respectively. The red arrows highlight the infarct or scar tis-
sue.

Compared to other multi-centre existing studies, such as the M&Ms challenge
that comprises 350 cine-MRI cases, the present multi-centre LGE-MRI study has a
lower sample size. This is because the LGE-MRI datasets are less abundant and more
difficult to compile for research studies. Nevertheless, the results in this work are
generated based on 216 datasets from four clinical centres, three vendors (Siemens,
Philips and GE) and three countries from two different continents.
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Another limitation is that this work was focused on the segmentation of the LV
anatomy and did not consider the more challenging task of segmenting the scar tis-
sues. This is because the clinical annotations for the scar tissues were not available
for the two clinical centres in Spain. Future multi-centre studies in LGE-MRI should
also investigate the generalizability of neural networks for scar tissue segmentation.
However, our work is an important first step in this direction and one that will en-
courage the development of more generalizable models based on data augmentation
and transfer learning, in LGE-MRI but also other cardiac and non-cardiac imaging
modalities.

While the proposed framework shows promise for generalizability across multi-
centre LGE-MRI datasets with challenging and heterogeneous conditions, it can fail
to accurately identify the LV boundaries in a few exceptions. As illustrated in Figure
3.14, several failures have been observed in the presence of low-quality images with
artefacts due to suboptimal contrast wash-out or highly complex scar appearance.
Furthermore as reported in previous works in cardiac cine-MRI segmentation [25],
apical and basal slices are also more error-prone than mid-ventricle slices in LGE-
MRI segmentation. Even experienced cardiologists can disagree on the segmenta-
tion of the LV borders closer to the apex and base, which generates inter-operator
variability that can confuse neural networks, as illustrated in Figure 3.15.

FIGURE 3.14: Segmentation failures obtained due to artefacts and
highly complex scars. First row: original image, second row: predic-
tion, third row: ground truth. Each of the two columns corresponds
to images obtained from MSCMR and STPAU datasets respectively.
The blue arrow shows an image artefact, while the red arrows point
to the infarct or scar tissue.

3.5 Conclusions

This work was motivated by the need for new deep learning-based solutions that
generalize well across domains, centres and scans, in non-contrast as well as in
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FIGURE 3.15: Examples of segmentation failures obtained at the api-
cal and basal slices. First row: original image, second row: prediction,
third row: ground truth. The first and second columns show two sim-
ilar cases where both apical slices are segmented differently. The third
and fourth columns are two heterogeneous segmentation at the basal
region.

contrast-enhanced imaging. Data augmentation extended the image distribution in
single-centre settings and proved to be an effective technique to generate models
with a prominent generalization ability to new clinical centres. In contrast, image
harmonisation did not improve the capability of single-centre models when tested
on unseen clinical sites. Furthermore, the exploitation of transfer learning based
on fine-tuning pre-trained models with as little as one additional subject from an
unseen clinical site translated into a substantial improvement in the model’s gener-
alizability. This paper showed that single-domain neural networks enriched with
suitable generalization procedures can reach and even surpass the performance of
multi-centre, multi-vendor models in contrast-enhanced imaging, hence eliminating
the need for comprehensive multi-centre datasets to train generalizable models.
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Chapter 4

Domain generalization for
cardiomyopathy diagnosis
Minimising multi-centre radiomics variability through image
normalisation: A pilot study

This chapter contains material from:

Campello, Víctor M. and Martín-Isla, Carlos and Izquierdo, Cristian and
Guala, Andrea and Palomares, José F. Rodríguez and Viladés, David and
Descalzo, Martín L. and Karakas, Mahir and Çavuş, Ersin and Raisi-
Estabragh, Zahra and Petersen, Steffen E. and Escalera, Sergio and Seguí,
Santi and Lekadir, Karim “Minimising multi-centre radiomics variability
through image normalisation: a pilot study.” Scientific Reports 12, 12532
(2022). Doi: 10.1038/s41598-022-16375-0.

4.1 Introduction

For the last decade, there has been a great amount of research devoted to identifying
and improving quantitative image biomarkers for precise diagnosis, risk assessment
and patient stratification for different pathologies. In particular, radiomics seems to
be a promising technique to quantify image-derived biomarkers based on shape,
intensity and higher-order texture patterns for a region of interest defined a priori,
since it can characterise image patterns that are hardly visible to the naked eye.

These computer-extracted features have the potential to perform an exhaustive
analysis of medical images as shown in the literature, predominantly in oncology [1]
but also more recently for neurodevelopmental disorders [147] or cardiovascular dis-
ease [19]. However, radiomic features have proven to be highly sensitive to changes
in scanning protocols and scanner manufacturers, resulting in limited reproducibil-
ity [83, 156] (see also the exhaustive reviews by Yip and Aerts [167] and by Traverso
et al. [152]) and thus posing an important problem that needs to be solved before
implementing these techniques in clinical practice. Despite this, the majority of pre-
vious research considered single-institution datasets, due in part to the difficulty in
obtaining imaging studies from multiple centres. More recently, several works using
multi-centre studies have assessed the robustness of this technique (see for example
Raisi-Estabragh et al. [132], for a test-retest study). Several works have proposed
harmonisation guidelines for computed tomography (CT) or positron emission to-
mography in multi-centre scenarios, while no guideline is available for magnetic
resonance imaging (MRI), where the lack of a standard intensity grayscale – such as

https://doi.org/10.1038/s41598-022-16375-0
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Hounsfield units in CT – poses further difficulty (see Da-Ano, Visvikis, and Hatt [32]
and references therein).

All previous multi-centre MRI radiomics studies focused either on brain or can-
cer imaging. Due to the lack of multi-centre cardiac imaging radiomics literature, a
detailed introduction to brain and cancer imaging is presented. Two types of tech-
niques are used to standardise features across institutions: image- and feature-based
transformations.

At the image level, the most common techniques are image intensity normali-
sation (mean subtraction and division by the standard deviation) or image inten-
sity rescaling to a fixed range (usually from 0 to 1). Other more sophisticated tech-
niques exist, such as bias field correction, isotropic resampling, histogram matching
and piecewise linear histogram matching (PLHM). Finally, some techniques are in-
herently defined for brain imaging and were not considered in this study. Um et
al. [156] used T1-weighted MRI brain scans to assess radiomics variability across
two different institutions after five image preprocessing techniques were applied,
including global and region of interest (ROI) rescaling, bias correction, isotropic re-
sampling and histogram matching. They concluded that histogram matching is the
best technique for reducing feature variability and successfully discriminating be-
tween different patient subgroups with glioblastoma. Isaksson et al. [65] evaluated
the effect of four normalisation techniques on classification performance to iden-
tify prostate cancer in T2-weighted MRI. The normalisation method that resulted in
the best classification accuracy was the PLHM transformation using intensities from
healthy prostate as a reference instead of the whole image to extract landmarks. Fi-
nally, Carré et al. [17] standardised brain MRI studies using three different intensity
normalisation techniques to find their effects on radiomics robustness, being image
intensity normalisation the technique that yielded the best results.

At the feature level, Chatterjee et al. [22] improved the robustness of radiomics
from images of primary uterine adenocarcinoma by applying feature normalisation
for each institution dataset independently. Orlhac et al. [117], instead, used the em-
pirical Bayes harmonisation method – also referred to as ComBat[69]– to remove
inter-centre variability. The transformed features resulted in a sensitivity increase
for distinguishing between Gleason grades in prostate cancer studies and in similar
distributions for features from brain scans for 1.5T and 3T machines.

In this work, a multi-centre cardiac MRI dataset was considered to analyse the
effect of several image- and feature-based normalisation techniques over radiomic
features variability and model generalisation across institutions.

4.2 Material and methods

4.2.1 Data and feature extraction

A subset of 218 cardiac magnetic resonance studies from the Multi-Centre, Multi-
Vendor & Multi-Disease Cardiac Image Segmentation Challenge (M&Ms) dataset
was considered [15]. In particular, healthy subjects as well as patients with hyper-
trophic cardiomyopathy (HCM) were selected from the five available centres. The
exact distribution across the five centres is presented in Table 4.1. All the scanners
considered had a field strength of 1.5T and the averaged in-plane resolution ranged
from 0.85 to 1.45 millimetres. More detailed information about the scanners used
can be found in Table 4.2.

Each study consisted of a short-axis cine cardiac magnetic resonance volume.
Segmentations of three anatomical ROIs, the left and right ventricle cavities (LV and
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TABLE 4.1: Distribution of diseases per centre considered
in the analysis

Creu
Blanca Dexeus Sagrada

Familia
Universitätsklinikum
Hamburg-Eppendorf

Vall
d’Hebron Total

Vendor Canon General Electric Philips Philips Siemens

Healthy 14 11 33 32 22 112

HCM 15 5 37 14 25 106

HCM: hypertrophic cardiomyopathy

TABLE 4.2: Average specifications for the studies acquired in
the five different centres.

Centre Vendor Model
In-plane

resolution
(mm)

Slice
thickness

(mm)

Number
of slices

Intesities
range

Vall d’Hebron Siemens Magnetom
Avanto 1.32 9.2 12 0 – 1193

Sagrada Familia Philips Achieva 1.20 9.9 10 0 – 357
Universitätsklinikum
Hamburg-Eppendorf Philips Achieva 1.45 9.9 11 0 – 3725

Dexeus General
Electric

Signa
Excite 1.36 10 12 0 – 3030

Creu Blanca Canon Vantage
Orian 0.85 10 13 0 – 14442

RV, respectively) and the left ventricle myocardium (MYO), were provided for two
temporal phases, ES and ED. The delineations were revised to follow the same Stan-
dard Operating Procedure to avoid the introduction of further bias due to inter-
observer variability.

Radiomic features were extracted using the PyRadiomics library [55], version
3.0.1. Before the extraction, all images were resized to match the same spatial resolu-
tion of 1 × 1 mm2, since radiomic features have been shown to intrinsically depend
on voxel size and the number of voxels [58]. Fixed bin widths of 25 and 0.05 were
used during feature extraction for images before and after normalisation, respec-
tively. This resulted in a good balance between the number of bins and computing
requirements. The number of bins after normalisation ranged between 20 and 80,
depending on the intensity values for each ROI. Only images without normalisation
gave a large variability in terms of number of bins (from 14 to 570).

A total of 100 features were extracted per ROI. They include shape features and
first and second-order texture features. In this work, only texture features were used,
since shape depends only on the ROI segmentation and not on the image intensity.
First-order texture features refer to commonly used statistical metrics to describe the
histogram of intensity values such as mean, minimum, maximum, kurtosis, skew-
ness, entropy and energy, among others. Second-order texture features are statistical
measures extracted from the four texture matrices considered in this library: Gray
Level Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray
Level Run Length Matrix (GLRLM) and Gray Level Dependence Matrix (GLDM).
These features account for different details in the spatial coarseness, variability, het-
erogeneity and symmetry of textures. A complete list of the features considered is
included in the supplementary material.



54 Chapter 4. Domain generalization for cardiomyopathy diagnosis

4.2.2 Normalisation techniques

Four normalisation techniques were considered at the image level:

• R: image intensity rescaling to the range 0 – 1,

• N: image intensity normalisation (mean subtraction and division by the stan-
dard deviation),

• HM: histogram matching using scikit-image [160], version 0.17.2,

• PLHM: piecewise linear histogram matching [111], also referred to as Nyúl-
Udupa normalisation.

For the histogram matching transformation, an image intensity histogram is inter-
polated so that it matches a template histogram. In this work, a subject was selected
visually from Sagrada Familia as the template after ensuring that the image did not
present artefacts. For the PLHM transformation, the code implementation by Rein-
hold et al. [134] was employed. In this case, a batch of images from one centre was
needed to obtain the averaged histogram deciles (landmarks) that were then used
as a reference for the transformation of new image histograms. The landmarks were
computed for studies from Sagrada Familia. All transformations were applied both
to the whole image and at the ROI level, independently. Data from Sagrada Familia
were used as a reference since it was the centre with the greatest number of scans.

Regarding feature-based normalisation techniques, the empirical Bayes harmon-
isation method proposed by Johnson, Li, and Rabinovic [69] Johnson and Rabinovic
(ComBat) was considered. This method assumes that the contributions to the final
feature values can be separated into biological covariates (e.g., pathology) and cen-
tre effects (e.g., different scan manufacturers). Then, the empirical Bayes method
is used to estimate the distributions for these terms from the original data and ad-
just the final feature values to remove centre effects. The ComBat method is robust
against outliers and does not need large sample sizes for each centre batch, which
makes it a good option for the current study. However, feature distributions are
assumed to follow normal distributions for each centre separately, a requirement
not always satisfied by the data. For this reason, a quantile transformation (scikit-
learn [121], version 0.23.2) had to be applied to all radiomic features for each insti-
tution independently before ComBat could be used (we used 20 as the number of
quantiles). The Python implementation of ComBat by Fortin et al. [41], available
at github.com/Jfortin1/ComBatHarmonization, was used. Five batches were used
during the harmonisation process, one for each centre. A parametric adjustment was
chosen for fitting the batch effect parameters [69], and the alignment was performed
over a virtual reference frame instead of over one of the five batches. No covariates
were used along with ComBat harmonisation.

4.2.3 Variability assessment

Radiomics variability across centres was assessed by computing the Jensen-Shannon
divergence (JSD) between pairs of feature distributions obtained for healthy subjects
within the different ROIs. The HCM pathological group was not considered in this
analysis since the possible existence of different HCM sub-groups could introduce
uncontrolled bias to the results. Moreover, to avoid redundancy of features in the
results, a prior sequential feature selection step was conducted to remove features
that showed a square cross-correlation coefficient greater than or equal to 0.9 with
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any previous feature following the ordering provided by PyRadiomics (see Table A.1
in the supplementary material). The JSD gives a positive measure of how similar
two distributions are, with 0 as the value obtained when the two distributions are
identical. A threshold of 0.01 JSD was selected based on the median of the overall
distribution as the relative point where changes in feature proportions were to be
assessed.

Then, to analyse model generalisation, two tasks were proposed. First, the amount
of centre-encoded information after the application of each normalisation technique
was measured by training Random Forest (RF) models to identify the source centre
for each feature set. The hypothesis was that features with less information about
their centre of origin should be more difficult to differentiate and thus, more simi-
lar between centres, enhancing the generalisation. Secondly, model generalisation
was assessed directly by training RF models for patient classification into healthy
or HCM groups, for each normalisation technique. RF were chosen over other tech-
niques due to their simplicity to train and their effectiveness to model non-linear
relations between input and output. For all cases, a random seed was fixed before
training each model to make the results reproducible.

For the centre identification task, models were trained either with first-order or
second-order features as input variables for each ROI separately (LV, MYO and RV).
A five-fold cross-validation was used for obtaining an estimate of the average clas-
sification accuracy with reduced bias. Notably, in this case, a lower accuracy repre-
sents that features carry less centre information.

For the patient classification task, models were trained with a combination of first
and second-order features from all three ROIs, so that RF was able to select the most
predictive features during training. Five runs of the same cross-validation scheme
were considered in this case (five different random seeds) since the variability in
models was higher and the accuracy estimates showed greater bias. In particular,
these models were trained with features from only one dataset (Vall d’Hebron (n =
38) or Sagrada Familia n = 56, as these centres had a greater number of samples) and
tested on the other four. No feature selection was conducted before model training.
The most important features for the best performing models were obtained with the
mean impurity decrease method [13], also called Gini importance. For these models,
a greater accuracy represents better generalisation. All models were assessed with
balanced accuracy, given the imbalanced nature of the dataset.

4.3 Results

4.3.1 Feature variability

Texture features variability showed a great disparity depending on the preprocess-
ing method under consideration (see Fig. 4.1). For both the end-diastole (ED) and
the end-systole (ES) frames, the percentage of features with similar distributions
across institutions (Jensen-Shannon divergence, JSD, below 0.01) was obtained after
the removal of highly correlated features (R2 ≥ 0.9). After this step, the amount of
first/second order ED (ES) features remaining were 7/38 (8/47) for LV, 9/48 (9/49)
for MYO and 9/42 (8/47) for RV (the square correlation heatmaps are shown in Fig-
ure A.2 in the supplementary material). The highest percentage of features with sim-
ilar distributions across institutions was obtained when applying ROI-based PLHM
or ROI-based rescaling as shown in Figure 4.1 (with a maximum of 74% for first-
order features and of 66% for second-order features). More specifically, these two
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methods showed a significant difference in distribution similarity for first-order fea-
tures when compared to other methods, and only ROI-based histogram matching
showed comparable results for second-order ED features (all tests with p-values be-
low 0.01, Mann-Whitney U test).

In contrast, the proportion of features below the 0.01 JSD threshold was the low-
est for the methods applied at the whole image level, except for rescaling, and for
images without any normalisation (N, HM, PLHM and O in Fig. 4.1). No significant
difference was found between these normalisation methods and original images for
both ED and ES features (p-values greater than 0.01, Kruskal-Wallis test). The pro-
portion of features below the given threshold was reduced to less than 51%, indi-
cating that feature distributions were less similar for these methods. Additionally,
the large standard deviation, represented by the black horizontal bars in Figure 4.1,
was associated with differences depending on the ROIs and, especially, on the cen-
tre pairs being compared (see Fig. A.1 and A.3 in the supplementary material for a
detailed comparison of these factors).

The application of the ComBat harmonisation method had an averaging effect,
reducing the proportion of features with similar distributions for the most robust
methods in the previous paragraph and increasing it for the least robust methods, as
shown in Figure 4.2. Thus, smaller differences were found between methods after
the application of ComBat. Specifically, no significant difference was found between
four methods for ED features (R.R, R.N, R.PLHM and O in Fig. 4.2), and for three
methods for ES features (R.R, R.N and R.PLHM in Fig. 4.2, p-values greater than
0.01, Kruskal-Wallis test).

FIGURE 4.1: Percentage of first and second order features below the
0.01 JSD threshold for healthy subjects. Results are averaged over
centre pairs and ROI and presented separately for ED and ES frames.
Only features with square cross-correlation below 0.9 were consid-
ered. The black lines represent the standard deviation. O: original im-
ages (without normalisation), R: image intensity rescaling, N: image
intensity normalisation, HM: histogram matching and PLHM: piece-
wise linear histogram matching. An “R.” in front of a method means
that it is applied at the ROI level.

Among all feature families, Gray Level Size Zone Matrix (GLSZM), Gray Level
Run Length Matrix (GLRLM) and Gray Level Dependence Matrix (GLDM) pre-
sented the highest dissimilarities among distributions after the application of ROI-
based PLHM normalisation in general, as demonstrated by the greater JSD values
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FIGURE 4.2: Percentage of first and second order features below the
0.01 JSD threshold for healthy subjects after the application of the
feature-based harmonisation tool ComBat. Results are averaged over
centre pairs and ROI and presented separately for ED and ES frames.
Only features with square cross-correlation below 0.9 were consid-
ered. The black lines represent the standard deviation. O: original im-
ages (without normalisation), R: image intensity rescaling, N: image
intensity normalisation, HM: histogram matching and PLHM: piece-
wise linear histogram matching. An “R.” in front of a method means
that it is applied at the ROI level.

in Table 4.3. Gray Level Co-occurrence Matrix (GLCM) and first-order features ob-
tained the best similarity scores. As noted above, the JSD was averaged over all
families of features to an approximate value of 0.011 after the application of ComBat.
The features found with the most dissimilar distributions (standard deviation of the
JSD distribution greater than 0.01) in both cardiac time frames, ED and ES, before the
application of ComBat were zone variance, large area emphasis and large area low
grey level emphasis (GLSZM), kurtosis (1st order) and grey level non-uniformity
(GLDM). Some examples of the effects of ComBat and PLHM over the different dis-
tributions per centre are presented in Figure A.4 in the supplementary material.

4.3.2 Centre identification

When assessing the centre information encoded in the extracted features, second-
order texture features carried more information in general than first-order features,
as demonstrated by the differences in balanced accuracy for classifiers trained with
healthy subjects in Figure 4.3 (orange and blue boxes). Features from original images
(without normalisation) were the most discriminative features with testing accuracy
above 0.87 (± 0.07–0.11) for the three ROIs under consideration and for both feature
types, first order and texture features. When comparing normalisation techniques
at the whole image level, no clear method showed a greater reduction in the centre
information consistently across ROIs and feature types. (Fig. 4.3, orange and blue
boxes in the top row).

When normalisation was applied at the ROI level, larger differences appeared
depending on the method and the ROI under consideration (Fig. 4.3, orange and
blue boxes in the bottom row). Regarding methods that did not use ComBat, ROI-
based PLHM consistently reduced the ability of models to infer the centre of ori-
gin for each sample for first-order features extracted from LV and MYO, and for



58 Chapter 4. Domain generalization for cardiomyopathy diagnosis

TABLE 4.3: Mean and standard deviation (in paren-
thesis) for JSD for distributions of features obtained
after the application of R.PLHM normalisation on
healthy patients. Results are presented separately
for ED and ES frames and each feature family be-
fore and after the application of ComBat harmonisa-
tion. Only features with square cross-correlation be-
low 0.9 were considered. Values are averaged over
ROI. Numbers in blue stand for non-significant dif-
ferences in the JSD distributions when compared to
first-order features according to the Mann-Whitney
U test at the 0.01 level.

Family
Without Combat With Combat

ED ES ED ES

1st order 0.009 (0.009) 0.008 (0.007) 0.012 (0.011) 0.011 (0.008)

GLCM 0.008 (0.007) 0.009 (0.009) 0.013 (0.012) 0.012 (0.013)

GLDM 0.011 (0.010) 0.010 (0.008) 0.013 (0.013) 0.011 (0.010)

GLRLM 0.012 (0.011) 0.010 (0.007) 0.011 (0.010) 0.011 (0.009)

GLSZM 0.011 (0.011) 0.011 (0.010) 0.013 (0.012) 0.011 (0.010)

R.PLHM: ROI-based piecewise linear histogram matching; ED: End-diastole;
ES: End-systole.

second-order features from LV, achieving the lowest performance (p-values below
0.01, Mann-Whitney U test). For the RV, however, three methods (R.R, R.HM and
R.PLHM) showed comparable accuracy (p-value greater than 0.01, Kruskal-Wallis
test). Finally, ComBat harmonisation was able to remove centre information from
features almost entirely for most normalisation techniques and original images, as
shown by the red and green boxes in Figure 4.3.

When models were trained only with HCM patients, the general behaviour be-
tween methods observed for healthy subjects was reproduced, but the accuracy for
identifying the centre was reduced for all methods before using ComBat harmonisa-
tion. See Figure A.5 in the supplementary material, for more details.

4.3.3 Generalisation

With regards to the patient classification task into healthy and hypertrophic car-
diomyopathy (HCM) groups in unseen centres (see Fig. 4.4), models trained with
features from original images (without normalisation) showed the worst perfor-
mance. With regards to models trained with features from images normalised at
whole image level (Fig. 4.4, upper row), N and PLHM methods were significantly
better than other methods and performed similarly when trained with studies from
Vall d’Hebron, while PLHM was significantly better when trained with studies from
Sagrada Familia (all p-values below 0.01, Mann-Whitney U test, after the Bonferroni
correction for multiple comparison).

When images underwent ROI-based normalisation, ROI-based rescaling and ROI-
based normalisation performed on par and significantly better than other models
when trained with Vall d’Hebron studies (p-values below 0.01, Mann-Whitney U
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FIGURE 4.3: Balanced accuracy of random forest models when pre-
dicting the centre of origin of healthy subjects for first and second-
order texture features before and after the application of ComBat
harmonisation. The row above corresponds to image preprocessing
techniques applied at the whole image level, while in the row below
they are applied at the ROI level. O: original images (without nor-
malisation), R: image intensity rescaling, N: image intensity normal-
isation, HM: histogram matching and PLHM: piecewise linear his-
togram matching. An “R.” in front of a method means that it is ap-
plied at the ROI level.

test), while no method was significantly better than others when trained with stud-
ies from Sagrada Familia (p-value greater than 0.01, Kruskal-Wallis test).

The application of ComBat reduced the accuracy slightly in general, but the dif-
ference was only significant for rescaling, ROI-based normalisation and ROI-based
histogram matching when training with Vall d’Hebron studies, and for the whole
image and ROI-based histogram matching and ROI-based PLHM when training
with studies from Sagrada Familia (p-values below 0.01, Mann-Whitney U test, after
Bonferroni correction for multiple comparisons).

For both types of models, trained with Vall d’Hebron and Sagrada Familia stud-
ies, the best accuracy was obtained when using features extracted after applying
the PLHM transformation and without ComBat harmonisation: 78.3% ± 8.4 and
79.2% ± 8.8, respectively.

In more detail, for models trained with features from Vall d’Hebron studies, the
highest accuracy was 0.783 (median: 0.792 [0.745, 0.845]), obtained after PLHM with-
out the application of ComBat. When ComBat harmonisation was used, the highest
accuracy was obtained after the application of the same image normalisation tech-
nique but was reduced to 0.771 (median: 0.775 [0.694, 0.826]). For models trained
with features from Sagrada Familia studies, the best accuracies were again obtained
for PLHM and were 0.783 (median: 0.792 [0.728, 0.850]) and 0.762 (median: 0.762
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[0.712, 0.811]) before and after the application of ComBat harmonisation, respec-
tively. For these models, features mostly from the myocardium (MYO) were among
the most important features for the model prediction according to the Gini impor-
tance [13]. The top 20 most important features contained mean and median inten-
sity, kurtosis and skewness (1st order), joint average and autocorrelation (GLCM)
and run length non-uniformity and long-run high grey level emphasis (GLRLM).

When comparing the accuracy between validation (same institution) and testing
(unseen institutions) sets, models that obtained the highest accuracy on validation
generalised worse to new unseen centres (Fig. 4.5). Importantly, models trained
with features from ROI-based normalisation methods showed relatively similar gen-
eralisation performance among them, even though some suffered from overfitting.
Within normalisation methods at the whole image level, features extracted after
PLHM obtained the best testing accuracy despite their lower performance in vali-
dation when compared to other techniques.

FIGURE 4.4: Balanced accuracy of random forest models on unseen
centres for classification of HCM versus healthy patients. All models
were trained with a combination of first and second-order texture fea-
tures from all ROIs. The first column corresponds to models trained
with features extracted from Vall d’Hebron studies, while models in
the second column were trained with features from Sagrada Familia
studies. The row above corresponds to image preprocessing tech-
niques applied at the whole image level, while in the row below they
are applied at the ROI level. HCM: Hypertrophic cardiomyopathy,
O: original images (without normalisation), R: image intensity rescal-
ing, N: image intensity normalisation, HM: histogram matching and
PLHM: piecewise linear histogram matching. An “R.” in front of a
method means that it is applied at the ROI level.
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FIGURE 4.5: Balanced accuracy of random forest models on the val-
idation set (same domain) versus the testing set (unseen centres) for
classification of HCM versus healthy patients. Results are presented
without ComBat harmonisation. All models were trained with a com-
bination of first and second-order texture features from all ROIs. The
first column corresponds to models trained with features extracted
from Vall d’Hebron studies, while models in the second column were
trained with features from Sagrada Familia studies. The row above
corresponds to image preprocessing techniques applied at the whole
image level, while in the row below they are applied at the ROI
level. HCM: Hypertrophic cardiomyopathy, O: original images (with-
out normalisation), R: image intensity rescaling, N: image intensity
normalisation, HM: histogram matching and PLHM: piecewise lin-
ear histogram matching. An “R.” in front of a method means that it is
applied at the ROI level.

4.4 Discussion

Radiomic features are promising biomarkers for better disease characterisation. How-
ever, their variability across centres makes it difficult to establish reproducible biomark-
ers based on them [167]. In this study, a comprehensive analysis was carried out to
assess feature variability across centres as well as model generalisation for a classi-
fication task after the application of several image normalisation techniques and a
feature-based harmonisation technique (ComBat).

Based on the results presented, ROI-based PLHM is a good normalisation tech-
nique to preserve similar feature distributions across domains (see Fig. 4.1) and to
reduce the amount of centre-related information encoded in radiomic features com-
pared to original images (see Fig. 4.3). In brain MRI literature, however, the trans-
formations that yielded less feature variability and more similar distributions were
histogram matching and image intensity normalisation [17, 156], although Um et al.
[156] did not consider PLHM in their work.

At the feature normalisation level, ComBat satisfactorily removed centre-related
information to the point that models were not able to discriminate between features
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depending on the institution of origin of each scan. As a drawback, the final fea-
ture distributions at different centres were less similar than before the application of
ComBat according to the JSD.

With regards to generalisation ability, models trained with features from origi-
nal images resulted in poor performance for differentiation of healthy subjects from
HCM patients in unseen centres, highlighting the importance of normalisation tech-
niques for multi-centre studies. Models trained with features extracted after PLHM
normalisation obtained the highest accuracy. In this method, average landmarks are
obtained for a reference population, while for histogram matching the reference was
only one subject. This could explain why these methods showed differences in per-
formance despite relying on the same principle since defining a template using only
one subject could introduce unwanted bias in the analysis. Moreover, the selection
of a particular population or subject as a reference template in these methods may
affect the results, especially for histogram matching (see Fig. A.6 and A.7 in the
supplementary material).

Importantly, successful centre-related information removal from radiomic fea-
tures does not imply greater generalisation ability. In fact, ROI-based PLHM and
ComBat harmonisation methods were not among the best generalisation techniques
for the HCM classification task (Fig. 4.4, bottom row). When compared with the
brain MRI literature, Orlhac et al. [117] did find an improvement in sensitivity for
differentiating between low and high-risk patient groups when using ComBat har-
monisation, although the authors did not compare different image normalisation
techniques. Lastly, the model trained after PLHM, which showed the best gener-
alisation ability, obtained medium performance on the validation set signalling a
reduction in overfitting. The most important features of this model were predomi-
nantly features from the MYO, which made sense for the classification task at hand
since HCM is most evident when looking at the myocardium.

This work presents several limitations. First, the dataset was not perfectly bal-
anced across the five centres and the population was not controlled by age, sex, body
size, or myocardial volume, which could result in dissimilarities across feature dis-
tributions. However, no significant differences were found under a Mann-Whitney
U test in the volumes of the different ROIs between centres.

The choice of HCM classification as a metric for generalisation has some draw-
backs since the heart suffers morphological changes and some texture features are
known to be correlated with the shape [58]. This could contribute to overestimat-
ing the generalisation ability. The inclusion of other pathologies that greatly affect
the myocardium, such as myocarditis or infarction, would potentially result in a less
biased generalisation loss estimation.

Finally, according to the Imaging Biomarker Standardization Initiative, ISBI, second-
order features from different texture matrices may be modelled better with different
intensity discretisation levels (e.g. GLSZM are better characterised for low discreti-
sation levels while it is the opposite for GLCM) [182]. In this work, the same dis-
cretisation level was used for all features.

4.5 Conclusions

In summary, this study showed that centre-related information removal does not im-
ply good generalisation ability for classification. ComBat harmonisation was able to
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remove centre-related information from radiomic features satisfactorily while show-
ing limited generalisation ability. PLHM normalisation resulted in the best general-
isable model for the classification of healthy subjects from HCM patients. The choice
of reference template when performing histogram matching may affect the results.
PLHM was robust against a change in the reference population. Finally, the radiomic
features from GLSZM, GLDM and GLRLM families showed greater variability than
first-order and GLCM features. Further studies with a larger sample size are needed
to replicate the results presented and to assess the effect of different biological co-
variates.





65

Chapter 5

Conclusions

In this Thesis, we have contributed to three main aspects of the domain shift chal-
lenge in cardiovascular imaging: a) We have assembled and open-sourced the first
multi-centre and multi-vendor dataset, including six clinical centres and four scan-
ner manufacturers, and established a benchmark for generalizable cardiac image
segmentation, b) We have compared DG and DA approaches for LGE image seg-
mentation and c) We have studied the effects of different pre-processing and har-
monisation steps on model generalizability for a classification task.

5.1 Summary of findings

The main findings of this Thesis are the importance of exhaustive data augmen-
tation on real data to improve model training and generalizability to new unseen
domains, the competitiveness of transfer learning compared to multi-centre models
and models that use extensive data augmentation and finally, the need to harmonise
images before feature extraction for improved model diagnosis in multi-centre set-
tings. These findings are discussed separately and in more detail next.

Multi-centre cardiac image segmentation

In chapter 2, we presented the results for the M&Ms Challenge, a competition for
benchmarking segmentation models for multi-centre cardiac image segmentation.
It became the first open-source benchmark with multiple domains to test DA and
DG proposals. Several findings were extracted from the participants’ proposals that
were in line with the existing literature:

• Deep learning models generalize better when trained with a heterogeneous
dataset combining studies from different institutions and acquired with differ-
ent scanners.

• Data augmentation with varied spatial and intensity-based transformations is
a simple but appropriate solution to increase the diversity in the training im-
ages and obtain generalizable models.

Other findings established a direct comparison between DG and DA techniques:

• Deep DA techniques, such as the one used by Corral-Acero [30], are not able
to outperform optimised pipelines with extensive data augmentation, such as
nnUNet [67], but are promising tools.

• Other techniques that proposed explicit domain adaptation modules, such as
the approach followed by Liu et al. [94], obtained worse results during the
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M&Ms Challenge but were later refined [96] to outperform the nnUNet frame-
work, representing another potential method to be considered in future stud-
ies.

Domain shift for LGE image segmentation

In chapter 3, the domain shift challenge was studied for LGE cardiac image segmen-
tation. This modality poses an increased difficulty compared to non-contrast MRI
due to the existence of more factors affecting the final scan outcome and we were
able to derive the following conclusions:

• Transfer learning is a good DA approach to obtaining a good-performing model
when few annotated samples are available from the target domain, outper-
forming models trained with extensive data augmentation and obtaining com-
parative performance to models trained from scratch.

• Data augmentation can increase the training set variability to avoid using his-
togram matching on new samples or training costly domain-translation gener-
ative models based on CycleGAN.

• Using auxiliary related datasets, such as non-contrast MRI, for pretraining is
also effective for the transfer learning approach.

Multi-centre image harmonisation for classification

Finally, in chapter 4, we compared feature and image transform techniques for the
harmonisation of imaging features. Then, we assessed the effects on the domain gap
for a classification task. This study allowed us to derive the following findings:

• ROI-based PLHM is a good harmonisation technique to enforce feature distri-
bution similarity across centres.

• ComBat harmonisation makes it impossible to determine the centre of origin
from features, but the distribution similarity is worse than for other techniques.

• Models trained with features after PLHM harmonisation obtained the best
generalization performance.

• Successful removal of centre-related information from imaging features does
not guarantee a good generalization ability for diagnosis.

5.2 Future work

Several topics related to the content of this Thesis still need to be investigated further.
Here we highlight some possible avenues to pursue to advance the understanding
of multi-centre data analysis and obtain generalizable models.

Importance of multi-centre datasets

The M&Ms Challenge data is a clinical dataset with a heterogeneous cohort, so it
is complicated to stratify the domain shift due to different factors, such as disease,
age or body mass index. A well-curated dataset with a balanced representation of
subgroups may be useful to disaggregate sources of performance degradation. De-
spite being one of the largest open datasets in cardiovascular research, its size is still
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limited when compared to other organs. Larger datasets are needed to improve the
significance of the results and obtain stronger evidence of the conclusions extracted.
For instance, deep DA models Corral Acero et al. [30] and Liu et al. [94, 96] have
shown promising results and a detailed analysis is needed to understand when are
these techniques stronger and how to improve their performance.

Similarly, the harmonisation results derived from the work in this Thesis were
extracted with a limited-size dataset. Replication studies are key as well as exten-
sions to image-based classification models. For the last point, we need a dataset
specifically designed to contain a balanced group of pathological cases across insti-
tutions.

Segmentation of the scar tissue in LGE images

The study conducted on LGE imaging did not consider scar tissue annotations,
which are more challenging to delineate. The variability in the brightness and spa-
tial distribution of these tissues make it harder to generalize to new centres and
even new cohorts with different lesions. It is necessary to evaluate the performance
degradation for scar tissue annotation for images with varied diseases and different
centres. A recent approach has been proposed to synthetically augment the training
dataset considering the factors of variation mentioned above [162].

The transfer learning approach turned out to be the best-performing solution in
the existence of a few annotated samples from the target domain, even when the
model was pre-trained with non-contrast MRI scans. This highlights the usefulness
of foundational (i.e. pre-trained) models both in terms of performance and training
cost. Recent works have confirmed the boost in performance when the pre-trained
model is trained with a dataset that is closer to the final target domain data [108].
Therefore, future studies are needed to investigate the optimal way to fine-tune a
pre-trained model to improve generalization, obtain fair models and even, incorpo-
rate new knowledge – such as new diseases or pathologies – into an already fine-
tuned model.

Other general aspects

Towards trustworthy AI

The successful implementation of AI in clinical practice depends on the implemen-
tation of guidelines and compliance with basic principles. FUTURE-AI [85] is an
initiative that assesses these aspects via six building blocks referred to as Fairness,
Universality, Traceability, Usability, Robustness and Explainability. Next, we discuss
the building blocks that are more relevant within the context of this Thesis and we
introduce other key aspects that we think are important for the objective of trust-
worthy AI.

Fairness. AI techniques are sensible to specific patterns found in the training
dataset, such as specific details from one scanner manufacturer, skin tone, sex, eth-
nicity or other factors within the training cohort. Developing AI solutions that are
fair and perform equitably across subgroups is crucial and multi-centre data collec-
tion is key to increasing the diversity of these datasets.

Traceability. Model deployment in clinical settings requires the introduction of
a monitoring system to log any potential change in performance due to concept or
data drifts, and updating the model if necessary to account for them. Additionally,
a model should be accompanied by metadata that defines the model scope, different
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settings and statistics about its performance, enabling AI accountability and risk
awareness.

Robustness. AI models deal with different sources of variations in medical im-
ages. In this Thesis, we have worked with variations related to the scanner man-
ufacturer and the clinical centre where the image was acquired. However, other
variations are due to the disparities between annotators or data cohorts. All these
variations need to be analysed and accounted for, when possible, by using generaliz-
able methodologies, such as the ones discussed in this Thesis, to reduce the domain
gap error. For instance, we have seen that exhaustive data augmentation combined
with model ensembling is a good recipe for improved segmentation performance on
unseen vendors.

Interpretability. AI tools are commonly referred to as “black boxes” since the pre-
diction is obtained after multiple transformations of the input data using the model
weights and parameters in a process that is usually not interpretable. However, de-
cisions in clinical practice cannot be simply motivated by the model output and need
to be reasoned, especially for identifying potential model failures, but also for clin-
icians to understand the factors that were involved in the final prediction. Several
tools exist to highlight the most relevant regions in an image for a given prediction
(e.g. Class Activation Maps), but these techniques do not include any reasoning and
often the regions are not meaningful for the expert.

Large-scale validation. To reduce uncertainty on model performance and robustly
assess the model reliability against different factors of variation in datasets, it is very
important to evaluate AI methods on large-scale datasets with great variability in
terms of sex, ethnicity, pathologies, age, scanners, country of origin, among other
factors. Such resources are difficult to obtain, especially in medical imaging, and
in this Thesis, we have contributed the largest multi-centre open cardiac dataset to
date. Furthermore, our current efforts are also targeting underrepresented African
countries where old devices are often used resulting in images with lower quality as
compared to standard European datasets.

Multi-modal models with context

Very often the AI models proposed in the research literature focus on a narrow
task and achieve very good performance. However, contextual information is of-
ten needed in clinical practice to make a diagnosis (e.g., the patient’s familiar his-
tory, the patient’s clinical history, genetic information or multiple image modalities).
Recent studies have demonstrated the usefulness of such approaches for improved
diagnosis [59, 166].

Synthetic data

There are frameworks in computer vision to generate synthetic samples with anno-
tations from simulation environments, such as videogames [135, 138]. In medical
imaging, some approaches have used atlases or statistical models to generate sam-
ples or derive an annotation [42]. Recent progress in generative modelling can make
training models with realistic synthetic images stand out over extensive data aug-
mentation on a dataset with limited annotations [39].

Regulation and approval

AI models are different from traditional software tools in that their outcomes are
conditioned on the training data or the training algorithm and may evolve when
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more data is fed into the model over time. We need a clear understanding of the
effects of updating the models and a practical way of monitoring performance evo-
lution. Currently, the Food and Drug Administration in the United States is consid-
ering a pre-certification program that focuses on the «culture of quality and orga-
nizational excellence» of the developer to speed up the certification of an AI-based
product [60]. The European Union is also creating a set of obligations for «high-risk
AI systems» before they can be introduced to the market, such as guarantees of a
high level of robustness and accuracy or human oversight to reduce the risk [133].
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Appendix A

Additional results for domain
generalization for cardiac diagnosis

A.1 Supplementary material

FIGURE A.1: Percentage of texture features below the 0.01 JSD thresh-
old for each ROI for healthy subjects. Results are averaged over
feature types and centre pairs and separated in ED and ES frames.
Only features with square cross-correlation below 0.9 were consid-
ered. The black lines represent the standard deviation. O: original im-
ages (without normalisation), R: image intensity rescaling, N: image
intensity normalisation, HM: histogram matching and PLHM: piece-
wise linear histogram matching. An “R.” in front of a method means
that it is applied at the ROI level.
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FIGURE A.2: Pairwise square correlation for features extracted from
the three different ROIs without the application of any normalisation
technique. The correlation between features was very similar for the
different preprocessing techniques, showing a negligible standard de-
viation. Zoom in to see in more detail.
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TABLE A.1: List of radiomic features extracted with PyRa-
diomics. We refer the reader to the library documentation
(https://pyradiomics.readthedocs.io/) for the specific definition and
interpretation of each feature.

Family Index Feature

Shape

1 Elongation

2 Flatness

3 LeastAxisLength

4 MajorAxisLength

5 Maximum2DDiameterColumn

6 Maximum2DDiameterRow

7 Maximum2DDiameterSlice

8 Maximum3DDiameter

9 MeshVolume

10 MinorAxisLength

11 Sphericity

12 SurfaceArea

13 SurfaceVolumeRatio

14 VoxelVolume

First
order

15 10Percentile

16 90Percentile

17 Energy

18 Entropy

19 InterquartileRange

20 Kurtosis

21 Maximum

22 MeanAbsoluteDeviation

23 Mean

24 Median

25 Minimum

26 Range

27 RobustMeanAbsoluteDeviation

28 RootMeanSquared

29 Skewness

30 TotalEnergy

31 Uniformity

32 Variance

GLCM

33 Autocorrelation

34 JointAverage

35 ClusterProminence

36 ClusterShade

37 ClusterTendency

38 Contrast

39 Correlation

40 DifferenceAverage

41 DifferenceEntropy

42 DifferenceVariance

43 JointEnergy

44 JointEntropy

45 Imc1

46 Imc2

47 Idm

48 Idmn

49 Id

50 Idn

Family Index Feature

GLCM

51 InverseVariance

52 MaximumProbability

53 SumEntropy

54 SumSquares

GLRLM

55 GrayLevelNonUniformity

56 GrayLevelNonUniformityNormalized

57 GrayLevelVariance

58 HighGrayLevelRunEmphasis

59 LongRunEmphasis

60 LongRunHighGrayLevelEmphasis

61 LongRunLowGrayLevelEmphasis

62 LowGrayLevelRunEmphasis

63 RunEntropy

64 RunLengthNonUniformity

65 RunLengthNonUniformityNormalized
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FIGURE A.3: Percentage of texture features below the 0.01 JSD thresh-
old for each centre pair, indexed in alphabetical order as in Table 4.1,
for healthy subjects. Results are averaged over feature types and ROIs
and separated in ED and ES frames. Only features with square cross-
correlation below 0.9 were considered. The black lines represent the
standard deviation. O: original images (without normalisation), R:
image intensity rescaling, N: image intensity normalisation, HM: his-
togram matching and PLHM: piecewise linear histogram matching.
An “R.” in front of a method means that it is applied at the ROI level.
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FIGURE A.4: Comparison of histograms of five different radiomic
features from the LV across centres and for different normalisation
methods. Histograms and separated for healthy (brighter colour)
and HCM subjects (lighter colour). Centres are presented in different
colours and different rows following the ordering in Table 4.2. The
first five rows correspond to methods without ComBat harmonisa-
tion, while the last five rows represent the same features with ComBat
harmonisation. The first five columns are distributions of features ex-
tracted from original images, while the last five are features extracted
after PLHM.
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FIGURE A.5: Balanced accuracy of random forest models when pre-
dicting the centre of origin of HCM subjects for first and second-order
texture features before and after the application of ComBat harmon-
isation. The row above corresponds to image preprocessing tech-
niques applied at the whole image level, while in the row below
they are applied at the ROI level. O: original images (without nor-
malisation), R: image intensity rescaling, N: image intensity normal-
isation, HM: histogram matching and PLHM: piecewise linear his-
togram matching. An “R.” in front of a method means that it is ap-
plied at the ROI level.
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FIGURE A.6: Comparison of balanced accuracy for models trained
with two different reference templates from Vall d’Hebron (VdH) and
Sagrada Familia (SF) on the HCM classification task. All models were
trained with a combination of first and second-order texture features
from all ROIs. The first column corresponds to models trained with
features extracted from Vall d’Hebron studies, while models in the
second column were trained with features from Sagrada Familia stud-
ies. The row above corresponds to image preprocessing techniques
applied at the whole image level, while in the row below they are ap-
plied at the ROI level. HCM: Hypertrophic cardiomyopathy, VdH:
Vall d’Hebron, SF: Sagrada Familia, HM: histogram matching and
PLHM: piecewise linear histogram matching. An “R.” in front of a
method means that it is applied at the ROI level.
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FIGURE A.7: Comparison of validation (same domain) and testing
(unseen centres) balanced accuracy for models trained with two dif-
ferent reference templates from Vall d’Hebron (VdH) and Sagrada Fa-
milia (SF) on the HCM classification task. Results are presented with-
out ComBat harmonisation. All models were trained with a combi-
nation of first and second order texture features from all ROIs. The
first column corresponds to models trained with features extracted
from Vall d’Hebron studies, while models in the second column were
trained with features from Sagrada Familia studies. The row above
corresponds to image preprocessing techniques applied at the whole
image level, while in the row below they are applied at the ROI level.
HCM: Hypertrophic cardiomyopathy, O: original images (without
normalisation), R: image intensity recaling, N: image intensity nor-
malisation, HM: histogram matching and PLHM: piecewise linear
histogram matching. An “R.” in front of a method means that it is
applied at ROI level.



83

Bibliography

[1] Hugo J. W. L. Aerts et al. “Decoding tumour phenotype by noninvasive imag-
ing using a quantitative radiomics approach”. In: Nature Communications 5.1
(2014). DOI: 10.1038/ncomms5006.

[2] Ehab A. AlBadawy, Ashirbani Saha, and Maciej A. Mazurowski. “Deep learn-
ing for segmentation of brain tumors: Impact of cross-institutional training
and testing”. en. In: Medical Physics 45.3 (2018), pp. 1150–1158. ISSN: 2473-
4209. DOI: 10.1002/mp.12752.

[3] Xènia Albà et al. “Automatic initialization and quality control of large-scale
cardiac MRI segmentations”. In: Medical Image Analysis 43 (Jan. 2018), pp. 129–
141. ISSN: 1361-8415. DOI: 10.1016/j.media.2017.10.001.

[4] Léo Andéol et al. “Learning Domain Invariant Representations by Joint Wasser-
stein Distance Minimization”. In: arXiv preprint arXiv:2106.04923 (June 2021).
DOI: 10.48550/arXiv.2106.04923.

[5] Michela Antonelli et al. “The Medical Segmentation Decathlon”. en. In: Na-
ture Communications 13.1 (July 2022). Number: 1 Publisher: Nature Publishing
Group, p. 4128. ISSN: 2041-1723. DOI: 10.1038/s41467-022-30695-9.

[6] Brian Avants, Nicholas J. Tustison, and Gang Song. “Advanced Normaliza-
tion Tools: V1.0”. In: The Insight Journal (July 2009). ISSN: 2327-770X. DOI: 10
.54294/uvnhin.

[7] Wenjia Bai et al. “Automated cardiovascular magnetic resonance image anal-
ysis with fully convolutional networks”. In: Journal of Cardiovascular Magnetic
Resonance 20.1 (Sept. 2018), p. 65. ISSN: 1532-429X. DOI: 10.1186/s12968-018
-0471-x.

[8] Wenjia Bai et al. “Multi-atlas segmentation with augmented features for car-
diac MR images”. In: Medical Image Analysis 19.1 (Jan. 2015), pp. 98–109. ISSN:
1361-8415. DOI: 10.1016/j.media.2014.09.005.

[9] Wenjia Bai et al. “Self-Supervised Learning for Cardiac MR Image Segmenta-
tion by Anatomical Position Prediction”. en. In: Medical Image Computing and
Computer Assisted Intervention - MICCAI 2019. Ed. by Dinggang Shen et al.
Lecture Notes in Computer Science. Cham: Springer International Publish-
ing, 2019, pp. 541–549. ISBN: 978-3-030-32245-8. DOI: 10.1007/978-3-030-32
245-8_60.

[10] Olivier Bernard et al. “Deep Learning Techniques for Automatic MRI Cardiac
Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?” In:
IEEE Transactions on Medical Imaging 37.11 (Nov. 2018), pp. 2514–2525. ISSN:
1558-254X. DOI: 10.1109/TMI.2018.2837502.

[11] Konstantinos Bousmalis et al. “Domain Separation Networks”. In: Advances
in Neural Information Processing Systems. Vol. 29. Curran Associates, Inc., 2016.

https://doi.org/10.1038/ncomms5006
https://doi.org/10.1002/mp.12752
https://doi.org/10.1016/j.media.2017.10.001
https://doi.org/10.48550/arXiv.2106.04923
https://doi.org/10.1038/s41467-022-30695-9
https://doi.org/10.54294/uvnhin
https://doi.org/10.54294/uvnhin
https://doi.org/10.1186/s12968-018-0471-x
https://doi.org/10.1186/s12968-018-0471-x
https://doi.org/10.1016/j.media.2014.09.005
https://doi.org/10.1007/978-3-030-32245-8_60
https://doi.org/10.1007/978-3-030-32245-8_60
https://doi.org/10.1109/TMI.2018.2837502


84 Bibliography

[12] Konstantinos Bousmalis et al. “Unsupervised Pixel-Level Domain Adapta-
tion With Generative Adversarial Networks”. In: Proceedings of the IEEE inter-
national conference on computer vision. 2017, pp. 3722–3731.

[13] L. Breiman. “Random Forests”. In: Machine Learning 45 (2001), pp. 5–32. DOI:
10.1023/A:1010933404324.

[14] Víctor M. Campello et al. “Combining Multi-Sequence and Synthetic Images
for Improved Segmentation of Late Gadolinium Enhancement Cardiac MRI”.
en. In: Statistical Atlases and Computational Models of the Heart. Multi-Sequence
CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. Ed. by
Mihaela Pop et al. Lecture Notes in Computer Science. Cham: Springer Inter-
national Publishing, 2020, pp. 290–299. ISBN: 978-3-030-39074-7. DOI: 10.100
7/978-3-030-39074-7_31.

[15] Víctor M. Campello et al. “Multi-Centre, Multi-Vendor and Multi-Disease
Cardiac Segmentation: The M&Ms Challenge”. In: IEEE Transactions on Med-
ical Imaging (2021). DOI: 10.1109/TMI.2021.3090082.

[16] DH Carr et al. “Gadolinium-DTPA as a contrast agent in MRI: initial clinical
experience in 20 patients”. In: American Journal of Roentgenology 143.2 (Aug.
1984), pp. 215–224. ISSN: 0361-803X. DOI: 10.2214/ajr.143.2.215.

[17] Alexandre Carré et al. “Standardization of brain MR images across machines
and protocols: bridging the gap for MRI-based radiomics”. In: Scientific Re-
ports 10.1 (2020). DOI: 10.1038/s41598-020-69298-z.

[18] Adam Carscadden, Michelle Noga, and Kumaradevan Punithakumar. “A
Deep Convolutional Neural Network Approach for the Segmentation of Car-
diac Structures from MRI Sequences”. en. In: Statistical Atlases and Computa-
tional Models of the Heart. M&Ms and EMIDEC Challenges. Ed. by Esther Puyol
Anton et al. Lecture Notes in Computer Science. Cham: Springer Interna-
tional Publishing, 2021, pp. 250–258. ISBN: 978-3-030-68107-4. DOI: 10.1007/9
78-3-030-68107-4_25.

[19] Irem Cetin et al. “A Radiomics Approach to Computer-Aided Diagnosis with
Cardiac Cine-MRI”. en. In: Statistical Atlases and Computational Models of the
Heart. ACDC and MMWHS Challenges. Ed. by Mihaela Pop et al. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2018, pp. 82–
90. ISBN: 978-3-319-75541-0. DOI: 10.1007/978-3-319-75541-0_9.

[20] Irem Cetin et al. “Radiomics Signatures of Cardiovascular Risk Factors in
Cardiac MRI: Results From the UK Biobank”. In: Frontiers in Cardiovascular
Medicine 7 (2020). ISSN: 2297-055X. DOI: 10.3389/fcvm.2020.591368.

[21] Agisilaos Chartsias et al. “Disentangled representation learning in cardiac
image analysis”. In: Medical Image Analysis 58 (Dec. 2019), p. 101535. DOI: 10
.1016/j.media.2019.101535.

[22] Avishek Chatterjee et al. “Creating Robust Predictive Radiomic Models for
Data From Independent Institutions Using Normalization”. In: IEEE Trans-
actions on Radiation and Plasma Medical Sciences 3.2 (2019), pp. 210–215. DOI:
10.1109/trpms.2019.2893860.

[23] Anika Cheerla and Olivier Gevaert. “Deep learning with multimodal repre-
sentation for pancancer prognosis prediction”. In: Bioinformatics 35.14 (July
2019), pp. i446–i454. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btz342.

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-030-39074-7_31
https://doi.org/10.1007/978-3-030-39074-7_31
https://doi.org/10.1109/TMI.2021.3090082
https://doi.org/10.2214/ajr.143.2.215
https://doi.org/10.1038/s41598-020-69298-z
https://doi.org/10.1007/978-3-030-68107-4_25
https://doi.org/10.1007/978-3-030-68107-4_25
https://doi.org/10.1007/978-3-319-75541-0_9
https://doi.org/10.3389/fcvm.2020.591368
https://doi.org/10.1016/j.media.2019.101535
https://doi.org/10.1016/j.media.2019.101535
https://doi.org/10.1109/trpms.2019.2893860
https://doi.org/10.1093/bioinformatics/btz342


Bibliography 85

[24] Chen Chen et al. “Deep Learning for Cardiac Image Segmentation: A Re-
view”. In: Frontiers in Cardiovascular Medicine 7 (2020). ISSN: 2297-055X. DOI:
10.3389/fcvm.2020.00025.

[25] Chen Chen et al. “Improving the Generalizability of Convolutional Neural
Network-Based Segmentation on CMR Images”. In: Frontiers in Cardiovascu-
lar Medicine 7 (2020). ISSN: 2297-055X. DOI: 10.3389/fcvm.2020.00105.

[26] Chen Chen et al. “Unsupervised Multi-modal Style Transfer for Cardiac MR
Segmentation”. en. In: Statistical Atlases and Computational Models of the Heart.
Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Chal-
lenges. Ed. by Mihaela Pop et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2020, pp. 209–219. ISBN: 978-3-030-39074-
7. DOI: 10.1007/978-3-030-39074-7_22.

[27] Cheng Chen et al. “Semantic-Aware Generative Adversarial Nets for Unsu-
pervised Domain Adaptation in Chest X-Ray Segmentation”. en. In: Machine
Learning in Medical Imaging. Ed. by Yinghuan Shi, Heung-Il Suk, and Mingxia
Liu. Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2018, pp. 143–151. ISBN: 978-3-030-00919-9. DOI: 10.1007/978-3-030
-00919-9_17.

[28] Veronika Cheplygina et al. “Transfer Learning for Multicenter Classification
of Chronic Obstructive Pulmonary Disease”. In: IEEE Journal of Biomedical and
Health Informatics 22.5 (Sept. 2018), pp. 1486–1496. ISSN: 2168-2208. DOI: 10.1
109/JBHI.2017.2769800.

[29] Brian Chu et al. “Best Practices for Fine-Tuning Visual Classifiers to New Do-
mains”. en. In: Computer Vision - ECCV 2016 Workshops. Ed. by Gang Hua and
Hervé Jégou. Lecture Notes in Computer Science. Cham: Springer Interna-
tional Publishing, 2016, pp. 435–442. ISBN: 978-3-319-49409-8. DOI: 10.1007/9
78-3-319-49409-8_34.

[30] Jorge Corral Acero et al. “A 2-Step Deep Learning Method with Domain
Adaptation for Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Mag-
netic Resonance Segmentation”. en. In: Statistical Atlases and Computational
Models of the Heart. M&Ms and EMIDEC Challenges. Ed. by Esther Puyol An-
ton et al. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2021, pp. 196–207. ISBN: 978-3-030-68107-4. DOI: 10.1007/978-3
-030-68107-4_20.

[31] Gabriela Csurka, ed. Domain Adaptation in Computer Vision Applications. en.
Advances in Computer Vision and Pattern Recognition. Cham: Springer In-
ternational Publishing, 2017. ISBN: 978-3-319-58346-4 978-3-319-58347-1. DOI:
10.1007/978-3-319-58347-1.

[32] R Da-Ano, D Visvikis, and M Hatt. “Harmonization strategies for multicen-
ter radiomics investigations”. In: Physics in Medicine & Biology 65.24 (2020),
24TR02. DOI: 10.1088/1361-6560/aba798.

[33] Wenyuan Dai et al. “Boosting for transfer learning”. In: Proceedings of the 24th
international conference on Machine learning. ICML ’07. New York, NY, USA:
Association for Computing Machinery, June 2007, pp. 193–200. ISBN: 978-1-
59593-793-3. DOI: 10.1145/1273496.1273521.

[34] Adelina Doltra et al. “Emerging concepts for myocardial late gadolinium en-
hancement MRI”. In: Current cardiology reviews 9.3 (2013), pp. 185–190.

https://doi.org/10.3389/fcvm.2020.00025
https://doi.org/10.3389/fcvm.2020.00105
https://doi.org/10.1007/978-3-030-39074-7_22
https://doi.org/10.1007/978-3-030-00919-9_17
https://doi.org/10.1007/978-3-030-00919-9_17
https://doi.org/10.1109/JBHI.2017.2769800
https://doi.org/10.1109/JBHI.2017.2769800
https://doi.org/10.1007/978-3-319-49409-8_34
https://doi.org/10.1007/978-3-319-49409-8_34
https://doi.org/10.1007/978-3-030-68107-4_20
https://doi.org/10.1007/978-3-030-68107-4_20
https://doi.org/10.1007/978-3-319-58347-1
https://doi.org/10.1088/1361-6560/aba798
https://doi.org/10.1145/1273496.1273521


86 Bibliography

[35] Jeff Donahue et al. “DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition”. en. In: Proceedings of the 31st International Con-
ference on Machine Learning. PMLR, Jan. 2014, pp. 647–655.

[36] Qi Dou et al. “Domain Generalization via Model-Agnostic Learning of Se-
mantic Features”. In: Advances in Neural Information Processing Systems. Vol. 32.
Curran Associates, Inc., 2019.

[37] Qi Dou et al. “Unsupervised Cross-Modality Domain Adaptation of Con-
vNets for Biomedical Image Segmentations with Adversarial Loss”. In: (2018),
pp. 691–697. DOI: 10.24963/ijcai.2018/96.

[38] FDA. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical De-
vices. May 2022. URL: https://www.fda.gov/medical-devices/software-m
edical-device-samd/artificial-intelligence-and-machine-learning-
aiml-enabled-medical-devices (visited on 11/22/2022).

[39] Virginia Fernandez et al. “Can Segmentation Models Be Trained with Fully
Synthetically Generated Data?” en. In: Simulation and Synthesis in Medical
Imaging. Ed. by Can Zhao et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2022, pp. 79–90. ISBN: 978-3-031-16980-9.
DOI: 10.1007/978-3-031-16980-9_8.

[40] Jean-Christophe Ferré, Mark S. Shiroishi, and Meng Law. “Advanced Tech-
niques Using Contrast Media in Neuroimaging”. English. In: Magnetic Res-
onance Imaging Clinics 20.4 (Nov. 2012), pp. 699–713. ISSN: 1064-9689, 1557-
9786. DOI: 10.1016/j.mric.2012.07.007.

[41] Jean-Philippe Fortin et al. “Removing inter-subject technical variability in
magnetic resonance imaging studies”. In: NeuroImage 132 (2016), pp. 198–212.
DOI: 10.1016/j.neuroimage.2016.02.036.

[42] A.F. Frangi et al. “Automatic construction of multiple-object three-dimensional
statistical shape models: application to cardiac modeling”. en. In: IEEE Trans-
actions on Medical Imaging 21.9 (Sept. 2002), pp. 1151–1166. ISSN: 0278-0062.
DOI: 10.1109/TMI.2002.804426.

[43] Yabo Fu et al. “Deep learning in medical image registration: a review”. en. In:
Physics in Medicine & Biology 65.20 (Oct. 2020), 20TR01. ISSN: 0031-9155. DOI:
10.1088/1361-6560/ab843e.

[44] Peter M. Full et al. “Studying Robustness of Semantic Segmentation Under
Domain Shift in Cardiac MRI”. en. In: Statistical Atlases and Computational
Models of the Heart. M&Ms and EMIDEC Challenges. Ed. by Esther Puyol An-
ton et al. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2021, pp. 238–249. ISBN: 978-3-030-68107-4. DOI: 10.1007/978-3
-030-68107-4_24.

[45] Francesco Galati, Sébastien Ourselin, and Maria A. Zuluaga. “From Accuracy
to Reliability and Robustness in Cardiac Magnetic Resonance Image Segmen-
tation: A Review”. en. In: Applied Sciences 12.8 (Jan. 2022). Number: 8 Pub-
lisher: Multidisciplinary Digital Publishing Institute, p. 3936. ISSN: 2076-3417.
DOI: 10.3390/app12083936.

[46] Yaroslav Ganin et al. “Domain-Adversarial Training of Neural Networks”.
en. In: Domain Adaptation in Computer Vision Applications. Ed. by Gabriela
Csurka. Advances in Computer Vision and Pattern Recognition. Cham: Springer
International Publishing, 2017, pp. 189–209. ISBN: 978-3-319-58347-1. DOI: 10
.1007/978-3-319-58347-1_10.

https://doi.org/10.24963/ijcai.2018/96
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://doi.org/10.1007/978-3-031-16980-9_8
https://doi.org/10.1016/j.mric.2012.07.007
https://doi.org/10.1016/j.neuroimage.2016.02.036
https://doi.org/10.1109/TMI.2002.804426
https://doi.org/10.1088/1361-6560/ab843e
https://doi.org/10.1007/978-3-030-68107-4_24
https://doi.org/10.1007/978-3-030-68107-4_24
https://doi.org/10.3390/app12083936
https://doi.org/10.1007/978-3-319-58347-1_10
https://doi.org/10.1007/978-3-319-58347-1_10


Bibliography 87

[47] Priyanka Garg and Trisha Jain. “A Comparative Study on Histogram Equal-
ization and Cumulative Histogram Equalization”. en. In: International Journal
of New Technology and Research 3.9 (Sept. 2017), p. 263242. ISSN: 2454-4116.

[48] Muhammad Ghifary et al. “Deep Reconstruction-Classification Networks for
Unsupervised Domain Adaptation”. en. In: Computer Vision - ECCV 2016. Ed.
by Bastian Leibe et al. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2016, pp. 597–613. ISBN: 978-3-319-46493-0. DOI: 10
.1007/978-3-319-46493-0_36.

[49] Muhammad Ghifary et al. “Domain Generalization for Object Recognition
with Multi-task Autoencoders”. In: 2015 IEEE International Conference on Com-
puter Vision (ICCV). Dec. 2015, pp. 2551–2559. DOI: 10.1109/ICCV.2015.293.

[50] Muhammad Ghifary et al. “Scatter Component Analysis: A Unified Frame-
work for Domain Adaptation and Domain Generalization”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 39.7 (July 2017), pp. 1414–
1430. ISSN: 1939-3539. DOI: 10.1109/TPAMI.2016.2599532.

[51] Vahid Ghodrati et al. “Retrospective respiratory motion correction in cardiac
cine MRI reconstruction using adversarial autoencoder and unsupervised
learning”. en. In: NMR in Biomedicine 34.2 (2021), e4433. ISSN: 1099-1492. DOI:
10.1002/nbm.4433.

[52] Judy Wawira Gichoya et al. “AI recognition of patient race in medical imag-
ing: a modelling study”. English. In: The Lancet Digital Health 4.6 (June 2022),
e406–e414. ISSN: 2589-7500. DOI: 10.1016/S2589-7500(22)00063-2.

[53] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural
Information Processing Systems 27. Ed. by Z. Ghahramani et al. Curran Asso-
ciates, Inc., 2014, pp. 2672–2680.

[54] Ritu Gothwal, Shailendra Tiwari, and Shivendra Shivani. “Computational
Medical Image Reconstruction Techniques: A Comprehensive Review”. en.
In: Archives of Computational Methods in Engineering 29.7 (Nov. 2022), pp. 5635–
5662. ISSN: 1886-1784. DOI: 10.1007/s11831-022-09785-w.

[55] Joost J.M. van Griethuysen et al. “Computational Radiomics System to De-
code the Radiographic Phenotype”. In: Cancer Research 77.21 (2017), e104–
e107. DOI: 10.1158/0008-5472.can-17-0339.

[56] Hao Guan and Mingxia Liu. “Domain Adaptation for Medical Image Anal-
ysis: A Survey”. In: IEEE Transactions on Biomedical Engineering 69.3 (2022),
pp. 1173–1185. DOI: 10.1109/TBME.2021.3117407.

[57] Yanming Guo et al. “Deep learning for visual understanding: A review”. en.
In: Neurocomputing. Recent Developments on Deep Big Vision 187 (Apr. 2016),
pp. 27–48. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2015.09.116.

[58] Muhammad Shafiq ul Hassan et al. “Voxel size and gray level normalization
of CT radiomic features in lung cancer”. In: Scientific Reports 8.1 (2018). DOI:
10.1038/s41598-018-28895-9.

[59] Xingxin He et al. “Multi-Modal Retinal Image Classification With Modality-
Specific Attention Network”. In: IEEE Transactions on Medical Imaging 40.6
(June 2021), pp. 1591–1602. ISSN: 1558-254X. DOI: 10.1109/TMI.2021.305995
6.

https://doi.org/10.1007/978-3-319-46493-0_36
https://doi.org/10.1007/978-3-319-46493-0_36
https://doi.org/10.1109/ICCV.2015.293
https://doi.org/10.1109/TPAMI.2016.2599532
https://doi.org/10.1002/nbm.4433
https://doi.org/10.1016/S2589-7500(22)00063-2
https://doi.org/10.1007/s11831-022-09785-w
https://doi.org/10.1158/0008-5472.can-17-0339
https://doi.org/10.1109/TBME.2021.3117407
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1038/s41598-018-28895-9
https://doi.org/10.1109/TMI.2021.3059956
https://doi.org/10.1109/TMI.2021.3059956


88 Bibliography

[60] Center for Devices and Radiological Health. Digital Health Software Precerti-
fication (Pre-Cert) Pilot Program. en. Sept. 2022. URL: https://www.fda.go
v/medical-devices/digital-health-center-excellence/digital-hea
lth- software- precertification- pre- cert- pilot- program (visited on
02/28/2023).

[61] Judy Hoffman et al. “Simultaneous Deep Transfer Across Domains and Tasks”.
en. In: Domain Adaptation in Computer Vision Applications. Ed. by Gabriela
Csurka. Advances in Computer Vision and Pattern Recognition. Cham: Springer
International Publishing, 2017, pp. 173–187. ISBN: 978-3-319-58347-1. DOI: 10
.1007/978-3-319-58347-1_9.

[62] Shoubo Hu et al. “Domain Generalization via Multidomain Discriminant
Analysis”. en. In: Proceedings of The 35th Uncertainty in Artificial Intelligence
Conference. PMLR, Aug. 2020, pp. 292–302.

[63] Xiaoqiong Huang et al. “Style-Invariant Cardiac Image Segmentation with
Test-Time Augmentation”. en. In: Statistical Atlases and Computational Models
of the Heart. M&Ms and EMIDEC Challenges. Ed. by Esther Puyol Anton et al.
Lecture Notes in Computer Science. Cham: Springer International Publish-
ing, 2021, pp. 305–315. ISBN: 978-3-030-68107-4. DOI: 10.1007/978-3-030-68
107-4_31.

[64] Xun Huang and Serge Belongie. “Arbitrary Style Transfer in Real-Time with
Adaptive Instance Normalization”. In: 2017 IEEE International Conference on
Computer Vision (ICCV). 2017, pp. 1510–1519. DOI: 10.1109/ICCV.2017.167.

[65] Lars J. Isaksson et al. “Effects of MRI image normalization techniques in
prostate cancer radiomics”. In: Physica Medica 71 (2020), pp. 7–13. DOI: 10
.1016/j.ejmp.2020.02.007.

[66] Fabian Isensee et al. “Automatic Cardiac Disease Assessment on cine-MRI via
Time-Series Segmentation and Domain Specific Features”. en. In: Statistical
Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges.
Ed. by Mihaela Pop et al. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 120–129. ISBN: 978-3-319-75541-0. DOI: 10
.1007/978-3-319-75541-0_13.

[67] Fabian Isensee et al. “nnU-Net: a self-configuring method for deep learning-
based biomedical image segmentation”. In: Nature Methods 18.2 (Dec. 2020),
pp. 203–211. ISSN: 1548-7105. DOI: 10.1038/s41592-020-01008-z.

[68] Mehran Javanmardi and Tolga Tasdizen. “Domain adaptation for biomedical
image segmentation using adversarial training”. In: 2018 IEEE 15th Interna-
tional Symposium on Biomedical Imaging (ISBI 2018). Apr. 2018, pp. 554–558.
DOI: 10.1109/ISBI.2018.8363637.

[69] W. Evan Johnson, Cheng Li, and Ariel Rabinovic. “Adjusting batch effects in
microarray expression data using empirical Bayes methods”. In: Biostatistics
8.1 (2006), pp. 118–127. DOI: 10.1093/biostatistics/kxj037.

[70] Konstantinos Kamnitsas et al. “Unsupervised Domain Adaptation in Brain
Lesion Segmentation with Adversarial Networks”. en. In: Information Pro-
cessing in Medical Imaging. Ed. by Marc Niethammer et al. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2017, pp. 597–
609. ISBN: 978-3-319-59050-9. DOI: 10.1007/978-3-319-59050-9_47.

https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-pilot-program
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-pilot-program
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-pilot-program
https://doi.org/10.1007/978-3-319-58347-1_9
https://doi.org/10.1007/978-3-319-58347-1_9
https://doi.org/10.1007/978-3-030-68107-4_31
https://doi.org/10.1007/978-3-030-68107-4_31
https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1016/j.ejmp.2020.02.007
https://doi.org/10.1016/j.ejmp.2020.02.007
https://doi.org/10.1007/978-3-319-75541-0_13
https://doi.org/10.1007/978-3-319-75541-0_13
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1109/ISBI.2018.8363637
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1007/978-3-319-59050-9_47


Bibliography 89

[71] Justin Ker et al. “Deep Learning Applications in Medical Image Analysis”. In:
IEEE Access 6 (2018), pp. 9375–9389. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2
017.2788044.

[72] Firas Khader et al. “Adaptive Preprocessing for Generalization in Cardiac
MR Image Segmentation”. en. In: Statistical Atlases and Computational Models
of the Heart. M&Ms and EMIDEC Challenges. Ed. by Esther Puyol Anton et al.
Lecture Notes in Computer Science. Cham: Springer International Publish-
ing, 2021, pp. 269–276. ISBN: 978-3-030-68107-4. DOI: 10.1007/978-3-030-68
107-4_27.

[73] Mahendra Khened, Varghese Alex Kollerathu, and Ganapathy Krishnamurthi.
“Fully convolutional multi-scale residual DenseNets for cardiac segmenta-
tion and automated cardiac diagnosis using ensemble of classifiers”. In: Med-
ical Image Analysis 51 (Jan. 2019), pp. 21–45. ISSN: 1361-8415. DOI: 10.1016/j
.media.2018.10.004.

[74] Prannay Khosla et al. “Supervised Contrastive Learning”. In: Advances in
Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020,
pp. 18661–18673.

[75] Stefan Klein et al. “elastix: A Toolbox for Intensity-Based Medical Image Reg-
istration”. In: IEEE Transactions on Medical Imaging 29.1 (Jan. 2010), pp. 196–
205. ISSN: 1558-254X. DOI: 10.1109/TMI.2009.2035616.

[76] Fanwei Kong and Shawn C. Shadden. “A Generalizable Deep-Learning Ap-
proach for Cardiac Magnetic Resonance Image Segmentation Using Image
Augmentation and Attention U-Net”. en. In: Statistical Atlases and Computa-
tional Models of the Heart. M&Ms and EMIDEC Challenges. Ed. by Esther Puyol
Anton et al. Lecture Notes in Computer Science. Cham: Springer Interna-
tional Publishing, 2021, pp. 287–296. ISBN: 978-3-030-68107-4. DOI: 10.1007/9
78-3-030-68107-4_29.

[77] Edward Korot et al. “Predicting sex from retinal fundus photographs using
automated deep learning”. en. In: Scientific Reports 11.1 (May 2021). Number:
1 Publisher: Nature Publishing Group, p. 10286. ISSN: 2045-2322. DOI: 10.10
38/s41598-021-89743-x.

[78] Tanja Kurzendorfer et al. “Left ventricle segmentation in LGE-MRI using
multiclass learning”. In: Medical Imaging 2019: Image Processing. Vol. 10949.
SPIE, Mar. 2019, pp. 585–590. DOI: 10.1117/12.2511610.

[79] Kaisar Kushibar et al. “Supervised Domain Adaptation for Automatic Sub-
cortical Brain Structure Segmentation with Minimal User Interaction”. en.
In: Scientific Reports 9.1 (May 2019). Number: 1 Publisher: Nature Publishing
Group, p. 6742. ISSN: 2045-2322. DOI: 10.1038/s41598-019-43299-z.

[80] Thomas Küstner et al. “CINENet: deep learning-based 3D cardiac CINE MRI
reconstruction with multi-coil complex-valued 4D spatio-temporal convolu-
tions”. en. In: Scientific Reports 10.1 (Aug. 2020). Number: 1 Publisher: Nature
Publishing Group, p. 13710. ISSN: 2045-2322. DOI: 10.1038/s41598-020-705
51-8.

[81] Maxime W. Lafarge et al. “Domain-Adversarial Neural Networks to Address
the Appearance Variability of Histopathology Images”. en. In: Deep Learning
in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.
Ed. by M. Jorge Cardoso et al. Lecture Notes in Computer Science. Cham:

https://doi.org/10.1109/ACCESS.2017.2788044
https://doi.org/10.1109/ACCESS.2017.2788044
https://doi.org/10.1007/978-3-030-68107-4_27
https://doi.org/10.1007/978-3-030-68107-4_27
https://doi.org/10.1016/j.media.2018.10.004
https://doi.org/10.1016/j.media.2018.10.004
https://doi.org/10.1109/TMI.2009.2035616
https://doi.org/10.1007/978-3-030-68107-4_29
https://doi.org/10.1007/978-3-030-68107-4_29
https://doi.org/10.1038/s41598-021-89743-x
https://doi.org/10.1038/s41598-021-89743-x
https://doi.org/10.1117/12.2511610
https://doi.org/10.1038/s41598-019-43299-z
https://doi.org/10.1038/s41598-020-70551-8
https://doi.org/10.1038/s41598-020-70551-8


90 Bibliography

Springer International Publishing, 2017, pp. 83–91. ISBN: 978-3-319-67558-9.
DOI: 10.1007/978-3-319-67558-9_10.

[82] Alain Lalande et al. “Emidec: A Database Usable for the Automatic Evalua-
tion of Myocardial Infarction from Delayed-Enhancement Cardiac MRI”. en.
In: Data 5.4 (Dec. 2020). Number: 4 Publisher: Multidisciplinary Digital Pub-
lishing Institute, p. 89. ISSN: 2306-5729. DOI: 10.3390/data5040089.

[83] Joonsang Lee et al. “Radiomics feature robustness as measured using an MRI
phantom”. In: Scientific Reports 11.1 (2021). DOI: 10.1038/s41598-021-83593
-3.

[84] Constance D. Lehman et al. “Diagnostic Accuracy of Digital Screening Mam-
mography With and Without Computer-Aided Detection”. In: JAMA Internal
Medicine 175.11 (Nov. 2015), pp. 1828–1837. ISSN: 2168-6106. DOI: 10.1001/ja
mainternmed.2015.5231.

[85] Karim Lekadir et al. “FUTURE-AI: Guiding Principles and Consensus Rec-
ommendations for Trustworthy Artificial Intelligence in Medical Imaging”.
In: arXiv preprint arXiv:2109.09658 (Sept. 2021). DOI: 10.48550/arXiv.2109.0
9658.

[86] Chenxin Li et al. “Domain generalization on medical imaging classification
using episodic training with task augmentation”. In: Computers in Biology and
Medicine 141 (Feb. 2022), p. 105144. ISSN: 0010-4825. DOI: 10.1016/j.compbi
omed.2021.105144.

[87] Haoliang Li et al. “Domain Generalization with Adversarial Feature Learn-
ing”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
June 2018, pp. 5400–5409. DOI: 10.1109/CVPR.2018.00566.

[88] Hongwei Li, Jianguo Zhang, and Bjoern Menze. “Generalisable Cardiac Struc-
ture Segmentation via Attentional and Stacked Image Adaptation”. en. In:
Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC
Challenges. Ed. by Esther Puyol Anton et al. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2021, pp. 297–304. ISBN: 978-
3-030-68107-4. DOI: 10.1007/978-3-030-68107-4_30.

[89] Hongwei Li, Andrii Zhygallo, and Bjoern Menze. “Automatic Brain Struc-
tures Segmentation Using Deep Residual Dilated U-Net”. en. In: Brainlesion:
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Ed. by Alessan-
dro Crimi et al. Lecture Notes in Computer Science. Cham: Springer Interna-
tional Publishing, 2019, pp. 385–393. ISBN: 978-3-030-11723-8. DOI: 10.1007/9
78-3-030-11723-8_39.

[90] Lei Li et al. “Random Style Transfer Based Domain Generalization Networks
Integrating Shape and Spatial Information”. en. In: Statistical Atlases and Com-
putational Models of the Heart. M&Ms and EMIDEC Challenges. Ed. by Esther
Puyol Anton et al. Lecture Notes in Computer Science. Cham: Springer Inter-
national Publishing, 2021, pp. 208–218. ISBN: 978-3-030-68107-4. DOI: 10.100
7/978-3-030-68107-4_21.

[91] Ya Li et al. “Deep Domain Generalization via Conditional Invariant Adver-
sarial Networks”. en. In: Computer Vision - ECCV 2018. Ed. by Vittorio Ferrari
et al. Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2018, pp. 647–663. ISBN: 978-3-030-01267-0. DOI: 10.1007/978-3-030
-01267-0_38.

https://doi.org/10.1007/978-3-319-67558-9_10
https://doi.org/10.3390/data5040089
https://doi.org/10.1038/s41598-021-83593-3
https://doi.org/10.1038/s41598-021-83593-3
https://doi.org/10.1001/jamainternmed.2015.5231
https://doi.org/10.1001/jamainternmed.2015.5231
https://doi.org/10.48550/arXiv.2109.09658
https://doi.org/10.48550/arXiv.2109.09658
https://doi.org/10.1016/j.compbiomed.2021.105144
https://doi.org/10.1016/j.compbiomed.2021.105144
https://doi.org/10.1109/CVPR.2018.00566
https://doi.org/10.1007/978-3-030-68107-4_30
https://doi.org/10.1007/978-3-030-11723-8_39
https://doi.org/10.1007/978-3-030-11723-8_39
https://doi.org/10.1007/978-3-030-68107-4_21
https://doi.org/10.1007/978-3-030-68107-4_21
https://doi.org/10.1007/978-3-030-01267-0_38
https://doi.org/10.1007/978-3-030-01267-0_38


Bibliography 91

[92] Ya Li et al. “Domain Generalization via Conditional Invariant Representa-
tions”. en. In: Proceedings of the AAAI Conference on Artificial Intelligence 32.1
(Apr. 2018). ISSN: 2374-3468. DOI: 10.1609/aaai.v32i1.11682.

[93] Ming-Yu Liu and Oncel Tuzel. “Coupled Generative Adversarial Networks”.
In: Advances in Neural Information Processing Systems. Vol. 29. Curran Asso-
ciates, Inc., 2016.

[94] Xiao Liu et al. “Disentangled Representations for Domain-Generalized Car-
diac Segmentation”. en. In: Statistical Atlases and Computational Models of the
Heart. M&Ms and EMIDEC Challenges. Ed. by Esther Puyol Anton et al. Lec-
ture Notes in Computer Science. Cham: Springer International Publishing,
2021, pp. 187–195. ISBN: 978-3-030-68107-4. DOI: 10.1007/978-3-030-68107
-4_19.

[95] Xiao Liu et al. “Semi-supervised Meta-learning with Disentanglement for
Domain-Generalised Medical Image Segmentation”. en. In: Medical Image Com-
puting and Computer Assisted Intervention – MICCAI 2021. Ed. by Marleen de
Bruijne et al. Lecture Notes in Computer Science. Cham: Springer Interna-
tional Publishing, 2021, pp. 307–317. ISBN: 978-3-030-87196-3. DOI: 10.1007/9
78-3-030-87196-3_29.

[96] Xiao Liu et al. “vMFNet: Compositionality Meets Domain-Generalised Seg-
mentation”. en. In: Medical Image Computing and Computer Assisted Interven-
tion - MICCAI 2022. Ed. by Linwei Wang et al. Lecture Notes in Computer
Science. Cham: Springer Nature Switzerland, 2022, pp. 704–714. ISBN: 978-3-
031-16449-1. DOI: 10.1007/978-3-031-16449-1_67.

[97] Zhendong Liu et al. “Remove Appearance Shift for Ultrasound Image Seg-
mentation via Fast and Universal Style Transfer”. In: 2020 IEEE 17th Interna-
tional Symposium on Biomedical Imaging (ISBI). Apr. 2020, pp. 1824–1828. DOI:
10.1109/ISBI45749.2020.9098457.

[98] Mingsheng Long et al. “Deep Transfer Learning with Joint Adaptation Net-
works”. en. In: Proceedings of the 34th International Conference on Machine Learn-
ing. PMLR, July 2017, pp. 2208–2217.

[99] Mingsheng Long et al. “Learning Transferable Features with Deep Adapta-
tion Networks”. en. In: Proceedings of the 32nd International Conference on Ma-
chine Learning. PMLR, June 2015, pp. 97–105.

[100] Mingsheng Long et al. “Unsupervised Domain Adaptation with Residual
Transfer Networks”. In: Advances in Neural Information Processing Systems.
Vol. 29. Curran Associates, Inc., 2016.

[101] Pablo Arratia López et al. “WarpPINN: Cine-MR image registration with
physics-informed neural networks”. In: arXiv preprint arXiv:2211.12549 (Nov.
2022). DOI: 10.48550/arXiv.2211.12549.

[102] Chunwei Ma, Zhanghexuan Ji, and Mingchen Gao. “Neural Style Transfer
Improves 3D Cardiovascular MR Image Segmentation on Inconsistent Data”.
en. In: Medical Image Computing and Computer Assisted Intervention – MICCAI
2019. Ed. by Dinggang Shen et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2019, pp. 128–136. ISBN: 978-3-030-32245-
8. DOI: 10.1007/978-3-030-32245-8_15.

https://doi.org/10.1609/aaai.v32i1.11682
https://doi.org/10.1007/978-3-030-68107-4_19
https://doi.org/10.1007/978-3-030-68107-4_19
https://doi.org/10.1007/978-3-030-87196-3_29
https://doi.org/10.1007/978-3-030-87196-3_29
https://doi.org/10.1007/978-3-031-16449-1_67
https://doi.org/10.1109/ISBI45749.2020.9098457
https://doi.org/10.48550/arXiv.2211.12549
https://doi.org/10.1007/978-3-030-32245-8_15


92 Bibliography

[103] Jun Ma. “Histogram Matching Augmentation for Domain Adaptation with
Application to Multi-centre, Multi-vendor and Multi-disease Cardiac Image
Segmentation”. en. In: Statistical Atlases and Computational Models of the Heart.
M&Ms and EMIDEC Challenges. Ed. by Esther Puyol Anton et al. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2021,
pp. 177–186. ISBN: 978-3-030-68107-4. DOI: 10.1007/978-3-030-68107-4_18.

[104] Ali Madani et al. “Semi-supervised learning with generative adversarial net-
works for chest X-ray classification with ability of data domain adaptation”.
In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).
Apr. 2018, pp. 1038–1042. DOI: 10.1109/ISBI.2018.8363749.

[105] Faisal Mahmood, Richard Chen, and Nicholas J. Durr. “Unsupervised Re-
verse Domain Adaptation for Synthetic Medical Images via Adversarial Train-
ing”. In: IEEE Transactions on Medical Imaging 37.12 (Dec. 2018), pp. 2572–2581.
ISSN: 1558-254X. DOI: 10.1109/TMI.2018.2842767.

[106] Carlos Martin-Isla et al. “Image-Based Cardiac Diagnosis With Machine Learn-
ing: A Review”. In: Frontiers in Cardiovascular Medicine 7 (Jan. 2020), p. 1. ISSN:
2297-055X. DOI: 10.3389/fcvm.2020.00001.

[107] Ninareh Mehrabi et al. “A Survey on Bias and Fairness in Machine Learning”.
In: ACM Computing Surveys 54.6 (July 2021), 115:1–115:35. ISSN: 0360-0300.
DOI: 10.1145/3457607.

[108] Xueyan Mei et al. “RadImageNet: An Open Radiologic Deep Learning Re-
search Dataset for Effective Transfer Learning”. In: Radiology: Artificial Intelli-
gence 4.5 (Sept. 2022), e210315. DOI: 10.1148/ryai.210315.

[109] Rosa-María Menchón-Lara et al. “Efficient convolution-based pairwise elas-
tic image registration on three multimodal similarity metrics”. en. In: Signal
Processing 202 (Jan. 2023), p. 108771. ISSN: 0165-1684. DOI: 10.1016/j.sigpro
.2022.108771.

[110] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. “Domain Gen-
eralization via Invariant Feature Representation”. en. In: Proceedings of the
30th International Conference on Machine Learning. PMLR, Feb. 2013, pp. 10–
18.

[111] László G. Nyúl and Jayaram K. Udupa. “On standardizing the MR image
intensity scale”. In: Magnetic Resonance in Medicine 42.6 (1999), pp. 1072–1081.
DOI: 10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2
-m.

[112] Ziad Obermeyer and Ezekiel J. Emanuel. “Predicting the Future — Big Data,
Machine Learning, and Clinical Medicine”. In: New England Journal of Medicine
375.13 (Sept. 2016), pp. 1216–1219. ISSN: 0028-4793. DOI: 10.1056/NEJMp1606
181.

[113] Ozan Oktay et al. “Attention U-Net: Learning Where to Look for the Pan-
creas”. In: arXiv preprint arXiv:1804.03999 (May 2018). DOI: 10.48550/arXiv
.1804.03999.

[114] Ozan Oktay et al. “Multi-input Cardiac Image Super-Resolution Using Con-
volutional Neural Networks”. en. In: Medical Image Computing and Computer-
Assisted Intervention - MICCAI 2016. Ed. by Sebastien Ourselin et al. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2016,
pp. 246–254. ISBN: 978-3-319-46726-9. DOI: 10.1007/978-3-319-46726-9_29.

https://doi.org/10.1007/978-3-030-68107-4_18
https://doi.org/10.1109/ISBI.2018.8363749
https://doi.org/10.1109/TMI.2018.2842767
https://doi.org/10.3389/fcvm.2020.00001
https://doi.org/10.1145/3457607
https://doi.org/10.1148/ryai.210315
https://doi.org/10.1016/j.sigpro.2022.108771
https://doi.org/10.1016/j.sigpro.2022.108771
https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m
https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m
https://doi.org/10.1056/NEJMp1606181
https://doi.org/10.1056/NEJMp1606181
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.1007/978-3-319-46726-9_29


Bibliography 93

[115] Natsuko Onishi et al. “Ultrafast dynamic contrast-enhanced breast MRI may
generate prognostic imaging markers of breast cancer”. en. In: Breast Cancer
Research 22.1 (May 2020), p. 58. ISSN: 1465-542X. DOI: 10.1186/s13058-020-
01292-9.

[116] Maxime Oquab et al. “Learning and Transferring Mid-level Image Represen-
tations Using Convolutional Neural Networks”. In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition. June 2014, pp. 1717–1724. DOI: 10.11
09/CVPR.2014.222.

[117] Fanny Orlhac et al. “How can we combat multicenter variability in MR ra-
diomics? Validation of a correction procedure”. In: European Radiology (2020).
DOI: 10.1007/s00330-020-07284-9.

[118] Catherine M. Otto. The Practice of Clinical Echocardiography. ClinicalKey 2012.
Elsevier/Saunders, 2012. ISBN: 9781437727654.

[119] Sinno Jialin Pan et al. “Domain Adaptation via Transfer Component Anal-
ysis”. In: IEEE Transactions on Neural Networks 22.2 (Feb. 2011), pp. 199–210.
ISSN: 1941-0093. DOI: 10.1109/TNN.2010.2091281.

[120] Mario Parreño, Roberto Paredes, and Alberto Albiol. “Deidentifying MRI
Data Domain by Iterative Backpropagation”. en. In: Statistical Atlases and Com-
putational Models of the Heart. M&Ms and EMIDEC Challenges. Ed. by Esther
Puyol Anton et al. Lecture Notes in Computer Science. Cham: Springer Inter-
national Publishing, 2021, pp. 277–286. ISBN: 978-3-030-68107-4. DOI: 10.100
7/978-3-030-68107-4_28.

[121] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[122] Antonio Pepe et al. “Detection, segmentation, simulation and visualization of
aortic dissections: A review”. In: Medical Image Analysis 65 (2020), p. 101773.
ISSN: 1361-8415. DOI: https://doi.org/10.1016/j.media.2020.101773.

[123] Christian S. Perone et al. “Unsupervised domain adaptation for medical imag-
ing segmentation with self-ensembling”. en. In: NeuroImage 194 (July 2019),
pp. 1–11. ISSN: 1053-8119. DOI: 10.1016/j.neuroimage.2019.03.026.

[124] Caroline Petitjean et al. “Right ventricle segmentation from cardiac MRI: A
collation study”. In: Medical Image Analysis 19.1 (2015), pp. 187 –202. ISSN:
1361-8415. DOI: https://doi.org/10.1016/j.media.2014.10.004.

[125] Chi-Hieu Pham et al. “Multiscale brain MRI super-resolution using deep 3D
convolutional networks”. en. In: Computerized Medical Imaging and Graphics
77 (Oct. 2019), p. 101647. ISSN: 0895-6111. DOI: 10.1016/j.compmedimag.201
9.101647.

[126] Guillem Pons-Lladó, ed. Protocols for Cardiac MR and CT. en. Cham: Springer
International Publishing, 2016. ISBN: 978-3-319-30830-2 978-3-319-30831-9. DOI:
10.1007/978-3-319-30831-9.

[127] Ferran Prados et al. “Spinal cord grey matter segmentation challenge”. en. In:
NeuroImage 152 (May 2017), pp. 312–329. ISSN: 1053-8119. DOI: 10.1016/j.ne
uroimage.2017.03.010.

[128] Esmeralda Ruiz Pujadas et al. “Prediction of incident cardiovascular events
using machine learning and CMR radiomics”. en. In: European Radiology 33.5
(May 2023), pp. 3488–3500. ISSN: 1432-1084. DOI: 10.1007/s00330-022-0932
3-z.

https://doi.org/10.1186/s13058-020-01292-9
https://doi.org/10.1186/s13058-020-01292-9
https://doi.org/10.1109/CVPR.2014.222
https://doi.org/10.1109/CVPR.2014.222
https://doi.org/10.1007/s00330-020-07284-9
https://doi.org/10.1109/TNN.2010.2091281
https://doi.org/10.1007/978-3-030-68107-4_28
https://doi.org/10.1007/978-3-030-68107-4_28
https://doi.org/https://doi.org/10.1016/j.media.2020.101773
https://doi.org/10.1016/j.neuroimage.2019.03.026
https://doi.org/https://doi.org/10.1016/j.media.2014.10.004
https://doi.org/10.1016/j.compmedimag.2019.101647
https://doi.org/10.1016/j.compmedimag.2019.101647
https://doi.org/10.1007/978-3-319-30831-9
https://doi.org/10.1016/j.neuroimage.2017.03.010
https://doi.org/10.1016/j.neuroimage.2017.03.010
https://doi.org/10.1007/s00330-022-09323-z
https://doi.org/10.1007/s00330-022-09323-z


94 Bibliography

[129] Esther Puyol-Antón et al. “Fairness in Cardiac Magnetic Resonance Imaging:
Assessing Sex and Racial Bias in Deep Learning-Based Segmentation”. In:
Frontiers in Cardiovascular Medicine 9 (2022). ISSN: 2297-055X. DOI: 10.3389/f
cvm.2022.859310.

[130] Esther Puyol-Antón et al. “Fairness in Cardiac MR Image Analysis: An In-
vestigation of Bias Due to Data Imbalance in Deep Learning Based Segmen-
tation”. en. In: Medical Image Computing and Computer Assisted Intervention -
MICCAI 2021. Ed. by Marleen de Bruijne et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2021, pp. 413–423. ISBN:
978-3-030-87199-4. DOI: 10.1007/978-3-030-87199-4_39.

[131] Perry Radau et al. “Evaluation Framework for Algorithms Segmenting Short
Axis Cardiac MRI.” In: The MIDAS Journal (July 2009). DOI: 10.54294/g80ruo.

[132] Zahra Raisi-Estabragh et al. “Repeatability of Cardiac Magnetic Resonance
Radiomics: A Multi-Centre Multi-Vendor Test-Retest Study”. In: Frontiers in
Cardiovascular Medicine 7 (2020). DOI: 10.3389/fcvm.2020.586236.

[133] Regulatory framework proposal on artificial intelligence | Shaping Europe’s digital
future. en. Feb. 2023. URL: https://digital-strategy.ec.europa.eu/en/po
licies/regulatory-framework-ai (visited on 02/28/2023).

[134] Jacob C. Reinhold et al. “Evaluating the impact of intensity normalization on
MR image synthesis”. In: Medical Imaging 2019: Image Processing. Ed. by Elsa
D. Angelini and Bennett A. Landman. SPIE, 2019. DOI: 10.1117/12.2513089.

[135] Stephan R. Richter et al. “Playing for Data: Ground Truth from Computer
Games”. en. In: Computer Vision – ECCV 2016. Ed. by Bastian Leibe et al. Lec-
ture Notes in Computer Science. Cham: Springer International Publishing,
2016, pp. 102–118. ISBN: 978-3-319-46475-6. DOI: 10.1007/978-3-319-46475
-6_7.

[136] Stephen J. Riederer, Eric G. Stinson, and Paul T. Weavers. “Technical Aspects
of Contrast-enhanced MR Angiography: Current Status and New Applica-
tions”. In: Magnetic Resonance in Medical Sciences 17.1 (2018), pp. 3–12. DOI:
10.2463/mrms.rev.2017-0053.

[137] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: Lecture Notes in Computer
Science. Springer International Publishing, 2015, pp. 234–241. DOI: 10.1007/9
78-3-319-24574-4_28.

[138] German Ros et al. “The SYNTHIA Dataset: A Large Collection of Synthetic
Images for Semantic Segmentation of Urban Scenes”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[139] Mina Saber, Dina Abdelrauof, and Mustafa Elattar. “Multi-center, Multi-vendor,
and Multi-disease Cardiac Image Segmentation Using Scale-Independent Multi-
gate UNET”. en. In: Statistical Atlases and Computational Models of the Heart.
M&Ms and EMIDEC Challenges. Ed. by Esther Puyol Anton et al. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2021,
pp. 259–268. ISBN: 978-3-030-68107-4. DOI: 10.1007/978-3-030-68107-4_26.

[140] Veit Sandfort et al. “Reliable segmentation of 2D cardiac magnetic resonance
perfusion image sequences using time as the 3rd dimension”. en. In: European
Radiology 31.6 (June 2021), pp. 3941–3950. ISSN: 1432-1084. DOI: 10.1007/s00
330-020-07474-5.

https://doi.org/10.3389/fcvm.2022.859310
https://doi.org/10.3389/fcvm.2022.859310
https://doi.org/10.1007/978-3-030-87199-4_39
https://doi.org/10.54294/g80ruo
https://doi.org/10.3389/fcvm.2020.586236
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://doi.org/10.1117/12.2513089
https://doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.2463/mrms.rev.2017-0053
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-68107-4_26
https://doi.org/10.1007/s00330-020-07474-5
https://doi.org/10.1007/s00330-020-07474-5


Bibliography 95

[141] Cian M. Scannell, Amedeo Chiribiri, and Mitko Veta. “Domain-Adversarial
Learning for Multi-Centre, Multi-Vendor, and Multi-Disease Cardiac MR Im-
age Segmentation”. en. In: Statistical Atlases and Computational Models of the
Heart. M&Ms and EMIDEC Challenges. Ed. by Esther Puyol Anton et al. Lec-
ture Notes in Computer Science. Cham: Springer International Publishing,
2021, pp. 228–237. ISBN: 978-3-030-68107-4. DOI: 10.1007/978-3-030-68107
-4_23.

[142] Thomas Schaffter et al. “Evaluation of Combined Artificial Intelligence and
Radiologist Assessment to Interpret Screening Mammograms”. In: JAMA Net-
work Open 3.3 (Mar. 2020), e200265. ISSN: 2574-3805. DOI: 10.1001/jamanetw
orkopen.2020.0265.

[143] Maxime Sermesant et al. “Applications of artificial intelligence in cardiovas-
cular imaging”. en. In: Nature Reviews Cardiology 18.8 (Aug. 2021). Number: 8
Publisher: Nature Publishing Group, pp. 600–609. ISSN: 1759-5010. DOI: 10.1
038/s41569-021-00527-2.

[144] Divya Shanmugam et al. “Better Aggregation in Test-Time Augmentation”.
en. In: Proceedings of the IEEE international conference on computer vision. 2021,
pp. 1214–1223.

[145] Avan Suinesiaputra et al. “A collaborative resource to build consensus for
automated left ventricular segmentation of cardiac MR images”. In: Medical
Image Analysis 18.1 (Jan. 2014), pp. 50–62. ISSN: 1361-8415. DOI: 10.1016/j.m
edia.2013.09.001.

[146] Baochen Sun and Kate Saenko. “Deep CORAL: Correlation Alignment for
Deep Domain Adaptation”. en. In: Computer Vision - ECCV 2016 Workshops.
Ed. by Gang Hua and Hervé Jégou. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2016, pp. 443–450. ISBN: 978-3-319-
49409-8. DOI: 10.1007/978-3-319-49409-8_35.

[147] Huaiqiang Sun et al. “Psychoradiologic Utility of MR Imaging for Diagno-
sis of Attention Deficit Hyperactivity Disorder: A Radiomics Analysis”. In:
Radiology 287.2 (2018), pp. 620–630. DOI: 10.1148/radiol.2017170226.

[148] Qian Tao et al. “Deep Learning-based Method for Fully Automatic Quan-
tification of Left Ventricle Function from Cine MR Images: A Multivendor,
Multicenter Study”. In: Radiology 290.1 (2019), pp. 81–88. DOI: 10.1148/radi
ol.2018180513.

[149] Daniel Shu Wei Ting et al. “Development and Validation of a Deep Learn-
ing System for Diabetic Retinopathy and Related Eye Diseases Using Retinal
Images From Multiethnic Populations With Diabetes”. In: JAMA 318.22 (Dec.
2017), pp. 2211–2223. ISSN: 0098-7484. DOI: 10.1001/jama.2017.18152.

[150] Antonio Torralba and Alexei A. Efros. “Unbiased look at dataset bias”. In:
CVPR 2011. June 2011, pp. 1521–1528. DOI: 10.1109/CVPR.2011.5995347.

[151] Phi Vu Tran. “A Fully Convolutional Neural Network for Cardiac Segmenta-
tion in Short-Axis MRI”. In: arXiv preprint arXiv:1604.00494 (Apr. 2017). DOI:
10.48550/arXiv.1604.00494.

[152] Alberto Traverso et al. “Repeatability and Reproducibility of Radiomic Fea-
tures: A Systematic Review”. In: International Journal of Radiation Oncology *
Biology * Physics 102.4 (2018), pp. 1143–1158. ISSN: 0360-3016. DOI: 10.1016/j
.ijrobp.2018.05.053.

https://doi.org/10.1007/978-3-030-68107-4_23
https://doi.org/10.1007/978-3-030-68107-4_23
https://doi.org/10.1001/jamanetworkopen.2020.0265
https://doi.org/10.1001/jamanetworkopen.2020.0265
https://doi.org/10.1038/s41569-021-00527-2
https://doi.org/10.1038/s41569-021-00527-2
https://doi.org/10.1016/j.media.2013.09.001
https://doi.org/10.1016/j.media.2013.09.001
https://doi.org/10.1007/978-3-319-49409-8_35
https://doi.org/10.1148/radiol.2017170226
https://doi.org/10.1148/radiol.2018180513
https://doi.org/10.1148/radiol.2018180513
https://doi.org/10.1001/jama.2017.18152
https://doi.org/10.1109/CVPR.2011.5995347
https://doi.org/10.48550/arXiv.1604.00494
https://doi.org/10.1016/j.ijrobp.2018.05.053
https://doi.org/10.1016/j.ijrobp.2018.05.053


96 Bibliography

[153] Eric Tzeng et al. “Adversarial Discriminative Domain Adaptation”. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017,
pp. 2962–2971. DOI: 10.1109/CVPR.2017.316.

[154] Eric Tzeng et al. “Deep Domain Confusion: Maximizing for Domain Invari-
ance”. In: arXiv preprint arXiv:1412.3474 (Dec. 2014). DOI: 10.48550/arXiv.1
412.3474.

[155] Johannes Uhlig et al. “Gadolinium-based Contrast Agents for Cardiac MRI:
Use of Linear and Macrocyclic Agents with Associated Safety Profile from
154 779 European Patients”. In: Radiology: Cardiothoracic Imaging 2.5 (Oct. 2020),
e200102. DOI: 10.1148/ryct.2020200102.

[156] Hyemin Um et al. “Impact of image preprocessing on the scanner depen-
dence of multi-parametric MRI radiomic features and covariate shift in multi-
institutional glioblastoma datasets”. In: Physics in Medicine & Biology 64.16
(2019), p. 165011. DOI: 10.1088/1361-6560/ab2f44.

[157] Roshan Reddy Upendra, Richard Simon, and Cristian A Linte. “A Deep Learn-
ing Framework for Image Super-Resolution for Late Gadolinium Enhanced
Cardiac MRI”. In: 2021 Computing in Cardiology (CinC). Vol. 48. Sept. 2021,
pp. 1–4. DOI: 10.23919/CinC53138.2021.9662790.

[158] Roshan Reddy Upendra, Richard Simon, and Cristian A. Linte. “Joint deep
learning framework for image registration and segmentation of late gadolin-
ium enhanced MRI and cine cardiac MRI”. In: Medical Imaging 2021: Image-
Guided Procedures, Robotic Interventions, and Modeling. Vol. 11598. SPIE, Feb.
2021, pp. 96–103. DOI: 10.1117/12.2581386.

[159] M. Usman et al. “Free breathing whole-heart 3D CINE MRI with self-gated
Cartesian trajectory”. en. In: Magnetic Resonance Imaging 38 (May 2017), pp. 129–
137. ISSN: 0730-725X. DOI: 10.1016/j.mri.2016.12.021.

[160] Stéfan van der Walt et al. “scikit-image: image processing in Python”. In: PeerJ
2 (2014), e453. DOI: 10.7717/peerj.453.

[161] Christopher L. Welle, Flavius F. Guglielmo, and Sudhakar K. Venkatesh. “MRI
of the liver: choosing the right contrast agent”. en. In: Abdominal Radiology
45.2 (Feb. 2020), pp. 384–392. ISSN: 2366-0058. DOI: 10.1007/s00261-019-02
162-5.

[162] Chenchu Xu et al. “Contrast agent-free synthesis and segmentation of is-
chemic heart disease images using progressive sequential causal GANs”. en.
In: Medical Image Analysis 62 (May 2020), p. 101668. ISSN: 1361-8415. DOI: 10
.1016/j.media.2020.101668.

[163] Zheng Xu et al. “Exploiting Low-Rank Structure from Latent Domains for
Domain Generalization”. en. In: Computer Vision - ECCV 2014. Ed. by David
Fleet et al. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2014, pp. 628–643. ISBN: 978-3-319-10578-9. DOI: 10.1007/978-3
-319-10578-9_41.

[164] Jun Yang, Rong Yan, and Alexander G. Hauptmann. “Cross-domain video
concept detection using adaptive svms”. In: Proceedings of the 15th ACM inter-
national conference on Multimedia. MM ’07. New York, NY, USA: Association
for Computing Machinery, Sept. 2007, pp. 188–197. ISBN: 978-1-59593-702-5.
DOI: 10.1145/1291233.1291276.

https://doi.org/10.1109/CVPR.2017.316
https://doi.org/10.48550/arXiv.1412.3474
https://doi.org/10.48550/arXiv.1412.3474
https://doi.org/10.1148/ryct.2020200102
https://doi.org/10.1088/1361-6560/ab2f44
https://doi.org/10.23919/CinC53138.2021.9662790
https://doi.org/10.1117/12.2581386
https://doi.org/10.1016/j.mri.2016.12.021
https://doi.org/10.7717/peerj.453
https://doi.org/10.1007/s00261-019-02162-5
https://doi.org/10.1007/s00261-019-02162-5
https://doi.org/10.1016/j.media.2020.101668
https://doi.org/10.1016/j.media.2020.101668
https://doi.org/10.1007/978-3-319-10578-9_41
https://doi.org/10.1007/978-3-319-10578-9_41
https://doi.org/10.1145/1291233.1291276


Bibliography 97

[165] Li Yao et al. “A Strong Baseline for Domain Adaptation and Generalization
in Medical Imaging”. In: arXiv preprint arXiv:1904.01638 (Apr. 2019). DOI: 10
.48550/arXiv.1904.01638.

[166] Qi Ying et al. “Multi-Modal Data Analysis for Alzheimer’s Disease Diagno-
sis: An Ensemble Model Using Imagery and Genetic Features”. In: 2021 43rd
Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC). Nov. 2021, pp. 3586–3591. DOI: 10.1109/EMBC46164.2021.96
30174.

[167] Stephen S F Yip and Hugo J W L Aerts. “Applications and limitations of ra-
diomics”. In: Physics in Medicine and Biology 61.13 (2016), R150–R166. DOI:
10.1088/0031-9155/61/13/r150.

[168] Tom Young et al. “Recent Trends in Deep Learning Based Natural Language
Processing [Review Article]”. In: IEEE Computational Intelligence Magazine 13.3
(Aug. 2018), pp. 55–75. ISSN: 1556-6048. DOI: 10.1109/MCI.2018.2840738.

[169] Kun-Hsing Yu, Andrew L. Beam, and Isaac S. Kohane. “Artificial intelligence
in healthcare”. en. In: Nature Biomedical Engineering 2.10 (Oct. 2018). Number:
10 Publisher: Nature Publishing Group, pp. 719–731. ISSN: 2157-846X. DOI:
10.1038/s41551-018-0305-z.

[170] Kun-Hsing Yu and Isaac S. Kohane. “Framing the challenges of artificial intel-
ligence in medicine”. en. In: BMJ Quality & Safety 28.3 (Mar. 2019). Publisher:
BMJ Publishing Group Ltd Section: Viewpoint, pp. 238–241. ISSN: 2044-5415,
2044-5423. DOI: 10.1136/bmjqs-2018-008551.

[171] Qian Yue et al. “Cardiac Segmentation from LGE MRI Using Deep Neural
Network Incorporating Shape and Spatial Priors”. en. In: Medical Image Com-
puting and Computer Assisted Intervention – MICCAI 2019. Ed. by Dinggang
Shen et al. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2019, pp. 559–567. ISBN: 978-3-030-32245-8. DOI: 10.1007/978-3
-030-32245-8_62.

[172] Fatemeh Zabihollahy et al. “Fully automated segmentation of left ventricular
scar from 3D late gadolinium enhancement magnetic resonance imaging us-
ing a cascaded multi-planar U-Net (CMPU-Net)”. en. In: Medical Physics 47.4
(2020), pp. 1645–1655. ISSN: 2473-4209. DOI: 10.1002/mp.14022.

[173] John R. Zech et al. “Variable generalization performance of a deep learning
model to detect pneumonia in chest radiographs: A cross-sectional study”.
en. In: PLOS Medicine 15.11 (Nov. 2018), e1002683. ISSN: 1549-1676. DOI: 10.1
371/journal.pmed.1002683.

[174] Jing Zhang et al. “Recent Advances in Transfer Learning for Cross-Dataset
Visual Recognition: A Problem-Oriented Perspective”. In: ACM Computing
Surveys 52.1 (Feb. 2019), 7:1–7:38. ISSN: 0360-0300. DOI: 10.1145/3291124.

[175] Yao Zhang et al. “Semi-supervised Cardiac Image Segmentation via Label
Propagation and Style Transfer”. en. In: Statistical Atlases and Computational
Models of the Heart. M&Ms and EMIDEC Challenges. Ed. by Esther Puyol An-
ton et al. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2021, pp. 219–227. ISBN: 978-3-030-68107-4. DOI: 10.1007/978-3
-030-68107-4_22.

https://doi.org/10.48550/arXiv.1904.01638
https://doi.org/10.48550/arXiv.1904.01638
https://doi.org/10.1109/EMBC46164.2021.9630174
https://doi.org/10.1109/EMBC46164.2021.9630174
https://doi.org/10.1088/0031-9155/61/13/r150
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1038/s41551-018-0305-z
https://doi.org/10.1136/bmjqs-2018-008551
https://doi.org/10.1007/978-3-030-32245-8_62
https://doi.org/10.1007/978-3-030-32245-8_62
https://doi.org/10.1002/mp.14022
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1145/3291124
https://doi.org/10.1007/978-3-030-68107-4_22
https://doi.org/10.1007/978-3-030-68107-4_22


98 Bibliography

[176] Yue Zhang et al. “Task Driven Generative Modeling for Unsupervised Do-
main Adaptation: Application to X-ray Image Segmentation”. en. In: Medi-
cal Image Computing and Computer Assisted Intervention - MICCAI 2018. Ed. by
Alejandro F. Frangi et al. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 599–607. ISBN: 978-3-030-00934-2. DOI: 10
.1007/978-3-030-00934-2_67.

[177] Fan Zhou et al. “Domain generalization via optimal transport with metric
similarity learning”. en. In: Neurocomputing 456 (Oct. 2021), pp. 469–480. ISSN:
0925-2312. DOI: 10.1016/j.neucom.2020.09.091.

[178] Jun-Yan Zhu et al. “Unpaired image-to-image translation using cycle-consistent
adversarial networks”. In: Proceedings of the IEEE international conference on
computer vision. 2017, pp. 2223–2232.

[179] Xiahai Zhuang. “Multivariate Mixture Model for Cardiac Segmentation from
Multi-Sequence MRI”. en. In: Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2016. Ed. by Sebastien Ourselin et al. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2016, pp. 581–
588. ISBN: 978-3-319-46723-8. DOI: 10.1007/978-3-319-46723-8_67.

[180] Xiahai Zhuang. “Multivariate Mixture Model for Myocardial Segmentation
Combining Multi-Source Images”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 41.12 (Dec. 2019), pp. 2933–2946. ISSN: 1939-3539. DOI:
10.1109/TPAMI.2018.2869576.

[181] Xiahai Zhuang et al. “Cardiac segmentation on late gadolinium enhance-
ment MRI: A benchmark study from multi-sequence cardiac MR segmenta-
tion challenge”. en. In: Medical Image Analysis 81 (Oct. 2022), p. 102528. ISSN:
1361-8415. DOI: 10.1016/j.media.2022.102528.

[182] Alex Zwanenburg et al. “The Image Biomarker Standardization Initiative:
Standardized Quantitative Radiomics for High-Throughput Image-based Phe-
notyping”. In: Radiology 295.2 (2020), pp. 328–338. ISSN: 1527-1315. DOI: 10.1
148/radiol.2020191145.

https://doi.org/10.1007/978-3-030-00934-2_67
https://doi.org/10.1007/978-3-030-00934-2_67
https://doi.org/10.1016/j.neucom.2020.09.091
https://doi.org/10.1007/978-3-319-46723-8_67
https://doi.org/10.1109/TPAMI.2018.2869576
https://doi.org/10.1016/j.media.2022.102528
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1148/radiol.2020191145


Generalizability in
multi-centre cardiac
image analysis with
machine learning

In recent years we are seeing how Artificial Intelligence
(AI) is changing the world with powerful tools capable
of solving complex tasks. However, to incorporate
these tools into our daily life, we need to understand
them better and identify potential failures.

In this Thesis, we provide a self-contained overview
of current challenges and applications of AI in car-
diovascular imaging research and present a series of
results targeted at solving the domain shift problem,
that causes models to be biased on new domains.

If securely implemented, AI has the potential to
democratize complex tools and algorithms that are
usually in a few hands.




