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Scientific research in plasmonic metasurfaces has been widely widespread in the last
years, motivated by the recent advances in the nanofabrication field and the increasing
demand for high throughput sensing platforms. The recent advances in electronics,
microfluidics, and signal processing have enabled the complete development of highly
integrated devices with broad application potential. However, the progress observed from
a fabrication point of view has been remarkable, led by the potential benefits metamaterials
can offer in plasmonic sensing: sensor miniaturization, multiplexing opportunities, and
extreme sensitivity biodetection. Although conventional top-down approaches,
i.e., electron-beam lithography, have been extensively employed to develop plasmonic
metasurfaces for biosensing, lithography-free bottom-up nanofabrication strategies based
on nano-patterned/sculpted thin-films are candidates to surpass the limitations of top-
down lithographic techniques with large-scale and high-throughput fabrication processes
for 2D and 3D plasmonic metasurfaces over a broad material set. This perspective paper
focuses on the challenges and opportunities to achieve lithography-free plasmonic
metasurfaces by nano-patterned/sculpted thin films to conduct scalable and high-
throughput plasmonic metamaterials for sensitive biosensing platforms.
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INTRODUCTION

Nowadays, plasmonic sensors are the most widely used and commercialized label-free optical
biosensors and have become a widespread tool for studying chemical and biochemical interactions
(Liu et al., 2020). The main advantages of plasmonic sensors are the potential for direct, label-free,
and real-time monitoring of molecular interactions and high-throughput surface
biofunctionalization strategies. They allow direct and label-free detection of analytes with real-
time kinetic information from the molecular interaction under analysis without amplification or
pretreatment of the sample (Lopez et al., 2017). These advantageous features have widely widespread
the novel applications of plasmonic biosensors, including new research fields from cell culture and
bioprocess monitoring (Vila et al., 2021) to theranostics (Hassan et al., 2021).

The working principle of plasmonic sensing has been extensively described and reviewed over the
last years (Mejía-Salazar et al., 2018). Briefly, plasmons are collective oscillations of free electrons at
the interface between a thin metallic layer and a dielectric. Plasmons occur when an incident light
beam with a characteristic momentum, polarization, and wavelength hits a thin metallic layer, and a
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portion of the light energy couples with the surface electrons of
the metallic layer, which move due to excitation. The plasmonic
oscillation generates a highly sensitive electromagnetic field (EM)
to surface changes that decay exponentially on adjacent media (Li
et al., 2014). Usually, plasmonic biosensors based on planar thin
films are based on the extensively described prism (Phan et al.,
2020), grating (Rossi et al., 2018), and waveguide (Gauglitz, 2020)
coupling configurations.

Unlike planar thinmetallic films, it is possible to overcome the use
of coupling elements to generate plasmons by using metallic
nanostructures in the subwavelength size; these nanostructures can
be localized or can be arranged on 2D arrays of nanoantennas
(known as plasmonic metasurfaces), and can be fabricated by
single-layer metallic films and a combination of metallic and
dielectric films. The plasmon resonances in nanostructured
materials arise from the light scattering of sub-wavelength
conductive nanostructures with particular absorption/reflection

bands that mainly depend on the geometry and material of the
nanostructure. Analogous to plasmons in planar thin films, nano-
plasmons are highly sensitive to the refractive index of the
surrounding media and are suitable for direct, label-free, and
sensitive biosensing applications (López-Muñoz et al., 2017). The
shorter evanescent decay length (up to one order of magnitude
shorter) of nano-plasmons makes them more sensitive to thin
biorecognition events, making them superior for biodetection of
low-molecular-weight analytes (Lopez-Muñoz et al., 2021). The
last has been demonstrated over various plasmonic metasurfaces
with a biosensing performance above one order of magnitude and
further compared to conventional plasmonic sensors based on flat
thin layers over the last years. Additionally, as has been previously
demonstrated, it is possible to modulate the evanescent field decay
length on arrays of nanoantennas varying the incident angle of light
by Rayleigh-Wood anomalies photonic phenomena (Giannini et al.,
2011). Consequently, plasmonic metasurfaces can detect different

FIGURE 1 | Schematic illustration of conventional lithographic nanofabrication to create highly ordered metamaterials and the lithography-free nanofabrication by
nano-patterned/sculpted thin films to develop quasi-orderedmetamaterials. (A) Schematic diagram representing different conventional lithographic methods from left to
right: Laser/E-beam lithography, nanostencil lithography, and nanoimprint lithography. The insert shows an example of a plasmonic color filter based on highly ordered
plasmonic metamaterials. Adapted and reproduced with permission from Zhao et al. (2017) and Si et al. (2013). Image © MDPI and RSC. (B) Schematic diagram
representation of lithography free methods for developing quasi-ordered metamaterials from left to right: Thermal dewetting and glancing angle deposition. The insert
shows the chiral plasmonic nanospirals fabrication by glanced angle deposition. Adapted and reproduced with permission from Furusawa and Kan (2020). Image ©
MDPI.
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biorecognition events over a broader range of biolayer thicknesses
(Lopez-Muñoz et al., 2021).

In the last years, the efforts in plasmonic metasurfaces for
biosensing have been mainly focused on the design and
nanofabrication of novel, high-throughput, and large-scale
plasmonic nanoantennas with innovative designs that usually
couple different photonic phenomena to enhance their sensing
performance, which can be later incorporated into biosensing
platforms. Highly ordered plasmonic nanostructures can
promote the generation of plasmonic surface lattice
resonances (SLR). SLR couple the localized plasmon
resonances associated with individual metallic nanostructures,
which leads to an exciting phenomenon that drastically narrows
the plasmonic resonances due to the coupling with neighbor
nanostructures reinforcing or enhancing the resonance between
them (Kravets et al., 2018). Consequently, longer evanescent
decay lengths and bulk refractive index sensitivity are achieved,
which can be highly attractive to detecting large analyte targets
(Li et al., 2015). Top-down nanofabrication methods (like laser/
e-beam lithography) are still the gold standard for
nanoantennas fabrication. Recent approaches offer scalable,
high-throughput nanofabrication (see Figure 1A) like
nanostencil lithography based on shadow-masked nano-
pattering and nanoimprint lithography (Su et al., 2021),
where nano-patterning is based on thermal or mechanical
deformation of imprint materials (Oh D. K. et al., 2021).
Although the previously described processes have a high
potential to achieve scalable and cost-effective
nanofabrication at the wafer scale, these processes maintain
the following main challenge: a master nano-mold/pattern is
required to transfer metasurfaces with an associated high cost.

Thermal dewetting (TDW) and glancing angle deposition
(GLAD) are alternative bottom-up nanofabrication techniques
to nanopattern/sculpt thin films. These techniques do not
require master nano-mold/patterns; consequently, they can
achieve lithography-free large-scale plasmonic metasurfaces
(Figure 1B). TDW and GLAD generate quasi-ordered
plasmonic metasurfaces compared to high-order metasurfaces
achieved by conventional lithographic methods. Quasi-ordered
metasurfaces usually present wider plasmonic bands with
shorter evanescent decay lengths and reduced bulk refractive
index, the last due to multiple resonant coupling between the
adjacent neighbors. Short evanescent decay length implies higher
surface sensitivity for small analyte targets (Li et al., 2015). GLAD
sculpts nanostructures in a single fabrication step; the
nanostructures generate during the deposition of the material
(Badshah et al., 2020). Meanwhile, thermal dewetting generates
large-scale metallic nanostructures by post-thermal annealing of
deposited metallic thin films (Qiu et al., 2018). Finally, the
conventional lithographic techniques have benefited from
GLAD and TDW in developing novel, highly ordered complex
3D metallic nanostructures with hyperbolic dispersion or chirality
for biosensing (Ai et al., 2018). We highlight the most relevant
advances in the last few years in developing plasmonic
metasurfaces/nanosurfaces by nano-patter/sculpting of thin films
with relevant biosensing applications.We discuss these techniques’
potential challenges and capabilities to achieve cost-effective, large-

scale, high-throughput plasmonic metamaterials for biosensing on
a single-step fabrication process.

BREAKTHROUGHS IN PLASMONIC
METASURFACES BY GLANCING ANGLE
DEPOSITION AND THERMAL DEWETTING
FOR BIOSENSING

Plasmonic Metasurfaces by Thermal
Dewetting for Biosensing
TDW represents the most straightforward approach to
nanopattern metallic thin films. TDW promotes nanoislands
formation, taking advantage of the poor thin metallic films’
wettability/adhesion on dielectric substrates. Metallic atoms in
thin metallic films tend to bind to each other rather than the
substrate atoms; this behavior favors the growth of three-
dimensional islands by a thermal annealing process (Bhalla
et al., 2019a). The nanoislands’ geometry, size, and
distribution depend mainly on the following aspects: used
metal, layer thicknesses, and temperature (Aráujo et al., 2016;
Quan et al., 2017). Plasmonic metasurfaces by TDW for
biosensing usually use gold as plasmonic material mainly due
to their excellent chemical stability and well-established
biointerface generation by thiol chemistry. However, silver
possesses the highest plasmonic activity among all the noble
metals despite its limited chemical stability (Cheng et al., 2015).
Silver represents an economically attractive material for
generating plasmonic metasurfaces by TDW due to noticeable
differences in materials costs and energy costs, with lower
annealing times and temperatures to form low dispersion
nano-domes/islands than gold (Oh H. et al., 2021; Quan et al.,
2017; Sudheer et al., 2017). There have been proposed different
strategies to enhance the chemical stability of silver while taking
advantage of its potential benefits compared to gold; these
strategies are mainly based on protective layers or alloys.

Protective layers have to be carefully selected, considering
these layers can severely decrease the sensing performance of the
silver nanostructures mainly due to plasmonic damping
(Therrien et al., 2019). Recently, a titanium overlayer has been
proposed to overcome the oxidative susceptibility of silver
nanoislands with a slight increase in plasmonic sensing
performance. The proposed titanium protective layer promotes
galvanic coupling in the interface between the metals to minimize
silver oxidation while increasing the adhesion of silver
nanostructures to the dielectric substrate (Bhalla et al., 2019b).
This approach achieved a biosensing performance up to the
femtomolar level using physical adsorption for biodetection.
Physical absorption biofunctionalization was selected mainly
due to the titanium oxide formation by the galvanic coupling
effect. However, as previously described, physical absorption
biofunctionalization lacks high-throughput biosensing assays
(Zhang et al., 2016). A thin gold overlayer below 4 nm could
enable thiol chemistry on the silver-titanium nanostructures to
generate robust biointerfaces with minimal impact on plasmonic
sensing performance (Guner et al., 2017).
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On the other hand, gold-silver alloys improve the chemical
stability of silver-based plasmonic nanostructures and allow
spectral tunability of the plasmonic band. The silver-gold mass
ratio influences the spectral position of the plasmonic band (Qiu
et al., 2018; Hwang et al., 2019). In gold-silver alloy-based
plasmonic metasurfaces, plasmon-enhanced fluorescence
phenomena can exploit its spectral tunability. Achieving the
maximum fluorescent enhancement requires the full coupling
between the plasmonic band of the nanostructure and the
fluorescent label excitation band (Li et al., 2017). Gold-silver
nano-domes/islands with a high silver or copper content could be
used as building blocks to obtain nanoporous plasmonic
metamaterials. They can enhance more than one order of
magnitude biosensing performance, mainly due to a higher
surface area and a high density of hot spots (Garoli et al.,
2019). Nanoporous gold can be spectrally tuned by varying
the etching conditions like temperature, time, or etchant
concentration (Koya et al., 2021).

Plasmonic Metasurfaces by Glancing Angle
Deposition for Biosensing
GLAD is a thin film deposition technique where the atoms flux of
the deposited material arrives in a tilted substrate under rotation; the
tilt angle is usually above 75° to maximize the self-shadowing effect
and promotes nanodomes/islands nucleation (Bronicki et al., 2022).
This shadowing effect causes nanopillar-like growth of the material
layer (Taschuk et al., 2010). GLAD allows the fabrication of many
plasmonic nanostructures by controlling different deposition
parameters, such as the deposition angle of the substrate, the
direction and velocity of substrate rotation, and deposition rate.
The substrate’s tilt anglemainly affects the plasmonic nanostructures
’ size, interspace, and growth angle for a fixed substrate rotation
speed (2–20 rpm); meanwhile, a low substrate rotation rate
promotes the formation of nanohelix with chiral plasmonic
activity (Abbasian et al., 2016; Jen et al., 2016). The precise
control and the combination of the different deposition
parameters allow changing the final geometry of the
nanostructures. Consequently, GLAD is a highly scalable and
high-throughput technique that allows the nanosculpt of
plasmonic metamaterials in a single process.

Although there are limited reports of GLAD’s plasmonic
nanostructures compared to TDW for biosensing, some
demonstrate GLAD’s potential performance and benefits. The
most remarkable report from Zandieh et al. (2018) utilizes silver
nanocolumns obtained by GLAD to detect endotoxins in buffer
media with a competitive limit of detection in the pM range. They
generate a self-assembledmonolayer to protect silver from oxidation
and create a biointerface by carbodiimide crosslinking. This
approach demonstrates high stability over time with a robust
biointerface with high specificity. Another exciting report from
Kim et al. (2015) implies using oblique angle deposition, a
variation of GLAD without azimuthal rotation at a fixed tilt
sample angle of 80° to create nanoporous gold or nanoroughness
in conventional thin flat films. These plasmonic substrates with top
nanoroughness demonstrate a 2-fold improvement in biosensing
performance under attenuated total internal reflection configuration

due to the generation of nanoplasmons. These results show the
potential benefits even for conventional plasmonics of GLAD.

Bioanalytical Applications
Although many of the reported biosensing applications based
on plasmonic metamaterials obtained by GLAD and TDW
still remain at a proof-of-concept level (mainly GLAD),
promising results have been recently reported in fields
ranging from food/agricultural monitoring to disease
diagnostics. Besides the sensitivity issues that may be a
limiting factor in some applications, especially those related
to clinical diagnosis, the main problems are usually associated
with the specificity and selectivity of the bioassays and, most
important, the application to the biodetection in whole
complex samples without previous pretreatment steps. The
last advances in surface chemistry and biotechnology can help
solve these challenges to achieve real-life applications with
novel biointerfaces with superior antifouling properties and
new recognition biomolecules.

The use of metaplasmonic-based biosensors for food,
environmental, and pharmaceutical analysis is desirable for day-to-
day decentralized monitoring and their desirable benefits for
developing Lab-on-a-chip (LOC) and Point-of-Care (POC) devices.
Mycotoxins are a relevant detection target in food safety, considering
they negatively impact human and animal health. Nabok et al. (2019)
proposed a combination of attenuated total internal reflection (prism
coupling) with gold plasmonicmetasurfaces obtained by TDW for the
detection of mycotoxins, with a highly competitive limit of detection
(LOD) of only 0.01 ng/ml in a direct immunoassay using “half”
antibodies by cutting di-sulfide bonds with 2-mercaptoethylamine.
These “half” antibodies can be directly covalent immobilized to the
gold surface, taking advantage of the thiol groups simplifying the
creation of the biointerfaces, and enhancing the biodetection
sensitivity by decreasing the biorecognition events thickness. In
environmental analysis, Qiu et al. (2020) have recently
demonstrated the detection of total bioaerosols from real samples
obtained in different locations around Switzerland. Bioaerosols are a
complex mixture of viruses, toxins, and allergens, with a relevant
influence on human health. TDW gold nanostructures were coupled
in a differential interferometric detection scheme and possess
succinimidyl ester groups. In contact with amine groups present in
bioaerosols components, these functional groups crosslink and create
amide bonds linking the bioaerosols to the gold nanostructures. They
achieved a LOD of up to ≈0.5 cells/ml using bacteria such as E. coli as
a model.

On the other hand, the results recently published in the clinical
diagnosis are encouraging for developing biosensors for the
biomarkers detection of cardiovascular diseases, e.g. myocardial
infarction. Xu et al. (2020) have demonstrated the detection of
cardiac troponin I by an infrared plasmon-enhanced fluorescent
platform using gold plasmonic nanostructures by TDW. The
approach detected concentrations down to 0.01 ng/ml in 10 µl
human serum samples with a sensitivity of 100% and specificity of
95.54% in myocardial infarction patients and negative control
samples. These results contribute to the design of POC devices and
novel plasmonic metamaterials for precision medicine. Finally, more
than 2 years ago have been since the World Health Organization
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(WHO) declared the novel COVID-19 as a pandemic. During this
challenging period, the scientific community and pharmaceutical
companies focused on the development of fast and sensitive POC
platforms that could compete with the gold standard detection
technique RT-PCR (reverse transcription-polymerase chain
reaction) and their clear disadvantages for prompt and massive
biodetection (e.g., screening test). Over time, different approaches
based on plasmonic metamaterials were reported. Among, Qiu et al.
(2021) presented a novel approach based on plasmonic gold
nanostructures by TDW, which combines the plasmons for
biodetection and plasmons for heat generation by
thermoplasmonic effect. The thermoplasmonic phenomena
promoted the specific nucleic acid hybridization and achieved a
sensitive direct detection of nonamplified nucleic acid sequences of
the SARS-CoV-2 virus. The proposed biosensor was validated with
clinical samples from COVID-19 patients demonstrating their
potential application.

Table 1 summarizes most of the plasmonic biosensors by GLAD
and TDW reported to date, including relevant technical information
like the detection method, the target biomolecule, their performance,
and the advantages and disadvantages of the proposed sensing
technology.

CONCLUSION AND FUTURE
PERSPECTIVE

Metaplasmonic biosensors based on nano-patterned/nanosculpted
thin films by GLAD and TDW represent an enormous and
promising research field that faces many unmet challenges. They
are impulsed by their potential benefits and the constant growth in
the market’s decentralized analysis and POC platforms.
Metaplasmonic biosensors by GLAD and TDW can achieve a
prominent role in these areas; meanwhile, scalability, sensitivity,
and miniaturization could be met. However, surpassing one of the
main challenges involves improving the nucleation distribution to
achieve highly ordered and homogeneous plasmonic metasurfaces.
Although several template-assisted methods have been described to
reach this challenge using colloidal lithography or nanoimprint, we
consider combining TDW + GLAD in a single process could
improve the nucleation distribution and homogeneity. There have
been described approaches that have improved the lattice and size
distribution of plasmonic nanostructures using sacrificial layers of
materials by TDW (Farzinpour et al., 2012). Combining TDW and
GLAD in a single process can solve problems related to using silver.
It seems to be feasible to TDW thin silver films in a vacuum or argon

TABLE 1 | Research papers overview using GLAD and TDW plasmonic metasurfaces for biosensing.

Sensing technology Biomarker LOD Advantages & disadvantages

TDW Au nanoislands Qiu et al.
(2016)

Human IgG 1 pM-diluted serum Improved biosensing performance by selective biodetection in nanogaps and
interferometric detection
Limited miniaturization due to prism coupling detection and limited validation in (1/
100,000) diluted serum

TDW Au nanoislands Thakur et al.
(2017)

Lung-cancer
exosomes

0.2 µg/ml-PBS Limited performance due to the short decay length of Au nanoislands in comparison
to exosomes dimensions and no validation in complex media

TDW Au-Ag alloy nanoislands Qiu
et al. (2018)

Human IgG 0.9 pM-PBS Improved biosensing performance with Au-Ag alloy and chemical stable nanoislands
Limited miniaturization due to prism coupling detection and no validation in complex
media

TDW Au nanoislands Nabok et al.
(2019)

Aflatoxins B1 0.01 ng/ml-PBS "Half” antibody allows direct biointerfaces and improves biodetection of lowmolecular
weight analytes
Limited miniaturization due to prism coupling detection and no validation in complex
media

TDW Au nanoislands Qiu et al.
(2020)

Total Bioaerosols 0.5 cells/ml-air Detection in real samples
Limited miniaturization due to prism coupling detection and specificity limitations

TDW Au nanoislands Xu et al.
(2020)

Cardiac Troponin I 0.01 ng/ml-human
serum

High scalability, sensitivity, specificity, and direct detection in 10 µL undiluted human
serum samples
Non-label-free detection (fluorescence-based)

TDW Au nanoislands Qiu et al.
(2021)

Sars-CoV-2 virus 0.1 pM-human
serum

Novel Thermo-plasmonic assisted amplification and detection in positive COVID-19
serum samples
Limited miniaturization due to prism coupling and instrumentation

GLAD Ag nanodomes Gish et al.
(2007)

Rabbit IgG 27 nM-PBS High potential scalability by GLAD deposition
Proof-of-concept report with biodetection in buffer and lack of study of chemical
stability of silver

OAD Au Nanobumps Kim et al.
(2015)

Biotin-streptavidin not reported-PBS 2-fold increase in biosensing performance for prism coupling detection with Au
Nanobumps layer
Limited proof-of-concept report with biodetection assay in buffer

GLAD Ag Nanopillars Zandieh et al.
(2018)

Lipopolysaccharides 340 pg/ml- PBS Competitive limit of detection and scalable and straightforward fabrication
Limited proof-of-concept report with biodetection assay in buffer

Abbreviations: GLAD-Glancing Angle Deposition, LOD-Limit of detection; PBS-Phosphate-Buffered Saline Buffer; OAD-Oblique Angle Deposition (GLAD without azimuthal sample
rotation); TDW-Thermal Dewetting.
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atmosphere, reducing the potential oxidation of silver during the
process and continuing with the deposition of subsequent functional
layers.

Although we push up to achieve fully nanotemplate-free
plasmonic metasurfaces, we cannot discard a future
combination of ready-to-use nanotemplates with GLAD and
TDW to fabricate a wide variety of plasmonic metasurfaces in a
high-throughput way. Extreme/deep UV lithography also called
projection lithography (Fruncillo et al., 2021), is a nanofabrication
technique that could fully benefit from TDW + GLAD to achieve
complex chiral and novel functional plasmonic metamaterials.
There is still a long way ahead for these technologies; the
different deposition conditions possess a deep synergy,
influencing the resultant metasurface. The final performance of
a plasmonic biosensor involves a synergy between the biointerface
and the plasmonic transducer. This correlation is rarely analyzed;
the match between the biotarget size and the evanescent field decay
length will severely affect the final sensitivity of the plasmonic
metasurface. Considering this correlation enables the appropriate
design and optimization of the nanostructures to achieve
maximum performance on the desired application. In the end,
GLAD and TDW-based metaplasmonic biosensors possess all the
necessary features to become a competitive and outstanding option
to succeed. The combination of these two methods will finally pave
the way for biosensors fabrication with enhanced transducing
parameters that would face the demand in rapid and screening
clinical applications.
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