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Abstract

Astrophysical transients with rapid developments on subhour timescales are intrinsically rare. Due to their short
durations, events like stellar superflares, optical flashes from gamma-ray bursts, and shock breakouts from young
supernovae are difficult to identify on timescales that enable spectroscopic follow-up. This paper presents the
Evryscope Fast Transient Engine (EFTE), a new data reduction pipeline that is designed to provide low-latency
transient alerts from the Evryscopes—a north–south pair of ultra-wide-field telescopes with an instantaneous
footprint covering 38% of the entire sky—and tools for building long-term light curves from Evryscope data. EFTE
leverages the optical stability of the Evryscopes by using a simple direct image subtraction routine that is suited to
continuously monitoring the transient sky at a cadence of a minute. Candidates are produced within the base
Evryscope 2 minute cadence for 98.5% of images, and internally filtered using VETNET, a convolutional neural
network real–bogus classifier. EFTE provides an extensible and robust architecture for transient surveys probing
similar timescales, and serves as the software test bed for the real-time analysis pipelines and public data
distribution systems for the Argus Array, a next-generation all-sky observatory with a data rate 62 times higher
than that of Evryscope.

Unified Astronomy Thesaurus concepts: Sky surveys (1464); Transient detection (1957); Stellar flares (1603);
Convolutional neural networks (1938); Astronomy data reduction (1861); Astronomy image processing (2306);
Artificial satellites (68); Time domain astronomy (2109); Light curves (918); CCD photometry (208); Flare stars
(540); Red dwarf flare stars (1367)

1. Introduction

Optical transients evolving on short, subhour timescales are
difficult to study using the multiwavelength, multi-facility
approaches that are typically used for longer-lived transients.
For the fastest events, including prompt optical flashes from
long gamma-ray bursts (GRBs; Fox et al. 2003; Cucchiara
et al. 2011; Martin-Carrillo et al. 2014; Vestrand et al. 2014;
Troja et al. 2017), shock breakout in young supernovae
(Garnavich et al. 2016; Bersten et al. 2018), and stellar flares
(Aizawa et al. 2022; Howard & MacGregor 2022; Pietras et al.
2022), the duration of the event can be � 1 hr, shorter than the
base observing cadence of conventional tiling surveys, such as
the Zwicky Transient Facility (ZTF; Bellm et al. 2019),
PanSTARRS (Kaiser et al. 2010), the Catalina Sky Survey
(Larson et al. 2003) and Catalina Real-Time Transient Survey
(Drake et al. 2009), SkyMapper (Keller et al. 2007), the
Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry
et al. 2018), the All-Sky Automated Survey for Supernovae
(ASAS-SN; Shappee et al. 2014), the Dark Energy Survey
(DES; Dark Energy Survey Collaboration et al. 2016), the
Gravitational Wave Optical Transient Observatory (GOTO;
Dyer et al. 2018), and the Mobile Astronomical System of

Telescope-Robots (Lipunov et al. 2004). These surveys tile the
sky on timescales of days to maximize their likelihood of
detecting supernova-like transients, which evolve over the
course of days and months.
Faster events, occurring on minute to hour timescales, are

detected in conventional tiling surveys, but with frequently
undersampled light curves. Tiling surveys are also not typically
optimized for minute-scale latency between detection and
reporting, precluding spectroscopic follow-up on timescales
comparable to the lifetime of the transient. As a result, searches
for short-lived events typically require simultaneous coordi-
nated observations of small sky regions, as in the Deeper-
Wider-Faster program (DWF; Andreoni et al. 2020). However,
previous searches for fast transients in this regime, by the DWF
team (Andreoni et al. 2020), as well as from PanSTARRS
(Berger et al. 2013), the Intermediate Palomar Transform
Factory (iPTF; Ho et al. 2018), the Palomar Transient Factory
(PTF; van Roestel et al. 2019), Tomo-e-Gozen (Richmond
et al. 2020), and the Organized Autotelescopes for Serendipi-
tous Event Survey (Arimatsu et al. 2021), have only produced
upper limits on the extragalactic event rate of fast transients,
suggesting that increased areal survey rates are necessary to
observe any new populations of high-speed transients.
An alternative approach to probing the dynamic sky at short

timescales is to survey an extreme field of view, typically
sacrificing some depth and resolution relative to conventional
tiling surveys, in exchange for rapid-cadence monitoring. This
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approach enables time-resolved detections of fast optical
transients, and poses unique challenges and opportunities for
real-time data reduction. Rapid localizations of transients
across wide fields of view have recently been used to make
spectroscopic observations of flares using the Ground-based
Wide-Angle Camera system, with latencies as low as 20
minutes (Wang et al. 2021; Xin et al. 2021).

Galactic transients at minute to hour timescales are plentiful,
with stellar flares from M-dwarf stars making up the majority
of these events (Kulkarni & Rau 2006). Flares are caused by
reconnections in the stellar magnetic field, producing radiation
across the electromagnetic spectrum on timescales ranging
from seconds to hours. The radiation from the largest events,
the so-called “superflares,” can reach energies �1033 erg—
orders of magnitude greater than that of the largest solar flares
(Schaefer et al. 2000). Flares are responsible for much of the
UV environment of rocky planets orbiting cool stars (Walk-
owicz et al. 2008), potentially providing the bioactive UV flux
that is necessary for prebiotic chemistry (Ranjan et al. 2017), or
even eroding Earth-like atmospheres (Segura et al. 2010;
Howard et al. 2018). Spectroscopic observations taken during
the initial stages of a flare can reveal temperature and emission
line evolutions during their most impulsive phases, which are
valuable for constraining fundamental flare physics, as well as
the potential impacts of flare activity on exoplanet atmospheres.
Such observations are crucial for assessing the habitability of
Earth’s closest neighbors: the nearest exoplanet to Earth,
Proxima Centauri b, is subject to frequent high-energy flare
activity (Howard et al. 2018).

In addition to time resolution constraints on survey design,
searches for subhour transients like flares require software data
pipelines that are capable of rapidly identifying candidates for
spectroscopic follow-up and classification. Examples of
bespoke pipelines optimized for minimal latency are presented
in Perrett et al. (2010), Kumar et al. (2015), Cao et al. (2016),
Förster et al. (2016), and Andreoni et al. (2017). Such pipelines
are often built around difference image analysis, a method for
isolating sources with variable flux by subtracting an earlier
reference image of the field, which is complicated by the need
to match the seeing-limited point-spread functions (PSFs) of
images from multiple epochs. Methods for subtracting images
in the presence of variable PSFs include deconvolution with a
matching kernel (Alard & Lupton 1998; Bramich 2008;
Becker 2015), which can be computationally expensive and
numerically unstable, and, more recently, the statistically
optimal Zackay, Ofek, and Gal-Yam (ZOGY) method (Zackay
et al. 2016), which requires a robust and static model of the
image PSF, and the Saccadic Fast Fourier Transform method
(Hu et al. 2022).

In this paper, we present the Evryscope Fast Transient
Engine (EFTE), a real-time discovery pipeline for the
Evryscopes. The Evryscopes are a pair of gigapixel-scale
survey instruments that continuously image 38% of the
celestial sphere at a 2 minute cadence. EFTE is optimized for
sensitivity to short-duration transients, including stellar flares
and flash-like optical counterparts to multimessenger or
multiwavelength events. Using EFTE, we are able to produce
transient candidates within the survey’s cadence, with action-
able alerts indexed into our database before the next image in
the sequence. EFTE also provides a processing workflow for the
batch processing of Evryscope image data, and forms the basis

of the Evryscope precision photometry pipeline, providing
years-long light curves for every star brighter than g∼ 15.
One goal for the EFTE pipeline is to minimize the computa-

tional resources that are necessary for data analysis; a single
colocated compute node supports each Evryscope site. Low
resource requirements are particularly necessary when looking
toward next-generation sky surveys, such as the Argus Optical
Array (Law et al. 2021, 2022). The upcoming Argus Array
Pathfinder instrument, consisting of 38 telescopes with 20 cm
apertures, will produce up to 180 TiB of data per night at 1
scadence and 6 TiB of data per night at the base 30 s cadence;
maximizing the science returns from data-intensive systems like
Argus will require time- and cost-efficient algorithms and
pipelines. For Argus, all images must be reduced within the
observing cadence, to provide sufficiently low latency for follow-
up and to avoid a backlog of data, which can require runaway
compute resources for “catch-up.” Incoming Argus images are
resampled to a predefined HEALPix (Górski & Hivon 2011) grid
using a custom GPU-based code. By parallelizing direct
subtraction based on the EFTE algorithm, the Argus pipelines
are able to reduce each image into transient candidates and
compressed images in an average of of 925 ms. Corbett et al.
(2022) present a full description of the Argus Array pipelines and
data reduction strategy.
The paper is organized as follows. In Section 2, we give an

overview of the Evryscope instruments and survey strategy. In
Section 3, we describe the EFTE pipeline and present algorithms
for data analysis and transient discovery in ultra-wide-field
systems, including a simple image subtraction method that is
suitable for time-sensitive searches (see Figure 1). In Section 4,
we describe the selection metrics and machine-learning (ML)
approaches that are used to select candidates from the event
stream. In Section 5, we characterize the photometric,
astrometric, and latency performance of the pipeline, including
the expected survey completeness and characterization of the
convolutional neural network (CNN) that is used for vetting
candidates. In Section 6, we summarize the early science
returns from the EFTE pipeline, including a characterization of
the impact of satellite glints on rapid response transient surveys
and rapid response observations of stellar flares using the
Goodman High Throughput Spectrograph on the Southern
Astrophysical Research (SOAR) 4.1 m telescope (Clemens
et al. 2004). We summarize, consider the extensibility of the
EFTE pipeline to data from other surveys, and describe the next
steps toward producing a public event stream in Section 7.

2. Evryscope Survey Overview

2.1. Instrument Description

The Evryscopes are a pair of multiplexed wide-field survey
telescopes that are located at Cerro Tololo Inter-American
Observatory (CTIO) in Chile and Mount Laguna Observatory
(MLO) in California. Each site consists of up to 27 camera
units with 6.1 cm apertures, arranged to simultaneously observe
the majority of the sky above an airmass of ∼2. Collectively,
the Evryscopes have an instantaneous field of view of 16,512
square degrees (15,929 square degrees, accounting for overlaps
between adjacent cameras), with a resolution of 13 2 per pixel
across a 1.24 gigapixel combined image plane. The telescopes
observe at a constant 2 minute cadence, with a 97% duty cycle,
and collect an average of 600 GiB of data per night. While the
primary Evryscope survey has been conducted in the Sloan g
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band, the Northern Hemisphere system is also equipped with a
Sloan r filter, for use in future surveys. All the telescopes at
each site are attached on a single mount, tracking the sky in 2
hr increments.

The instruments are fully robotic, operating autonomously,
based on a local weather station. Evryscope-South has been in
operation since 2015 May, while Evryscope-North began
science operations in 2019 January. For full descriptions of the
instrument and the Evryscope science programs, see Ratzloff
et al. (2019) and Law et al. (2015). The instrument parameters
are summarized in Table 1.

2.2. Evryscope Observation Strategy

The Evryscopes utilize two distinct strategies for determining the
2 hr observing fields that are observed over the course of the night:

1. Semirandom, with the easternmost edge of the field
placed 30° above the horizon to the east at the start of
each 2 hr observation.

2. Fixed pointings, chosen from 48 overlapping regions,
separated by 7°.5 in R.A.

In both scenarios, the duration of a single pointing is limited by
the time that it takes for the westward edge of the field to pass

Figure 1. Left: a 4° × 1° region near Proxima Centauri from reference, science, and subtraction images from EFTE, the HOTPANTS algorithm (Becker 2015), and the
ZOGY algorithm (Zackay et al. 2016). For ZOGY, we include both the scaled Scorr image used for point-source detection and the proper difference image D. In the
subtraction images, a faint satellite streak (left), a variable star (bottom left), and an M-dwarf superflare (far right; Howard et al. 2018) are successfully recovered. The
EFTE direct subtraction produces 47% more 3σ detections than ZOGY for this field, and it can be computed 10 times faster for this image size. Right: cutouts from the
images on the left showing the 1 1¢ ´ ¢ region centered on Proxima Cen.

3

The Astrophysical Journal Supplement Series, 265:63 (23pp), 2023 April Corbett et al.



beneath an airmass of ∼2. This timescale (a “ratchet”) is
typically on the order of 2 hr. Each Evryscope tracks
continuously at the sidereal rate. Minimal drift (of a few
arcminutes) due to polar alignment is present over the course of
a ratchet, but the visible field between consecutive 2 minute
exposures is consistent, point-like, and unstreaked.

Semirandom pointings (currently used for Evryscope-South)
are preferred for long-term photometric performance, as diverse
field positions allow sensor plane effects to average out over
the duration of the survey. Because of the commercial off-the-
shelf optics used, individual cameras exhibit up to 50%
vignetting at the edge of the sensor’s field of view. Randomized
pointings also minimize the effects of camera-to-camera
periodic noise, provide some resilience against CCD sensor
defects, and limit the prevalence of pathological coordinates
that are always located at the edge of a sensor and are thus
unduly affected by optical vignetting. The trade-off is that
individual fields repeat only on timescales of months (cross
camera) or years (single camera), and only to a precision of a
few degrees.

Fixed fields, by contrast, are used for Evryscope-North,
resulting in fields that repeat with arcminute precision on
1–3 day timescales. This repeatability is convenient for
transient searches, as it allows us to build up an archive of
reference frames to use for image subtraction. For fields above
an airmass of 2, 76% are observed within 2 days of the
previous visit, while 97% are observed within a week. Because
adjacent fields overlap by ∼95%, a given sky region will
appear in many different pointings, meaning that the field
recurrence time is independent of the observing cadence.

3. EFTE

EFTE is a pipeline for searching Evryscope images for bright
and rapidly changing sources in real time, identifying and
recording candidates across the full Evryscope field of view
within the 2 minute observing cadence. The primary goal of
EFTE is to provide a reliable event stream with sufficiently
minimal latency to enable multiwavelength follow-ups of
events with subhour durations. EFTE also provides useful
general purpose utilities for interacting with and analyzing
Evryscope data, including a quick-look photometry pipeline
that is independent of the general purpose precision photometry
pipeline, a custom astrometric solver, and CCD calibration
functions. EFTE is mostly written in Python, with some
compute-intensive routines (stamp extraction and photometry)
being implemented in C and wrapped as Python extensions
using Cython (Behnel et al. 2011).

EFTE is a hierarchical + distributed system, with two
analysis servers on site at MLO and CTIO, which stream
reduced data products back to a central PostgreSQL6relational
database on campus at the University of North Carolina at
Chapel Hill (UNC-CH). The analysis servers each have dual
AMD EPYC processors (36 CPU cores for Evryscope-North,
48 for Evryscope-South), and 512 GiB of RAM at Evryscope-
South and 384 GiB at Evryscope-North. The asymmetry
between the two sites is due to the additional 4 yr of archival
data from Evryscope-South. The central database for reduced
data products is hosted on a 36 core server, with 24 TiB of flash
storage, which is located on campus at UNC-CH. This server
also hosts a backend application for pipeline monitoring,
associating EFTE transients with external alerts, and end-user
reporting via a Slack-based7 web interface.
In real-time operations, EFTE instances on each analysis

server communicate with the Evryscope data acquisition
system via a transmission control protocol (TCP) socket
connection, receiving notifications for each incoming image
once it has been written to a shared network file system. EFTE
maintains an in-memory, per-ratchet database of recent images
to be matched for image subtraction, spawning subprocesses
for all analysis tasks. Figure 2 shows the primary components
of the EFTE pipeline, from the moment that an image is written
to disk to the reporting of candidates.

3.1. Image Quality Monitor and CCD Calibration

Once an exposure has been completed, the Evryscope
observation daemon sends a TCP packet to an EFTE instance
running on the analysis server. Upon receipt of this notification,
EFTE will asynchronously record basic metadata—including
the camera, timing, origin, and instrument configuration—to
the central database that is located at UNC-CH. Before further
reduction, the image goes through a series of general quality
assurance steps, including:

1. verification of the file against the checksum recorded by
the acquisition system;

2. instrument configuration checks for camera cooling,
dome status, and exposure type;

3. autocorrelation-based checks for tracking errors and
alignment failures; and

4. sky background measurement for saturation and linearity
checks.

If these conditions are satisfied (as they are for 98% of images),
the image is converted from ADU to electron units, and
matched to dark and flat fields for CCD calibration.
Dark frames are regularly regenerated using frames taken at

the beginning and ending of each night. Cameras are cooled to
a constant −20°C during observing, but a drift in the bias level,
of a few percent, is observed as a function of the camera’s
external temperature. We believe that this is caused by
temperature gradients across the readout electronics, so make
a quadratic correction to the bias level as a function of the
camera electronics temperature, as measured by the onboard
sensors in each camera. Additionally, a small (<1%) linearity
correction is applied per pixel, based on a cubic fit to pixel
values versus the exposure time in lab testing. The linearity

Table 1
System Properties of the Evryscopes

Property Evryscope-South Evryscope-North

Field of View (Deduplicated) 8520 sq. deg 7409 sq. deg
Field of View (Total) 8832 sq. deg 7680 sq. deg
Detector Size 662.4 MPix 576 MPix
Cadence 2 minutes
Aperture 6.1 cm
Pixel Scale 13 2 pixel−1

Data Rate 165 Mbps (1.2 GiB minute−1)

Note. For further information, see Ratzloff et al. (2019).

6 http://www.postgresql.org/
7 https://slack.com/
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corrections were determined to be near-identical for all our
sensors.

Because of the extreme single-camera field of view, twilight
flats contain significant sky gradients that the Evryscope is
unable to compensate for through diverse pointings, because of
its fixed camera positions. Instead, we use photometric flats,
which are calculated based on a seventh-order polynomial fit to
the normalized flux offsets of reference stars relative to the g-
band catalog photometry from the ATLAS All-Sky Stellar
Reference Catalog (ATLAS-REFCAT2; Tonry et al. 2018).
These frames capture the average vignetting patterns of the
individual cameras, which can change sharply at the edge of the
field. The photometric flat fields are stable at the 1% level on
months-long timescales, due to the focus stability of the
Evryscope Robotilter alignment system (Ratzloff et al. 2020),
and are regenerated only when the instruments are cleaned,
which typically requires the replacing or removing of the outer
optical windows on each camera.

Bad pixels are replaced with the median of the surrounding
3× 3 pixel block, then assigned an arbitrarily high uncertainty
in the resulting noise image that is used for photometry and

source detection. Parts of each camera’s field of view,
particularly those near the center of the frame, will have
undersampled PSFs. Simple bad pixel masking (i.e., assigning
such pixels a NaN or 0 value) will produce sharp artifacts in the
subsequent analysis, requiring pixel resampling, like the image
subtraction described in Section 3.3.

3.2. Astrometric Solutions

In parallel with the science frame calibration steps, the EFTE
pipeline produces an astrometric solution for the image, using a
custom solver developed for the highly distorted Evryscope
focal plane. The Evryscope astrometric solutions begin with an
initial solve, based on the center 512× 512 pixel region, using
a local install of astrometry.net (Lang et al. 2010). This
solution is only used to locate the center of the image. The
sources in the image are then crossmatched against the Tycho-2
catalog (Høg et al. 2000), and the offsets are used to optimize a
polynomial distortion solution to fifth order in each of the x, y,
and radial positions on the sensor, plus cross terms. The
solution is then verified against a subset of bright stars from

Figure 2. Data flow and layout of the EFTE pipelines. The operations (orange) and real-time reduction (blue) components are independent for each observatory, while
the pipeline monitoring (purple) and shared databases (green) collate data from both Evryscope-North and Evryscope-South.
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Gaia Data Release 2 (DR2; Gaia Collaboration et al. 2018),
based on the crossmatch performance against detections in an
even grid of 15 different sensor regions, using the following
requirements:

1. >80% recovery in at least seven regions;
2. < 50% recovery in no regions; and
3. Uncertain recovery (due to source confusion or non-

detections) in no more than two regions.

We selected Gaia DR2 for solution verification due to its
reference epoch (J2015.5) coinciding with the beginning of the
Evryscope observations. The typical rms offsets from the Gaia
DR2 positions are ∼4″, or 0.3 pixels.

The complete solution is written into a world coordinate
system (WCS) header using the TPV convention for distortion
polynomials (Calabretta et al. 2004). The TPV representation is
an extension of the standard tangential projection, including
additional terms for a general polynomial correction.8Due to
atmospheric refraction and tracking errors, the solution must be
recalculated for each image, but the solver is able to start with a
precomputed baseline distortion solution, averaged over dozens
of fields for each camera. We found that starting with an
averaged solution decreased the time required for the final
optimization by a factor of several, on average.

This header is archived to network storage, and serialized
and passed back into the in-memory EFTE matching database,
where it is associated with the camera and active field. Finally,
a footprint of the image, discretized as a GeoJSON (Butler
et al. 2016) polygon, is stored in the central database, where it
is indexed using the PostGIS9extension of PostgreSQL, which
provides a variety of spatial object types. These footprints
support a variety of use cases, and allow users to easily query
for images containing a given target, or to search for images
intersecting with arbitrary sky regions that can be represented
as polygons, such as probability skymaps for gravitational-
wave and GRB triggers.

3.3. Direct Image Subtraction

Like most optical transient surveys, EFTE isolates objects with
changing flux by subtracting each science image from an earlier
reference frame of the same field from each image. We optimize
our subtraction algorithm for speed rather than statistical
optimality, electing per-pixel operations requiring no additional
intermediate data products beyond those produced in the initial
photometric pipeline. Due to the short (subhour) timescales of
interest, and the dominance of instrumental optical effects on the
system PSF, the Evryscope images do not require PSF-matching
techniques, which are addressed by standard difference image
analysis routines, like the High Order Transform of PSF and
Template Subtraction Algorithm (HOTPANTS; Becker 2015) and
ZOGY (Zackay et al. 2016). However, EFTE was built for
extensibility, and implementations of both HOTPANTS and ZOGY
are included in EFTE.

The resolution of the Evryscope images is limited by optical
distortions from the camera lenses and pixel scale, rather than by
atmospheric effects, under most practical observing conditions.
The PSFs vary greatly across the image plane of each camera, as
illustrated in Figure 3; however, the Evryscope image quality
metrics have been measured as being stable at the few percent

level on timescales of many months (Ratzloff et al. 2020), creating
highly repeatable PSFs for each individual camera.
As a result, we adopt a straightforward algorithm for image

subtraction, in which the reference and science images are
aligned, matched in flux, and subtracted directly. The
difference between the two images is then weighted by a
propagated uncertainty image to identify significant changes in
flux. This approach is valid only if the following conditions are
satisfied for the reference and science image couplet:

1. the observed PSFs are dominated by telescope optics and
pixel scale, and do not vary significantly as a function of
observing conditions on the timescale of the lag between
the images;

2. all sources have near-identical pixel coordinates in both
images, offset by no more than the PSF coherence scale,
which we define as the pixel distance over which the
spatial PSF variation is less than the combined therma-
land atmospheric effects over a baseline of a few minutes,
or a 1% maximum change in the normalized PSF—this
scale is typically ∼10′, or ∼50 pixels at the Evryscope
pixel scale; and

3. the global flux scaling between the two images is smooth.

In the following subsections, we describe the process by which
we match image couplets for subtraction, as well as the custom
method that we use to subtract the images, which is optimized for
the unique resolution and time domain covered by EFTE.

3.3.1. Reference and Science Image Selection

The primary science targets for the EFTE survey are stellar
flares, which have characteristic optical rise times of minutes.
As a result, there is minimal benefit to producing reference
frames that are widely spaced in time from our science images,
to maximize sensitivity to slowly varying objects. Instead, the
image-matching daemon uses a sliding reference frame, taken
from the same pointing as the science image. The Evryscopes
maintain a consistent pointing over the course of a ratchet, with
drift of only a few arcminutes even at the equator, meaning that
the PSF for a given star is essentially constant during each 2 hr
tracking period, up to resampling effects being caused by its
subpixel position in the 13 2 pixels. Additionally, using a
reference image from the same pointing means that the science
and reference frames are taken under near-identical sky
conditions, minimizing the amount of flux scaling necessary.
In the most aggressive case, we could simply subtract

consecutive images to achieve near-ideal consistency between
the new and reference frames. However, the immediate reuse of
science images as reference images limits the survey’s
sensitivity only to transients with detectable changes over the
2 minute image interval, making confirmation images of highly
impulsive events unlikely. In practice, we enforce a short lag,
ΔtD, between the reference and science images. ΔtD is
typically chosen to be 10 minutes. Over 10 minutes, the field
drift due to polar alignment error is consistently less than 10′
(50 pixels). The PSF variability over 50 pixels typically
produces subpercent subtraction artifacts, and image registra-
tion between the two images can be done with simple
transformations, with a minimal loss of astrometric precision
(see Section 5.2).
Image reuse effects are also evident atΔtD= 10 minutes, but

only after the potential fourth confirmation image. Figure 4
shows this image reuse effect on a real flare that is seen on-sky,

8 https://fits.gsfc.nasa.gov/registry/tpvwcs/tpv.html
9 http://postgis.net/
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in which the same image is both the first science image and the
last reference image for the transient. While the amplitude and
rise time of this event enabled multiple detections up to 8
minutes after the initial detection, events with shorter rise times
or lower amplitudes may only be detected in a single epoch.

Additionally, the sliding reference frame causes the photo-
metry in the unscaled difference image (i.e., the numerator of
Equation (2)) to be relative in time. The light curves of EFTE
candidates are computed using forced aperture photometry in
the science images, as described in Section 3.4.

Over the course of a ratchet, beginning with images A, B, C,
D, E, and F, the pipeline will perform the following
subtractions: B–A, C–A, D–A, E–A, and F–B. The rise time
sensitivity of the pipeline increases as a function of the time
delay ΔtD between the science image and the previous image
from the same pointing chosen as a reference image. ΔtD is in
general a tunable parameter of the pipeline, which could be
increased to trade the viability of the assumptions enumerated
above (thus resulting in higher false-positive/false-negative
alert rates) for increased sensitivity to slower rise times. Given
sufficient computing, multiple instances of EFTE can run in
parallel, enabling sensitivity to different science targets.

3.3.2. Image Registration

Because of the sliding reference frame selection, the drift
between the science and reference images amounts to a
maximum of a few pixels during real-time operations, which

must be corrected. Additionally, small offsets can have
significant effects on the sampled PSF. As such, the images
must be carefully aligned and resampled, so that they match in
both position and PSF.
For the first image in a ratchet, EFTE must wait for an

astrometric solution. However, the astrometric solutions for the
subsequent images from each camera can be inferred by
alignment to the first image. The effects of image registration
on astrometry performance are addressed in Section 5.2.
Bootstrapping the astrometric solution in this way reduces the
delays in the real-time subtraction process due to the
astrometric solver to once per ratchet, on the first image. For
image alignment and resampling, we use WCS-independent
asterism matching, utilizing the Python AstroAlign10package
(Beroiz et al. 2020) to calculate a rigid transformation between
the two images and perform quadratic resampling.
Alternatively, in cases where a full WCS solution is

available for both images (e.g., in batch reductions that are
not conducted in real time), the reference and science images
can be aligned by resampling the images to a common grid
using their WCS solutions, by utilizing the Astropy-affiliated
package Reproject. This has the advantage of allowing for
nonrigid transformations and accounting for the effects of
varying per-pixel sky areas across the sensor plane. While
astrometric warping due to atmospheric diffraction is negligible
for the typical ΔtD values that are used for real-time reduction,

Figure 3. Median PSFs across a 6 × 4 grid of sensor regions. PSF variability as a function of chip position is evident; however, long-term measurements of the
Evryscope optical stability (Ratzloff et al. 2020) indicate that the PSFs are repeatable over time, despite aberrations.

10 https://github.com/toros-astro/astroalign
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WCS-based resampling is necessary for longer baselines and
internight comparisons for fixed fields.

3.3.3. Flux Scaling

Despite the minimal baseline between the reference and
science images, we fit a multiplicative flux scaling factor to the
reference image, to remove any discrepancies with respect to
the science image, due to variations in transparency and sky
brightness, which is particularly important for observations
during twilight conditions. Because each individual Evryscope
camera covers a large sky area, we allow the flux scaling factor
to vary across the image, based on the results of the forced
aperture photometry.

First, we divide each image into 24× 16, square regions of
that are 274 pixels across, and select several thousand bright
stars from ATLAS-REFCAT2. We then calculate the sigma-
clipped mean flux ratio between the science and reference
images for stars in each of the 384 image sectors, and
interpolate this back to full resolution using cubic splines.
Finally, the flux-matched reference image Rm(x, y) is calculated

from the original calibrated reference image R(x, y) and the
spatially varying flux ratio F(x, y), as

R x y R x y F x y, , , . 1m( ) ( ) ( ) ( )= *

 To calculate the uncertainty in the flux ratio, we calculate the
standard deviations of the flux ratios for the reference stars in
each region, then interpolate across the full field of the image
using cubic splines. The flux ratio uncertainty is propagated
forward into the noise characterization for the reference image.
Figure 5 shows a typical low-resolution flux ratio map for a
pair of images with ΔtD= 10 minutes, showing an average
1.7% change in transparency between the images, with some
internal structure. The magnitude of the scaling is consistent
with transparency changes due to airmass for a camera placed
at the edge of the array. Small-scale structure, when present,
tends to move smoothly between images, and is likely caused
by high clouds.
Depending on the science program, the flux scaling can be

skipped during reduction, to minimize latency. For consecutive
image subtraction (ΔtD= 2 minutes), we neglect the flux
scaling effects, as the uncertainties in the flux scaling dominate
the final noise budget for the image, and the flux scaling is
typically subpercent under normal observing conditions. The
primary driver of these uncertainties is likely the subpixel
response function, which is highly local on the Evryscope
image sensors, causing the effect to not average out beyond the
1%–3% level when interpolating across the image plane.
Instead, multiple slightly offset measurements of the sample
star must be modeled simultaneously, as they are for the
precision photometry pipeline and in the coaddition of multiple
images of the same field. However, we include the flux ratio for
longer-baseline subtractions, where background variations can
dominate over systematics.

3.3.4. Error Analysis and the Detection Image

To identify significant changes in the difference image, we
need robust accounting of the noise sources in each image. For
each science and reference image, we model a spatially varying
background, based on a sigma-clipped and interpolated mesh,
using sep, a Python implementation of the core routines from
SExtractor (Bertin & Arnouts 1996; Barbary 2016). The
standard deviation of the background sB is also measured in this
step, based on the sigma-clipped standard deviation. sB is
treated as an empirical measure of the Gaussian noise
contributions to each image, including the readout noise and
dark current uncertainty. We note that this approach can
overestimate the noise, due to Poisson contributions from
unresolved background starlight, and, as a result, the detection
significance in the direct subtraction image will tend to be an
underestimate, particularly in crowded fields (e.g., near the
galactic plane).
For a given combination of a science image S(x, y) and a

flux-matched reference image Rm(x, y), both in electron units,
the detection image D(x, y) is defined as

D x y
S x y R x y

s x y s x y
,

, ,

, ,
, 2m

S R
2 2

( ) ( ) ( )

( ) ( )
( )=

-

+



Figure 4. EVRT-192099, a 5.5 mag flare from a star associated with 1RXS
J174441.6-531551 in the ROSAT All-Sky Survey Bright Source Catalogue
(Voges et al. 1999; Fresneau & Osborn 2009). The reference frame from 2019
October 4 at 9:06 UT is the science image from 8:58 UT, showing the sliding
reference frame used by our direct subtraction algorithm.
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where s2S and s2R are the total noise images for S and Rm, given
by

s x y S x y s x y, , , 3S BS
2( ) ( ) ( ) ( )= +


and

s x y R x y
R x y s x y
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where sBS(x, y) and sBR(x, y) are the measured background
standard deviation maps of the science and reference images,
respectively, F(x, y) is the flux ratio between the two images,
and sF(x, y) is the spatially varying uncertainty in the flux ratio.
The D(x, y) image is the simple difference between the two
images, scaled by the combined per-pixel uncertainty. The
detection image has the unit of standard deviation. We again
use sep to mask the detection image at the desired threshold
and identify sources.

Figure 1 shows an example of an image couplet in a crowded
field, along with the resulting direct subtraction image. We also
include subtraction images produced using the HOTPANTS and
ZOGY algorithms (Becker 2015; Zackay et al. 2016). Direct
subtraction produces more false positives (488) than ZOGY
(299 in Scorr) at the 3σ threshold, but two orders of magnitude
fewer than HOTPANTS (12,258). While ZOGY is a computa-
tionally efficient approach, direct subtraction is faster by a
factor of 10, largely due to the requirement for a PSF model to
be calculated for ZOGY. Using the direct detection image, we
successfully identify three astronomical transients with the
EFTE pipeline, following the vetting procedures described in
Section 4.

3.4. Photometric Zeropoints and Forced Photometry

To calibrate the magnitudes of the EFTE transient candidates
to a standard photometric system, we build a spatially varying
photometric zeropoint, based on a subset of ATLAS-REF-
CAT2, a composite catalog consisting of griz data from the
AAVSO Photometric All-Sky Survey (Henden et al. 2016),

Figure 5. Top left: map of the flux ratio between a science and reference image couplet. Top right: the corresponding flux ratio error map. The flux ratio is measured
based on forced aperture photometry of several thousand reference stars, and it is interpolated across each single-camera full-resolution image based on the observed
flux ratio, in an equally spaced grid of 384 image sectors. Bottom: relative aperture flux residuals before and after correcting with the interpolated flux ratio, as a
function of the x- and y-positions on the sensor. The correction improves the flux match between the images by <1%, which is not significant for short (ΔtD = 2
minute) subtraction baselines. The increases in the flux offset at the edges of the image are caused by aperture losses due to the variable Evryscope PSF.
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PanSTARRS Data Release 1 (Flewelling et al. 2020), Sky-
mapper Data Release 1.1 (Wolf et al. 2018), Tycho-2 (Høg
et al. 2000; Pickles & Depagne 2010), the Yale Bright Star
Catalog (Hoffleit & Jaschek 1995), and GAIA DR2 (Gaia
Collaboration et al. 2018), plus original data from the ATLAS
Pathfinder survey. To ensure that the stars used for determining
the zeropoint of the image are well exposed, but not saturated,
we select a subset of the catalog between g10 12< ¢ < . We
also exclude stars with colors redder than g− r= 1.5, which
might bias the photometry due to unconstrained chromatic
aberrations affecting the PSF. We calculate an instrumental
magnitude for each of the reference stars using a forced
aperture at the catalog position in the background-subtracted
and calibrated science image, typically with an aperture radius
of 3 pixels (40″).

To model the variation in the photometric zeropoint across
the field of view, the science image is divided into an 8× 12
grid of square subframes, each of which subtends 4 square
degrees and contains O(100) reference stars. Within each
subframe, we calculate the sigma-clipped median offset
between the instrumental magnitudes calculated via aperture
photometry and the catalog values. The offsets in each region
are then smoothly interpolated over the rectangular mesh of the
full-sized grid, using quintic splines to produce a spatially
varying zeropoint z(x, y). The resulting image has the unit of
magnitude and it has as its values the photometric zeropoint at
each pixel, defined such that

m F z x y2.5 log , , 5g 10 aper ( ) ( )= - -


where Faper is the measured flux from aperture photometry.

Finally, we calculate the magnitudes for each candidate
detected, as described in Section 3.3.4, based on their centroid
positions in the detection image. The centroids are calculated
for each candidate by computing their value-weighted average
position (“center of mass”). This process uses a custom
aperture photometry routine, implemented in Cython for the
Evryscope precision photometry pipeline (Ratzloff et al. 2019),
on the science image.

4. Automated Vetting

Despite the optical consistency of the Evryscope images
chosen for subtraction, the direct subtraction process produces
thousands of false positives per image. The observed sources of
false positives are plentiful, from inside the CCD sensors out to
Earth’s orbit, including:

1. cosmic-ray muon tracks;
2. Compton recoil electrons from radionuclides in materials

at the observatory;
3. optical ghosts;
4. registration and astrometric errors;
5. persistent residual charge from bright stars remaining

after cycling the detectors;
6. flat-fielding errors;
7. aircraft strobes;
8. tumbling satellites and debris (Corbett et al. 2020); and
9. noise artifacts from both photon and astrometric noise.

In total, the event rates from these sources can outnumber the
real on-sky rates of astrophysical transients by orders of
magnitude. Human candidate inspection remains standard, but
it is not scalable to surveys producing hundreds of thousands of

candidates per night. As a result, a reliable, efficient, and
automated vetting system for candidates is a core component of
any transient survey producing an actionable event stream that
can be delegated to follow-up resources.
Some false-positive sources in the list above can be

identified with simple filters: bright streaks from satellites
involve thousands of pixels, while residual charges from bright
stars can be flagged based on previous astrometric solutions.
Other classes of observed signals can be difficult to identify
from simple metrics, in all scenarios. To account for this, we
use a combination of data cuts based on explicit filters and ML
methods.

4.1. Initial Candidate Filters

While ML techniques can be comprehensive, simple filters
grounded in domain knowledge can be both more efficient as
well as more easily interpreted. Starting from an initial deep
source extraction (signal-to-noise ratio or S/N > 3 in a
minimum of 1 pixel) of the detection image D(x, y), we
implement three first-order quality cuts, removing candidates
that meet any of the following conditions:

1. centroid within 15 pixels of the edge of the CCD;
2. a ratio of negative to positive pixels within a 6 pixel

circular aperture >0.4; or
3. more than 750 pixels above the detection threshold.

Detections near the edge of a CCD are typically caused by
small amounts of mount drift between the science and reference
images. Large ratios of negative to positive pixels typically
indicate a photon or astrometric noise artifact. Extended events
>750 pixels are commonly bright streaks, predominantly
caused by aircraft and low Earth orbit (LEO) satellites.
We apply an additional filter after the ML vetting described

below; we reject any candidates coming from a subtraction
with more than 500 high-confidence candidates. These failed
subtractions rarely occur, and are caused by a doubled or
streaked image, due to wind shake at the instrument, or by a
breakdown of the assumption of a slow and smoothly varying
sky background, required for direct image subtraction, as
described in Section 3.3.
With no additional vetting, these simple filters reduce the

per-image candidate count to O(102), using the baseline values
stated above; however, these numbers are readily tunable to the
science case and corresponding false-positive tolerance, either
by modifying a configuration file for the EFTE pipeline instance
running at each observatory or by filtering the database queries
that are used to regularly report candidates to end users.
Candidates that pass the thresholds for these filters at the
pipeline instance level are inserted into the central database,
including small 30× 30 pixel “postage stamp” cutouts around
their detection positions.

4.2. VETNET: Real–Bogus Classification with CNNs

For the additional reduction of the EFTE false-positive rate,
we use an ML model based on 2D convolutional layers (LeCun
et al. 1989), with weights conditioned directly on the image
data. This model is a binary (“real–bogus,” or RB) classifier,
which assigns each candidate a score between 0 and 1, where a
score of 1 indicates that the candidate is likely real. RB
classifiers have seen long-standing use in transient surveys,
starting with the model that was built by Bailey et al. (2008) for
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the Nearby Supernova Factory (Aldering et al. 2002). Similar
approaches have been used for PTF; Bloom et al. 2008; Law
et al. 2009), iPTF (Brink et al. 2013), DES (Goldstein et al.
2015), and, most recently, ZTF (Duev et al. 2019; Mahabal
et al. 2019) and GOTO (Killestein et al. 2021).

Deep learning is a type of ML in which “deep” stacks of
artificial neural network layers (McCulloch & Pitts 1943) are
used to transform input data into latent space encodings that
can be mapped to the desired output quantities. CNNs (LeCun
& Bengio 1995) comprise a subclass of artificial neural
networks that build up a latent space representation of pixel
data using convolutions, which identify increasingly com-
pressed features of the input as the depth of the network
increases, as opposed to requiring the preselection of computed
—and potentially suboptimal—features to represent the data.
CNNs have found widespread use in astronomy for tasks
including source detection and deblending (Burke et al. 2019;
Stoppa et al. 2022), in addition to transient RB vetting (Förster
et al. 2016; Duev et al. 2019; Killestein et al. 2021; Makhlouf
et al. 2022).

In this section, we describe VETNET, a CNN-based vetting
algorithm that has been trained to assign RB probabilities to
EFTE candidates directly from 30× 30 pixel cutouts from the
reference, science, and direct subtraction difference images.

4.2.1. Training Set and Data Labeling

Supervised ML classifiers require large data sets of labeled
examples to identify complex latent associations during
training. In general, there are two options for producing these
data sets: simulation or human classification. Exclusively
training on simulated data is risky, because the efficacy of
the final model is dependent on how representative the
simulations are of real data. However, human classification is
labor-intensive and prohibitive at the level of producing
thousands or even millions of labeled examples across a
representative sample of the survey.

As a result, we have adopted a compound approach, using
both hand-labeled on-sky data and simulated events, which are
produced via spatially varying PSF injection. The simulated
data set was used to train intermediate models to prescreen
events for human labeling, including the prototype CNN used
in Corbett et al. (2020). We manually classified the moderate-
purity on-sky sample generated by the intermediate model to
produce a smaller, but minimally contaminated and represen-
tative, data sample for training the production models.

4.2.2. Network Architecture

VETNET uses a sequential VGGNet-like (Simonyan &
Zisserman 2014) model with six trainable layers—four
convolutional layers and two fully connected output layers.
Each set of convolution layers is subject to 20% dropout, to
prevent overfitting, encouraging the model to build a diverse
set of representations of the data distribution. The dropout
fraction at each layer is determined using the HyperBand band
algorithm (Li et al. 2018), with a binary cross-entropy loss
function. Further regularization is provided by a pooling layer,
which reduces the dimensionality of each convolution block
output by a factor of 4. The outputs of each pooled layer are
normalized and recentered on zero using batch normalization
(Ioffe & Szegedy 2015), to improve the training performance
and model stability. All convolution layers use 3 pixel square
kernels and ReLu activation (Agarap 2018), except for the final
fully connected node, which has a sigmoid activation function
that produces an output value normalized between 0 and 1.
This output, the VETNET RB score, can broadly be interpreted
as the probability that a given candidate is real. Figure 6 depicts
the architecture of the model, including the filter depths and
resulting dimensionality.

VETNET is implemented in Tensorflow (Abadi et al. 2015),
using the high-level Keras API (Chollet et al. 2015).

4.2.3. Dropout and Model Uncertainty

CNNs can have an arbitrarily large number of free
parameters, and are accordingly able to overfit the training
data. As a result, methods of regularizing the training process
and the weights that are assigned to the convolutional filters are
necessary to maximize the performance on the actual data at
inference time. Dropout (Srivastava et al. 2014) is one common
technique, in which a tunable fraction of the outputs from a
layer are chosen at random and set to zero, preventing them
from contributing to the final network outputs.
In addition to slowing overfitting, dropout also can be

interpreted as an approximation of Bayesian inference (Gal &
Ghahramani 2015a). In this framework, each random sampling
of layer outputs can also be considered as a sample from the
distribution, representing the network weights in a fully
Bayesian network. Evaluating a given sample through these
different dropout-induced realizations of the network enables
us to similarly approximate the posterior distribution of the
network output. The advantage of this approach, called Monte
Carlo (MC) Dropout, is that the output distribution includes the
systematic uncertainty in the network output due to model
selection, which is distinct from the random uncertainty

Figure 6. Architecture of VETNET, a convolutional RB classifier used by EFTE. The inputs to the network are a triplet of 30 × 30 pixel cutouts around the center of
each candidate, taken from the reference, science, and direct difference images. All trainable layers, except for the final dense unit, use ReLU activation. The pairs of
convolution layers are all followed by max-pooling layers, with 20% dropout for regularization. The network visualization was generated with Net2Vis (Bäuerle
et al. 2021).
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produced by the variance of the training set (Gal &
Ghahramani 2015b). To produce an output from the network,
each candidate is processed through multiple dropout-induced
realizations of the network, producing a distribution of
resulting RB scores. We use the median of this distribution
as the RB probability for each source.

Interpretations of MC Dropout are unsettled in the literature
(namely, whether it represents a genuinely Bayesian approx-
imation; Le Folgoc et al. 2021). However, it can be used to
produce a number that scales with the degree of consensus
within the network and the amount of support for a sample
within the training set, which can be interpreted as a confidence
metric. This is similar to the interpretation of the sigmoid
activation of the network as a whole as an RB probability,
despite not representing a normalized probability density
function. We adopt the entropy-based metric from Killestein
et al. (2021) to quantify the network confidence:

N
p p p p1

1
log 1 log 1 , 6

i

N

i i i i
1

2 2( ) ( ) ( )å= - - - -
=




where N is the number of samples from the posterior
distribution and pi is the network output for the ith sample.
The metric  is the binary entropy of the Bernoulli process
representing the RB classification, averaged across posterior
draws, and is bounded on the interval [0, 1]. In Section 5.3, we
demonstrate that  also matches the subjective confidence of
human vetting.

The number of forward passes used to approximate the
network output posterior distribution is determined empirically
from the validation set. Figure 7 shows the accuracy of the
classifier as a function of the number of forward passes through
the network. The accuracy of the median RB score converges
after 10 inferences, which is consistent with the findings in
Killestein et al. (2021), despite the dropout rate here being two
orders of magnitude higher.

4.2.4. Training Set and Data Augmentation

Two data sets were used to train the VETNET classifier; the
simulated data set of 435,452 candidates described in
Section 4.2.5 and a human-annotated sample of on-sky
detections, containing 31,092 candidates flagged as probably
real by an earlier iteration of VETNET itself (Corbett et al.
2020). Unlike the simulated data set, the on-sky data set is

heavily class-imbalanced, with only 9.6% of the examples
(2,976) being human-labeled as real. To account for this class
imbalance, we randomly exclude 25,140 of the bogus samples
from the on-sky data set, noting that the simulated data set only
contains simulated examples of the real class. The bogus
examples in the simulated data set are drawn from the same
population as the bogus examples in the on-sky data set. Our
approach to maximizing the return from this relatively small
sample of on-sky data is described in Section 4.2.6.
We divided the simulated and annotated on-sky data sets into

training, validation, and testing subsets, using an 80:10:10
ratio. We used the validation set to tune the MC Dropout
fractions and the number of posterior draws, as well as for
monitoring the training process.
To extend the effective size of the data set, random flips and

rotations are applied to each batch of training samples. As
noted by Killestein et al. (2021) and Dieleman et al. (2015),
rotations (other than in 90° increments) require interpolation,
and thus distort the data from the pixel grid; however, in our
use case, the data have previously been resampled with
interpolation by the image alignment process (see Section 13).
No data augmentation is applied during validation or model
evaluation, nor for the training during the fine-tuning with
human-annotated data.

4.2.5. Simulated Data Generation

We generated a base training set by injecting simulated
transients into 300 randomly selected images across the first 2
yr of full Evryscope science operations at each site. The images
were selected uniformly in time, meaning that the moon phase,
sky conditions, focus changes due to temperature variations,
and dust accumulation on the instrument (leading to measur-
able changes in the background level and limiting the
magnitude on timescales of a few months) are uniformly
represented. Each image was calibrated as in the pipeline (see
Section 3.3).
For each image, we generated a uniform sample of 5000

positions within the image, then deduplicated the sample, so
that no position was within 50 pixels of any other position, to
avoid overlapping transients, resulting in an average of 1200
injections per image. While this does bias the initial training set
against contemporaneous spatially coincident events, these are
sufficiently rare for us to neglect this scenario. Each injection
was assigned a random magnitude, drawn from a uniform
distribution bounded between the typical saturation limit of
g∼ 7 and the 1.5σ detection limit at the injection position
(determined by the photometric zeropoint interpolation proce-
dure described in Section 3.4).
A second round of injections was done to simulate transients

with known visible progenitors. From the catalog stars within
each image, 500 stars that were minimally separated by 50
pixels were selected as additional positions for injection. The
variability amplitude was uniformly sampled between magni-
tudes of 0.25 and 8. The upper limit was set by the maximum
contrast visible for a predetected star in an Evryscope image,
i.e., a star at the dim limit of the survey that reaches the single-
exposure saturation limit.
Evryscope PSFs are heavily impacted by optical aberrations,

and they exhibit a wide variety of morphologies, both between
the cameras and across the fields of view of individual cameras
(Ratzloff et al. 2020), making common analytic profiles (such
as Moffat, Gaussian, and Lorentzian) untenable. Further, the

Figure 7. Network accuracy vs. number of forward passes through the network
for the validation set. The performances converge at 10 samples. The error bars
represent the standard deviations of the results across 20 iterations.
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coarse pixel scale results in more complex linear models—such
as the ePSF (Anderson & King 2000) and those used by PSFEX
(Bertin 2011) and PSFMachine (Hedges et al. 2021)—being
prone to poor fits, due to aliasing and source confusion. We
found that the most robust method for simulating transients
with morphologically plausible point-like profiles was to build
a model PSF based on nearby isolated stars. For each injection
position, up to 100 nearby stars with distances less than 137
pixels and significances of 10σ above the local noise were
extracted with 30× 30 “postage stamp” windows. Each stamp
was then multiplied by a smoothly varying (Hanning) window
and normalized. The final PSF, to be flux scaled and added into
the image, was then the median of the nearby stamp templates,
weighted by the relative normalized distance from the injection
position and the relative flux uncertainty of the template star.
Figure 8 shows examples of simulated PSFs using this
technique across a typical Evryscope focal plane for a range
of magnitudes, alongside the resulting signal in a direct
subtraction image with a consecutive epoch.

At the end of the transient injection process, the image is
“decalibrated,” by adding back in the expected dark current,
bias, and background levels, and the image is converted back
into ADU units, with pixel values beyond the range of an
unsigned 16 bit integer being truncated, matching the
histogram of the simulated images to the distribution that is
expected for science images.

To produce a simulation-augmented data set, the transient-
injected images are reduced using the EFTE pipeline, and any
candidates that are identified within 2 pixels of an injection
location are labeled as real, while all others are labeled as
bogus. Despite the large number of injected sources, this
process produces an unbalanced data set, with artifact
detections outnumbering injections at rates up to 1000 to 1.
To balance the data set, we randomly select a number of bogus
candidates equal to the number of recovered injections for
inclusion in the final data set. This results in a data set with
noisy labels, due to both background transients (likely
dominated by short-duration reflections from Earth satellites;
Corbett et al. 2020; Nir et al. 2021) and candidates that were
injected below the difference image threshold and recovered
coincidentally. From a visual inspection of 10,000 injection
candidates, uniformly sampled from both known injections and
predicted artifacts, we estimate label contamination to affect
�2.7% of the candidates in the data set of 435,452 candidates.
Deep convolutional models have been observed in prior works
to be robust to many times this level of label noise (Ghosh
et al. 2016; Rolnick et al. 2017).

4.2.6. Staged Training Methodology

A common approach to building specialized models with
limited training data is to utilize transfer learning, by leveraging
the pretrained feature representations of existing models that
have been built with massive related data sets. Rather than
training an entire model from scratch, which requires a large
annotated data set over the domain of interest, a pretrained
model can be selectively “fine-tuned” over a representative data
set in a new domain. We adopt a similar approach, to make use
of the considerable diversity of the observing conditions and
sky regions that are represented in the simulated data set
described in Section 4.2.4, while minimizing the risk of
optimizing for the properties of the transient injection process

(see Section 4.2.5), rather than the properties that are
transferable to on-sky data.
Our training curriculum for VETNET was as follows:

1. train the full model—including all convolutional and
fully connected layers—on the simulated data set, until
convergence, to create the synthetic base model;

2. freeze the weights on all convolutional layers from the
synthetic base, and retrain the fully connected layers from
scratch using on-sky data; and

3. unfreeze the convolutional layers, then train at a minimal
learning rate using on-sky data, until convergence, to
produce the final on-sky model.

We used the Adam optimizer (Kingma & Ba 2014) with a
binary cross-entropy loss function for all three stages. For the
first two training stages, we started with a maximum learning
rate of 0.0003, slowed by a factor of 2, whenever the loss on
the validation set plateaued for 10 epochs. Scheduling the
learning rate in this way helped the network to converge to a
local minimum when near a global minimum, and decreased
the oscillation around the minimum of the loss function. For the
final fine-tuning of the entire model, we reduced the initial
learning rate to 0.00001, while maintaining the same scheduled
rate decay.
The synthetic base model converged after ∼100 epochs,

taking about 6.5 hr when training on an Intel Xeon E5-2695v4
CPU. The fine-tuning with on-sky data converged after ∼150
epochs, but took less than 10 minutes, due to the smaller
quantity of data.
In the final stage, we use a single iteration of the

semisupervised relabeling routine suggested by Killestein
et al. (2021); the samples in the training set that are differently
classified by the network than by human labelers are flipped to
the model classification, in cases where the model confidence
is greater than the median. On review, these samples are
generally difficult to classify by hand, with low-significance
peaks relative to the surrounding noise, areas of the sensor
plane with pathological PSFs, or likely errors in the original
labeling process. Figure 9 shows three representative examples
that were relabeled by VETNET during this process. In total,
fewer than 4.7% of the samples were changed in the training set
after the labels were updated. We note that this is comparable
to the label noise in the synthetic data set (2.7%).

4.3. Candidate Crossmatching and Source Association

EFTE candidates from both sites and their corresponding
metadata are stored in a relational database. On insert,
candidates are associated with previous candidates at the same
position, which collectively form an “event,” via an insert
trigger within the database. If a candidate has no antecedent, a
new event is created, and an additional trigger crossmatches the
new event’s position with a variety of externally produced
reference catalogs. At the time of writing, these reference
catalogs include the International Variable Star Index (Watson
et al. 2015), the Galaxy List for the Advanced Detector Era
(GLADE; Dálya et al. 2018), ATLAS-REFCAT2, and the
ASAS-SN Catalog of Variable Stars (Jayasinghe et al. 2018).
Stellar sources are crossmatched with a radius of 26″
(corresponding to 2 Evryscope pixels and the worst-case
astrometric performance for EFTE detections—see Figure 13),
and galactic sources from GLADE are crossmatched with a 1′
radius.
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Figure 8. Left: examples of simulated transients with magnitudes g 10, 11, 12, 13, 14, 15¢ = at the center and edges of a typical mid-galactic-latitude Evryscope
image. The PSFs at each position are modeled as normalized, aligned, and sigma-clipped combinations of nearby isolated stars, producing morphologically plausible
star-like injections. These simulations are used for the initial conditioning of our ML vetting system. Right: difference images for each subimage, using a reference
frame taken 2 minutes before the injected science image.
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To accelerate the in-database crossmatching and candidate
queries, all candidates, events, and reference catalogs are
indexed using the Quad Tree Cube (Q3C) pixelization
scheme,11a PostgreSQL extension for efficient spherical
crossmatching and radial queries (Koposov & Bartunov 2006).
Sky areas, such as the on-sky footprints of images or
probability contour regions for multimessenger transient
events, are indexed using PostGIS, with a custom nongeodetic
projection. This projection does not include the WGS-84
(Kumar 1988) reference ellipsoid, and represents the R.A. and

decl. in the standard barycentric celestial reference system in all
EFTE application code.
Candidates can also be crossmatched against external

triggers received by EFTE, via automated circulars from the
NASA Gamma-ray Coordinates Network/Transient Astron-
omy Network. Alerts are inserted in the central database by an
automated ingest microservice, where they are indexed by
position, by using Q3C for tightly localized triggers, as
PostGIS polygons for events that are distributed as polygon
skymaps, like LIGO/Virgo skymaps (Abbott et al. 2009), or as
GRB alerts from the Fermi Gamma Burst Monitor (Bhat et al.
2009).

5. Pipeline Performance Evaluation

5.1. Photometric Solutions

To evaluate the performance of the photometric calibration
using a smoothly varying zeropoint, as described in
Section 3.4, we compare single-epoch forced photometry from
3,217,215 catalog stars from ATLAS-REFCAT2 across 500
randomly selected images from the 2018 observation year. The
images were required to pass the quality assurance metrics
described in Section 3.1, but were not otherwise filtered for sky
or instrumental conditions. Figure 10 gives the distribution of
the photometric offsets and the offset rms as a function of
magnitude in the individual images. The resulting photometry
is calibrated to the reference catalog, with an RMS offset of
0.05 mag between 8<mg< 14.0, measured using five
iterations of a 5σ clip, to remove outliers due to single-epoch
failures.
These numbers likely represent an upper limit on the

photometric rms for isolated and dim events, as the distribution
is dominated by source confusion beyond g 14¢ = (e.g., dim
catalog stars with a brighter star near or within the 6 pixel
aperture), causing anomalously bright and high-precision
measurements of dim catalog sources. Sources brighter than
g 9¢ = are occasionally saturated when they appear near the
center of the image, though sources as bright as g 8¢ = are
typically well calibrated and linear. There is a noise floor
around ∼5% for single-epoch detections from Evryscope, due
to the variation in the subpixel response across the image plane.
These effects are modeled in data products from the Evryscope
precision photometry pipeline (Ratzloff et al. 2019), but they
are prominent in the raw single-epoch bright star photometry
from EFTE.
Additional color and airmass terms can be applied to the

light curves of EFTE photometry as needed, using the equation

g g A B g r k X k X g r ,

7
EVR PS PS PS 1 2 PS PS( ) ( )

( )
= + + - + + -


where gEVR is the magnitude in the Evryscope g band, gPS and
rPS are the PanSTARRS magnitudes from the ATLAS
reference catalog, X is the airmass of the star, and A, B, k1, and
k2 are fitted photometric conversion factors between the
Evryscope and PanSTARRS bandpasses. Based on fits to
forced aperture light curves using a robust estimator (Fischler
& Bolles 1981), the photometric conversion terms are
A= 0.037± 0.002, B=− 0.051± 0.004, k1= 0.021± 0.002,
and k2=− 0.051± 0.003. The light curves used to fit these
parameters were chosen from a random sample of 25,000

Figure 9. Misclassified training set samples relabeled based on the entropy-
based confidence of the VETNET predictions. Network reclassifications
typically affect samples that are difficult to classify manually. Samples (a)
and (c) were initially classified as real by human vetters, but were relabeled as
bogus by the algorithm. Both have pathological PSFs, likely caused by
interpolation artifacts from resampling near a cosmic ray, a particle strike, or an
unmasked bad pixel. Sample (b) is of low significance and off-center, but was
manually classified as bogus, before being confidently relabeled as real by
VETNET.

Figure 10. Photometric calibration offsets between ATLAS-REFCAT2 and
EFTE. The median rms offset in the region 8 < mg < 14.5 is 0.06 mag. The
anomalously bright and high-precision measurements (upper right) are due to
source confusion and blending. The underreporting of magnitudes due to
saturation is evident for stars brighter than g 8¢ = .

11 See https://ascl.net/1905.008 (Koposov & Bartunov 2019).
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northern hemisphere stars, which we then filtered based on a
quality metric, including the source variability relative to
nearby stars, the saturation, and the shape of the aperture flux
growth curve, leaving a cleaner sample of 10,671 light curves
with an average of 17,140 epochs,

Figure 11 shows the photometric offset as a function of g− r
and g− i colors, before and after applying the calibration
offset, as well as the resulting impact on the long-term

photometric accuracy of the light curves. The application of the
color and airmass correction brings the rms calibration
accuracy of the long-term light curves from 0.16 to 0.06
mag, in line with the single-epoch measurements above.
Public EFTE data products, including both transient alerts

and long-term photometric light curves, do not include color
and airmass terms. For the light curves, calibration for
photometric precision, rather than accuracy, is prioritized.

Figure 11. (a) and (b) Photometric offsets between the Evryscope and PanSTARRS g bands as a function of g − r before and after calibration with the color and
airmass terms above, respectively. The large offsets below the linear trend are caused by blended sources and low-S/N detections that were not filtered based on the
light-curve quality metric described in Section 5.1. (c) and (d) The same as above, but with g − i colors in place of g − r, to demonstrate the performance over a wider
variety of colors. No calibration fits are made as a function of the i-band colors. (e) and (f) The photometric calibration performance for many-epoch light curves as a
function of magnitude. The sigma-clipped rms photometric offset decreases from 0.16 to 0.06 mag for sources between 8 < mg < 14.5 with the application of color
terms.
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The Evryscope light curves are first decorrelated from subpixel
PSF variations, then detrended using a customized version of
the SysREM algorithm (Tamuz et al. 2005), to correct for
systematics, ultimately producing light curves that are self-
consistent at the �20 mmag level at the bright end of
Evryscope’s operating range, as shown in Figure 12.

5.2. Astrometric Localization

The custom astrometry routines developed for the Evry-
scopes are capable of providing 1″–2″ (0.08–0.15 pixel) rms
astrometry over the field of view of the Evryscopes in single
images; however, astrometric localizations from EFTE also
depend on the quality of the alignment procedure that is used

for real-time reduction, and must therefore be characterized
separately. In addition to the subpixel scatter induced by
photon noise, EFTE localizations depend on the consistency of
the pointing between consecutive images and the accuracy of
the rigid transformations that are calculated to align each image
with the previous image for which a WCS solution is available.
We evaluated the quality of this alignment routine by

performing source detection in individual science images,
aligned to previous target images in the same pointing. We
chose target images with a typical ΔtD of 10 minutes, with
samples of ΔtD< 10 minutes being representative of what
would occur in the first few images of a ratchet.
The detected sources were then crossmatched with the

sources in ATLAS-REFCAT2 (Tonry et al. 2018). As in
Section 5.1, 500 science images for testing were randomly
selected from the 2018 observing data set, across all weather
and moon conditions. Figure 13 shows a histogram of the
offsets between the catalog positions and the recovered
positions in the aligned science images with reused WCS
solutions. The astrometric performance was subpixel for 99%
of the detected sources, with an rms scatter of less than 4″
between 8 and 14 mag. As for the photometry, the precision
was limited by saturation effects at the bright end and by source
confusion for sources dimmer than 14.5. In all cases, the
localization was accurate to within 2 pixels.

5.3. VETNET Model Evaluation

We evaluated the VETNET RB model using both the held
back test set, described in Section 4.2.4, and an injection
recovery program over a sample of randomly selected images.

5.3.1. On-sky Test Set

Figure 14 shows postage stamp cutouts and classification
histograms from the held back test set of on-sky transients,
divided evenly between cases where the VETNET classifications
and the human-assigned labels agreed and cases where they
disagreed. In both categories, the entropy-based confidence
score scales with the subjective appraisal of the candidates;
candidates (c), (h), (k), and (i) are faint borderline detections,
which are accordingly assigned low confidence scores.
Candidate (g) is a linear particle collision. Notably, candidates
(f) and (l) have anomalously sharp PSFs, which were both
counted as real by human labellers, but were assigned bogus
scores by the network, suggesting that they are morphologi-
cally more similar to cosmics. Even in cases where the labels
are consistent, the confidence drops in areas with pathological
PSFs, as in example (b) and especially in example (a).
Figure 15 shows the performance of the model on the on-sky

test set. The magnitude-integrated precision and recall at the
VETNET score threshold of 0.5 are 95.4% and 94.4%,
respectively, with a false-positive rate of 5.1%. Depending on
the science case and false alarm tolerance of follow-up
resources, these numbers can be tuned using a combination
of the VETNET RB score and the  rating; for instance, a
subpercent false-positive rate is measured above an RB
threshold of 0.7.

5.4. Candidate Production Latency

To enable rapid follow-up, EFTE must produce candidates on
timescales that are comparable to the earliest and most
impulsive phases of the astrophysical events of interest, ideally

Figure 12. The measured rms values of 10,671 randomly selected long-term
Evryscope light curves. The performance in the detrended light curves ranges
from 20 mmag at the bright end to 20% for dim sources. The rms values for the
raw light curves are averages of the measured rms in each pointing, neglecting
zeropoint offsets between ratchets.

Figure 13. Top: astrometric localization performance for the EFTE pipeline.
Bottom: rms localization scatter as a function of magnitude. The performance is
subpixel at the 99th percentile, with a typical rms scatter of 7″, excepting stars
brighter than 7 mag, which are typically saturated, and those dimmer than 14
mag, where source confusion dominates in the source extraction.
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Figure 14. Sample on-sky candidates taken from the VETNET test set. The “Actual” and “Pred” values represent the sky truth class as determined by a human inspector
and the predicted class as determined by the network, respectively. Each histogram is an approximation of the normalized Bayesian posterior distribution for the
probability of the candidate representing a real astrophysical event, quantified using the entropy-based  metric from Killestein et al. (2021). In cases where the sky
truth and the network prediction disagree,  is typically <0.5, or extenuating circumstances exist, such as the anomalous PSFs in panels (f) and (l), or the potential
human misclassifications in (h), (i), and (k).
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within the base cadence of the survey. For Evryscope, this
means adding candidates to an actionable event stream within 2
minutes of the end of each exposure. We consider the candidate
production latency to be our figure of merit for speed, defined
here as the time delay between the shutter close time for the
image and the candidates being fully inserted into the central
EFTE database at UNC-CH, with all automated vetting and in-
database source association and deduplication actions being
complete.

Figure 16 presents histograms of the candidate production
latency for both Evryscope-North and Evryscope-South during
early on-sky testing of EFTE, between 2019 November 25 and
2020 January 1. Some variation is seen between Evryscope-
North and Evryscope-South, which we attribute to a combina-
tion of the differences between the on-site compute hardware
specifications, the camera counts, and the varying network
connectivity to each observatory. Cumulatively, between both
sites, EFTE is able to meet the subcadence latency requirement
for 98.5% of images.

5.5. Injection Recovery Testing for Completeness

To estimate the expected completeness of the survey, we
selected 800 images from the 2021 Evryscope-North data set at
random, injected simulated sources using the routine described
in Section 4.2.5, and evaluated the recovery probability as a
function of magnitude by using the routine described in Corbett
et al. (2020). The ratio of variables (injected with a minimum
contrast of 0.25 mag) to transients without a counterpart in the
reference image was 1:6. In total, 960,000 transients were
added to the images.
Figure 17 shows the fraction of simulated transients

recovered from the test set, and the corresponding recovery
fraction from Corbett et al. (2020), which used an earlier
version of the VETNET model. We note that dropping the
VETNET RB score threshold to 0.0 has a marginal effect on the
dim end of the recovery curve, indicating that the decreased
depth (50% at mg = 14 instead of 50% at mg = 14.2) is a
property of the slightly different image sample, rather than one
of the updated VETNET model. Sources brighter than mg

= 13.2 are successfully recovered in all images.

6. Science Results from EFTE

6.1. Rapid Follow-up of Stellar Flares with SOAR

EFTEʼs latency is fast enough for flare candidates to be
observed by other telescopes in the minutes immediately
following the flare’s detection. The SOAR telescope is a 4.1 m
telescope located at Cerro Pachon in Chile, which hosts the
Goodman High Throughput Spectrograph (Clemens et al.
2004). The entirety of Evryscope-South’s field of view is
within SOAR’s observable area, and a band of Evryscope-
North’s field of view below declinations of 10° is accessible to
SOAR. Ongoing studies are pairing SOAR and Goodman with
the EFTE alert stream to acquire spectra of stellar flares within
minutes of the detection of those flares, allowing the spectral
evolutions of flares to be characterized during the most
impulsive phases of the flare, with the time resolution being
limited by the exposure time that is necessary to obtain a
spectrum with an adequate S/N (typically less than a minute
for EFTE-detected stellar flares).

6.1.1. EVRT-3586872: A Δm= 4.2 Flare from a mid-M Dwarf

In an exposure beginning at 5:39:56 UTC on 2020 February
15, EFTE detected a new source from Evryscope-South, which
was then confirmed in the two consecutive images, at
magnitudes of 12.7 and 12.8, respectively, indicating that this
source was both astrophysical in nature and potentially detected
near its peak. The source, which was assigned the identifier
EVRT-3586872, crossmatched to a star in the ATLAS
reference catalog with a red color (g− r= 1.186), suggesting

Figure 15. The performance of VETNET on the on-sky test set. Top: precision
and recall as a function of the VETNET RB score. At the RB = 0.5 threshold,
the observed precision and recall are 95.4% and 94.4%, respectively. Middle:
entropy-based confidence scores for false positives and false negatives as a
function of the VETNET RB score threshold. The shaded regions indicate the
score regions where no false positives or false negatives occur within the on-
sky test set. Bottom: receiver operating characteristic (ROC) curve for VETNET.
The area under the ROC curveis 0.99, representing the probability that a
random real candidate will receive a higher RB score than a random bogus
candidate. The “no-skill” line indicates the expected performance curve for a
random classifier.

19

The Astrophysical Journal Supplement Series, 265:63 (23pp), 2023 April Corbett et al.



a possible M-dwarf origin. The offset between the catalog star,
2MASS08593584-2340201, and the EFTE detection is 4 0, well
within the expected astrometric error. The star is also cataloged
in Heinze et al. (2018) as an irregular sinusoidal variable,
consistent with an M-dwarf rotational signature.

Upon receiving the notification of consecutive detections of
a cataloged red source via our web interface, we worked with
SOAR staff to slew to its location, and began observing the
target 14.9 minutes after the end of the first Evryscope
detection image. We used the 400 line grating in the M1
configuration, approximately covering the wavelength range
from 300 to 705 nm. Figure 18 shows a spectrum of the flare
extracted from a 120 s exposure +15 minutes after the initial
trigger, with the flux calibrated to the spectrum of LTT2445
(Hamuy et al. 1992, 1994).

We fit a two-component scaled blackbody model to the flare
spectrum. This includes both a fixed contribution from the
quiescent star, based on the Bayesian estimate of Teff from
StarHorse2 (Anders et al. 2022), and thermal flare emission,
with a best-fit temperature of 22,852 K. At almost 23,000 K,
this temperature is larger than those typically assumed in flare
models (Osten & Wolk 2015), but consistent with temperatures
that have recently been inferred from broadband light curves
from the NASA Transiting Exoplanet Survey Satellite (TESS)
and Evryscope (Howard et al. 2020). We also note that this
measurement is subject to known systematics, including
Balmer continuum emission features (Kowalski et al. 2013)
and increasing uncertainty as the true temperature increases,
due to the optical bandpass primarily sampling the Rayleigh–
Jeans tail of the spectrum at temperatures beyond 104 K
(Arcavi 2022). Analysis of the results from the EFTE–SOAR
follow-up program is ongoing.

6.2. EFTE Light Curves

In addition to transient alerts, EFTE enables users to produce
long-term light curves for targets that are not included in the
input catalog that is used for the Evryscope high-precision
forced photometry pipeline (Ratzloff et al. 2019). EFTE light
curves have been included in multiple publications, both by the
Evryscope team and external collaborators. Publications using
EFTE light curves include analyses of the galactic novae V1674
Her (Quimby et al. 2021) and V906 Car (Wee et al. 2020),
measurements of the rotation periods of TESS exoplanet hosts,
including one example with a 2.1 mmag amplitude that was
measured from EFTE photometry (Howard et al. 2021), and the
long-term monitoring of a mysterious dust-emitting object that
is orbiting the star TIC 400799224 (Powell et al. 2021).

6.3. Satellite Glint Foregrounds for Fast Transient Surveys

Image contamination by Earth artificial satellites takes two
forms: streaks, with uniform illumination over extended
trajectories, and glints, which appear as short-duration flashes.
These two morphologies are frequently degenerate, and depend

Figure 16. Cumulative histogram (a) and distribution (b) of the time delay between the exposure and the insertion of vetted candidates into the remote database,
between 2019 November 25 and 2020 January 1. 98.5% of the images were fully reduced into lists of transient candidates within 120 s, before the next image was
complete.

Figure 17. Survey completeness as a function of magnitude for both the current
EFTE, with a VETNET RB threshold score of 0.5, and the previous version
described in Corbett et al. (2020). The completeness is measured on a synthetic
sample of injected transient and variable sources. The recovery probability for
sources brighter than mg = 13.2 is 99.9%, which rapidly falls to 50% at
mg = 14. The shaded regions represent the 90% confidence intervals of each
curve, based on the percentiles of the per-image recovery functions.
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on the structure and orbit of the reflector. Glints have been
mistaken for astrophysical events, due to their short durations,
relative to their motions on the sky, and their sharp contrasts
with their associated streaks (Maley 1987; Schaefer et al. 1987;
Maley 1991; Rast 1991; Shamir & Nemiroff 2006). During the
first six months of EFTE operations, we identified 1,415,722
likely satellite glints and modeled an all-sky event rate of
1800 280

600
-
+ sky−1 hr−1, peaking at mg = 13.0 (Corbett et al.

2020). This rate is orders of magnitude higher than the
combined rate of the public alerts from all the active all-sky
fast-timescale transient searches, including neutrino, gravita-
tional-wave, gamma-ray, and radio observatories. A subsequent
study, using the Weizmann Fast Astronomical Survey Tele-
scope (Nir et al. 2021), revealed that this event rate increases
sharply with depth, reporting an event rate of 9100 2000

3000
-
+ sky−1

hour−1 for 9<MBP< 11 around the equator, 2.3 times the
value that we measured for mg< 9. As the majority of the
events observed by Evryscope appear to be generated at LEO,
we expect the event rate for satellite glints to correlate with the
rapidly growing number of LEO satellites.12

7. Summary and Conclusions

In this paper, we have presented EFTE, the real-time transient
discovery pipeline for the Evryscopes. The pipeline is a fully
custom data analysis tool, which is suited to the unique parameter
space inhabited by the Evryscopes and capable of identifying
transient candidates in real time, with alerts available for each
image within the 2 minute cadence of the Evryscopes for 98.5% of
images. To accomplish this, we have reduced the complex image
subtraction process that has been adopted by seeing-limited surveys
to a simple direct subtraction of near-consecutive images. The
astrometric performance for transient alerts is subpixel at the 99th

percentile, and the photometric performance is within 0.06 mag
rms of the ATLAS-REFCAT2 catalog for reference stars within
the 8<mg< 14.5 sensitivity range of the survey. Using a
convolutional RB classifier, we are able to recover 99.9% of
sources brighter than mg = 13.2, with a false-positive rate of 5.1%.
While EFTE is specifically adapted to Evryscope data, the

infrastructure, algorithms, and ML models were developed to
enable portability to instruments with similar survey strategies,
such as TESS (Ricker et al. 2014), or those with stringent data
throughput and latency reduction requirements. The core algo-
rithms from EFTE have been adapted for usage in the pipeline of
the Argus Optical Array, a 5 m class multiplexed 55 GPix
synoptic survey instrument that is currently in development (Law
et al. 2021, 2022). Argus will observe a field of view equivalent to
that of Evryscope in alternating 1 and 30 s cadences, which will
produce up to 4.3 PiB and 145 TiB of raw data per night,
respectively. To support this data rate, the Argus data will be
reduced in real time, producing low-latency transient alerts,
photometry, and calibrated image data for distribution and storage.
In Corbett et al. (2022a), we describe the Argus pipeline and data
products, and demonstrate the direct subtraction algorithm—

which is described in Section 3.3—on the Argus Array
Technology Demonstrator (Corbett et al. 2022b). TheVETNET
model described in Section 4 is optimized for direct image
subtraction and Evryscope data; however, the framework for
performing this optimization and for staged model training using
both on-sky and simulated data is similarly portable to Argus.
A public alert stream from EFTE is in development, based on

the evolving community standard, adopted by the Zwicky Alert
Distribution System (Patterson et al. 2019) andplanned for the
Rubin Observatory’s Legacy Survey of Space and Time,13 with
serialized alert packets being distributed via Apache Kafka

Figure 18. Spectrum of EVRT-3586872 at +14.87 minutes from the end of the first Evryscope detection of a flare candidate. The spectrum has been flux-calibrated
and normalized. The overlaid curve is a two-component blackbody spectrum, consisting of a fitted 22,852 K flare continuum and a 3256 K quiescent thermal
spectrum.

12 https://www.ucsusa.org/resources/satellite-database 13 https://dmtn-093.lsst.io
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(Kreps et al. 2011). Alerts will be available via the Arizona-
NOIRLab Temporal Analysis and Response to Events System
(Matheson et al. 2021). Details of the alert distribution system
and the alert schema contents will be addressed in future work.
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