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Abstract: During the last decades, novel technological approaches have allowed uniquely la-
belling cells by integrating random barcodes in their DNAs. Such barcodes are permanent and
are inherited by the cellular offspring. Thus, DNA sequencing permits their reading in order to
identify those cells with common ancestors. This process, known as lineage tracing, enables the
study of complex biological processes such as embryonic development, tissue homeostasis or even
cancer metastasis with clonal, and even single cell, resolution. Here we aim to reveal the founda-
tions behind the experimental results of clonal dynamics of colon cancer organoids through in silico
simulations. We formulated three modified Lotka-Volterra models that allow us to investigate the
role of clonal carrying capacity, proliferation rates and inter-clonal interaction network to achieve
our purpose. The results show the vital role of partial interactions among clones and the impor-
tance of implementing nonequilibrium networks, i.e. architectures of interactions that vary in time.
Furthermore, our results reveal a direct relationship between the harvesting time and the average
number of surviving species at the end of the experiment, suggesting that external perturbations to
the system can have big effects to clonal dynamics.

I. INTRODUCTION

The humankind has always had the eagerness to unveil
the origin of our existence and to better comprehend the
historical evolution that has driven the human race to
present day. This is the reason why nowadays there are
lots of researchers that still work on trying to reveal some
of the inquiries about our progenitors. This ambition of
knowing where we come from has also been transferred
to a microscopic biological area. In fact, during the last
decades there has been an increase of interest in enlight-
ening the origin of all cells and their differentiation pro-
cesses in our organisms. This procedure is named lineage
tracing. It describes a set of methods that allows us to
outline the fate of individual cells and their progeny [1].
Lineage tracing has been broadly applied to explore di-
verse complex biological processes including embryonic
development, tissue homeostasis, stem cell functioning in
regeneration and disease, and even cancer spreading [2–
5].

A quarter of a century ago lineage tracing was per-
formed following the cells by eye under the microscope
during the embryonic development of C. elegans [6]. This
animal has a deterministic development because all indi-
viduals of this species thrive practically in the same way.
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Moreover, the adult C. elegans is conformed by a rela-
tive small number of cells (∼ 1000) and, since its body is
transparent, it is possible to visualize them under the mi-
croscope. Thus, these factors simplify the study of their
cellular division. Over time, more sophisticated tech-
nology allowed to mark cells with dyes or even with ra-
dioactive tracers to register cell positions, their divisions
and their migratory tracks thanks to scanned laser light
sheet fluorescence microscopy. These approaches have
allowed to perform lineage tracing in vivo in zebrafish
and mouse models [7]. Finally, during the last ten years,
diverse tracing methods have been set up in which retro-
viral libraries are used to uniquely label single cells in a
tissue with a permanent DNA barcode that is integrated
in the cellular genome and inherited by the cellular off-
spring [8, 9]. By sequencing these barcodes, both within
single cell and bulk resolution, lineage tracing can be per-
formed.

These barcoding strategies allow to study clonal dy-
namics in a wide variety of systems both in vivo and in
vitro. Here, we will focus on clonal dynamics in colon can-
cer organoids. Organoids are simplified 3D microscopic
versions of an organ produced by cells extracted from a
donor. Thus, organoids are capable to mimic the struc-
ture and to function similarly to the original organ [10].
The considerable advantage of organoids is that one can
investigate in large quantities their performance under
the effects of a disease and how they respond to possible
treatments. Furthermore, they provide fast and robust
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outcomes because of their accurate representation of hu-
man tissue. Nowadays, there are organoid model systems
for several organs, such as colon, lung, liver, brain, skin,
among others [11–13].

In this project we intended to model in silico part
of the experimental results obtained by Kester et al.,
2022 [14]. The manuscript is organized as follows. In sec-
tion II a description of the experimental set-up and the
work by Kester and colleagues is summarized. Next, an
overview of the Lotka-Volterra model and our proposed
modified versions to model clonal dynamics in colon can-
cer are provided (section III). In section IV, linear stabil-
ity analysis of our models is performed. In section V we
investigate how inter-clonal interaction can be included
in our models by means of an interaction matrix, and we
investigate its effect in the average number of surviving
clones. Next, we adapt our models to better simulate the
experiments by using nonequilibrium networks to model
organoid resampling (section VI). Finally, we discuss our
results and propose future directions of research.

II. EXPERIMENTAL SET-UP AND PREVIOUS
RESULTS

The cell lines used by Kester et al. were developed
in Drost et al. 2015 [15], in which human intestinal
stem cells from a healthy donor were manipulated genet-
ically to incorporate mutations in some of their genes.
Concretely, three cell lines were generated. In the first
place, the APC gene, which acts as a tumor suppressor,
was mutated to make it non-functional. The second cell
line contains the APC mutation plus a mutation on P53,
which is an essential gene to regulate cell proliferation.
In the last cell line, another mutation was incorporated
in KRAS, which controls the formation, maturation and
destruction of cells. Drost and colleagues showed that
each of the cell lines can generate colon organoids that re-
capitulate colon cancer phenotypes (such as appearence,
proliferation rates and aneuploidy) at different stages of
the disease, from the less lethal to the most aggressive
one.

In Kester et al., the organoids were dissociated
and, as a result, a dissolution of single stem cells
was obtained (Fig.1). These single cells from each
cell line were infected by a retrovirus which per-
mitted to label each cell with a different barcode.
The barcodes used have the following sequence of
nucleotides: ATGCATGCATTTGTAAAACGACG-
GCCAGTNNNNNTNNNNNTNNNNNTNNNNNTCA-
CACAGGAAACAGCTATGAGGCGCGCC, where A
refers to adenine, T to thymine, C to cytosine, G to
guanine, and N can be either A, T, C or G with equal
probability. Since the barcodes have 20 N, that implies
that theoretically there are 420 of distinct barcodes and
therefore we can uniquely label up to 420 cells. Once all
the cells were labeled, organoids were developed from
every of them (Fig.1). From now on, since each organoid

has its own barcode, we treat them as distinct species.

Arrived at this point, the system was let evolve peri-
odically for one week during six months. At the end of
every period, organoids were dissociated into single cells
and a subset of them was used in order to quantify the
proportions of every species by sequencing the barcodes
of the cells. The rest of the cells were used to grow new
organoids by depositing them again in a new Petri dish
to repeat the process. Each repetion of this procedure
is called passage and in every experiment a total of 20
passages were conducted. An example of the proportion
of species recovered in every passage for one of the cell
lines is displayed in Fig. 2, where we can observe the
survival of only some of the original species. This out-
come is counterintuitive because all families of organoids
were initially supposed to be equal in the sense that there
was no selective pressure, and their proliferative capaci-
ties were the same. However, Drost et al. observed that
organoids accumulated aneuploidy (typical of cancer pro-
gression) over time, so that results may reflect this effect.

FIG. 1. Cell barcoding and experimental procedure. This il-
lustration summarizes the experimental procedure conducted
for the lineage tracing in the experiments done by Kester et
al. [14], in which each colored cell/organoid indicates the pres-
ence of a different barcode. At the bottom a sketch of a cell
barcode is shown. Common sequences are required for the de-
tection of the cell barcode in the DNA, and the cell barcode
is formed by 20 random nitrogenous bases.

Kester et al. computed a stochastic model without
selective pressure in order to simulate in silico the be-
haviour observed in Fig. 2. In the simulations, iden-
tical species were let grow independently without con-
sidering any possible interaction among them. The ef-
fect of passaging was modeled as a Poisson sampling
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acting as a bottleneck through which just a given sam-
ple of organoids was allowed to pass, representing the
harvesting and relocation of a sample of organoids to
another Petri dish. The results showed that a higher
number of species should survive than the number ob-
served experimentally. In addition, Kester et al. per-
formed a second set of simulations in which initially each
species had a different mutation and hence different repli-
cation rate. Here, they observed that the mutations with
higher adaptability were the ones that survived. This
means that before letting the system evolve, the surviv-
ing species could be predicted. However, this disagrees
with what independent repetitions of the clonal dynamic
experiments were showing.

FIG. 2. Experimental results of clonal dynamics. This plot
represents the in vitro clonal dynamics. The figure presents
the relative frequency of observed viral lineage barcodes as a
function of the number of passages. The image is courtesy of
Kester et al., 2022 [14].

In front of these results, here we attempt to model in
silico the clonal dynamics in order to unveil the main fea-
tures behind the experimental phenomena observed. To
do so, in this project we used a modified version of the
very well-known Lotka-Volterra model [16, 17] to simu-
late the competitive dynamics of the populations of every
species of organoids. Thus, one of the aims of this work
is to demonstrate that an ecological model can also play
an important role in the comprehension of the popula-
tion dynamics of organoids and, eventually, organisms at
microscopic level. We conclude that this model has pro-
jection because it could be applied to different biological
processes such as cancer evolution, embryonic develop-
ment or even cell organization in a tissue.

III. DEVELOPMENT OF MODIFIED
LOTKA-VOLTERRA MODELS

Here we introduce the classical Lotka-Volterra model
and our modified version of it. The following plots
are outcomes of resolving the ordinary differential equa-
tions (ODEs) deterministically through the fourth-order
Runge-Kutta (RK4) method [18]. One of the objectives
of this research is to deal with multiple species, which
implies the possible appearance of chaotic behaviour.
Hence, high-order numeric methods are required in or-
der to avoid generating artificial phenomenology. These
methods have a considerable computational cost since

they require more calculations and function evaluations.
Nevertheless, a good balance is achieved with RK4 be-
cause accurate results are obtained without the necessity
of a small step-size ∆t. In fact, the time step chosen
was of ∆t = 0.1 in arbitrary units (a.u.) allowing fast
computation without losing accuracy.

A. Logistic population growth model

Let us begin with a detailed description of the logistic
population growth model for a single species. The first
approach of intending to model population growth was
conducted by Malthus in 1798 [19]. As can be seen in
Eq.(1), he defined it as a birth-death process with con-
stant rates:

dx

dt
= bx− dx = (b− d)x = rx ⇒ x(t) = x0e

rt (1)

where x is the population size, x0 = x(t = 0) is its ini-
tial value, b and d are positive constants representing the
birth and death rates, and r = b− d is the difference be-
tween both, which sets the net growth rate. The growth
rate can be either positive or negative, so it gives rise
to an exponential increase or decrease, respectively. It
is important to emphasize that the population size x is
the result of dividing the number of individuals by an
arbitrary number, which could be a volume such that x
could be interpreted as a density.

Although this approach may seem simple, there are
regimes in the population growth of some species that fol-
low this exponential behaviour. For instance, the growth
of the humankind from 17th to 20th century was expo-
nential, and it had projection to remain with the same
rate for the 21st century [20]. However, human behaviour
is complex and large repercussion phenomena can appear
such as wars, diseases or lack of resources that can affect
exponential growth. Evidently, these phenomena are not
included in the Malthus model.

Thereafter, with the aim of correcting the unlimited
exponential growth of the Malthus model, in 1845 the
Belgium mathematician Verhlust proposed a self-limiting
adjustment in order to model the overcrowding and lim-
iting resources effects [21]. He suggested the following
equation:

dx

dt
= rx

(
1− x

K

)
(2)

being r the proliferation rate and K the so-called car-
rying capacity. Carrying capacity can be defined as the
maximum population size of a biological species that can
be sustained by a particular environment. It represents
the limited amount of resources and the maximum sta-
ble population size that a species will tend to have. The

term −x2

K models the interaction of the population with
itself for the competition of resources.
As it is represented by the phase portrait in Fig. 3A,

Eq.(2) has two fixed points that satisfy the stationary
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condition dx/dt = 0, these are x∗ = 0 and x∗ = K. By
means of a linear stability analysis we can demonstrate
that x∗ = 0 is an unstable fixed point, which means that
any small deviation of the initial population size differ-
ent from zero will grow. In fact, the dynamics will tend
towards x∗ = K; which is the stable fixed point. In case
the initial population is higher than K, it will decrease
until reaching the stable fixed point x∗ = K (Fig. 3B).
Hence, the population size always approaches the car-
rying capacity value. Particularly, Eq.(2) can be solved
analytically giving as a result [22]:

x(t) =
K

1 + Ce−rt
(3)

being C = K−x0

x0
and x0 the initial population size.

FIG. 3. Logistic growth model. A: Phase portrait of the lo-
gistic growth for r = 1 a.u. and a carrying capacity K = 0.85
a.u.. The two fixed points (orange for the unstable one and
green for the stable one) are represented. The flow of the
population size is displayed through the green arrows. B:
Temporal evolution in arbitrary units of the population sizes
x(t) for different initial conditions. The dashed lines mark
the fixed points x∗ = 0 and x∗ = K.

Further variations of the logistic model have been done
with the intention of investigating certain biological be-
haviours observed in nature. To mention a few, the Allee
effect to consider aggregation effects [23]. Ludwig pro-
posed adding a nonlinear term representing the preda-
tion of budworms by birds to explain insect outbreak
that caused the defoliation and death of a severe number
of trees in the eastern North America forest [24]. Holling
added a famous hyperbolic function, the Michalis-Menten
equation with some adjustments, to model the harvesting
and consumption of food [25]. In this project, we worked
with the simplest situation which is the Verhlust logis-
tic equation Eq.(2): this mathematical representation of
the self-competition (also called self-interaction) for re-
sources is the most similar to our experimental situation.
Moreover, the value selected for the basal carrying ca-
pacity of all species was K = 0.85 a.u. based on Cho et
al., 2022 [26], that describes the interaction of two types
of cancer cells.

B. Lotka-Volterra equations for two interacting
species

Here we introduce an extension of the Verhlust model
by including the participation of a new species. This
implies the addtion of an interaction term between the
two species. This situation can be mathematically
characterized through a well-known system of nonlin-
ear differential equations called the Lotka-Volterra equa-
tions [16, 17]:

dx

dt
= rxx

(
1− x

Kx
+ γxy

y
Kx

)
dy

dt
= ryy

(
1− y

Ky
+ γyx

x
Ky

) (4)

being x and y the population size of each species, Kx

and Ky their corresponding carrying capacities, respec-
tively, and γxy and γyx are the parameters that define
the type and the strength of the interactions between
species. In fact, thanks to these interaction parameters,
the Lotka-Volterra equations can be used in five different
scenarios [27, 29]:

• Mutualism or symbiosis: both species take advan-
tage of one another to grow themselves. It corre-
sponds to the case in which both γxy,γyx > 0. This
type of interaction plays a crucial role in ecology
by promoting and even maintaining the population
of the species.

• Commensalism: one species benefits from the other
without either harming or benefiting the latter.
This situation is described by one positive inter-
action γxy > 0 and a null one γyx = 0.

• Predator-prey model: it is the most famous one.
This situation is defined through antagonistic in-
teractions, meaning that γxy and γyx are of oppo-
site sign. This implies that one of the two species
has the role of being food for the other one.

• Amensalism: this type of system reflects a biologi-
cal interaction where one species, that remains un-
affected, produces the destruction or inhibition of
the other. It is mathematically expressed by one
negative interaction γxy < 0 and a null one γyx = 0.

• Competitive model: in this situation both species
compete for the same limited resources, thus one
species inhibits the growth of the other one and
viceversa. This system is described by both species
having negative interactions γxy,γyx < 0.

Once presented all the possible scenarios one can study,
we can notice that the situation that concerns us is better
described by the competitive model because we suppose
that all species only compete for food. Furthermore, to
simplify the study, the strength of the interactions was
considered to be the same independently of the species,
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γxy = γyx = γ. In addition, we also assumed that rx =
ry = r and Kx = Ky = K. In Fig. 4 we can observe
different dynamics depending on whether the value of γ
is higher, lower or equal than the self-interaction.

Firstly, looking at Fig. 4A, if the competition is weaker
than the self-interaction, i.e. −1 < γ < 0, both species
survive with the same population size, but with a smaller
quantity than K.
Secondly, in Fig. 4B we observe the opposite situa-

tion. When the competition is stronger than the self-
interaction, i.e. γ < −1, only one of the two species
survives. The surviving species depends on the initial
population sizes. This dichotomy is known as the Prin-
ciple of competitive exclusion, which establishes that two
species competing for the same limited resources cannot
coexist.

Finally, Fig. 4C displays the situation in which the
competition and the self-interaction are equal, i.e. γ =
−1. In this case, we observe a line conformed of an infi-
nite number of stable fixed points. Thus, extrapolating
to multiple species, we expect a hypersurface of stable
fixed points.

In the experimental set-up, we assumed that species
interact among them in the same manner as with them-
selves (i.e. γ = −1). This enables to consider the case of
all organoids (species) being equivalent and therefore we
can set all the interactions to be the same.

C. Multispecies modified Lotka-Volterra models

Once expounded the foundations of the Lotka-Volterra
equations, we can now infer the competitive model to
multiple interacting species and formulate the following
generalized equations:

dxi(t)

dt
= rixi(t)

1−
N∑
j=1

xj(t)

Ki

 , i = 1, ..., N (5)

where N is the total number of species, xi is the popu-
lation size of species i, ri is its growth rate and Ki is its
carrying capacity.

Returning back to the experimental data we aim to
model, two of the main inquiries are: to what extent all
species are actually equal? In case they are not, which
factors should be considered to reproduce in silico the
experimental results? With the aim of answering these
questions, we must consider both biological and experi-
mental conditions.

On the one hand, it is well-known that cancer cells pro-
liferate without control and accumulate mutations giving
them different fitness properties [28]. Thus, considering
these species as cancer cells, a natural way to differenti-
ate them is by means of modifying the growth rate ri of
each species. Then, we define an effective growth rate de-
fined as reff,i = r+ ξi, where r is a minimal basal growth
rate shared between all the species, and ξi can take any

FIG. 4. Phase portraits of the competitive model. A: Phase
portrait when the competition is weaker than the logistic self-
interaction (γ = −0.5). Both species survive in the same
proportion, but with a smaller size than K. B: Phase por-
trait when the competition is stronger than the logistic self-
interaction (γ = −1.5). The Principle of competitive exclu-
sion is observed. C: Phase portrait when both the compe-
tition and the logistic self-interaction are equal (γ = −1).
There is a line of stable fixed points. In all plots K = 0.85
a.u. and r = 1 a.u.. The solid lines represent the trajectories
of the dynamical system in the phase plane for different initial
conditions. The dashed lines are the nullclines, meaning the
solutions of dx/dt = 0 (blue) and dy/dt = 0 (violet). Finally,
the green arrows are the vectorial representations of the tra-
jectories.

positive value (ξi ≥ 0). As a result, the modified version
of the generalized Lotka-Volterra equations becomes:

dxi(t)

dt
= (r + ξi)xi(t)

1−
N∑
j=1

xj(t)

K

 , i = 1, ..., N

(6)
where the carrying capacity is regarded the same for all
species, meaning that all species compete for the same
common resources. Therefore, we reduce the analysis to
the essentials of having different effective growth rates
reff,i.
In order to simplify the simulations, we divide the

equations by r and re-scale the time through τ = rt.
Eq.(6) becomes then:

dxi(τ)

dτ
= (1 + ηi)xi(τ)

1−
N∑
j=1

xj(τ)

K

 , i = 1, ..., N

(7)
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being ηi = ξi/r.
On the other hand, another aspect that could be rel-

evant in the dynamics is differentiating every species
through the carrying capacity. Hence, we can deal with
an effective carrying capacity Keff,i = K + νi, where K
is the minimal basal carrying capacity due to the sources
supplied in the experiment, and νi is also defined posi-
tive (νi ≥ 0). The term νi models the efficiency of every
species to profit from the basal resources. In other words,
if species i develops a certain feature that enhances its
survival with respect the rest of species without affecting
its proliferation rate, it will have a large νi as a result of
this better adaptation. Then, we can express this new
model as:

dxi(τ)

dτ
= xi(τ)

1−
N∑
j=1

xj(τ)

K + νi

 , i = 1, ..., N (8)

where the re-scaling of the time τ = rt has been main-
tained.

Finally, we also introduce a third model used as control
in which all species are the same (i.e. ξi = 0 and νi = 0).
Then, the equations are written as:

dxi(τ)

dτ
= xi(τ)

1−
N∑
j=1

xj(τ)

K

 , i = 1, ..., N (9)

To summarize, here we are going to compare the fol-
lowing three models:

• Model A, all species are exactly equal:

dxi(τ)

dτ
= xi(τ)

1−
N∑
j=1

xj(τ)

K

 , i = 1, ..., N (10)

• Model B, every species has its own effective
growth rate:

dxi(τ)

dτ
= (1 + ηi)xi(τ)

1−
N∑
j=1

xj(τ)

K

 , i = 1, ..., N

(11)

• Model C, all species have different effective carry-
ing capacity:

dxi(τ)

dτ
= xi(τ)

1−
N∑
j=1

xj(τ)

K + νi

 , i = 1, ..., N (12)

IV. LINEAR STABILITY ANALYSIS OF THE
MODELS

With the purpose of understanding deeply the dynam-
ics of the models, in this section we perform a linear
stability analysis for each of them. In Fig. 5 we compare
the analytical demonstrations with the results obtained
through the simulations.

A. Model A: Equal species model

First, let us begin with the simplest situation where
all species are equal (Eq.(10)). By solving dxi/dτ = 0,
we find two set of possible solutions at the stationary
situation: {

xst
i = 0, ∀i∑N
i xst

i = K
(13)

For the sake of simplicity, we are only going to study the
homogeneous solutions, i.e. when all xst

i are the same ∀i.
This implies that either xst

i = 0 or xst
i = K/N for ∀i. In

order to know which of the solutions is stable, we apply
a small perturbation to the steady state, xi = xst

i + δxi

being δxi small, and proceed with the stability analysis:

dxst
i

dτ
+

dδxi

dτ
= (xst

i + δxi)

1− Nxst
i

K
−

N∑
j

δxj

K

 =

= xst
i

(
1− Nxst

i

K

)
−xst

i

N∑
j

δxj

K
+δxi

(
1− Nxst

i

K

)
(14)

Higher-order terms are ignored so that we stay in the
linear regime. Thereupon, by removing those terms that
we already know are zero from the stationary solution of
Eq.(10), Eq.(20) is reduced to:

dδxi

dτ
= −xst

i

N∑
j

δxj

K
+ δxi

(
1− Nxst

i

K

)
(15)

Now, we can substitute both steady solutions and analyse
the results.
For xst

i = 0 ∀i, Eq.(15) becomes:

dδxi

dτ
= δxi (16)

Thus, a perturbation would grow exponentially fast, so
the linear stability analysis indicates that xst

i = 0 ∀i is
an unstable solution.
For xst

i = K
N ∀i, the expression obtained is:

dδxi

dτ
= − 1

N

N∑
j

δxj (17)

In order to achieve a better description of the stability of
the fixed point, we must find the eigenvalues and eigen-
vectors that satisfy Eq.(17). Then, we rewrite Eq.(17) in
its vectorial form:

1

dτ
δ−→x = Aδ−→x (18)

where A = − 1
N

#„
#„
1 , being

#„
#„
1 a matrix filled with ones.
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FIG. 5. Dynamics of the modified competitive Lotka-Volterra models. Here there are displayed the temporal evolutions (a.u.) of
the population sizes (a.u.) of the three studied models for six species (N = 6): A: equal species model (Model A), B: effective
growth rate model (Model B) and C: effective carrying capacity model (Model C). In every simulation, the interaction among
six species has been computed. Indeed, their initial conditions are randomly selected through a uniform distribution U∈(0,1),
but the steady solution would be the same if the initial conditions were equal. The dashed lines correspond to K = 0.85 a.u..

Now, the eigenvectors evolve over time as δ−→x (τ) =
eλτδ−→x s, where δ−→x s is the spatial constant component.
Then, we can seek the eigenvalues and eigenvectors:

λδ−→x s = Aδ−→x s ⇒ det(A− λI) = 0 (19)

This shows that at least there is an eigenvalue λ0 = 0,
so there exists a N-dimensional hypersurface of solutions.
And since the trace of A is negative, the solutions that

fulfill
∑N

i xi = K are classified as stable non-isolated
fixed points [22]. As a matter of fact, this result was
expected since in the 2D situation depicted in Fig. 4C
we observed a line of stable solutions.

In Fig. 5A, we observe one of the infinite stable solu-
tions this system can have for N = 6. In fact, in this
figure the initial population sizes for each species have
been selected randomly with a uniform probability distri-
bution U∈(0,1). Hence, another initial condition would
lead to another stable state.

B. Model B: Effective growth rate model

We proceed analogously with the linear stability anal-
ysis of the effective growth rate model. Therefore, we
reach the same as in Eq.(15), but adding the reff,i com-
ponent:

dδxi

dτ
= −reff,ix

st
i

N∑
j

δxj

K
+ reff,iδxi

(
1− Nxst

i

K

)
(20)

Hence, if we consider again the homogeneous station-
ary solutions xst

i = 0 and xst
i = K

N for ∀i, we find that
the former is unstable. Let us now analyse the stability
of the latter fixed point. As before, Eq.(20) becomes:

dδxi

dτ
= −reff,i

N

N∑
j

δxj , ∀i (21)

Thereby, we can rewrite the equations as in Eq.(18)
where in this case:

A =
1

N


−reff,0 −reff,0 . . . −reff,0

...
...

. . .
...

−reff,i −reff,i . . . −reff,i

...
...

. . .
...

−reff,N −reff,N . . . −reff,N

 (22)

It can be observed that every row can be obtained
through a linear combination of the rest, this implies
that det(A) = 0. Consequently, again at least a solu-
tion of det(A−λI) = 0 is λ = 0 and the trace is negative.
Hence, for this model we have also found a N-dimensional
hypersurface of stable non-isolated fixed points. We can
argue that both the equal species model and the effective
growth rate model behave practically in the same way.
This is the reason why we observe similar quantitative
dynamics comparing Fig. 5A and Fig. 5B.

C. Model C: Effective carrying capacity model

Here we compute the linear stability analysis for the
effective carrying capacity model. First, by equaling to
zero Eq.(12) we can infer the following possible stationary
solutions: {

xst
i = 0, ∀i∑N
j xst

j = Keff,i ∀i
(23)

As done in the previous models, by means of substituting
the stationary solutions we can discern their stability.
For xst

i = 0 ∀i, Eq.(25) is reduced to:

dδxi

dτ
= δxi (24)

This solution is unstable because the perturbation would
grow exponentially fast.
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Now let us interpret the second constraint. It is indi-
cating us that just one species survives with a population
size xj = Keff,i, and the rest become extinct. This is ful-
filled only when j = i. So, if we analyse another species,
the only way to obtain the steady state dxm

dτ = 0 occurs
when xst

m = 0. Thence, we can deduce that there are N
solutions: one for each species that satisfies xst

i = Keff,i

while xst
j = 0 for j ̸= i.

Thus, analogously to the previous analysis, we arrive
at the following expression applying a small perturbation
to Eq.(12):

dδxi

dτ
= −xst

i

N∑
j

δxj

Keff,i
+ δxi

1−
N∑
j

xst
j

Keff,i

 (25)

If we now look at the evolution of the perturbation
of species m when xst

i = Keff,i and xst
m = 0 for m ̸= i,

Eq.(25) becomes:

dδxm

dτ
=

(
1− Keff,i

Keff,m

)
δxm (26)

Thus, the perturbation decays if 1− Keff,i

Keff,m
< 0, so when

Keff,i > Keff,m. Therefore, among the N solutions that
satisfy xst

i = Keff,i, the only stable solution is the one in
which only survives the species with largest Keff,i.
These results are corroborated in Fig. 5C where we can

see that only the species with the largest νi (meaning the
largest Keff,i) survives. Hence, we can conclude that for
this model there is just one stable solution.

V. INTERACTION MATRIX

As we have observed in the previous sections, the in-
teraction among species produces reciprocal effects in
the dynamics of their populations. However, the experi-
mental results present more heterogeneous dynamics and
more variability in the final results, so a new inquiry
emerges: where is the richness of the experimental dy-
namics originated?

Up to this point we have considered that all species
interact with each other and with the resources in an
identical manner. However, it is fundamental to describe
the origin of the interactions. Despite this topic is un-
clear in the experiments, here we propose two types of
scenarios:

• Fast resource diffusion: this interpretation lies on
fast redistribution of the resources to the extent
they are consumed. This implies that even if two
species are localized far away from each other, the
lack of supplies at a certain point will affect in the
amount of food in another place and the competi-
tion will be global.

• Interaction by proximity: in this case we suppose
that the resources are fixed in a lattice-like struc-
ture because we assume slow diffusion of food.

Hence, only those species close to the same source
compete among them.

These two hypothesis can fairly justify a global inter-
action among all species. Nevertheless, there could exist
a more realistic framework in which we can better outline
the experiments. The simplest and, at the same time, the
most complex answer has to do with partial interactions
among species. In other words, this means that every
species just interacts directly with some other species.
The reasoning behind this notion is related with the ex-
perimental set-up.

FIG. 6. From the experimental set-up to the computational
simulation. This figure summarizes the interpretation given
to the idea of partial interactions among seven species. A:
Illustration of the initial moment in which labeled organoids
are settled on the Petri dish (each dot represents an organoid).
B: Sketch of the evolution of the system after a short time.
The colored areas represent collections of organoids with the
same label. Initial inhomogeneities become more notorious.
C: Representation of the network of interactions extrapolated
from B. D: Symmetric interaction matrix obtained from the
sketched in C. This would be an example of a matrix that
could be studied.

As described in section II, in the experiments, a col-
lection of labeled organoids are deposited in a Petri
dish with the proper medium for their development.
This medium contains glucose, which is the food of the
organoids. In order to decide which of the two hypothesis
describes better the interaction among species, we calcu-
lated the time scale that glucose needs to diffuse along
the culture. The diffusion coefficient of glucose in water
at 24◦C is of D = 6.67 · 10−10 m2/s [30]. Thus, given
the 5 cm of radius of a Petri dish, we can compute the
diffusive time scale:

τglc =
L2

2D
≈ 3.1 weeks (27)
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where L = 5 cm is the characteristic size of the Petri
dish.

Since τglc is larger than the experimental harvesting
period, we can consider that resources are placed in a
lattice-like structure, so interaction by proximity hypoth-
esis is plausible. Hence, we can induce a spatial descrip-
tion of the experiments and it is easier to implement the
idea of partial interactions. To visualize this interpreta-
tion and reinforce the interaction by proximity hypoth-
esis, Fig. 6A displays the supposed homogeneous initial
distribution of organoids in the Petri dish. Nevertheless,
there can exist particular inhomogeneities that become
more notorious after letting the system evolve a certain
time, as it is represented in Fig. 6B. In fact, the only way
to understand this framework is by assuming interactions
by proximity, where species that are in close proximity
compete for the resources in that region.

The concept of partial interaction has been imple-
mented by the so-called interaction matrix, namely γij .
The interaction matrix can be understood as a network of
interactions as it is shown in Fig. 6C and Fig. 6D. Since
the interactions are bidirectional due to the competitive
model we have developed, this matrix is symmetric and
is compounded by 1s and 0s that represent whether a
species interacts or not with another one. Certainly, the
underlying architecture of the interactions can be really
complex and can form unique structures that, eventually,
may generate peculiar emergent behaviours.

As a result of the implementation of this new concept,
the original models (Eq.(10), Eq.(11), Eq.(12)) can be
extended by adding the interaction matrix γij as follows:

• Equal species model (Model A):

dxi(τ)

dτ
= xi(τ)

1−
N∑
j=1

γij
xj(τ)

K

 , i = 1, ..., N

(28)

• Effective growth rate model (Model B):

dxi(τ)

dτ
= (1+ηi)xi(τ)

1−
N∑
j=1

γij
xj(τ)

K

 , i = 1, ..., N

(29)

• Effective carrying capacity model (Model C):

dxi(τ)

dτ
= xi(τ)

1−
N∑
j=1

γij
xj(τ)

K + νi

 , i = 1, ..., N

(30)

Here we attempt to observe patterns in the perfor-
mance that species conduct for different shapes of the
interaction matrix γij . Thereby, to represent the exper-
imental situation, we generated a collection of networks
randomly connected using the Erdös-Renyi model [31].
One of the two ways to create this type of networks con-
sists on considering a probability p to connect two nodes.

Constructing the network in this way, if we increase p, we
can generate the appearance of a giant component that
percolates the system. In fact, the occurrence of this
event undergoes a continuous phase transition when the
probability of linking two nodes reaches a critical value
p = pc. Hence, once the network has been formed, we can
define a probability of selecting randomly a node with k
connections. This probability distribution is well defined
through:

P (k) =

(
N − 1

k

)
pkc (1− pc)

N−1−k (31)

where N is the number of nodes (species) in the network.
However, in this project we generated the random net-

works through a second method that also respects the
probability distribution P (k) and the properties of the
Erdös-Renyi model. This method consists on fixing the
total number of edges E we demand and, then, connect-
ing pairs of nodes selected randomly until E edges are
created.
With the new description of the models we cannot per-

form linear stability analysis, so from now on we will only
work with simulations. In Fig. 7 we can observe the re-
sults obtained for the three models when N = 6 species
interact among them with different connectivities. The
connectivity is defined as the ratio between the number
of edges E and the total possible edges the network can
have, that is N(N−1). The study of six species is just for
practical reasons and to allow comprehensible figures for
the reader because different number of species provides
similar results. Additionally, whether the initial condi-
tions were equal or not, the results obtained were the
same. For this reason, we decided to compute all sim-
ulations with the same initial conditions (xi(0) = 1/N
∀i), so many more different networks could be studied.
In total, each graphic contains ∼ 3720 simulations be-
cause a maximum of 300 different interaction matrices
were computed for each connectivity. The arrival to the
stationary state was determined by long enough simula-
tions, that lasted up to 1000 time units.
Now, let us start by analysing the results depicted in

Fig. 7A-C. The heatmaps present the probability of ev-
ery species to survive as a function of the connectivity of
the network. The top axis presents the average number
of species that survive within every connectivity. Fig. 7A
and Fig. 7B correspond to the equal species model and
the effective growth rate model, respectively. We notice
that both models behave similarly in relation with the
surviving probability every species has: the more inter-
actions there are, the less species survive; except for the
situation in which all species interact. In this case all
species survive as we proofed analytically. Furthermore,
even when each species has a distinct effective growth
rate, this does not produce any variation in the global
behaviour. This result agrees with the analytical deriva-
tion done in the previous section in which we found that
species with different growth rate behave analogously to
species that are equal. Nonetheless, the results of the

9



Lotka-Volterra models to simulate clonal dynamics Imanol Jurado Rodŕıguez

FIG. 7. Surviving probability and topological pattern. A, B and C: surviving probability as a function of the connectivity
matrices for the equal species model (A), the effective growth rate model (B) and the effective carrying capacity model (C).
The average number of surviving species for every connectivity is also shown. D, E and F: fraction of the number of surviving
species as a function of the connectivity. The legend shows the number of surviving species that are first neighbours of a
surviving species. G and H: illustrative examples of possible networks that have been studied, indicating which species survive
(green dots) in the stationary state. In H, the size of the nodes is proportional to Keff,i.

effective carrying capacity model in Fig. 7C show a dif-
ferent pattern. In addition to species being less likely to
survive when the network is more connected, here we can
also discern that the higher the effective carrying capac-
ity compared with the other species, the more likely that
species is to survive.

Arrived at this point, a question about the topological
structure of the network arose: is there any topological
pattern among the surviving species? Aiming to answer
this question, we checked how many of the first nearest

neighbours of a surviving species also survive. These out-
comes are summarized in Fig. 7D-F. The barplots show
the fraction of neighbours that survive around a surviving
species as a function of the connectivity of the network.
For instance, in Fig. 7G there are three surviving species
with zero surviving neighbours, and two other surviving
species that have one surviving neighbour. Thus, for this
figure we would have 3

5 with zero surviving neighbours,

and 2
5 with one surviving neighbour.

On the one hand, comparing the equal species model
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with the effective growth rate model (Fig. 7D and
Fig. 7E, respectively), we observe again similar results.
The figures depict that there is a wide range of possi-
ble situations in which the first neighbours of a surviving
species can also survive. An example of this case has
been represented in Fig. 7G.

On the other hand, looking now at the results of the
effective carrying capacity model in Fig. 7F, we can see
that for any connectivity of the network every surviving
species will be surrounded by species that have become
extinct. This strong and powerful statement denotes a
topological pattern that has been illustrated in Fig. 7H.
Furthermore, this result holds for networks with more
species (see Appendix C). Since topology and geometry
are related, this topological pattern could allow us to
extrapolate the position of each species in the Petri dish.
This means that this study has also projection in the
understanding of how cells organize spatially in a tissue.

VI. NONEQUILIBRIUM NETWORKS

In the experiments, once the populations of organoids
have developed for one week, a sample from the culture
is used to quantify the amount of cells of each species
and deposited again in another Petri dish to continue its
evolution. This process called resampling is done a total
of twenty times. For this reason, we aimed to introduce
the effect of resampling into the simulations.

In the previous section we have studied the dynamics
of species that interact by proximity using a topologi-
cal description given by networks. These networks have
been generated through the Erdös-Renyi model and have
been classified according to their connectivity. These
type of networks are called equilibrium networks because
the number of nodes is fixed. With the purpose of obtain-
ing a more realistic description of the experiments, here
we propose to incorporate nonequilibrium networks.

Nonequilibrium networks have the characteristic that
the number of nodes changes in time. The vast major-
ity of studies that use nonequilibrium networks consist
on adding nodes [32]. Nonetheless, our situation is the
opposite, nodes disappear when species become extinct.
Hence, once a species vanishes, all those species that were
also interacting with it now interact among them, and the
system is let evolve again. This rearrange of the inter-
actions is done once after every time period T . With
this periodical reorganization of the interactions we in-
tended to incorporate the experimental resampling. Ad-
ditionally, the effective carrying capacity was multiplied
by two in order to represent the relocation of the sam-
ple to a new Petri dish where there is twice space and
supplies. Therefore, by means of doing this procedure
recursively with an initial number of twenty species, we
obtained dynamical evolutions like the ones portrayed in
Fig. 8. Comparing both figures, we can notice that for
the carrying capacity model (Fig. 8B) the dynamics drive
towards the predominance of a certain species. However,

for the equal species model (Fig. 8A), there is no such
predominance. This last result is considerably similar
compared with the real dynamics observed in the exper-
iments (Fig. 2) in which all species were equal.

FIG. 8. Result of simulating clonal dynamics using nonequi-
librium networks. The figures present the fraction of pop-
ulation of each species as a function of the time (a.u.). The
plots depict the in silico clonal dynamics for the equal species
modelA, and for the carrying capacity modelB. In both cases
there is a total of 20 species that initially interact with a ma-
trix of connectivity 41.58%. The harvesting time interval is
of five time units.

Once we achieved representative results that resemble
the experimental ones, we were interested in revealing
some properties of the dynamics. Thence, we computed
the probability that a species survives after the whole
evolution when initially the network had a determined
connectivity. We considered that a species became ex-
tinct if the fraction of its population dropped below 10−3

a.u.. Fig. 9A shows the survival probability for the equal
species model. It is important to emphasize that the time
interval T to reconnect the network was arbitrarily cho-
sen to be of twenty time units and that, besides, a total of
∼28200 simulations for N = 20 species were performed.

As we would expect, in Fig. 9A we can see that at every
initial connectivity the possibility of each species to sur-
vive is practically the same. Fig. 9B shows the average
number of surviving species as a function of the initial
connectivity of the interactions. For situations where
the network is barely connected (from 0% to ∼17%),
one can see a sharp decrease of the number of surviving
species. Once this threshold is surmounted, the number
of surviving species becomes quite independent of the
initial connectivity, being on the range of five surviving
species. This holds except for 100% of connectivity where
all species survive as was shown analytically through the
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linear stability analysis.

FIG. 9. Analysis of survival for the equal species model. A:
Heatmap that displays the survival probability of each species
as a function of the initial connectivity of the interaction ma-
trix. The data was obtained for a time interval between gath-
erings of T = 20 time units. B and C: Average number of
surviving species versus the initial connectivity when the time
interval T is of 20 and 5 time units, respectively. The blue
shades denote the standard deviations of the results.

Up to this point we have ignored the fact that we chose
arbitrarily a time interval T for the reconnection of the
interactions. Nonetheless, this gives rise to an important
question: does the number of surviving species depend
on the harvesting period of organoids? The origin of this
question has to do with the fact that we might be in-
terested in controlling the number of surviving species.
In order to answer this question we repeated the same
simulations but with a time interval T of five time units
(Fig. 9C). Thus, we notice that when the ∼17% con-
nectivity threshold is surpassed, the average number of
surviving species rises up to ten. In other words, if we
shorten the harvesting time interval, we are restraining
the evolution of the system. This could explain why we
observe in Fig. 2 that so many species survive. In fact, in
the experiments the harvesting period was of one week,
so we can extrapolate T = 5 time units from the simula-
tions to T = 7 days from the experiments. Then, we can
approximate the cell division rate as rdiv = r

ln 2 , so:

rdiv =
1

ln 2
· 1 cell division

1 time unit
· 5 time units

7 days
≈

≈ 1.03 cell divisions/day (32)

Thus, we can infer the time scale of cell division: 1
rdiv

≈
0.97 days, which matches the proliferating rate of human
cells of ∼24h [33].
In the previous section we learnt that from the two

models in which we differentiate every species either with
the effective growth rate or with the effective carrying
capacity, the latter is the one that provides patterns dif-
ferent from the reference model, i.e. the equal species
one. Hence, since for the effective growth rate model we
did not expect new results, we focused on repeating the
same study we have discussed before, but for the effective
carrying capacity model. We computed the simulations
with a time interval of five time units to increase the av-
erage number of surviving species. However, with this
model a new inquiry arises: has the relative mutations
on environmental fitness an effect on the dynamics? This
question can be rephrased as whether the difference be-
tween the effective carrying capacities of every species
induces a distinct performance in the evolution. To try
to answer this question we have to examine the results
shown in Fig. 10.
Fig. 10A and Fig. 10B show the results when the dif-

ference between the effective carrying capacities of each
species is large (i.e. the species with maximum Keff,i

doubles the basal carrying capacity K). Looking at
Fig. 10A, we can discern a regime in which the only
surviving species are those with highest νi, i.e. those
that are better adapted to the environmental conditions.
Actually, at low initial connectivities one can perceive
again the strong decrease of the average number of sur-
viving species. Once the connectivity threshold of ∼17%
is exceeded, the average number remains constant. This
implies that the average number of surviving species is
independent of the initial connectivity.
The results displayed in Fig. 10C and Fig. 10D corre-

spond to small differences between the effective carrying
capacities of each species. In fact, the highest νi is a
fifth part of the basal carrying capacity K. By looking
at Fig. 10C we note a substantial difference with the pre-
vious case (Fig. 10A). Now, there are more species that
have a certain probability to survive, though the surviv-
ing probability of those species with largest νi is higher
than the rest. Moreover, Fig. 10D shows that the aver-
age number of surviving species is higher compared to
the case with larger differences among Keff,i (Fig. 10C).
From this we can infer another relevant factor that de-
termines the number of surviving species: the relative
difference of the environmental fitness (i.e. the effective
carrying capacity) among species.

VII. CONCLUSIONS

This project is a reflection of the process to develop a
model to provide fundamental concepts to better under-
stand clonal dynamics in colon cancer organoids. One
of the aims of this project was to reproduce the in vitro
experiments using the in silico simulations. The exper-
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FIG. 10. Analysing the survival of the effective carrying capacity model. A and C: The heatmaps represent the surviving
probability of every species differentiated by its own νi as a function of the initial connectivity of the interaction matrix. In
the former the maximum is νi = 2K, whereas in the latter the maximum is νi = K/5. The data was obtained for a time
interval between gatherings of 5 time units. B and D: These graphics present the average number of surviving species versus
the connectivity of the initial interaction matrix for the two different cases mentioned before. The blue shades represent the
standard deviations of the results

iments consisted on labeled organoids that were either
equal or had different mutations and, in principle, all
interacted with each other. Since the results exhibit the
surviving of only certain species, we set out to investigate
the vital factors behind this phenomenon. Comprehend-
ing the evolution and the characteristic properties of the
model allow us to unveil hidden features or aspects that
were ignored during the experiments. For these reasons
simulations are so powerful; they help us identify the role
of individual contributions to the phenomenon to desing
better experimental plans.

Along this work we have used modified versions of the
Lotka-Volterra model. This ecological model was origi-
nally created to study the population dynamics of inter-
acting animals. However, here we wanted to investigate
whether variations of this model could also serve for the
microbiological world. This work shows the versatility
of the model and that the results obtained could also be
used to analyse the evolution of populations of cells. The
decision behind the use of the Lotka-Volterra equations is
that we were interested in simplifying as much as possi-
ble the model. Hence, we only needed the self-interaction
given by the logistic growth and the competition among
species. In this study we propose three models.

In the first situation, since all species were considered
to be equal, both the self-interaction and the competition
had the same value. Additionally, the growth rate and
the carrying capacity of every species were also defined
equal for all species. With these conditions we created

the model that we named as the equal species model.
This model present a N-dimensional hypersurface of pos-
sible stable solutions difficult to deal with.
Then, we were also interested in setting up a model in

which every species was different. For this purpose, we
built two models:

• The first model distinguishes every species through
its proliferative capacity. This means that the mul-
tiplicative rate of every species is distinct. In fact,
this could be a natural approximation to reflect
cancer cells behaviour. However, this model and
the equal species model provided similar outcomes,
meaning that species that only differ in the pro-
liferative capacity did not produce any substantial
change in the performance. For this reason, we dis-
carded this option and we worked with the equal
species model instead.

• On the other hand, the other way to identify each
species consisted on applying an effective carry-
ing capacity for every species. This incorporates
the concept of environmental fitness because it can
be interpreted as the capacity of every species to
favour its own development in comparison with the
rest. This model generates different dynamics with
respect to the equal species model. It displays a
selective pattern in which just the species with the
largest Keff,i survives.

Arrived at this point, we only had two scenarios: ei-
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ther all species survive or just one survives. Hence, a
crucial aspect that allowed us to obtain richer dynam-
ics, a broader range of results and control the number of
surviving species was the introduction of the interaction
matrices. This important discovery revealed that there
must be an spatial architecture of the interactions in or-
der to achieve more realistic and similar performances
to the experimental ones. In addition, we observed that
the more interactions exist, the less species survive. For
the effective carrying capacity model, those species with
larger Keff,i are more likely to survive. This outcome is
similar to the experiments in which all species had certain
mutations. Indeed, those species with initial mutations
that adapt better to the environment are the ones that
survive. Hence, the model works properly to represent
the experiments.

To comprehend deeper the structure formed in the
topological networks, we analysed whether the first near
neighbours of the surviving species became extinct or sur-
vived. For the effective carrying capacity model we no-
ticed that every surviving species is isolated. This find-
ing uncovers a relevant property in which two surviving
species are those that do not interact directly.

Once this knowledge about our models was acquired,
the following step consisted on adding more complexity
to the dynamics that would allow us to get closer to the
experimental results. To do so, we dealt with nonequilib-
rium networks that permitted us to integrate the loss of
species in the interaction matrices. This step was deci-
sive to accomplish our purpose of representing the clonal
dynamics and accepting our models as good approaches.
Moreover, these models enable us to observe similar fea-
tures present in the experiments such as the extinction of
the predominant population or even the almost extinc-
tion and the subsequent revival of a species. Certainly,
the equal species model with the nonequilibrium inter-
action networks is an excellent approach to model the
experiments. Additionally, this is supported when the
time interval between harvestings is short, meaning that
the dynamical evolution is constrained. Furthermore, in
case every species has a subtle mutation, the effective car-
rying capacity model also works in the regime where the
time between organoid harvests is short. With this model
we have the advantage of knowing the characteristics of
those species that have more probabilities to survive and
the structural pattern they create. Moreover, we have
observed that once the density of interactions surmounts
the ∼17% threshold, the average number of surviving
species becomes quite independent of the connectivity of
the initial interaction matrix.

To summarize, from these models we have learnt that:

• The selective pressure arises from the competition
and partial interactions among species.

• The environmental fitness represented by Keff,i al-
lows to predict those species that have more prob-
ability to survive.

• In order to simulate more accurately the clonal dy-
namics, nonequilibrium networks are required.

• Reducing the period T between harvestings in-
creases the average number of surviving species.

In the end, we have contemplated that these models
work effectively to represent and better comprehend the
foundations of clonal dynamics with the aim of perform-
ing lineage tracings. However, these models are so gen-
eral that could also be applied to other medical fields
like embryonic development, cancer metastasis or even
to track the position of different cells in a tissue. The
projection of the next study could be oriented to im-
munological inhibition of cancer cells in which some dis-
tinct species come from the immunologic system, whereas
others species are cancer cells.

APPENDIX

A. Regular networks

During the process of understanding partial interac-
tions in order to control the number of surviving species,
we first dealt with a theoretical type of network that then
would allow us to understand the patterns observed with
random networks. This type of network is known as reg-
ular network. The reason behind is that we generated
networks where all species had the same number of in-
teractions. Let us compute the linear stability analysis
for the equal species model for a regular network where
all species interact only with another two. Thus, the
equation we must to deal with is:

dxi(τ)

dτ
= xi(τ)

(
1− xi−1 + xi + xi+1

K

)
, i = 1, ..., N

(33)
There are two types of stationary solutions:{

xst
i = 0, ∀i

xst
i−1 + xst

i + xst
i+1 = K ∀i

(34)

Again, to simplify the analysis we are only going to
consider the homogeneous solutions meaning that xst

i =
xst
j ∀i ̸= j. Thus, the homogeneous solutions can be

either xst
i = 0 or xst

i = K/3 ∀i.
Now let us apply a small perturbation ignoring second

order terms and those terms that are null:

dδxi

dτ
= (xst

i +dδxi)

(
1− 3xst

i

K
− δxi−1 + δxi + δxi+1

K

)
=

= −xst
i

δxi−1 + δxi + δxi+1

K
+ δxi

(
1− 3xst

i

K

)
(35)

Finally, we can substitute both homogeneous steady
solutions and analyse the results:
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• For xst
i = 0:

dδxi

dτ
= δxi, ∀i (36)

Thus, a perturbation would grow exponentially
fast, so the linear stability analysis indicates that
xst
i = 0 is the unstable solution.

• For xst
i = K

3 :

dδxi

dτ
= −δxi−1 + δxi + δxi+1

3
, ∀i (37)

In this case, as dδxi

dτ < 0, we can infer that a pertur-
bation would decay exponentially fast. This means
that xst

i = K
3 is the stable solution.

Owing to the fact that the system presents transla-
tional invariance and all species are equal having the
same number of connections, we propose the following
eigenvector as a solution:

δxj = ηse
i2πsj/Neλst, s = 1, ..., N (38)

Thus, by substituting in Eq.(37) we obtain:

λs = −1

3

(
2 cos

2πs

N
+ 1

)
(39)

which shows that λs can be positive and therefore the
uniform solution xst

i = K/3 ∀i is unstable. We can
observe that when s

N = 1
2 corresponds to the maxi-

mum value of λs, which is the Fourier mode with fastest
growth. This is the situation where every surviving
species is surrounded by other that are extinct. Hence,
this analysis predicts that surviving species will not be
connected. However, this is for a specific network struc-
ture and connectivity. If the structure of the interactions
is different there can appear other situations.

B. Network communities

Once discovered the worthy of using interaction net-
works, we studied the possibility of detecting the actual
groups of survival and extinct species with network statis-
tics. Concretely, we used the algorithm called Louvain

method [34] to observe if the architecture of the network
was enough to detect those communities that would sur-
vive. As a matter of fact, we included the whole equa-
tion into the interaction matrices as weights. Hence, we
could detect the surviving species more efficiently with-
out having to compute the whole dynamics. Nonetheless,
we were restricted to analyse networks with few species,
thus the statistics were confusing. Although for some net-
works the method detected the exact surviving group, in
other cases it was wrong. However, it may work for larger
networks, so it could be another branch of this study.

C. Fraction of surviving species N = 20

Fig. 11 shows the fraction of neighbours that survive
around a surviving species as a function of the connectiv-
ity of the network for a total of N = 20 species. Although
the number of species is increased, the same pattern is
maintained.

FIG. 11. Fraction of surviving neighbours for N = 20. The
bar chart displays the fraction of the number of surviving
species as a function of the connectivity for N = 20.
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