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Abstract: In statistical physics, inverse problems arise when we need to design a many-

body system with particular desired properties. Rather than calculating observables based on

known model parameters, inverse problems involve inferring the parameters of a model based on

observations. In my final degree project, we studied the inverse problem for the Viana-Bray spin

glass model with a discrete distribution of the couplings, and with simulated annealing, we tried to

infer the couplings of the system with the maximum pseudolikelihood method. In this project, we

studied the inverse problem for the quantum Viana-Bray spin glass model with the same coupling

distribution. The goal was to extend the pseudolikelihood maximization approach to a quantum

spin glass with a transverse field since most research efforts have focused on the classical version and

hardly anything is known about its quantum counterpart. To achieve this, we generated equilibrium

configurations from the quantum partition function using quantum Monte Carlo techniques, and

then we employed simulated annealing to maximize the pseudolikelihood function and infer the

couplings of the system. We derived a modified version of the pseudolikelihood function from the

initial proposal after closely following the approach used in the classical case. We found that when

introducing the transverse field in the system, the algorithm was still able to infer the couplings;

however, because of how the quantum system is treated, certain modifications had to be made to the

pseudolikelihood method. Moreover, as in the classical case, we found that the algorithm performed

the best around the phase transition boundaries.

I. INTRODUCTION

The transverse-field Ising model (TFIM) was

originally introduced during the early 1960s

as a theoretical framework to investigate the

order-disorder transitions observed in double-

well ferroelectric systems, such as in potassium

dihydrogen phosphate [1]. With this model, one

can map the two states of the double-well potential,

representing the proton positions, with the up and

down states of a spin, and the tunnelling effect

caused by the quantum fluctuations can be mapped

to the effect of a transverse field in the spin picture.

It is one of the simplest models to exhibit a

zero-temperature quantum phase transition driven

by the quantum fluctuations due to the transverse

field [2].
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The Hamiltonian for this quantum spin system is

given by

ĤJ (σ̂) = −
∑
⟨ij⟩

Jij σ̂
z
i σ̂

z
j − Γ

N∑
i=1

σ̂x
i (1)

where N is the number of spins, J = {Jij}i,j=1,...,N

are the pairwise couplings, Γ is the transverse field,

σ̂ = {σ̂x
i , σ̂

z
i }i=1,...,N are the 1

2 -spin Pauli matrices

and the sum
∑

⟨ij⟩ extends over pairs of interacting

spins.

Over the past few decades, there has been

extensive research dedicated to studying the

properties of phases in many-body systems driven

by quantum fluctuations, employing a wide range

of analytical techniques, including renormalization-

group analysis, mean-field approximation, effective-

field theory, and perturbation theory, as well as

numerical methods such as exact diagonalization,

quantum Monte Carlo simulations, and density-

matrix renormalization-group calculations [2].
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Although no general theory has been settled

yet, several studies have successfully obtained

phase diagrams for specific cases using various

approximations. For instance, one of the most

straightforward cases is the TFIM on a fully

connected graph with Jij = 1 (ferromagnetic

model), where, under the Bragg-Williams mean-

field approximation, the phase boundary is given by

the self-consistent equation Γ/J = tanhβΓ where

β = 1/kBT is the inverse temperature, and J is the

magnitude of the pairwise couplings [3]. (From now

on, we choose units such that kB = 1)

Another model of particular interest within this

framework is the quantum spin glass, in which Jij are

quenched random couplings that can take both signs.

A spin glass (SG) phase occurs due to the competing

interactions, where the magnetic moments tend to

arrange into specific equilibrium orientations, yet the

system does not present magnetic long-range order.

This SG phase was characterized by Parisi [4]

with the introduction of a new order parameter

when studying the replica symmetry breaking of

the classical Sherrington-Kirkpatrick (SK) spin glass

model [5], given by Eq. (1) with Γ = 0 on a fully

connected graph, with Jij = 0 and Var Jij ∝ 1/N .

This order parameter corresponds to the overlap

between the spins of two system replicas α and β

with the same J ,

qαβ =
1

N

N∑
i=1

σz
i,ασ

z
j,β . (2)

The spin glass phase is characterized by ⟨qαβ⟩ ≠ 0

and the paramagnetic phase by ⟨qαβ⟩ = 0.

The quantum SK spin glass model has been widely

studied both analytically [6–9] and numerically [10–

12] however there are still many unanswered

questions on its equilibrium and dynamical

properties. From these studies, it seems that the

zero-temperature critical transverse field is around

Γc = 1.5J , where J2/N is the variance of the

distribution of the interaction spins. The current

understanding of its phase diagram is shown in

Fig. 1.

The advent of quantum annealers (QA) based on

quantum adiabatic optimization techniques [13] has
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FIG. 1. Phase diagram of the quantum SK spin glass

model from different approximations: dashed curve from

[8] and solid line from [12]. The phases are spin glass

(SG) and paramagnetic (PM).

opened up new avenues for studying these systems.

The first somewhat useful programmable commercial

devices that attempt to exploit this are the D-Wave

One and Two QA [14]. The native benchmark for

these QA is a quantum SG; therefore, research on

the TFIM is very active today.

One interesting study carried out on these devices

is [15], where Harris et al. embedded a TFIM on a

three-dimensional simple cubic lattice model on a

D-Wave quantum processing unit, which allowed a

direct observation of the quantum phase transition

and the construction of a precise phase diagram.

The usual goal in classical and quantum statistical

mechanics is to derive the observable quantities

from an appropriate physical model. For example,

deriving the spin magnetizations and correlations by

starting with a model that describes the interactions

between spins.

Instead, one could consider as the starting point

the set of observations of some system whose

microscopic parameters are unknown and yet to

be discovered. In that scenario, we talk about

the inverse problem, where the goal is to infer the

parameters describing the system (for example, its

Hamiltonian) from existing data.

During the last years, with the rise of ’big-data’

in different fields, for example in high-throughput

experiments in biology, the study of inverse problems

in statistical physics has gained attention [16].
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For the classical SG model, where the inverse

problem consists in inferring the couplings J from

a set of equilibrium spin configurations, a wide

variety of methods have shown some acceptable

performance in some temperature ranges [16],

where the one that outperformed the rest was the

pseudolikelihood (PL) method [23] (see Section III).

However, when it comes to the inference of the

couplings in the quantum model, hardly anything is

known.

In my final degree project [17] we employed the PL

method to address the inverse problem of the Viana-

Bray (VB) spin glass model [18] with the novelty of

a discrete distribution for the couplings.

In this project, we aim to study the quantum

counterpart of the same model to analyse whether

the performance of the PL method is altered when

a transverse field is introduced.

II. INVERSE PROBLEM OF THE

QUANTUM VIANA-BRAY SPIN GLASS

MODEL

The quantum VB spin glass model consists of a

spin glass system on an Erdös-Rényi random graph

[19] under the Hamiltonian in Eq. (1). With N

nodes andM randomly assigned edges, we can define

the average node connectivity as ⟨z⟩ = 2M/N .

As we did in [17], we assign at random to each

edge a pairwise coupling Jij following the discrete

distribution

P (Jij) = p · δ(Jij − 1) + (1− p) · δ(Jij + 1) (3)

where p is the fraction of ferromagnetic (Jij = 1)

interactions. Fig. 2 shows the phase diagram of the

model for Γ = 0.

To perform simulations in a conventional

computer and use the typical Monte Carlo methods

to study statistical models, there exist a helpful

mapping of the TFIM in d-dimensions to an effective

d+1-dimensional classical Hamiltonian using the

Suzuki-Trotter formalism [21] (see Appendix B).

This formalism has been widely adopted and

established as a reliable approach in numerous

numerical studies of the TFIM [10, 11].
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FIG. 2. Phase diagram of the classical VB spin glass

model with the discrete distribution of Eq. (3), as

determined in [17] from both [18] and [20] for ⟨z⟩ = 4.

The phases are spin glass (SG), ferromagnetic (FM) and

paramagnetic (PM). Solid lines correspond to the PM-

SG and PM-FM boundaries, and dashed lines delimit the

mixed phase between SG and FM.

For Eq. (1), the effective classical Hamiltonian is

HJ
eff(σ) = − 1

m

m∑
α=1

∑
⟨ij⟩

Jijσ
α
i σ

α
j −K2

m∑
α=1

N∑
i=1

σα
i σ

α+1
i

(4)

where K2 = − 1
2β ln tanh βΓ

m and σ = {σα
i }

α=1,...,m
i=1,...,N

are Ising 1
2 -spins.

For m → ∞ the equivalence is exact, yet for

practical purposes m has to be finite, in that case

we talk about the m-th Trotter approximation. This

new system can be viewed as having m identical

spin systems overlayed and interconnected with an

interlayer interaction K2, with periodic boundaries

(σm+1
i = σ1

i ), see Fig. 3.

For Γ → 0, the layers become completely

correlated, and the system behaves as a classical spin

glass. For Γ → ∞, the layers become decoupled, and

quantum fluctuations will dominate in the system.

In order to prepare the inverse problem, we

generate a set of random graphs with their couplings

in the ensemble described above and prepare for

each, using Monte Carlo simulations, a sample of

C equilibrium configurations {σµ}µ=1,...,C following

the classical Boltzmann distribution

P (σ) =
1

Z(J)
exp

(
− βHJ

eff(σ)
)

(5)
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where Z(J) =
∑

σ exp(−βHJ
eff(σ)) is the partition

function.

...

FIG. 3. Schematic representation of the effective classical

system we will study. Each layer contains the random

graph we want to infer, green and red lines represent

the intralayer ferromagnetic and antiferromagnetic

interactions, and the blue ones represent the interlayer

interactions.

The goal is to study how well we can recover the

graph structure and its couplings J from the {σµ}
using the PL method.

III. THEORETICAL APPROACH

Since the PL is the best performing method in

the classical case, and to establish a meaningful

comparison with the classical results reported in [17],

we have chosen it for this project too.

As no previous applications of the PL method

to quantum systems exists, to our knowledge, we

will initially follow closely the classical case. This

involves treating the quantum system using the

effective classical Hamiltonian and applying the PL

method accordingly.

Below we describe first the maximum likelihood

method and then the maximum pseudolikelihood

method, which is a computationally simpler

approximation to the first, both adapted to the

quantum case.

A. Maximum Likelihood

An important method for solving statistical

inference problems is maximum likelihood

(ML) estimation. For a set of observations

x1, x2, ...xC obtained from the known distribution

p(x1, x2, ...xC|θ) of a statistical model that depends

on a set of parameter θ, one defines the ML estimator

to infer the unknown θ from the observations as

θML = argmaxθ p(x1, x2, ...xC|θ) (6)

which is the estimator with the least mean-squared

error, and for large C it converges in probability to

the original θ.

To avoid working with large numbers, one usually

maximizes the logarithm of p(x1, x2, ...xC|θ).

For our inverse problem, where the observations

are D = {σµ}µ=1,...,C, the unknown parameters are

J and assuming the C configurations independently

sampled from the Boltzmann distribution Eq. (5),

the log-likelihood is

LD(J) =
1

C
ln p(D|J) = β

m

m∑
α=1

∑
i<j

Jij⟨σα
i σ

α
j ⟩D

+ βK2

m∑
i=1

∑
i

⟨σα
i σ

α+1
i ⟩D − lnZ(J)

(7)

where ⟨Q(σ)⟩D = 1
C

∑
µ Q(σ) are averages of the

function Q(σ) of spin variables over the observed

data. Then, the ML estimator is

JML = argmaxJ LD(J), (8)

which can be found by imposing

∂LD

∂Jij
=

β

m

m∑
α=1

[
⟨σα

i σ
α
j ⟩D − ⟨σα

i σ
α
j ⟩
]
= 0 (9)

where we used

∂

∂Jij
lnZ =

β

m

m∑
α=1

⟨σα
i σ

α
j ⟩, (10)

and ⟨σα
i σ

α
j ⟩ are the expectation values under the

Boltzmann distribution.

In principle, since the log-likelihood is known to

be concave, one could reach the maximum with
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a gradient descent algorithm, such as Boltzmann

machine learning [22], where one updates the

couplings at each step of the algorithm according

to

Jn+1
ij = Jn

ij + η
∂LD

∂Jij
(Jn) (11)

where η is the learning rate of the algorithm, which

has ⟨σα
i σ

α
j ⟩D = ⟨σα

i σ
α
j ⟩ as its fixed point.

However, in order to calculate the expectation

values, we would have to compute averages over

2Nm configurations, which is generally intractable.

Besides, in our problem, since we work with discrete

couplings, this approach is not possible.

B. Maximum Pseudolikelihood

The pseudolikelihood is an alternative to the

likelihood function, introduced in 1974 by Besag [23].

This estimator also leads to the exact inference of the

model parameters in the C → ∞ limit. Moreover, it

has a more feasible computational complexity that

scales polynomially with the size of the sample C,

and the size of the system mN . Therefore, it is

usually much faster than the exact maximization of

the likelihood.

To deduce it, we will adapt the derivation in [16]

to our Hamiltonian. To start with, we consider how

the statistics of a particular spin variable σα
i depends

on the configuration of the rest. For that, we split

the Hamiltonian as

Heff(σ) = Hα
i (σ) + H̃(σ\σα

i ) (12)

such that the first term Hα
i (σ) = −hα

i σ
α
i , where we

introduced the local field

hα
i =

1

m

∑
j∈V (i)

Jijσ
α
j +K2(σ

α+1
i + σα−1

i ), (13)

depends on the couplings of the spin σα
i to its

neighbours, and the second term H̃(σ\σα
i ) does not

depend on σα
i . V (i) denotes the set of intralayer

neighbours of the i-th spin, and σ\σα
i means all spin

variables except σα
i .

Using Eq. (12), we can work out the following

identity for the expectation value:

⟨σα
i σ

α
j ⟩ =

1

Z(J)

∑
σ\σα

i

e−βH̃
∑
σα
i

σα
i σ

α
j e

−βHα
i

=
1

Z(J)

∑
σ\σα

i

e−βH̃σα
j 2 sinh(βh

α
i )

=
1

Z(J)

∑
σ\σα

i

e−βH̃σα
j tanh(βhα

i )
∑
σα
i

e−βHα
i

= ⟨σα
j tanh(βhα

i )⟩.
(14)

The key step, and the only approximation involved

in going from the ML to the PL, is to change

the averages ⟨σα
i σ

α
j ⟩ and ⟨σα

j tanh(βhα
i )⟩ over the

Boltzmann distribution with the sample means

⟨σα
i σ

α
j ⟩D = ⟨σα

j tanh(βhα
i )⟩D. (15)

With this, we have broken down the problem of

estimating the full coupling matrix into separate

problems of estimating the single row Ji∗ of the

coupling matrix for a specific spin σα
i using the

sampled spin configurations.

The statistics of σα
i conditioned on the remaining

spins {σδ
j}

δ ̸=α
j ̸=i can be written as

p
(
σα
i |{σδ

j}
δ ̸=α
j ̸=i

)
=

e−βHα
i∑

σα
i
e−βHα

i
=

eβh
α
i σα

i

eβh
α
i σα

i + e−βhα
i σα

i

=
1

2

(
1 + σα

i tanhβhα
i

)
.

(16)

Considering we have m layers, the log-likelihood for

the i-th row of couplings Ji∗ is

Li
D(Ji∗) =

1

m

m∑
α=1

1

C

∑
µ

ln
1

2

(
1 + σα,µ

i tanhβhα,µ
i

)
.

(17)

Finally, we sum over all the Ji∗ and obtain the

log-pseudolikelihood

PLD(J) =

N∑
i=1

Li
D(Ji∗). (18)

In the classical case, the maximization of this

function is one of the most efficient ways to solve

the inverse problem [16].
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IV. COMPUTATIONAL APPROACH

A. Sample Preparation

In order to generate the samples σµ we use the

Metropolis Markov Chain Monte Carlo algorithm

[24]. In spin systems, one usually starts with a

random configuration of the spins, and by proposing

single spin flips with the normalized acceptance

probability min(1, e−β∆Heff), where ∆Heff is the

energy difference resulting from the spin flip, one

can generate equilibrium configurations after some

equilibration time.

With our effective Hamiltonian, Eq. (4), the

nearest neighbour (intralayer) interactions remain

the same as in the original quantum Hamiltonian

with an extra 1/m factor, while the transverse

field (interlayer) interaction K2 is non-trivially

dependent on thermodynamic variables. Then, the

acceptance probability will be highly conditioned

by the different ranges of the temperature and the

transverse field, and thereby the sample generation

may be affected.

In Fig. 4 we can see that the interlayer interaction

is significantly larger than the intralayer interaction,

except at very low temperatures. This means that

when proposing a single spin flip, its acceptance will

primarily depend on the interlayer term.

When Γ → 0, we anticipate the system to behave

as in the classical model. In the Suzuki-Trotter

formalism, this means that all the layers should

be identical, and the world-lines σi = {σα
i }α=1,...,m

should behave as the spins in the classical system.

At low Γ, when starting from a random

configuration of the system, spins in the same world-

line will rapidly align due to the strong interlayer

interaction K2. Once this alignment is settled, the

system becomes frozen because accepting a spin flip

would incur a high energy cost. However, this frozen

state does not necessarily ensure that the world-

lines are in the most energetically stable orientation

for the intralayer interactions. This is problematic

because, in order to capture the classical behaviour,

the intralayer interactions should govern the state of

the system in this situation. The above problem can
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FIG. 4. Dependence of the two interaction terms

amplitudes of β∆Heff
J as a function of the temperature

for different values of the transverse field Γ on a log-log

scale. m = 10 for both terms.

be solved by introducing world-line flips. Instead of

only proposing single spin flips at each Monte Carlo

step, we randomly chose between flipping one spin

σα
i or flipping a world line σi.

In world-line flips there is no interlayer

contribution in the energy difference,

∆E(σi → −σi) =
2

m

m∑
α=1

σα
i

∑
j∈V (i)

Jijσ
α
j , (19)

therefore the acceptance probability will only be

given by the intralayer term. This property enables

the system to reach equilibrium for all possible values

of the transverse field, which is key for generating

good equilibrium samples that serve as the starting

point for the inverse problem.

B. Simulated Annealing

As previously mentioned, our objective is to

maximize Eq. (18). For that, we will employ

simulated annealing (SA) [25], a stochastic global

optimization algorithm. SA is a partial search

algorithm, which means that it does not guarantee

to provide the absolute best solution to the problem

but rather an approximation due to computational

or information limitations. Nonetheless, it is

6
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well-suited for our problem, characterized by a

high-dimensional, discrete search space with many

local optima. Its ability to navigate such complex

landscapes and explore a wide range of solutions

without getting stuck in a local maxima makes it a

good choice.

SA is based on introducing a fictitious

temperature TF in the search space and sampling

from exp(∆PLD/TF ) by the Metropolis algorithm.

The initial step is selecting a random point in the

search space, that is to say, a random graph with a

random assignment of the couplings following the

distribution of Eq. (3). Then we perform a finite

number τ of Monte Carlo steps (MCS), each of

which consists in M random exchanges between

pairs of couplings of the initial graph. These

exchanges can either relocate one edge of the graph

to a different position or substitute a ferromagnetic

edge with an antiferromagnetic one, see Fig. 5.

FIG. 5. Schematic representation of the possible

exchanges and relocations of edges in the SA algorithm.

Black dots represent the positions of spins, while

green and red lines represent ferromagnetic and

antiferromagnetic couplings, respectively. Dashed gray

lines represent the absence of a coupling.

Each exchange is accepted with a probability

given by min(1, exp(∆PLD/TF )), where ∆PLD is

the variation of the log-PL due to the exchange of

the coupling.

During the simulation, the fictitious temperature

is progressively reduced following the cooling

schedule

TF (t) = T ini
F

(
1− t

τ

)
(20)

where t is the current simulation time in MCS units,

and T ini
F is the initial fictitious temperature, which is

set relatively high, allowing for a broader exploration

of the search space.

As the simulation progresses and the temperature

decreases, the search space becomes narrower

and more focused, helping the algorithm converge

towards the global maxima.

C. Relative Reconstruction Error

To explore how the algorithm performance

depends on the different parameters of the system,

we define the relative reconstruction error as a

quantitative measure of the degree of similarity

between the reconstructed couplings JPL = {JPL
ij }

and the original system couplings J = {Jij}:

γ =
1

M

∑
i<j

(Jij − JPL
ij ) (21)

A value of γ = 0 would mean that J = JPL, i.e.

the reconstruction was perfect, and a value of γ = 1

would mean that none of the couplings has been

correctly reconstructed.

The phase space of our system is characterized by

three thermodynamic quantities: the temperature

T , the transverse field Γ and the parameter p that

rules the couplings distribution. In order to assess

the accuracy of the reconstruction algorithm for

different (T,Γ, p), it is essential to obtain statistically

representative results. This means that we have

to average the algorithm’s performance over a

sufficiently large and diverse set of graphs.

V. PREVIOUS RESULTS

Previously, in [12] we addressed the inverse

problem for the classical VB spin glass model

(Γ = 0) with the same distribution for the couplings.

Below we summarize our main results.

7
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We first considered 100 random graphs of N = 100

and ⟨z⟩ = 4 with p = 0.50 and T = 1.0, and studied

how the simulations parameters C, τ or T ini
F affect

the algorithm performance.

1 2 3 4 5
T

0

0.2

0.4

0.6

0.8

1

〈 γ〉

Γ = 0

p = 0.00 p = 0.50 p = 0.85 p = 1.00

FIG. 6. Relative reconstruction error for the classical VB

spin glass as a function of the temperature with N = 100

and ⟨z⟩ = 4, for different values of the parameter p. The

error bars correspond to the standard deviation of the

mean value, calculated from a set of 100 graphs.

We found that increasing C and τ always improves

the performance. However, this comes with a

computational cost, and the improvement when

these values are already large is not very significant.

We found that for C = 400 and τ = 2000 the balance

between accuracy and affordable computational time

was reasonable. The initial fictitious temperature

T ini
F , has an optimal value that depends on the real

temperature T . Based on the form of the log-PL and

different adjustments, we found that a good choice

was

T ini
F (T ) = − 1

⟨z⟩
ln

[
1

2

(
1 + tanh

1

T

)]
. (22)

In order to test the reproducibility of the

algorithm, we performed 100 different runs over

the same system with the same thermodynamic

and simulation parameters to see how the different

values of γ were distributed. The results suggested

that, since the distribution of the values was

very narrow, one run is representative of how the

algorithm performs on that specific system.

With all the aforementioned optimizations, we

evaluated the algorithm’s performance as a function

of p and T .

In Fig. 6 we show how the relative reconstruction

error depends on the temperature, for different

values of p. Each point corresponds to the average

of over 100 graphs in the ensemble. Notice that for

each p, there is a minima in the error curve.

0 0.2 0.4 0.6 0.8 1
p

0

1

2

3

4

T

PM

SG FM

FIG. 7. Phase diagram for the classical VB spin glass

model with the discrete distribution of Eq. 3. T = β−1

and ⟨z⟩ = 4. The phases are: PM paramagnetic, FM

ferromagnetic, and SG spin-glass. Solid lines correspond

to the PM-SG and PM-FM boundaries, and dashed

lines delimit the mixed phase between SG and FM.

The coloured points correspond to the best performing

temperature value from Fig. 6. The color of each point

is chosen just to match the color associated with the

parameter p used in Fig. 6.

In Fig. 7 we represent the position of the minimum

for each p value together with the phase diagram of

this model, Fig. 2.

The best-performing range is around the phase

transition temperatures, both FM-PM and SG-PM.

In this case, the temperature is not high enough

to dominate the system and remove the couplings

relevance, but high enough to allow the system to

explore a larger part of the phase space, which will

generate samples that contain relevant information

on how the spins interact with each other, allowing

good reconstructions.

Another point worth mentioning is that the phase

8
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diagram of this system is qualitatively the same

for different values of ⟨z⟩. Hence, the behaviour

obtained in the relative reconstruction error would

be similar, but with the respective shift of the best-

performing temperature to the corresponding critical

temperature.

VI. RESULTS

We now present how the maximum PL performs

on the quantum VB spin glass model with discrete

couplings using the 10-th Trotter approximation

(m = 10).

As in the classical case, we are going to perform

this study by averaging 100 graphs for each value

of p with N = 100 and ⟨z⟩ = 4, with simulation

parameters C = 400, τ = 2000 and T ini
F given by

Eq. (22).

A. log-PL maximization

Before discussing the simulation results, we put

forth the following argument.

At very low Γ one could expect that the results

will be comparable to the classical counterpart since

quantum effects are mild, and each configuration

will consist of m copies of the same classical

configuration. Consequently, when computing the

log-PL, these copies contribute additional irrelevant

averages that should not significantly impact the

reconstruction process.

As the transverse field is increased, the system

experiences an enhanced presence of quantum

fluctuations. This, in turn, leads to a decrease in

the critical temperatures for the transitions from

SG to PM and from FM to PM. This phenomenon

should be reflected in the performance as a shift in

the optimal temperature downward.

Upon examining Fig. 8, where we show how

the relative reconstruction error depends on the

temperature for two different values of Γ, it becomes

evident that the observed behaviour does not align

with the above expectation. For low Γ, the results

are poor, and the curve bears no resemblance to

the classical one, Fig. 6. At high Γ, the results

show some improvement at low temperatures, but

the relative reconstruction error remains generally

high.

We explain this with the dominance of the term

K2 in the local field in Eq. (13), which creates

a flattened landscape in the search space during

the maximization of the log-PL. As a result, the

presence of different hills, which encode the system

structure through the first term of the local field,

becomes less significant when seeking the maximum

value. However, when the transverse field Γ is high

Fig. 8 (b) and the relative magnitudes of the two

terms in the local field become more comparable,

especially at low temperatures, we observe a

significant improvement in the reconstructions.

B. Modified log-PL

Due to the above findings we decided to redefine

the local field in the log-PL as

h̃α
i =

1

m

∑
j∈V (i)

Jijσ
α
j , (23)

removing the K2 contribution.

In Fig. 9 we can see that with this revised form of

the log-PL we are able to obtain much better results.

Although the relative reconstruction error curve

for Γ = 1 in Fig. 9 (a) shows a similar shape to the

classical case in Fig. 6, it is important to note that

the reconstructions in the quantum system are of

lower quality (higher γ). This can be attributed

to the introduction of quantum fluctuations, which

have an adverse effect on capturing the intralayer

couplings of spins within the sample, making it

more challenging to accurately infer and capture the

underlying spin interactions.

In the case of Γ = 4 as shown in Fig. 9 (b), the

results exhibit improvements across all temperature

ranges when compared to the original formulation

with the K2 term in the local field. This suggests

that removing the K2 term and sacrificing the

potential information it could provide to the log-PL

maximization process is beneficial, even when the

original two terms in the local field are comparable

in magnitude. The observed improvements indicate

that the negative impact of the K2 term outweighs

any potential benefits it might offer, leading to

better overall results.

9
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FIG. 8. Relative reconstruction error for the quantum VB spin glass as a function of the temperature with N = 100 and

⟨z⟩ = 4, for different values of the parameter p. (a) with Γ = 1 and (b) with Γ = 4. Results using the first log-PL proposed

in Eq. (18). The error bars correspond to the standard deviation of the mean value, calculated from a set of 100 graphs

with identical p value.
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(a)

Γ = 1

p = 0.00 p = 0.50 p = 0.85 p = 1.00
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(b)
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p = 0.00 p = 0.50 p = 0.85 p = 1.00

FIG. 9. Relative reconstruction error for the quantum VB spin glass as a function of the temperature with N = 100 and

⟨z⟩ = 4, for different values of the parameter p. (a) with Γ = 1 and (b) with Γ = 4. Results using the modified log-PL.

The error bars correspond to the standard deviation of the mean value, calculated from a set of 100 graphs with identical

p value.
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In Appendix C, additional relative reconstruction

error results are shown, showcasing the performance

for various values of Γ.

C. Phase Diagram and Algorithm Performance

After obtaining the performance results for

different values of Γ, the next step is to examine

whether the best-performing temperature moves

along the phase transition boundary as Γ increases.

In the mean-field approximation of the quantum

SK ferromagnetic model, the phase boundary is

defined by Γ/J = tanhβΓ [3]. Both Tc(0) = J , the

critical temperature at Γ = 0, and Γc(0) = J , the

critical transverse field at T = 0, are determined by

the parameter J , which represents the magnitude of

the couplings.

For the quantum SK spin glass model with

Gaussian couplings, different phase boundaries are

represented in Fig. 2, giving the critical parameters

Tc(0) = J and Γc(0) ≈ 1.5J where J2/N is the

variance of the couplings.

For the quantum VB spin glass model with our

discrete distribution, obtaining analytical results is

extremely complicated, and the phase boundary is

not known.

However, in order to establish a reference line,

we make the assumption that in the FM phase

the phase boundary of our system has the same

shape as the quantum SK ferromagnetic model,

but rescaling its critical temperature at Γ = 0,

Tc(Γ = 0, p) = Tc(0, p), to the one from the phase

diagram with discrete couplings, obtained from

Fig. 2. So, we are taking the reference phase

boundary given by the following self-consistent

equation:

Γ

Tc(0, p)
= tanhβΓ. (24)

In the SG phase we make the same assumption

but rescaling the phase diagram of the quantum SK

spin glass model, solid line from Fig. 1, with the

respective Tc(0, p) in Fig. 2.

This results in the phase boundaries represented

in Fig. 10 for different p.

The results from Fig. 10 demonstrate that,

as argued earlier in Section VIA, the best-

performing temperature decreases as the transverse

field increases. This observation aligns with our

previous analysis and supports the notion that the

best-performing temperature follows the proposed

reference phase boundaries of the system.

This trend maintains the conclusion from the

classical system that the best-performing range of

temperatures is around the phase transitions, both

for the FM-PM and SG-PM.

0 1 2 3 4 5
Γ

0

1

2

3

4

T

p = 0.00
p = 0.50
p = 0.85
p = 1.00

FIG. 10. Best-performing temperature of the quantum

VB spin glass model with the discrete distribution of

Eq. 3 for different values of p as a function of the

transverse field, for ⟨z⟩ = 4. The lines correspond to

different reference phase boundaries: solid and dashed

line to the proposed quantum VB ferromagnetic phase

boundary with p = 1 and p = 0.85 respectively, dot

dashed line is the quantum SK spin glass model phase

boundary rescaled with Tc(0, pSG), where pSG are all

the p values in the SG phase of the classical VB

spin glass model since they all have the same critical

temperature. The gray dashed zone indicates that we

are not exploring this temperature range; therefore, the

points touching the barrier may not be the actual best-

performing temperature.

VII. CONCLUSIONS

In this work, we have conducted extensive studies

on generating equilibrium configurations in order to

have a good starting point for the inverse problem,
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and constructing a reliable log-pseudolikelihood

function to correctly infer the underlying parameter

of the system. We can now summarise our findings

for the inverse problem of the quantum Viana-Bray

spin glass.

For the effective classical Hamiltonian, we derived

the log-PL function for inferring the pairwise

interactions of the underlying graph structure.

However, when the interlayer interactions are

significantly larger than the intralayer interactions,

the dominance of this term in the log-PL function

prevented the algorithm from generating accurate

reconstructions.

Consequently, we were compelled to redefine the

log-PL function by excluding this contribution in

order to improve the algorithm performance.

With this new log-PL we achieved significant

improvements in the reconstructions. For low values

of the transverse field, we were able to reproduce

the classical results, but with a general worse

quality in the reconstructions. As the transverse

field increased, we observed a decrease in the best-

performing temperature close to the phase boundary.

This finding aligns with our expectations that the

best-performing region on the new phase diagram

would still be around the phase transitions, both

for the FM-PM and SG-PM, and shows the impact

of the quantum fluctuations on the reconstruction

process.
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Appendix A: Code

The source code for the simulations can be found

at this link: https://github.com/llui2/TFM_2023

Appendix B: Suzuki-Trotter formalism

Here we show a quick review on how to derive

the effective classical Hamiltonian using the Suzuki-

Trotter formalism for the TFIM Hamiltonian.

The Trotter formula states that for two not

necessarily commuting operators Â and B̂

lim
n→∞

(
eβ(

Â
n + B̂

n )

)n

= eβ(Â+B̂) (B1)

Then the derivation of the effective classical

Hamiltonian works as follows. We begin with the

quantum Hamiltonian,

Ĥ = ĤD + V̂ = −
∑
i<j

Jij σ̂
z
i σ̂

z
j − Γ

∑
i

σ̂x
i . (B2)

We chose the following basis of the 2N Hilbert

space,

|σ⟩ = |σ1⟩ ⊗ ...⊗ |σN ⟩ = |σz
1⟩ ⊗ ...⊗ |σz

N ⟩ (B3)

where N is the number of spins. Now the partition

function, using the Trotter formula, can be written

as

Z = Tr e−βĤ = Tr e−β(ĤD+V̂ )

= Tr lim
m→∞

[
e−β(ĤD/m+V̂ /m)

]m
= lim

m→∞
Tr

m∏
α=1

e
β
m

∑
i<j Jijσ

α
i σα

j ⟨σα|e
βΓ
m

∑
i σ̂

x
i |σα+1⟩

(B4)

since ĤD is diagonal in this basis. Now one can

easily workout the following expression

⟨σα|e
βΓ
m σ̂x

|σα+1⟩ = e
1
2 ln
(
sinh βΓ

m cosh βΓ
m

)
− 1

2σ
ασα+1 ln tanh βΓ

m .

(B5)

Therefore the m-th Trotter approximation is

Z ≃ Tr

[(
sinh

βΓ

m
cosh

βΓ

m

)Nm
2

exp

(
β

m

m∑
α=1

∑
i<j

Jijσ
α
i σ

α
j − 1

2
ln tanh

βΓ

m

m∑
α=1

N∑
i=1

σασα+1

)]
.

(B6)

When m is finite, the exponential of the sum

of two non-commutative operators verifies the

Baker–Campbell–Hausdorff formula

e
β
m (ĤD+V̂ ) = e

β
m ĤDe

β
m V̂ e−(

β
m )

2
[ĤD,V̂ ]+O( β

m )3 (B7)

so in order to have a good approximation we have

to impose that β
m ≪ 1, in other words that m ≫ 1

T .

Usually one takes m ≃ 10
T .
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Appendix C: Relative Reconstructions Error Plots
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FIG. 11. Relative reconstruction error for the quantum VB spin glass as a function of the temperature with N = 100 and

⟨z⟩ = 4, for different values of the parameter p and different Γ values. Results using the modified log-PL. The error bars

correspond to the standard deviation of the mean value, calculated from a set of 100 graphs with identical p value.
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