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A B S T R A C T

We examine the problem of natural resource exploitation when an exceptional extraction of a resource
(groundwater) is needed and devoted to a different use than its regular use. The study applies a two-
stage Stackelberg game to examine the strategic behavior of players who compete for water. The leader,
with varying weights assigned to the different uses and environmental concern, is the manager of the new
(nonregular) resource use, who only intervenes in the second stage of the game. The follower is a regular
(agricultural) resource user. We examine the crucial resource of groundwater, introducing two types of
Stackelberg equilibria (open-loop and feedback) that can arise depending on agents’ commitment behavior.
We compare the extraction behaviors of the leader and the follower for the two equilibria and the effects on
the final state of the resource and agents’ profits. Unexpectedly, we demonstrate that situations can occur in
which noncommitment strategies could be more favorable than commitment strategies in terms of the final
aquifer stock and the regular user’s profits. To avoid that noncommitment strategies are implemented in these
circumstances, the weights assigned by the leader to the different uses will play an important role.
1. Introduction

Natural resource management is an important issue and the sustain-
ability of these resources is a concern shared by political agents and
citizens. Avoiding the depletion of natural resources has led decision
makers to implement different exploitation strategies with the common
objective of achieving sustainable resource exploitation under manage-
ment. When natural resource management is shared by different agents
that compete for its use, strategic behaviors of the agents arise. Al-
though this situation can occur in the management of different natural
resources, we focus on water, one of the most valuable resources on the
planet, and in particular, groundwater resources.

Groundwater depletion is a major challenge in which groundwater
resources have an increasingly important role, not only for irrigation
(a regular use in the majority of aquifers), but also for domestic,
industrial, and recreational purposes. One circumstance that occurs and
illustrates the increased competition for groundwater resources is the
need for exceptional extraction of groundwater for nonregular use such
as the construction of a water reserve, transfer between basins, and
special needs for domestic or recreational water (e.g., irrigation of golf
courses, swimming pools, water sport complexes, and other uses). In
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this study, we examine a problem of groundwater resource exploitation,
mainly used for a unique purpose (e.g., irrigation), that exceptionally
faces the entrance of a new use in the system, which causes a problem
of water scarcity for the regular user.

In this context, a benevolent water authority (e.g., a water agency)
is needed to manage how much groundwater could be extracted for the
new (nonregular) use so that different resource users can simultane-
ously exploit and profit from the resource. Because of the exceptional
groundwater needed for this new nonregular use, we consider that a
benevolent water authority that manages this new use over the regular
use acts as the leader in a Stackelberg game. Hence, we do not focus
on the implementation of public policies that facilitate socially opti-
mal resource allocation since we consider the extraction of water for
nonagricultural use to be exceptional; therefore, the specific problem
we examine does not require public policy implementation. We con-
centrate on investigating and characterizing a second-best equilibrium,
through the resolution of a Stackelberg game between the water agency
(the leader) and the agricultural user (the follower). Specifically, we
focus on the comparison of two Stackelberg equilibrium concepts that
correspond to different agents’ commitment behavior, and analyze
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264-9993/© 2024 The Author(s). Published by Elsevier B.V. This is an open access
c/4.0/).

https://doi.org/10.1016/j.econmod.2024.106652
Received 21 September 2022; Received in revised form 11 January 2024; Accepted
article under the CC BY-NC license (http://creativecommons.org/licenses/by-

11 January 2024

https://www.journals.elsevier.com/economic-modelling
https://www.journals.elsevier.com/economic-modelling
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
https://data.mendeley.com/datasets/8z677t4m4v/1
mailto:j.defrutos@ub.edu
https://doi.org/10.1016/j.econmod.2024.106652
https://doi.org/10.1016/j.econmod.2024.106652
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Economic Modelling 132 (2024) 106652J. de Frutos Cachorro et al.

o
o
b
a

how the agents’ differing behaviors when making decisions regarding
extraction concerning new (nonregular) use (the leader) and regular
use (the follower) affect the sustainability of the resource and the
decision makers’ profits.

Indeed, our study contrasts with previous literature that focuses on
the centralized management of aquifers and consequently seeks to iden-
tify the efficient or Pareto solution for the groundwater management
problem. Groundwater quantity issues are primarily addressed in the
literature using optimal control theory ((Koundouri et al., 2017) for
a review), and most studies examine different types of uncertainties
((Tsur and Zemel, 2014) for a review), particularly the problem of
water scarcity (de Frutos Cachorro et al., 2014). In de Frutos Cachorro
et al. (2014), water scarcity is considered through modeling an exoge-
nous shock to the groundwater resource (namely, a decrease in the
recharge rate of the aquifer) to analyze optimal extraction paths and the
social costs of optimal adaptation to the shock. In contrast to previous
research, our approach importantly introduces the strategic aspect in
the behavior of the different decision-makers and treats water scarcity
as an endogenous shock to the groundwater resource.

The extraction of any natural resource has three characteristics.
First, the extraction problem is intrinsically dynamic; second, strategic
interdependencies exist when the extraction decisions of one agent
affect their profits as well as the profits of the other agents; and third,
strategic and forward-looking behavior, in the sense that the decision
makers consider the present and future consequences of their own
actions and those of the other agents. These three problem charac-
teristics make it extremely suitable for modeling and exploration as
a dynamic game (Jørgensen et al., 2010). In this context, the use of
dynamic games has been largely justified in the literature on water
management to examine problems in which the dynamic and strate-
gic interactions that occur between decision makers (i.e., the water
agency and the regular user) are considered ((Madani, 2010) for a
review). Two main externalities could arise in this type of problem
under decentralized management, and consequently, noncooperative
equilibria are generally inefficient (in terms of stock and/or welfare)
with respect to cooperative solutions. First, a strategic (or stock) exter-
nality emerges because of competition between the different users for
the limited resource. Next, extraction by one user lowers the resource
stock, resulting in increased extraction cost for other users, which is a
cost externality. Indeed, game theory literature focuses on cooperative
and/or noncooperative (Nash equilibrium) solutions for irrigation users
((Negri, 1989) and Rubio and Casino (2001)) under water scarcity (de
Frutos Cachorro et al., 2019) or more complex problems due to farmers’
heterogeneity (Saleh et al., 2011), competition between uses (de Frutos
Cachorro et al., 2021), and spatial characteristics such as multicell
aquifers (e.g., Saak and Peterson (2007)), among others. However,
as explained in Kicsiny (2017), when water conflicts enter the prob-
lem, Stackelberg (or leader–follower) equilibria offer a more realistic
representation of the problem in practical cases in terms of previous
classic Nash equilibria. As noted previously, in this study, since the
exceptional need of water for a nonregular use leads to a water conflict
between users, it is appropriate and interesting to consider that the
different agents compete à la Stackelberg and play hierarchically. To
investigate this specific situation, we formulate our problem as a two-
period discrete time game. The water agency is the leader and as
such makes extraction decisions regarding the new (nonregular) use
in the first place and exclusively in the second period of the game.
Subsequently, the agent who makes decisions about regular use (the
follower in the Stackelberg game) makes resource extraction decisions
in the two periods depending on the leader’s actions.

General Stackelberg dynamic games could be classified according
to their relevance at theoretical and/or empirical levels. The books
by Dockner et al. (2000) and Başar and Olsder (1999) are well-known
references for Stackelberg dynamic games in continuous or discrete
time, respectively. Some studies offer interesting findings from a theo-
2

retical perspective, although their application to real cases is restricted c
(Nie, 2005; Erdlenbruch et al., 2014). To the best of our knowledge,
only a few previous articles focus on comparing different types of
Stackelberg equilibria that correspond to agents’ different commitment
behaviors, particularly open-loop and feedback Stackelberg equilibria.
This is extremely important in practice since each equilibrium concept
can be considered more realistic than the other, depending on the
information that is available to each player. Implementing feedback
strategies requires that the current stock of the aquifer can be observed
by decision agents. Therefore, in some settings open-loop strategies are
more realistic if the stock of water is unobservable or only observable
with a delay. Furthermore, in the open-loop equilibrium, the leader
makes a commitment regarding extraction behavior and the follower
believes this commitment and chooses the resource extraction based on
this belief. The problem with Stackelberg open-loop equilibria is that
they are generally inconsistent1 over time and therefore less realistic.
The feedback Stackelberg equilibrium does not have this disadvantage.
This equilibrium is consistent over time, and the players do not commit
to their extraction behavior over time, but make decisions depending
on the stock of the resource at the beginning of each period. In partic-
ular, Nie (2005) analyzes and compares open-loop (commitment) and
feedback (noncommitment) Stackelberg equilibria for a general setting,
concluding that feedback Stackelberg strategies are more efficient for
the leader’s objective than open-loop strategies. Most empirical studies
use general algorithms to determine approximate solutions to complex
problems, primarily focusing on a specific equilibrium type ((Kicsiny
et al., 2014) and Xu et al. (2019)).

In the literature combining Stackelberg problems, water scarcity,
and competition between groundwater uses, Kicsiny et al. (2014) ad-
dress the problem of a local authority (the leader) who would manage
the use of a water reserve for different types of uses in a given time
period by first reserving a minimally guaranteed quantity for both
uses, and by subsequently assigning a proportion of the water reserve
available for domestic use. The follower (a representative agent of the
farmers) then decides the proportion of the available reserve left for
irrigation after the leader’s decision. However, Kicsiny et al. (2014),
only analyze the feedback Stackelberg solution, and in contrast to our
study, the water conflict is continuous over time; therefore, the local
authority fixes minimum and maximum quantities for both uses at
each period before making extraction decisions for nonagricultural use.
Moreover, a crucial difference between our study and Kicsiny et al.
(2014) is that the dynamics in our formulation are in the stock of
the aquifer (renewable resource), whereas in Kicsiny et al. (2014), the
dynamics are in the available water; that is, the water remaining from
the total reserve (nonrenewable resource).

In this study, we examine whether noncommitment (feedback) and
commitment (open-loop) Stackelberg strategies could be more prof-
itable for the sustainability of the resource (in terms of final aquifer
stock level) and/or for the agents’ profits. To the best of our knowl-
edge, this study is novel in the sense that it proposes and compares
different Stackelberg equilibria for resource management in a context
of competition between different groundwater uses.

Our paper also differs from previous literature in several ways. First,
and most importantly, we are interested in modeling a specific situation
that requires a water authority (e.g., a water agency) to manage an
exceptional extraction of water for nonregular use. To do so, we con-
struct a two-stage discrete problem in which the leader only intervenes
when necessary (in this case, in the second stage of game in which

1 The problem of temporal inconsistency is due to the fact that if the leader
ptimally decides to perform a number of actions over several periods, and if
ther economic agents (in our case, the agent who decides the regular use)
elieve in this commitment and choose their actions under this belief, then,
t some period in the future, the leader would want to deviate from this

ommitment (Kydland and Prescott, 1977).
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the nonregular water use takes place), while in Nie (2005) and Kicsiny
et al. (2014), a leader–follower approach is applied at each step of the
game in which both the leader and follower are active players at all
stages. Our specific game depicts three external effects, the cost and
strategic effects in the second period, where both agents compete for
the limited resource, and a third intertemporal effect that arises because
the follower’s extraction in the first period lowers the available stock for
the second period, resulting in increased extraction cost for the leader
in the second period. Second, we assume that the leader (the water
agency) is a benevolent entity that decides how much groundwater can
be extracted for the new (nonregular) use. For this purpose, the leader
considers the profits from the different uses (regular and nonregular
uses) in the objective to avoid a water conflict while also allowing for
the possibility of assigning different weights to different uses. Indeed,
this kind of objective that considers both users’ profits has already been
introduced in the literature regarding water conflicts between different
water uses (Maas et al., 2017), considering equal weights for the dif-
ferent uses in the objective. Furthermore, the leader is environmentally
concerned, specifically about the sustainability of the natural resource;
therefore, the leader values the final stock of the aquifer in the objective
function. In contrast, the decision-agent who determines the regular use
of the resource (the follower) assumes the role of a profit maximizing
firm. Since the two agents (the leader and the follower) determine
extraction strategies to maximize different objectives and compete for
water, our problem can be understood as a mixed duopoly (De Fraja
and Delbono, 1990)2; however, in contrast to the majority of the
literature on mixed duopolies in which firms compete in quantities
through the price–demand function (e.g., recent studies such as Lee
and Park (2021), De Chiara and Manna (2022), Zhu et al. (2022),
and Delbono et al. (2023)), in this study, firms compete for water
through the cost function, more specifically, through the pumping costs
that depend on the stock of the aquifer and the extracted quantity.

As described above, we are particularly interested in analyzing and
comparing the agents’ extraction behaviors for different Stackelberg
equilibria depending on the type of existing commitment between
decision makers. With this aim, we analytically solve and compare the
commitment (open-loop) and noncommitment (feedback) equilibria.
Our theoretical results demonstrate that committed strategies lead to
higher stock levels than uncommitted strategies when the leader assigns
a weight to the profits from regular use that equals the one assigned
to the profits from the new (nonregular) use. Finally, we perform
numerical simulations to analyze decision makers’ profits and deter-
mine whether the main results concerning final stock levels remain
valid when the leader assigns different weights to different uses. We
demonstrate that the introduction of this aspect into the model is
extremely relevant, representing one of the main drivers of final results.
Notably, the numerical results suggest that situations can emerge in
which uncommitted strategies could be more favorable than committed
strategies, not only in terms of the final resource stock, but also in
terms of profit of the agent deciding on regular use. However, the water
agency (the leader) always obtains higher profits under committed
strategies; therefore, the decision makers’ interests (the water agency
and the agent deciding on the regular use) cannot be aligned. As a
consequence, since the agent deciding on the regular use is the only
active player in the first period, this agent could induce the water
agency to employ uncommitted strategies in the second period by
playing uncommitted strategies in the first period. In this case, since
the objective of the water agency could be seen as a measure of social
welfare (it considers total surplus from groundwater exploitation and a
term that measures its environmental concern about final stock levels),
the implemented strategies would not coincide with strategies that

2 We thank an anonymous reviewer for bringing this literature to our
ttention.
3

procure a higher value of the water agency’s objective to the detriment
of social welfare.

The remainder of this paper is organized as follows. Section 2
describes the Stackelberg game and the model resolution for the two
types of commitment behavior. We conduct comparisons between the-
oretical results for open-loop and feedback Stackelberg equilibria in
Section 3 for the case in which the water agency (the leader) assigns an
equal weight to the two uses (regular and nonregular) in its objective
function. In Section 4, we complete our analysis through numerical
simulations, relaxing the previous hypothesis and allowing the leader
to weigh the two uses in its profits function differently. A further
analysis is presented in Section 5, examining how the previous results
could change if the follower applies a discount rate to the second-
period profits. We detail our conclusions in Section 6. All the proofs
are presented in the appendices. The supplementary material includes
detailed tables showing the results of our numerical simulations and
the Maple program used to generate these results.

2. The game

We investigate a problem in which a regular user of a groundwa-
ter resource (e.g., an agent in charge of making extraction decisions
concerning agricultural use) faces the announcement that another ex-
ceptional extraction for a nonagricultural use will occur in the second
period. This leads to a competition problem between the two uses for
the limited stock of the aquifer over the two periods. To avoid ground-
water overexploitation, a water authority is needed to manage how
much water can be extracted for the new use in such a way that both
users can simultaneously and profitably exploit the common resource.

We formulate our problem as a discrete two-stage Stackelberg model
with two decision makers who have different objectives. First, there
is the agent in charge of the extraction of the resource for regular
use (i.e., irrigation in the majority of the aquifers), who is the fol-
lower aiming to maximize profits. Second, there is a water authority
(e.g., a water agency), who is the leader of the Stackelberg game
aiming to maximize the sum of total surplus derived from groundwater
exploitation, which is defined as a weighted sum of profits from both
uses, and an environmental term that considers the final stock value
of the resource in the objective function and measures the leader’s
environmental concern.

Both agents maximize their objectives, considering the aquifer dy-
namics over the two periods. The stock of the aquifer is the state
variable and, at the initial time, this stock is denoted by 𝐺0. Agents’
xtraction decisions over the two periods (i.e., extraction of the leader
or the new (nonagricultural) use in the second period and extractions
f the follower for the agricultural use in the first and second periods)
re the decision variables of the problem.

.1. Game formulation

.1.1. Aquifer dynamics
In the first period, the aquifer is exclusively exploited by the fol-

ower, and we denote the amount of water extracted by the follower
n this period by 𝑔1𝑓 . Hence, the stock of the aquifer at the end of the
irst period, 𝐺1, is as follows:

1 = 𝐺0 − 𝑔1𝑓 + 𝑟, (1)

here 𝑟 represents the constant recharge of the aquifer over the first
eriod.

In the second period, the leader and the follower make extraction
ecisions, with 𝑔2𝑙 denoting the leader’s extraction for the new (nona-
ricultural) use and 𝑔2𝑓 denoting the follower’s extraction for irrigation
urposes. For simplicity, assuming that the recharge of the aquifer over
he second period is identical to that over the first period, the stock of
he aquifer at the end of the second period, 𝐺2, is as follows:

= 𝐺 − 𝑔 − 𝑔 + 𝑟. (2)
2 1 2𝑓 2𝑙
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2.1.2. Revenue and cost functions of the different users
Concerning the regular use (irrigation), we consider the agent de-

ciding this use faces a (per period) linear demand for irrigation 𝑔𝑡𝑓 =
𝑎−𝑏𝑝𝑤𝑡𝑓 (𝑎, 𝑏 > 0), where 𝑔𝑡𝑓 represents the water extraction and 𝑝𝑤𝑡𝑓 the
price of water in period 𝑡. Taking the differential game of groundwater
exploitation of Rubio and Casino (2001) as a reference, we assume that
the decision-agent is a price taker in the output market, the agricultural
production function exhibits constant returns to scale, and production
factors other than water and land are optimized, conditioned on the
water extraction. As a result, the price of water equals the value of
the marginal product of water and the (per period) follower’s revenue
function can be obtained by integrating the inverse demand function
as follows:

𝑅𝑡𝑓 (𝑔𝑡𝑓 ) = ∫ 𝑝𝑤𝑡𝑓 (𝑔𝑡𝑓 ) 𝑑𝑔𝑡𝑓 = ∫
𝑎 − 𝑔𝑡𝑓

𝑏
𝑑𝑔𝑡𝑓 = 𝑎

𝑏
𝑔𝑡𝑓 − 1

2𝑏
𝑔2𝑡𝑓 , 𝑡 = 1, 2.

(3)

In what follows, we denote 𝑎𝑓 = 𝑎
𝑏 and 𝑏𝑓 = 1

𝑏 to simplify the
notation.

Unlike the profits from the regular use defined in (3), for an-
alytical tractability, we assume that the new (nonagricultural) use
faces perfectly elastic demand; therefore, the marginal revenue for
water is constant for this use. Examples of this exceptional extraction
for nonagricultural use could be the construction of a water reserve,
transfer between basins, or a special need for domestic or recreational
water (e.g., irrigating golf courses, swimming pools, or water sport
complexes). The revenue function of the new aquifer user in the second
period is therefore linear with respect to the water extracted for this
new use, 𝑔2𝑙, and can be defined as follows:

𝑅2𝑙(𝑔2𝑙) = 𝑎𝑙𝑔2𝑙 with 𝑎𝑙 > 0. (4)

As in the previous literature regarding exploitation of groundwater
resources ((Negri, 1989), Rubio and Casino (2001) and de Frutos
Cachorro et al. (2019)), individual (per period) pumping costs depend
on the stock of the aquifer at the end of the period, 𝐺𝑡, and the extracted
quantity of water in this period by agent 𝑖, 𝑔𝑡𝑖, as follows:

𝐶𝑡𝑖(𝐺𝑡, 𝑔𝑡𝑖) = (𝑧 − 𝑐𝐺𝑡)𝑔𝑡𝑖, 𝑡 = 1, 2, 𝑖 = 𝑓, 𝑙, (5)

where 𝑧 and 𝑐 are positive parameters. More specifically, 𝑧 corresponds
to the maximum unit (or marginal) cost, indicating the marginal cost
when 𝐺 = 0.3

2.1.3. Leader and follower objectives
The players (the leader and the follower) make extraction decisions

to maximize different objectives. This can be seen as a mixed duopoly
following the definition of classic studies such as De Fraja and Delbono
(1990), in the sense that one firm (the agent deciding on the agricul-
tural use) maximizes profits, and another environmentally and socially
concerned (or public) firm (the water agency) maximizes the sum of
total surplus derived from groundwater exploitation and an environ-
mental term that considers the final stock value of the resource while
competing for groundwater. However, in contrast to the majority of
previous literature examining mixed duopolies in which firms compete
in quantities through the price–demand function (e.g., recent studies
such as Lee and Park (2021), De Chiara and Manna (2022), Zhu et al.
(2022), and Delbono et al. (2023)), in this study, firms compete for
water through the cost function (see Eq. (5)).

The follower’s objective: The decision-agent of the agricultural use
the follower) aims to maximize total profits over the two periods,

3 We assume that the marginal pumping costs are positive and check a
osteriori in all the numerical simulations that this hypothesis is satisfied. In
articular, 𝐺 < 𝑧∕𝑐 by assumption.
4

0 e
where the profits at period 𝑡 are determined by the following expres-
sion:

𝛱𝑡𝑓 (𝑔𝑡𝑓 , 𝐺𝑡) = 𝑅𝑡𝑓 (𝑔𝑡𝑓 )−𝐶𝑡𝑓 (𝐺𝑡, 𝑔𝑡𝑓 ) = 𝑎𝑓 𝑔𝑡𝑓−
𝑏𝑓
2
𝑔2𝑡𝑓−(𝑧−𝑐𝐺𝑡)𝑔𝑡𝑓 , 𝑡 = 1, 2, (6)

with functions 𝑅𝑡𝑓 and 𝐶𝑡𝑓 given by (3) and (5), respectively.
The leader’s objective: We assume that the leader is an environ-

mentally and socially concerned (or public) water authority with the
objective of maximizing the sum of the total surplus4 from groundwater
exploitation, defined as a weighted sum of profits derived from agricul-
tural, 𝛱𝑓 , and nonagricultural, 𝛱𝑙, uses, and an environmental term
that adds the possibility that the leader values the final resource stock
in the objective function, as follows:

𝜃

( 2
∑

𝑡=1
𝛱𝑡𝑓

)

+ (1 − 𝜃)𝛱2𝑙 + 𝐴𝐺2, (7)

with 𝜃, 0 ≤ 𝜃 < 1, 𝐴 ≥ 0 and,

𝛱2𝑙(𝑔2𝑙 , 𝐺2) = 𝑅2𝑙(𝑔2𝑙) − 𝐶2𝑙(𝐺2, 𝑔2𝑙) = 𝑎𝑙𝑔2𝑙 − (𝑧 − 𝑐𝐺2)𝑔2𝑙 , (8)

with functions 𝑅2𝑙 and 𝐶2𝑙 given by (4) and (5), respectively.
Parameter 𝜃 represents the weight that the water agency assigns to

the agricultural profits. The greater the weight 𝜃, the more significant
the agricultural use of the aquifer for the leader; and vice versa, the
lower 𝜃, the more important the new use of the aquifer for the leader.

2.2. Game resolution under different commitment behaviors

In a general Stackelberg game, or leader–follower game, the leader
makes decisions first and the follower subsequently makes decisions
depending on the actions of the leader. Different types of Stackelberg
equilibria can be computed depending on the commitment behavior
between the two agents over the two-period game. We next analytically
solve the game for open-loop (commitment solution) and feedback
(noncommitment) Stackelberg equilibria. While the former involves
time-inconsistent solutions, the latter procures time-consistent solutions
(see proofs in Appendix A).

In this study, we assume that agriculture requires water continu-
ously to grow crops. Moreover, we are interested in examining the
problem in which a new use needs water to procure a new activity.
Consequently, we are interested in positive extractions of water both for
agricultural (the follower’s extraction) and nonagricultural (the leader’s
extraction) use and the positive stock of the aquifer at the end of the
two periods. In summary, we focus on interior and strictly positive
solutions; hence, corner solutions are not analyzed.

2.2.1. Open-loop Stackelberg equilibrium
In an open-loop Stackelberg equilibrium, the leader commits at

𝑡 = 0 to the path of extraction for the new use in the second period.
The follower then believes the leader’s commitment and subsequently
chooses extraction paths over the two-period game under this belief.

Accordingly, the follower first determines their extraction behavior
in the two periods, 𝑔1𝑓 and 𝑔2𝑓 , assuming the leader’s extraction policy
in the second period, 𝑔2𝑙. Since the follower’s objective is to maximize
profits over the two periods, the follower faces the following problem:

max
𝑔1𝑓≥0, 𝑔2𝑓≥0

2
∑

𝑡=1
𝛱𝑡𝑓 (𝑔𝑡𝑓 , 𝐺𝑡), (9)

4 In the literature on mixed duopolies, a different objective function is
ommonly used by socially concerned firms, i.e., to maximize social welfare
efined as the sum of consumers’ and producers’ surplus (see De Fraja and
elbono (1990) for a review). Furthermore, some studies include the possi-
ility of assigning different weights to the consumer surplus in the objective
unction (De Chiara and Manna, 2022; Zhu et al., 2022) or incorporate
n environmental damage function (Lee and Park, 2021) in the case of

nvironmentally concerned firms.
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s.t: (1), (2)
𝐺1, 𝐺2 ≥ 0

here function 𝛱𝑡𝑓 is given by (6). We then obtain the follower’s
est-reaction functions, 𝑔̃1𝑓 (𝑔2𝑙) and 𝑔̃2𝑓 (𝑔2𝑙), representing the follower’s

extractions over the two periods as functions of the leader’s extraction
in the second period. Next, the leader determines the water extraction
in the second period, 𝑔2𝑙, to maximize a weighted sum of the two-
period profits of the follower (considering the follower’s best-reaction
functions, 𝑔̃1𝑓 (𝑔2𝑙) and 𝑔̃2𝑓 (𝑔2𝑙)) and the profits derived from extraction
for the new use in the second period, as well as the term measuring the
leader’s environmental concern as follows:

max
𝑔2𝑙≥0

{

𝜃

( 2
∑

𝑡=1
𝛱𝑡𝑓 (𝑔̃𝑡𝑓 (𝑔2𝑙), 𝐺𝑡)

)

+ (1 − 𝜃)𝛱2𝑙(𝑔2𝑙 , 𝐺2) + 𝐴𝐺2

}

, (10)

s.t: (1), (2)
𝐺1, 𝐺2 ≥ 0.

Functions 𝛱𝑡𝑓 and 𝛱2𝑙 are given by (6) and (8), and 𝜃, with 0 ≤
𝜃 < 1 is the weight assigned to the follower’s profits. The equilibrium
strategies of this model formulation are examined using numerical
examples in Section 4. Here, to ease the presentation, we restrict our
attention to the case 𝜃 = 1∕2 (i.e., the case in which the leader
equally weighs both users’ profits in the objective function). Solving
the previous problem with 𝜃 = 1∕2 (see Appendix B.1 for details), we
obtain 𝑔𝑂𝐿

2𝑙 , where the superscript 𝑂𝐿 indicates open-loop equilibrium.
Finally, substituting 𝑔𝑂𝐿

2𝑙 in the follower’s best-reaction functions, we
btain 𝑔𝑂𝐿

1𝑓 and 𝑔𝑂𝐿
2𝑓 :

𝑂𝐿
1𝑓

=
2(𝐺0𝑐+𝑐𝑟+𝑎𝑓 −𝑧)𝑏2𝑓 +𝑐(6(𝐺0𝑐−𝑧)+5(𝑐𝑟+𝑎𝑓 )−2𝐴+𝑎𝑙)𝑏𝑓 +𝑐2(2(𝐺0𝑐+𝑧)−4𝐴+3𝑎𝑙−𝑎𝑓 )

(𝑏𝑓 + 2𝑐)(𝑏𝑓 + 3𝑐)(2𝑏𝑓 + 𝑐)
,

(11)
𝑂𝐿
2𝑓 =

(𝐺0𝑐 + 2𝑐𝑟 + 2𝐴 − 𝑎𝑙 + 2𝑎𝑓 − 𝑧)𝑏𝑓 + 𝑐(𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 3𝑎𝑙 + 4𝑎𝑓 − 𝑧)
(𝑏𝑓 + 3𝑐)(2𝑏𝑓 + 𝑐)

, (12)

𝑂𝐿
2𝑙 =

(𝐺0𝑐+2𝑐𝑟−2𝐴+𝑎𝑙−𝑧)𝑏2𝑓 +𝑐(𝐺0𝑐+3𝑐𝑟−6𝐴+4𝑎𝑙−3𝑎𝑓 −𝑧)𝑏𝑓 +(3𝑎𝑙−3𝑎𝑓 −4𝐴)𝑐2

𝑐(𝑏𝑓 + 2𝑐)(2𝑏𝑓 + 𝑐)
.

(13)

Once the optimal extraction strategies are characterized, we can
obtain the states of the aquifer at the end of the two periods for previous
extraction behavior as follows:

𝐺𝑂𝐿
1 = 1

(2𝑏𝑓 + 𝑐)(𝑏𝑓 + 2𝑐)(𝑏𝑓 + 3𝑐)

{

2(𝐺0+𝑟)𝑏3𝑓 +(9(𝐺0𝑐+𝑐𝑟)−2𝑎𝑓 +2𝑧)𝑏2𝑓

+𝑐(11𝐺0𝑐+12𝑐𝑟+2𝐴−𝑎𝑙−5𝑎𝑓 +6𝑧)𝑏𝑓 +𝑐2(4𝐺0𝑐+6𝑐𝑟+4𝐴−3𝑎𝑙+𝑎𝑓 +2𝑧)
}

,

(14)

𝐺𝑂𝐿
2 = 1

𝑐(2𝑏𝑓 + 𝑐)(𝑏𝑓 + 3𝑐)

{

(𝐺0𝑐+2𝑐𝑟+2𝐴−𝑎𝑙+𝑧)𝑏2𝑓 +𝑐(2𝐺0𝑐+5𝑐𝑟

+6𝐴−4𝑎𝑙−𝑎𝑓 +5𝑧)𝑏𝑓

+𝑐2(𝐺0𝑐+3𝑐𝑟+4𝐴−3𝑎𝑙+𝑎𝑓 +2𝑧)
}

. (15)

The mathematical expressions concerning the players’ profits from
optimal extraction strategies and the states of the aquifer are extremely
long and are omitted for brevity.

To guarantee the positivity of extraction decisions and aquifer state
variables, we assume that the sufficient conditions summarized in
Condition 1 in Appendix D.1 are fulfilled.

Since both players’ goal is to achieve maximum value for their
objectives (problems (9) and (10)), the concavity of the objective
functions of the leader and the follower with respect to their decision
variables must be guaranteed. In Appendix B.2, we derive these con-
cavity conditions and demonstrate that condition 𝜃 = 1∕2 ensures this
property.
5

2.2.2. Feedback Stackelberg equilibrium
In a feedback Stackelberg equilibrium, the follower chooses extrac-

tion behavior at each step after the leader has decided and announced
the strategy. The problem must be solved using backward induction.
As the leader does not extract water in the first period, there is
only one decision maker (the follower) in this first period. Because
the leader is not an active player in the first period, the feedback
equilibrium of the problem can be seen as a ‘‘degenerated Stackelberg’’,
for which a solution can be obtained following a three-step procedure
(see Appendix C.1 for details).

Since the game is solved via backward induction, in the first step,
the follower determines extraction behavior in period two, 𝑔2𝑓 , assum-
ing the leader’s extraction policy in the second period, 𝑔2𝑙, and the
extraction in the first period, 𝑔1𝑓 . The follower must then solve the
following problem in the second period:

max
𝑔2𝑓≥0

𝛱2𝑓 (𝑔2𝑓 , 𝐺2), (16)

s.t: (1), (2)
𝐺1, 𝐺2 ≥ 0,

ith function 𝛱2𝑓 given by (6). The solution to this problem gives
2𝑓 as a function of 𝑔2𝑙 and 𝑔1𝑓 , 𝑔̂2𝑓 (𝑔2𝑙 , 𝑔1𝑓 ). In the second step, after
ubstituting 𝑔̂2𝑓 (𝑔2𝑙 , 𝑔1𝑓 ) in the leader’s problem, the leader determines
xtraction behavior in period two, 𝑔2𝑙. The leader’s problem is as
ollows:

max
2𝑙≥0

𝜃𝛱2𝑓
(

𝑔̂2𝑓 (𝑔2𝑙 , 𝑔1𝑓 ), 𝐺2
)

+ (1 − 𝜃)𝛱2𝑙(𝑔2𝑙 , 𝐺2) + 𝐴𝐺2, (17)

s.t: (1), (2),
𝐺1, 𝐺2 ≥ 0,

with functions 𝛱2𝑓 and 𝛱2𝑙 given by (6) and (8), and 0 ≤ 𝜃 < 1. The
solution to this problem establishes 𝑔2𝑙 as a function of 𝑔1𝑓 , i.e., 𝑔̂2𝑙(𝑔1𝑓 ).
Finally, substituting the leader’s reaction function in the second stage
of the game in the follower’s problem, the follower’s problem to solve
in the first period is as follows:

max
𝑔1𝑓≥0

𝛱1𝑓 (𝑔1𝑓 , 𝐺1) +𝛱2𝑓
(

𝑔̂2𝑓 (𝑔̂2𝑙(𝑔1𝑓 ), 𝑔1𝑓 ), 𝐺2
)

, (18)

s.t: (1), (2),
𝐺1, 𝐺2 ≥ 0,

ith function 𝛱𝑡𝑓 given by (6). From the solution to this problem,
we obtain the follower’s extraction strategy in the first period, 𝑔𝐹𝐵

1𝑓 ,
where the superscript 𝐹𝐵 denotes feedback equilibrium. Subsequently,
we replace the latter value in the leader’s and follower’s reaction
functions in period two, obtaining 𝑔𝐹𝐵

2𝑙 , 𝑔𝐹𝐵
2𝑓 , i.e., the leader’s and

follower’s optimal strategies in the second period. We next present all
optimal strategies and aquifer states derived from these strategies for
the particular and important case of 𝜃 = 1∕2:

𝑔𝐹𝐵
1𝑓 = 1

(2𝑏2𝑓 +4𝑏𝑓 𝑐+𝑐
2)(2𝑏2𝑓 +6𝑏𝑓 𝑐+3𝑐

2)

{

4(𝐺0𝑐+𝑐𝑟+𝑎𝑓 −𝑧)𝑏3𝑓

+𝑐(11(𝐺0𝑐−𝑧)+10𝑐𝑟−2𝐴+𝑎𝑙+10𝑎𝑓 )𝑏2𝑓 +𝑐
2(7(𝐺0𝑐−𝑧)

+5𝑐𝑟−4𝐴+3𝑎𝑙+4𝑎𝑓 )𝑏𝑓
+𝑐3(𝐺0𝑐−2𝐴+2𝑎𝑙−𝑎𝑓 −𝑧)

}

, (19)

𝐹𝐵
2𝑓 = 1

(2𝑏2𝑓 +4𝑏𝑓 𝑐+𝑐
2)(2𝑏2𝑓 +6𝑏𝑓 𝑐+3𝑐

2)

{

2(𝐺0𝑐+2𝑐𝑟+2𝐴−𝑎𝑙+2𝑎𝑓 −𝑧)𝑏3𝑓

+ 𝑐(5(𝐺0𝑐−𝑧)+10𝑐𝑟+14𝐴−9𝑎𝑙+14𝑎𝑓 )𝑏2𝑓 +𝑐
2(4(𝐺0𝑐−𝑧)

+ 11𝑐𝑟+14𝐴−12𝑎𝑙+16𝑎𝑓 )𝑏𝑓
+𝑐3(𝐺0𝑐+3𝑐𝑟+4𝐴−4𝑎𝑙+5𝑎𝑓 −𝑧)

}

, (20)

𝐹𝐵
2𝑙 = 1

𝑐(2𝑏2𝑓 +4𝑏𝑓 𝑐+𝑐
2)(2𝑏2𝑓 +6𝑏𝑓 𝑐+3𝑐

2)

{

2(𝐺0𝑐+2𝑐𝑟−2𝐴+𝑎𝑙−𝑧)𝑏4𝑓

+𝑐(7(𝐺 𝑐−𝑧)+16𝑐𝑟−22𝐴+13𝑎 −6𝑎 )𝑏3 +𝑐2(7(𝐺 𝑐−𝑧)
0 𝑙 𝑓 𝑓 0
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+19𝑐𝑟−40𝐴+29𝑎𝑙−22𝑎𝑓 )𝑏2𝑓
+𝑐3(2(𝐺0𝑐−𝑧)+6𝑐𝑟−28𝐴+25𝑎𝑙−23𝑎𝑓 )𝑏𝑓 +6𝑐4(𝑎𝑙−𝑎𝑓 −𝐴)

}

, (21)

𝐺𝐹𝐵
1 = 1

(2𝑏2𝑓 +4𝑏𝑓 𝑐+𝑐
2)(2𝑏2𝑓 +6𝑏𝑓 𝑐+3𝑐

2)

×
{

4(𝐺0+𝑟)𝑏4𝑓 +4(4𝐺0𝑐+4𝑐𝑟−𝑎𝑓 +𝑧)𝑏3𝑓
+𝑐(21𝐺0𝑐+22𝑐𝑟+2𝐴−𝑎𝑙−10𝑎𝑓 +11𝑧)𝑏2𝑓
+𝑐2(11𝐺0𝑐+13𝑐𝑟+4𝐴−3𝑎𝑙−4𝑎𝑓 +7𝑧)𝑏𝑓

+𝑐3(2𝐺0𝑐+3𝑐𝑟+2𝐴−2𝑎𝑙+𝑎𝑓 +𝑧)
}

, (22)

𝐺𝐹𝐵
2 = 1

𝑐(2𝑏2𝑓 +4𝑏𝑓 𝑐+𝑐
2)(2𝑏2𝑓 +6𝑏𝑓 𝑐+3𝑐

2)

{

2(𝐺0𝑐+2𝑐𝑟+2𝐴−𝑎𝑙+𝑧)𝑏4𝑓

+ 𝑐(7𝐺0𝑐+16𝑐𝑟+18𝐴−11𝑎𝑙−2𝑎𝑓 +13𝑧)𝑏3𝑓
+𝑐2(9𝐺0𝑐+23𝑐𝑟+28𝐴−21𝑎𝑙−2𝑎𝑓 +23𝑧)𝑏2𝑓

+ 𝑐3(5𝐺0𝑐+14𝑐𝑟+18𝐴−16𝑎𝑙+3𝑎𝑓 +13𝑧)𝑏𝑓

+𝑐4(𝐺0𝑐+3𝑐𝑟+4𝐴−4𝑎𝑙+2𝑎𝑓 +2𝑧)
}

. (23)

Once again, the mathematical expressions concerning optimal prof-
its are extremely long; hence, are omitted for brevity.

All the conditions collected under Condition 1 in Appendix D.1 are
sufficient conditions ensuring positive resource extractions and stocks
in the feedback case.

As in the open-loop equilibrium, the concavity of the leader’s and
follower’s objective functions with respect to the corresponding deci-
sion variables in the three steps of the game resolution (i.e., in problems
(16), (17), and (18)) must be guaranteed. In Appendix C.2, we derive
the conditions that ensure the concavity of the different objective
functions and prove that these conditions are satisfied for 𝜃 = 1∕2.

We next compare the extraction strategies, aquifer states, and
agents’ profits for different commitment behaviors. In Section 3, we
focus on theoretical results for the case in which the weight assigned
to agricultural use equals the weight of nonagricultural use, 𝜃 = 1∕2. A
numerical analysis of different values that the leader assigns to 𝜃 and
a robustness analysis for other parameters are performed in Section 4.

3. Theoretical results: Open-loop vs. Feedback stackelberg equi-
libria

In this section, we compare both agents’ extraction behavior, aquifer
states, and players’ profits for the different types of equilibria (see
Eqs. (11) to (15) for the open-loop case and (19) to (23) for the
feedback case). The results for both equilibria can be compared if
Condition 1 in Appendix D.1 is satisfied; therefore, we assume this
condition in what follows. Please recall that our attention is restricted
to the case in which the leader’s weight for the new use equals the
weight for agricultural use, 𝜃 = 1∕2.

We first compare the follower’s and the leader’s extraction for each
period depending on the type of commitment behavior.

Proposition 1.
The follower’s extraction in the first period, 𝑔1𝑓 , and the leader’s ex-

traction in the second period, 𝑔2𝑙, are greater in the feedback case than in
the open-loop case. The opposite is obtained for the follower’s extraction
behavior in the second period, 𝑔2𝑓 .

Proof. See Appendix D.2.

One of the results indicating that the leader’s extraction behavior
in the second period is more aggressive in the feedback case than
in the open-loop case can be explained by the fact that the leader
has extra information about stock levels at the beginning of each
period in the feedback case than in the open-loop case. Consequently,
the leader is able to better adapt to only using the resource in the
6

second period by increasing extraction. In addition, as explained in the
introduction, we can interpret the entrance of a new use in the second
period, and therefore the leader’s extraction, as an endogenous shock
to the groundwater resource, implying a water scarcity problem for
the follower. In the literature regarding shocks in optimal groundwater
management, de Frutos Cachorro et al. (2014) treats water scarcity as
an exogenous shock to the groundwater resource and shows that the
higher the intensity of the shock (which could be equivalent to higher
extraction from the leader in our case), the higher the impatience effect
and therefore, the higher the extraction before the shock occurrence
(which could be equivalent to the follower’s extraction in the first
period in our case). The same reasoning can be applied in this work
to explain that 𝑔𝐹𝐵

2𝑙 > 𝑔𝑂𝐿
2𝑙 implies 𝑔𝐹𝐵

1𝑓 > 𝑔𝑂𝐿
1𝑓 . Furthermore, the

follower in the feedback case adapts earlier (in the first period) to
anticipate extraction losses in the second period (i.e., 𝑔𝐹𝐵

2𝑓 < 𝑔𝑂𝐿
2𝑓 ) due to

competition with the leader, by increasing extraction in the first period
in comparison to the open-loop case (i.e., 𝑔𝐹𝐵

1𝑓 > 𝑔𝑂𝐿
1𝑓 ).

We next compare both players’ total extractions over the two pe-
riods under the two scenarios concerning the players’ behavior (open-
loop and feedback). Using the notation Total = 𝑔1𝑓 +𝑔2𝑓 +𝑔2𝑙, we obtain
the following proposition.

Proposition 2. The total amount of water extracted by the follower and
the leader over the two periods is higher in the feedback case, Total𝐹𝐵 , than
in the open-loop case, Total𝑂𝐿.

Proof. See Appendix D.3.

Focusing on the impact of extraction decisions on resource stocks in
the two periods, the following corollary is evident from Propositions 1
and 2.

Corollary 1.
The resource state after the first and second periods, i.e., 𝐺1 and 𝐺2,

respectively, is higher in the open-loop case than in the feedback case.

This means that the players’ commitment regarding extraction be-
havior over the two periods is positive for the resource state with
respect to the noncommitment case. This result aligns with those ob-
tained in previous research characterizing Nash equilibria (Negri, 1989;
Rubio and Casino, 2001; de Frutos Cachorro et al., 2019). Noncommit-
ment strategies exacerbate the competition between the different users
for the available stock (strategic externality); therefore, exacerbating
resource exploitation.

As the previous results should not necessarily be maintained for
other values of 𝜃, we next run numerical simulations to analyze our
previous results for any 𝜃. We also assess the robustness of the pre-
vious results by performing a sensitivity analysis for other important
parameters of the model.

4. Numerical results

We next perform numerical simulations to analyze whether the
main results obtained in the previous sections concerning the agents’
extraction behavior and final resource stock remain unchanged after re-
laxing the assumption 𝜃 = 1∕2. We complete the analysis by examining
the agents’ profits for these numerical scenarios. For this purpose, we
use values of the parameters that are listed in Table 1. More specifically,
we fix values corresponding to model parameters above the horizontal
line and run several simulations with respect to parameters below the
line. In particular, we consider different weights that the leader can
assign to agricultural use (𝜃) and other important parameters of the
model as the coefficient (nonlinear term) of the follower’s revenue
function (𝑏𝑓 ), the marginal revenue of alternative use (𝑎𝑙), and the
coefficient of the leader’s valuation of final stock levels (𝐴).

As shown in Appendix B.1 and C.1, for any value of 𝜃 in [0,1],

we obtain analytical solutions for these general cases, and in this
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Table 1
Parameter values of the model.
Parameter Description Value

𝑎𝑓 Coefficient of revenue agricultural use (linear term) 4.5
𝑧 Marginal pumping cost intercept 4
𝑐 Marginal pumping cost slope 0.281
𝐺0 Initial stock level 10
𝑟 Natural recharge rate 5

𝜃 Weight assigned by the leader to agricultural use 𝜃 ∈ {0.4, 0.5, 0.581, 0.59, 0.655}
𝑏𝑓 Coefficient of revenue agricultural use (nonlinear term) 𝑏𝑓 ∈ {0.01, 0.1, 0.5, 1}
𝑎𝑙 Marginal revenue from alternative use 𝑎𝑙 ∈ {4.8, 6, 6.2}
𝐴 Coefficient of the leader’s valuation of the final stock 𝐴 ∈ {0, 0.07}
Table 2
Key results of numerical simulations for different coefficients (nonlinear term) of the revenue function (𝑏𝑓 ), different weights that the leader
assigns to the agricultural use (𝜃), and different valuations of the final stock level by the leader (𝐴), where ≫ means ‘‘much higher’’, > means
‘‘slightly higher’’.
Key results Mathematical assumption Significance to literature Policy recommendation

Final stock levels higher in
FB

𝜃 > 1
2

and 𝑏𝑓 low enough Contradicts the literature
of Nash equilibria (e.g. de
Frutos Cachorro et al.
(2019))

Noncommitment strategies
could be more favorable
than commitment
strategies in terms of the
sustainability of the
resource.

Follower’s total profit
higher in FB

𝜃 >> 1
2

and 𝐴 > 0 Contradicts the literature
of Nash equilibria (e.g. de
Frutos Cachorro et al.
(2019))

Noncommitment strategies
could be more profitable
for the follower than
commitment strategies.

Leader’s total profit higher
in FB

Never Contradicts the literature
of Stackelberg equilibria
(e.g. Nie (2005)

The leader will always
prefer commitment
strategies.
i
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section, we run numerical simulations for different parameter values
with Maple (2022).

We next examine whether the results of the extraction decisions and
the final resource stock (Propositions 1 and 2 and Corollary 1) remain
valid when the leader does not equally weigh the two different resource
uses; that is, 𝜃 differs from 1∕2, and we analyze profits per period and
per agent. The key results of the numerical simulations are summarized
in Table 2 (see also Table 3 and Tables in Appendix E for detailed
results). The Maple program and values for all numerical simulations
can be found in the supplementary material.

Focusing first on the description of the key results concerning the
final stock levels described in Table 2, the simulated results suggest that
when the leader assigns a higher weight to the profits from agricultural
use than to those from the alternative use (𝜃 > 1

2 ), noncommitment
strategies could be more favorable than commitment strategies in terms
of final stock levels (see first row Table 2). This result is the opposite
to what we showed for the case 𝜃 = 1∕2. In fact, parameter 𝑏𝑓 of the
ollower’s revenue function, or similarly, parameter 𝑎𝑙 of the leader’s
evenue function,5 also has an important role concerning key results on
inal stock levels, and previous results are obtained when the value of
𝑓 is low enough, i.e., when the follower’s productivity is high enough
o compete with the new use6 or when the value of 𝑎𝑙 is low enough,
.e., for a less competitive new use.

The key results regarding the final stock levels are primarily at-
ributable to the follower’s extraction behavior in the first and second
eriod (see rows 1 and 2 in Table 3 for a summary of the main results
r columns 1 and 2 in Table 5 in Appendix E for detailed results). When

5 Results of the robustness analysis with respect to 𝑎𝑙 are summarized in
ables 7 and 8 in Appendix E.2.

6 Note that the follower’s inverse demand function 𝑝𝑤𝑡𝑓 = 𝑎−𝑔𝑡𝑓
𝑏

can be
rewritten as 𝑝𝑤𝑡𝑓 = 𝑎𝑓 −𝑏𝑓 𝑔𝑡𝑓 because 𝑎 = 𝑎𝑓∕𝑏𝑓 and 𝑏 = 1∕𝑏𝑓 (see Section 2.1.2
for details). Therefore, a decrease in 𝑏𝑓 means that a higher price is paid for
the same quantity of water extracted, leading to higher productivity of the
output product.
7

(

the leader assigns a lower or equal weight to the agricultural use profits
than to those from the alternative use (𝜃 ≤ 1

2 ), the follower seems to
adapt by increasing extraction in the first period in the feedback case
compared with the open-loop case (see row 1 in Table 3), to anticipate
extraction losses in the second period due to competition with the new
use. Indeed, the opposite is observed in the second period (see row 2
in Table 3), where the follower’s extraction is lower in the feedback
case than in the open-loop case when 𝜃 ≤ 1

2 . In fact, the leader’s
extraction is consistently higher in the feedback case than in the open-
loop case in these scenarios (see row 3 in Table 3 or detailed results in
Appendix Table 5 column 3). When 𝜃 increases (i.e., agricultural use
becomes increasingly important for the leader compared with the new
use (𝜃 > 1

2 )), this ‘‘anticipation’’ or fear of a water shortage is reduced
n the feedback case compared with the open-loop case. Consequently,
he follower focuses on extracting more in the second period (see row
in Table 3) and less in the first period (see row 1 in Table 3) in the

eedback case than in the open-loop case, leading to a reduction in the
eader’s extraction in the second period of the feedback case due to
ompetition (see row 3 in Table 3). Therefore, the total extractions over
he two periods become less significant in the feedback case than in the
pen-loop case (see row 4 in Table 3). In other words, a higher final
tock level is obtained in the feedback case than in the open-loop case.

The key results concerning the agents’ profits also suggest that
oncommitment strategies could be more profitable for the follower
han the commitment case (see second row in Table 2). This result
ould occur when the leader assigns a much higher weight to the
gricultural use profits than the alternative use profits (𝜃 ≫ 1

2 ) and
considers the final stock value in the objective function (𝐴 > 0).
ndeed, when the leader values the sustainability of the resource, the
eader’s second-period extraction for the new use is reduced to preserve
tock levels, and this reduction is more significant in the feedback case
han in the open-loop case.7 This entails less competition for water in

7 For example, for the specific values 𝜃 = 0.655 and 𝑏𝑓 = 0.1, when 𝐴 > 0
more specifically, when 𝐴 = 0.07), the leader’s second-period extraction for
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Table 3
Summary of main results of the numerical simulations for different coefficients (nonlinear term) of the
revenue function (𝑏𝑓 ), different weights assigned to agricultural use by the leader (𝜃), and different valuations
of the final stock level by the leader (𝐴), where ≫ means ‘‘much higher’’, > means ‘‘slightly higher’’.
Summary results Mathematical assumption

1. Follower’s first-period extraction higher in FB 𝜃 ≤ 1
2

OR (𝜃 > 1
2

and 𝑏𝑓 high enough)
2. Follower’s second-period extraction lower in FB 𝜃 ≤ 1

2
OR (𝜃 > 1

2
and 𝑏𝑓 high enough)

3. Leader’s second-period extraction higher in FB 𝜃 ≤ 1
2

OR (𝜃 > 1
2

and 𝑏𝑓 high enough)

4. Two-period total extractions lower in FB 𝜃 > 1
2

and 𝑏𝑓 low enough

5. Follower’s first-period profit lower in FB 𝜃 > 1
2

and 𝑏𝑓 low enough
6. Follower’s second-period profit higher in FB 𝜃 >> 1

2
and 𝑏𝑓 low enough

7. Follower’s total profit higher in FB 𝐴 > 0, 𝜃 >> 1
2

and 𝑏𝑓 low enough
8. Leader’s total profit higher in FB Never
Table 4
Key results of numerical simulations concerning the weight assigned to agricultural use (𝜃) by the leader and for different
discount factors (𝛽 = 0.1, 0.5 and 1). Feasible sets are presented in parentheses.

𝛽 = 0.1 𝛽 = 0.5 𝛽 = 1
(𝜃 ∈ [0.366, 0.678]) (𝜃 ∈ [0.13, 0.667]) (𝜃 ∈ [0.094, 0.656])

Final stock levels higher in FB 𝜃 ∈ [0.366, 0.678] 𝜃 ∈ [0.438, 0.667] 𝜃 ∈ [0.637, 0.656]
Follower’s total profit higher in FB 𝜃 ∈ [0.366, 0.678] 𝜃 ∈ [0.413, 0.667] 𝜃 ∈ [0.654, 0.656]
Leader’s total profit higher in FB Never Never Never
p
t
c
s

the second period when playing noncommitment strategies.8 In other
words, this conservative extraction behavior for the resource opens
more opportunities for the follower to extract and accumulate profits
in the second period9 in the noncommitment case (see row 6 Table 3),
achieving higher total profits in the noncommitment case than in the
commitment case (see row 7 Table 3).

Finally, as shown in the third row of Table 2 (and row 8 Ta-
ble 3), the leader will always prefer commitment strategies. This result
apparently contradicts the initial intuition gained from the literature
of Standard Stackelberg games (Nie, 2005) in which noncommitment
strategies ensure higher profits for the leader than commitment strate-
gies. Indeed, our problem can be seen as a ‘‘degenerated Stackelberg
game’’ in the sense that the leader does not extract for the new use
in the first period, and the objective function of the leader considers a
weighted sum of profits of regular and new uses and a term measuring
the leader’s environmental concern. Our results are then closer to those
found when Nash equilibria are characterized (de Frutos Cachorro
et al., 2019). However, as the follower (i.e. the decision-agent of the
agricultural use) is the only resource user in the first period, if situations
arise in which noncommitment behavior produces higher agricultural
profits than commitment behavior, the follower could force the leader
to play noncommitment strategies in the second period by playing
noncommitment strategies in the first period. Therefore, the policy
implications derived from this study indicate that the leader should
avoid assigning a high weight to the regular user’s profits (i.e., a high
𝜃) to ensure that commitment strategies are played out.

5. Further analysis

In this section, we extend the analysis performed in the previous
section by introducing the possibility that the follower applies a dis-
count to second-period profits in the objective function. Moreover, we
conduct a sensitivity analysis regarding the weight assigned by the

the new use decreases by 1.21 (1.69) units in the open-loop (feedback) case
with respect to scenario A = 0.

8 Again, for the same parameter values (i.e., 𝜃 = 0.655 and 𝑏𝑓 = 0.1), when
𝐴 = 0.07 > 0, total extractions in the second period decrease by 0.59 (0.66)
units in the open-loop (feedback) case with respect to scenario A = 0.

9 Please note that the opposite result is observed concerning the follower’s
profits in the first period, which are lower in the feedback case than in the

1 (see row 5 Table 3).
8

open-loop case when 𝜃 ≫
2

leader to agricultural use (𝜃) and characterize the intervals of 𝜃 for
which the key results are obtained.

We consider a short, two-period planning horizon, focusing on the
case in which the follower equally values the profits of both periods
in the objective function, and therefore, the follower does not apply
a discount to the second-period profits. This could be justified, for
example, when the two periods refer to two consecutive irrigation
seasons of spring and summer in the same year. However, it could
indeed be interesting to analyze how our main results might change
when the follower applies a discount factor to the second-period profits
in the commitment and noncommitment scenarios. To this goal, we add
parameter 𝛽, the discount factor, in the follower’s objective function,
which now reads 𝛱1𝑓 + 𝛽𝛱2𝑓 , and perform a sensitivity analysis with
respect to 𝜃, for fixed value model parameters (i.e., parameter values in
Table 1 with 𝑏𝑓 = 1, 𝑎𝑙 = 6, 𝐴 = 0.07). The key results for the discount
factors (𝛽 = 0.1, 0.5 and 1) are presented in Table 4. Detailed results
for a fixed value of 𝜃 = 1∕2 are summarized in Tables 9 and 10 in
Appendix F.

Being the case 𝛽 = 1 the scenario used in the previous sections
(the no-discount case), a lower value of 𝛽 (0 < 𝛽 < 1) represents a
ositive discount case applied to the follower’s second-period profits –
hat is, when the new user enters in the game – and therefore to a less
ompetitive scenario for the available stock in the second period. More
pecifically, when 𝛽 decreases, i.e., when the follower becomes more

impatient, the follower’s fear of a water shortage in the second period
is reduced in the noncommitment case with respect to the commitment
case, leading to higher extraction.10 As a result, higher profits are
obtained in the feedback case than in the open-loop scenario. In fact,
the second row of Table 4 reveals that the interval in which the follower
obtains higher profits in the feedback case than in the open-loop case
expands as 𝛽 decreases. A very impatient follower (i.e., a low 𝛽) will
always prefer not to commit with the leader as the follower is the only
user of the resource in the first period. In contrast, the leader will
always prefer committed strategies (see the third row of the Table).
Therefore, as explained in the previous section, some circumstances in
which the leader’s and follower’s interests are not aligned can arise. As

10 For the numerical example in Appendix F, when 𝛽 = 1, the follower’s total
extraction is higher by 0.3 units in the open-loop case than in the feedback
case, while the opposite arises when 𝛽 = 0.1, with the total extractions lower
by 0.63 units in the open-loop case than in the feedback case.
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Table 5
Sign of differences between feedback and open-loop extraction results: + means 𝐹𝐵 > 𝑂𝐿, – means 𝐹𝐵 < 𝑂𝐿.

Column 1 2 3 4 5 6 7 8 9 10 11 12

𝑏𝑓 = 0.01 𝑏𝑓 = 0.1 𝑏𝑓 = 1

Follower Leader Follower Leader Follower Leader

Period 1 2 2 Total 1 2 2 Total 1 2 2 Total

𝜃 = 0.4
A = 0 n.a n.a n.a n.a + – + + + – + +
A = 0.07 n.a n.a n.a n.a + – + + + – + +

𝜃 = 1∕2
A = 0 + – + + + – + + + – + +
A = 0.07 + – + + + – + + + – + +

𝜃 = 0.581
A = 0 – – + + + – + + + – + +
A = 0.07 – – + + + – + + + – + +

𝜃 = 0.59
A = 0 – + + – + – + + + – + +
A = 0.07 – + – – + – + + + – + +

𝜃 = 0.655
A = 0 n.a. n.a n.a n.a – + – – + – + +
A = 0.07 n.a n.a n.a n.a – + – – + – + +
Table 6
Sign of differences between feedback and open-loop profit results: + means 𝐹𝐵 > 𝑂𝐿, – means 𝐹𝐵 < 𝑂𝐿.

Column 1 2 3 4 5 6 7 8 9 10 11 12

𝑏𝑓 = 0.01 𝑏𝑓 = 0.1 𝑏𝑓 = 1

Follower Leader Follower Leader Follower Leader

Period 1 2 Total Total 1 2 Total Total 1 2 Total Total

𝜃 = 0.4
A = 0 n.a. n.a. n.a. n.a. + – – – + – – –
A = 0.07 n.a. n.a. n.a. n.a. + – – – + – – –

𝜃 = 1∕2
A = 0 + – – – + – – – + – – –
A = 0.07 + – – – + – – – + – – –

𝜃 = 0.581
A = 0 – – – – + – – – + – – –
A = 0.07 – – – – + – – – + – – –

𝜃 = 0.59
A = 0 – + – – + – – – + – – –
A = 0.07 – + – – + – – – + – – –

𝜃 = 0.655
A = 0 n.a. n.a. n.a. n.a. – + – – + – – –
A = 0.07 n.a. n.a. n.a. n.a. – + + – + – – –
Table 7
Sign of differences between feedback and open-loop extraction results: + means 𝐹𝐵 > 𝑂𝐿, – means 𝐹𝐵 < 𝑂𝐿.

Column 1 2 3 4 5 6 7 8 9 10 11 12

𝑎𝑙 = 4.8 𝑎𝑙 = 6 𝑎𝑙 = 6.2

Follower Leader Follower Leader Follower Leader

Period 1 2 2 Total 1 2 2 Total 1 2 2 Total

𝜃 = 0.4 + – + + + – + + + – + +
𝜃 = 1∕2 + – + + + – + + + – + +
𝜃 = 0.581 – – + + + – + + + – + +
𝜃 = 0.59 – + + – + – + + + – + +
𝜃 = 0.655 n.a. n.a n.a n.a – + – – – + – –
Table 8
Sign of differences between feedback and open-loop profit results: + means 𝐹𝐵 > 𝑂𝐿, – means 𝐹𝐵 < 𝑂𝐿.

Column 1 2 3 4 5 6 7 8 9 10 11 12

𝑎𝑙 = 4.8 𝑎𝑙 = 6 𝑎𝑙 = 6.2

Follower Leader Follower Leader Follower Leader

Period 1 2 Total Total 1 2 Total Total 1 2 Total Total

𝜃 = 0.4 + – – – + – – – + – – –
𝜃 = 1∕2 + – – – + – – – + – – –
𝜃 = 0.581 – – – – + – – – + – – –
𝜃 = 0.59 – + – – + – – – + – – –
𝜃 = 0.655 n.a. n.a. n.a. n.a. – + + – – + – –
a consequence, the follower could force the leader to play uncommitted
strategies in the second period by playing uncommitted strategies in
the first period. In this case, since the leader’s profits could be seen
as a measure of social welfare, the strategies implemented would not
coincide with the strategies that allow to attain a higher social welfare.
9

The findings have important policy implications regarding the
strategies that would ultimately be implemented. When 𝛽 = 1 (the
case without discount), the follower is more patient about extraction
behavior over the two periods; therefore, the leader’s and the follower’s
preferences are generally aligned for any value of 𝜃 in the feasible
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Table 9
Sign of differences between feedback and open-loop extraction results: + means 𝐹𝐵 > 𝑂𝐿, – means 𝐹𝐵 < 𝑂𝐿.

Column 1 2 3 4 5 6 7 8 9 10 11 12

𝛽 = 0.1 𝛽 = 0.5 𝛽 = 1

Follower Leader Follower Leader Follower Leader

Period 1 2 2 Total 1 2 2 Total 1 2 2 Total

𝜃 = 1∕2 – + – – + + – – + – + +
Table 10
Sign of differences between feedback and open-loop profit results: + means 𝐹𝐵 > 𝑂𝐿, – means 𝐹𝐵 < 𝑂𝐿.

Column 1 2 3 4 5 6 7 8 9 10 11 12

𝛽 = 0.1 𝛽 = 0.5 𝛽 = 1

Follower Leader Follower Leader Follower Leader

Period 1 2 Total Total 1 2 Total Total 1 2 Total Total

𝜃 = 1∕2 – + + – + + + – + – – –
t
t

set (i.e., for 𝜃 ∈ [0.094, 0.656]). Committed strategies would be im-
lemented except in the case of an extremely high 𝜃 value (i.e., for

𝜃 ∈ [0.654, 0.656]). In the case of an intermediate discount factor, 𝛽 =
0.5, the follower is more impatient and the strategies implemented are
highly dependent on the weight assigned by the leader to agricultural
use. For lower values of 𝜃 (i.e., 𝜃 ∈ [0.13, 0.413]) the leader’s and
follower’s interests are aligned, and both achieve higher profits in
the open-loop case. For higher values of 𝜃 (i.e., 𝜃 ∈ [0.413, 0.667],
the leader’s and follower’s interests diverge and the follower would
compel the leader to play uncommitted strategies. To avoid this conflict
and ensure that committed strategies are implemented, the leader
should not assign a high weight to the agricultural user’s profits in the
objective function. Finally, in the case of a very impatient follower (a
low value of 𝛽, 𝛽 = 0.1), the leader’s and follower’s interests never
coincide. Uncommitted strategies would then be implemented to the
detriment of social welfare.

6. Conclusions and extensions

In this study, we investigate the challenge of groundwater resource
exploitation that is primarily used for a unique purpose (irrigation) and
faces the exceptional entrance of a new use in the system, indicating
a potential problem of water scarcity for the agricultural resource
user. Therefore, a water agency is required to manage how much
groundwater can be extracted for the new (nonagricultural) user. To
model this circumstance, we construct a two-stage discrete Stackelberg
game in which the leader (the water agency) only intervenes when the
new use occurs (in the second stage), and the follower is an agent who
makes decisions regarding agricultural use. This study analyzes and
compares the extraction behaviors of the different agents (the water
agency and the decision-agent for the agricultural use) for different
Stackelberg equilibria that represent various commitment behaviors
and the consequences of these extraction policies for the final state of
the resource and agents’ profits. We compute and compare open-loop
(commitment solution) and feedback (noncommitment) equilibria.

First, theoretical results are provided for the case in which the
leader weighs the profits from agricultural use and the alternative/new
use equally. We analytically demonstrate that the leader’s extraction
behavior in the second period is more aggressive in the feedback case
than in the open-loop case. Hence, the follower in the feedback case
adapts earlier to anticipate extraction losses of the second period due to
competition with the leader by augmenting extraction in the first period
in comparison with the open-loop case. In other words, the follower’s
extraction behavior is more (less) aggressive in the feedback case
than in the open-loop case in the first (second) period. This results in
lower total extractions, or equivalently, higher final stock levels in the
commitment case than in the non-commitment case. These theoretical
10

results align with the existing literature that considers simultaneous
play and characterizes Nash equilibria (Negri, 1989; Rubio and Casino,
2001; de Frutos Cachorro et al., 2019).

We then perform numerical simulations to examine the robustness
of the previous results when relaxing the previous assumption, 𝜃 = 1

2 ,
conducting robustness analyses for different weights assigned by the
leader to the agricultural use. We also carry out sensitivity analyses
for other important parameters of the model related to the agents’
revenue and the leader’s environmental concern. First, we find that
the theoretical results regarding final stock levels remain qualitatively
unchanged when the weight assigned by the leader to the profits from
agricultural use is lower than that assigned to the new use profits
(𝜃 < 1

2 ). In contrast, the simulated results demonstrate that when
he leader assigns a higher weight to the profits from agricultural use
han those from the alternative use (𝜃 > 1

2 ), noncommitment strategies
could result in higher final stock levels than commitment strategies.
This is primarily due to reduction in the fear of water shortage from
the decision-agent for agricultural use in the noncommitment case
and a consequent decrease in total extraction over the two periods
with respect to the commitment case. This result is obtained when the
follower’s productivity is high enough to compete with the new use or
when the marginal revenue of the alternative use is low enough (i.e., for
a less competitive new use).

The simulated results also show that noncommitment strategies
could be more favorable for the sustainability of the resource (i.e.,
higher stock levels at the end of the second period) and could also be
more profitable for the follower in comparison to commitment strate-
gies. The rationale for this interesting result could be that the leader
allows for more conservative extraction behavior for the new use by
assigning a higher weight to agricultural use profits than alternative use
profits and valuing the sustainability of the resource. This opens more
possibilities for the decision-agent for agricultural use to extract and
accumulate profits in the noncommitment case in comparison to the
commitment case. Nie (2005) obtains a similar result for the leader’s
profits. However, since our problem can be seen as a ‘‘degenerated
Stackelberg game’’, in the sense that the leader only extracts in the
second period, in contrast to Nie (2005), the leader always obtains
higher profits in the commitment case than in the noncommitment case.
The same result is achieved for the profits of the decision-agent of the
agricultural use, when the weight assigned by the leader to the profits
from agricultural use is lower or equal to that assigned to the new use
profits. Consequently, in this sense, these results are closer to those that
are often found for Nash equilibria (de Frutos Cachorro et al., 2019).

Finally, we extend our analysis by introducing the possibility that
the follower applies a discount to the second-period profits in the
objective function. The numerical results demonstrate that when the
follower has a low or middle level of impatience and the leader assigns
a high weight to the agricultural profits, uncommitted strategies are
more favorable than committed strategies in terms of final resource



Economic Modelling 132 (2024) 106652J. de Frutos Cachorro et al.

d
f

𝑔

𝑔

l
t

i

s

𝑡
b

𝑔

𝑔
i

A

B

p
t

𝛱

A
t

𝑔

𝑔

stock and the regular user’s profits. The same result is obtained for a
very impatient follower, and is independent of the weight assigned to
the agricultural use in the leader’s objective. In any case, the leader will
always prefer committed strategies.

In conclusion, committed strategies are continuously more prof-
itable for the leader; however, some circumstances can occur in which
uncommitted strategies produce higher profits for the follower than
committed strategies. Depending on the discount factor applied by the
follower (i.e., level of impatience) and/or the weight assigned to the
agricultural profits by the leader, the leader’s and follower’s interests
may not be aligned; therefore, as the only user of the resource in the
first period, the follower could compel the leader to play uncommitted
strategies in the second period by playing uncommitted strategies in the
first period. Consequently, one of the primary policy implications of our
study is that to ensure that committed strategies are implemented, the
leader must avoid assigning too much weight to the agricultural profits
in the objective function when the follower has a low or middle level
of impatience.

Several possible research extensions emerge from this study. First,
as we consider the follower to be the unique decision-agent for agricul-
tural use, it could be interesting to introduce different followers such
as multiple heterogeneous farmers, playing simultaneously à la Nash
between them, and à la Stackelberg with the leader. We could also
investigate the corresponding efficient solution to our problem in which
the leader could be a social planner who makes all the extraction deci-
sions considering the same objective function, to compute and analyze
potential policy implications. Finally, we could apply our theoretical
model to a real case using available data.
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Appendix A. Study of time-consistency

To verify the time-inconsistency of the open-loop equilibrium and
the time-consistency of the feedback equilibrium in our model, we
use the pure definition of time-consistency described in Kydland and
Prescott (1977) and adapted to our setup. A policy plan 𝑔2𝑙 is consistent
if, for 𝑡 = 2, 𝑔2𝑙 maximizes the leader’s objective function, taking as
given previous decisions, and the strategy selected coincides with the
11

optimal decision rule.
In the open-loop case, the problem the leader faces at 𝑡 = 2 is
escribed in (10), where the follower’s strategies can be expressed as
unctions of 𝑔2𝑙 as follows:

1𝑓 = 𝑔̃1𝑓 (𝑔2𝑙), (24)

2𝑓 = 𝑔̃2𝑓 (𝑔2𝑙). (25)

Denoting the leader’s objective function as 𝛱̄𝑂𝐿
𝑙 (𝑔1𝑓 , 𝑔2𝑓 , 𝑔2𝑙), the

eader aims to find 𝑔2𝑙 that maximizes the objective, subject to restric-
ions (24) and (25).

The necessary condition for an interior solution is as follows:

𝜕𝛱̄𝑂𝐿
𝑙

𝜕𝑔2𝑙
= 0 ⟺

𝜕𝛱̄𝑂𝐿
𝑙

𝜕𝑔1𝑓

𝜕𝑔̃1𝑓
𝜕𝑔2𝑙

+
𝜕𝛱̄𝑂𝐿

𝑙
𝜕𝑔2𝑓

𝜕𝑔̃2𝑓
𝜕𝑔2𝑙

+
𝜕𝛱̄𝑂𝐿

𝑙
𝜕𝑔2𝑙

= 0. (26)

If past decision (𝑔1𝑓 ) is given, the previous necessary condition is
the following:

𝜕𝛱̄𝑂𝐿
𝑙

𝜕𝑔2𝑙
= 0 ⟺

��
���𝜕𝛱̄𝑂𝐿

𝑙
𝜕𝑔1𝑓

𝜕𝑔̃1𝑓
𝜕𝑔2𝑙

+
𝜕𝛱̄𝑂𝐿

𝑙
𝜕𝑔2𝑓

𝜕𝑔̃2𝑓
𝜕𝑔2𝑙

+
𝜕𝛱̄𝑂𝐿

𝑙
𝜕𝑔2𝑙

= 0. (27)

The leader’s strategy is time-consistent if the conditions in (26) and
(27) coincide, i.e., if the following occurs:

𝜕𝛱̄𝑂𝐿
𝑙

𝜕𝑔1𝑓

𝜕𝑔̃1𝑓
𝜕𝑔2𝑙

⏟⏟⏟
≠0

= 0 ⟺
𝜕𝛱̄𝑂𝐿

𝑙
𝜕𝑔1𝑓

= 0.

From Eqs. (6), (8), and (10), we can easily demonstrate the follow-
ng:

𝜕𝛱̄𝑂𝐿
𝑙

𝜕𝑔1𝑓
= −𝜃𝑐(𝑔1𝑓 + 𝑔2𝑓 ) − (1 − 𝜃)𝑐𝑔2𝑙 < 0.

This demonstrates that the open-loop equilibrium described in this
tudy cannot be time-consistent.

In the feedback case, the problem that the leader must solve at
= 2 is described in (17), where the follower’s strategy at 𝑡 = 2 can
e expressed as a function of 𝑔1𝑓 and 𝑔2𝑙 as follows:

2𝑓 = 𝑔̂2𝑓 (𝑔1𝑓 , 𝑔2𝑙). (28)

Denoting the leader’s objective function as 𝜋̂𝐹𝐵
𝑙 (𝑔1𝑓 , 𝑔2𝑓 , 𝑔2𝑙), the

leader aims to find 𝑔2𝑙 to maximize the objective, subject to restriction
(28).

Then, the necessary condition for an interior solution is the follow-
ing:

𝜕𝜋̂𝐹𝐵
𝑙

𝜕𝑔2𝑙
= 0 ⟺

𝜕𝜋̂𝐹𝐵
𝑙

𝜕𝑔2𝑓

𝜕𝑔̂2𝑓
𝜕𝑔2𝑙

+
𝜕𝜋̂𝐹𝐵

𝑙
𝜕𝑔2𝑙

= 0. (29)

This expression clearly coincides with the necessary condition when
1𝑓 is given; thus, the leader’s plan is time-consistent in the feedback
nformation case.

ppendix B. Open-loop Stackelberg equilibrium

.1. Derivation of the open-loop Stackelberg equilibrium

The follower’s objective function in (9), representing the sum of
rofits over the two periods once 𝐺1 and 𝐺2 have been replaced by
heir expressions in (1) and (2), are as follows:
̄ 𝑓 (𝑔1𝑓 , 𝑔2𝑓 , 𝑔2𝑙) = 𝑔2𝑓 (𝑎𝑓 + 𝑐(𝐺0 + 2𝑟 − 𝑔1𝑓 − 𝑔2𝑓 − 𝑔2𝑙) − 𝑧)

+ (𝑎𝑓 − (𝑧 − 𝑐(𝐺0 − 𝑔1𝑓 + 𝑟)))𝑔1𝑓 .

ssuming an interior solution, maximizing 𝛱̄𝑓 (𝑔1𝑓 , 𝑔2𝑓 , 𝑔2𝑙) with respect
o 𝑔1𝑓 and 𝑔2𝑓 gives the follower’s best-reaction function as follows:

̃1𝑓 (𝑔2𝑙) =
(𝑏𝑓 + 𝑐)(𝑎𝑓 + 𝑐𝐺0 − 𝑧) + 𝑐(𝑏𝑓 𝑟 + 𝑐𝑔2𝑙)

(𝑏𝑓 + 𝑐)(𝑏𝑓 + 3𝑐)
, (30)

̃2𝑓 (𝑔2𝑙) =
(𝑏𝑓 + 𝑐)(𝑎𝑓 + 𝑐𝐺0 − 𝑧) + 𝑐(𝑏𝑓 (2𝑟 − 𝑔2𝑙) + 𝑐(3𝑟 − 2𝑔2𝑙)) . (31)
(𝑏𝑓 + 𝑐)(𝑏𝑓 + 3𝑐)
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The follower’s optimal two-period profits as a function of 𝑔2𝑙 are as
follows:

𝛱̄𝑓 (𝑔̃1𝑓 (𝑔2𝑙), 𝑔̃2𝑓 (𝑔2𝑙), 𝑔2𝑙)=
1

2(𝑏𝑓 + 𝑐)(𝑏𝑓 + 3𝑐)
{

2(𝑎𝑓 −𝑧)(𝑏𝑓 +𝑐)(𝑎𝑓

+𝑐(2𝐺0−𝑔2𝑙+3𝑟)−𝑧)
+𝑐2(𝑏𝑓 +𝑐)

(

2𝐺2
0−2𝐺0𝑔2𝑙+6𝐺0𝑟+𝑔22𝑙−4𝑔2𝑙

𝑟+5𝑟2
)

+𝑐3(𝑔2𝑙−𝑟)2
}

.

hen, the leader’s objective in (10) becomes the following:

𝛱̄𝑓 (𝑔̃1𝑓 (𝑔2𝑙), 𝑔̃2𝑓 (𝑔2𝑙), 𝑔2𝑙) + (1 − 𝜃)𝛱2𝑙(𝑔2𝑙 , 𝐺2) + 𝐴𝐺2, (32)

where once the follower’s best-reaction functions have been substi-
tuted, 𝛱2𝑙(𝑔2𝑙 , 𝐺2) and 𝐴𝐺2 are as follows:

𝛱2𝑙(𝑔2𝑙 , 𝐺2) =
𝑔2𝑙

𝑏𝑓 + 3𝑐
(𝑐(−2𝑎𝑓 +(𝑏𝑓 +𝑐)(𝐺0−𝑔2𝑙+2𝑟)+𝑐(𝑟−𝑔2𝑙))

+𝑎𝑙(𝑏𝑓 +3𝑐)−𝑧(𝑏𝑓 +𝑐)),

𝐴𝐺2 = 𝐴
𝑏𝑓 + 3𝑐

(−2𝑎𝑓 + (𝑏𝑓 + 𝑐)(𝐺0 − 𝑔2𝑙 + 2𝑟) + 𝑐(𝑟 − 𝑔2𝑙) + 2𝑧).

ssuming an interior solution, the maximization of (32) with respect to
2𝑙, gives the leader’s optimal strategy, which is expressed as follows:

𝑂𝐿
2𝑙 = 1

𝑐(𝑏𝑓 + 2𝑐)(2𝑏𝑓 (1 − 𝜃) + 𝑐(2 − 3𝜃))
{

(𝑏𝑓 + 𝑐)

×
[

𝑐𝑟(2𝑏𝑓 + 3𝑐) + 𝑎𝑙(1 − 𝜃)(𝑏𝑓 + 3𝑐)

−𝐴(𝑏𝑓 + 2𝑐) − 2𝑎𝑓 𝑐 − (𝑏𝑓 + 𝑐)(𝑧 − 𝑐𝐺0)

+ 𝜃((𝑏𝑓 + 2𝑐)(𝑧 − 𝑐𝐺0) + 𝑎𝑓 𝑐)
]

−𝑐𝜃𝑟(𝑏𝑓 + 2𝑐)(2𝑏𝑓 + 3𝑐)
}

. (33)

The expression in (13) corresponds to the above expression, which is
particularized at 𝜃 = 1∕2.

The follower’s optimal strategies are obtained by replacing 𝑔2𝑙 with
expression (33) in the follower’s best-reaction functions in (30) and
(31), which are expressed as follows:

𝑔𝑂𝐿
1𝑓 = 1

(𝑏𝑓 + 2𝑐)(𝑏𝑓 + 3𝑐)(2𝑏𝑓 (1 − 𝜃) + 𝑐(2 − 3𝜃))
{

𝑐(𝑎𝑙(𝑏𝑓 + 3𝑐) − 𝐴(𝑏𝑓 + 2𝑐))

+2𝑎𝑓
(

𝑏2𝑓 + 3𝑏𝑓 𝑐 + 𝑐2
)

− 𝑎𝑓 𝜃(𝑏𝑓 + 𝑐)(2𝑏𝑓 + 5𝑐) − 𝑎𝑙𝑐𝜃(𝑏𝑓 + 3𝑐)

−
(

2𝑏2𝑓 + 7𝑏𝑓 𝑐 + 5𝑐2
)

(𝑧 − 𝑐𝐺0) + 𝑐𝑟
(

2𝑏2𝑓 + 6𝑏𝑓 𝑐 + 3𝑐2
)

−(𝑏𝑓 + 2𝑐)(2𝑏𝑓 𝑐(𝐺0 + 𝑟) − 2𝑏𝑓 𝑧 + 𝑐(4𝑐𝐺0 + 3𝑐𝑟 − 4𝑧))
}

,

𝑂𝐿
2𝑓 =

(1−𝜃)(2𝑎𝑓 (𝑏𝑓 +2𝑐)−𝑎𝑙(𝑏𝑓 +3𝑐)+(𝑏𝑓 +𝑐)(𝑐𝐺0−𝑧)+𝑐𝑟(2𝑏𝑓 +3𝑐))−𝐴(𝑏𝑓 +2𝑐)
(𝑏𝑓 + 3𝑐)(2𝑏𝑓 (1 − 𝜃) + 𝑐(2 − 3𝜃))

.

We obtain the follower’s optimal strategies in (11) and (12) by
eplacing 𝜃 by 1/2 in the expressions above.

The optimal profits of the leader and the follower can be obtained
y replacing the optimal extraction strategies in the agents’ profit
unctions.

.2. Concavity conditions

The concavity of the follower’s objective function in (9) with respect
o the decision variables 𝑔1𝑓 and 𝑔2𝑓 is ensured if the quadratic form
ssociated with the Hessian matrix is negative definite. The entries of
his matrix are ℎ11 = −𝑏𝑓 − 2𝑐, ℎ12 = −𝑐, ℎ21 = −𝑐, and ℎ22 = −𝑏𝑓 − 2𝑐;
herefore, ℎ11 < 0 and ℎ11ℎ22 − ℎ12ℎ21 = 𝑏2𝑓 + 4𝑏𝑓 𝑐 + 3𝑐2 > 0, indicating
hat the quadratic form is negative definite and the follower’s objective
unction is strictly concave.

The follower’s best-responses to 𝑔2𝑙 are given by (30) and (31), pro-
vided that these expressions are positive. (30) is always positive under
condition 𝑎𝑓 > 𝑧 (one of the conditions that we impose to ensure the
positivity of extraction decisions and state variables; see Condition 1
in Appendix D.1), and (31) is positive if 𝑔2𝑙 <

(𝑏𝑓+𝑐)(𝑎𝑓+𝑐𝐺0−𝑧)+𝑐𝑟(2𝑏𝑓+3𝑟)
𝑐(𝑏𝑓+2𝑐)

.
The leader is interested in the follower’s positive extractions and max-
imizes (32) under the last condition. The concavity of the leader’s
12
objective function with respect to decision variable 𝑔2𝑙 is ensured if the
second derivative of this function is negative with respect to 𝑔2𝑙. The
sign of this derivative is given by the sign of 2𝑏𝑓 (−1 + 𝜃) + 𝑐(−2 + 3𝜃).
Therefore, the concavity of the leader’s objective function requires 𝜃 <
(2𝑏𝑓 + 2𝑐)∕(2𝑏𝑓 + 3𝑐) and 𝑔𝑂𝐿

2𝑙 <
(𝑏𝑓+𝑐)(𝑎𝑓+𝑐𝐺0−𝑧)+𝑐𝑟(2𝑏𝑓+3𝑟)

𝑐(𝑏𝑓+2𝑐)
.

Notably, for 𝜃 = 1∕2, the expression 2𝑏𝑓 (−1+𝜃)+𝑐(−2+3𝜃) is always
egative.

ppendix C. Feedback Stackelberg equilibrium

.1. Derivation of the feedback Stackelberg equilibrium

We determine the feedback Stackelberg equilibrium using backward
nduction.

In the first stage, the follower decides the amount of extraction in
eriod two and solves the problem in (16). Once 𝐺1 and 𝐺2 are replaced

by their expressions in (1) and (2), the follower’s objective function in
the second period is as follows:

𝛱̃2𝑓 (𝑔1𝑓 , 𝑔2𝑓 , 𝑔2𝑙) = 𝑔2𝑓 (𝑎𝑓 + 𝑐(𝐺0 − 𝑔1𝑓 − 𝑔2𝑓 − 𝑔2𝑙 + 2𝑟) − 𝑧).

Assuming an interior solution, maximizing 𝛱̃2𝑓 (𝑔1𝑓 , 𝑔2𝑓 , 𝑔2𝑙) with re-
spect to 𝑔2𝑓 gives the follower’s second-period best-reaction function
as follows:

𝑔̂2𝑓 (𝑔2𝑙 , 𝑔1𝑓 ) =
𝑎𝑓 + 𝑐(𝐺0 − 𝑔1𝑓 − 𝑔2𝑙 + 2𝑟) − 𝑧

𝑏𝑓 + 2𝑐
. (34)

The follower’s optimal second-period profits are as follows:

𝛱̃2𝑓 (𝑔1𝑓 , 𝑔̂2𝑓 (𝑔2𝑙 , 𝑔1𝑓 ), 𝑔2𝑙) =
(𝑎𝑓 + 𝑐(𝐺0 − 𝑔1𝑓 − 𝑔2𝑙 + 2𝑟) − 𝑧)2

2(𝑏𝑓 + 2𝑐)
.

In the second step, the leader determines the extraction in period
wo, considering the follower’s extraction in this period that is given in
34). Therefore, the leader’s objective in (17) is the following:

𝛱̃2𝑓 (𝑔1𝑓 , 𝑔̂2𝑓 (𝑔2𝑙 , 𝑔1𝑓 ), 𝑔2𝑙) + (1 − 𝜃)𝛱2𝑙(𝑔2𝑙 , 𝐺2) + 𝐴𝐺2, (35)

where 𝛱2𝑙(𝑔2𝑙 , 𝐺2) and 𝐴𝐺2 once 𝐺1, 𝐺2, and 𝑔2𝑓 are replaced by their
xpression in (1), (2), and (34), respectively, are as follows:

̃
2𝑙(𝑔2𝑙 , 𝑔1𝑓 ) =

𝑔2𝑙(−𝑎𝑓 𝑐 + 𝑎𝑙(𝑏𝑓 + 2𝑐) + (𝑏𝑓 + 𝑐)(𝑐(𝐺0 − 𝑔1𝑓 − 𝑔2𝑙 + 2𝑟) − 𝑧))
𝑏𝑓 + 2𝑐

,

𝐴𝐺2 =
𝐴(−𝑎𝑓 + 𝑏𝑓 (𝐺0 − 𝑔1𝑓 − 𝑔2𝑙 + 2𝑟) + 𝑐𝐺0 − 𝑐𝑔1𝑓 − 𝑐𝑔2𝑙 + 2𝑐𝑟 + 𝑧)

𝑏𝑓 + 2𝑐
.

Assuming an interior solution, maximizing (35) with respect to 𝑔2𝑙
gives the leader’s extraction in the second period as a function of the
follower’s extraction in the first period, as follows:

𝑔̂2𝑙(𝑔1𝑓 )

=
𝐴(𝑏𝑓 +𝑐)+𝑎𝑓 𝑐+𝑎𝑙(𝜃−1)(𝑏𝑓 +2𝑐)+(𝑏𝑓 (𝜃−1)+𝑐(2𝜃−1))(𝑐(𝐺0−𝑔1𝑓 +2𝑟)−𝑧)

𝑐(𝜃(2𝑏𝑓 + 3𝑐) − 2(𝑏𝑓 + 𝑐))
.

(36)

In the third and final step, the follower decides the extraction in period
one considering the leader’s reaction function in the second period
given in (36). The follower’s objective function in the first period is
the following:

𝛱̃1𝑓 (𝑔1𝑓 ) =
(𝐴(𝑏𝑓 +𝑐)−(𝜃−1)(𝑎𝑓 (2𝑏𝑓 +3𝑐)−𝑎𝑙(𝑏𝑓 +2𝑐)+(𝑏𝑓 +𝑐)(𝑐(𝐺0−𝑔1𝑓 +2𝑟) − 𝑧)))2

2(𝑏𝑓 + 2𝑐)(2𝑏𝑓 (1 − 𝜃) + 𝑐(2 − 3𝜃))2

+ 𝑎𝑓 𝑔1𝑓 − 1
2
𝑔1𝑓 (𝑏𝑓 𝑔1𝑓 − 2𝑐(𝐺0 − 𝑔1𝑓 + 𝑟) + 2𝑧).

ssuming an interior solution, the maximization of 𝛱̃1𝑓 (𝑔1𝑓 ) with
espect to 𝑔1𝑓 , gives the optimal strategy, 𝑔𝐹𝐵

1𝑓 , as follows:

𝐹𝐵
1𝑓 =

𝑀3𝑏3𝑓 +𝑀2𝑏2𝑓 +𝑀1𝑏𝑓 +𝑀0
(

2𝑏2𝑓 (𝜃−1)+𝑏𝑓 𝑐(6𝜃−5)+𝑐2(5𝜃−3)
)(

2𝑏2𝑓 (𝜃−1)+𝑏𝑓 𝑐(8𝜃−7)+𝑐2(7𝜃−5)
) ,

(37)
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where

𝑀3 = 4(𝜃 − 1)2(𝑎𝑓 + 𝑐(𝐺0 + 𝑟) − 𝑧),

𝑀2 = 𝑐(𝜃 − 1)(𝐴 + 2𝑎𝑓 (9𝜃 − 7) + 𝜃(𝑎𝑙 + 19(𝑐𝐺0 − 𝑧) + 18𝑐𝑟)

−𝑎𝑙 − 15(𝑐𝐺0 − 𝑧) − 14𝑐𝑟),
𝑀1 = 𝑐2(2𝐴(𝜃−1) + 𝜃(𝜃(28𝑎𝑓 +3𝑎𝑙+31(𝑐𝐺0−𝑧)+29𝑐𝑟)−42𝑎𝑓

−6𝑎𝑙−48(𝑐𝐺0−𝑧)−44𝑐𝑟)
+ 15𝑎𝑓 + 3𝑎𝑙 + 2(9(𝑐𝐺0 − 𝑧) + 8𝑐𝑟)),

𝑀0 = 𝑐3
(

𝐴(𝜃−1)+𝜃2(15𝑎𝑓 +2𝑎𝑙+17(𝑐𝐺0−𝑧)+16𝑐𝑟)

−2𝜃(9𝑎𝑓 +2𝑎𝑙+11(𝑐𝐺0−𝑧)+10𝑐𝑟)

+ 5𝑎𝑓 + 2𝑎𝑙 + 7(𝑐𝐺0 − 𝑧) + 6𝑐𝑟
)

.

(19) corresponds to (37) for the particular case 𝜃 = 1∕2.
The optimal strategy for the leader’s extraction 𝑔𝐹𝐵

2𝑙 is obtained by
replacing 𝑔1𝑓 with the expression in (37) in the leader’s second-period
best-reaction function in (36) as follows:

𝑔𝐹𝐵
2𝑙 =

𝑁4𝑏4𝑓 +𝑁3𝑏3𝑓 +𝑁2𝑏2𝑓 +𝑁1𝑏𝑓 +𝑁0

𝑐
(

2𝑏2𝑓 (𝜃−1)+𝑏𝑓 𝑐(6𝜃−5)+𝑐2(5𝜃−3)
)(

2𝑏2𝑓 (𝜃−1)+𝑏𝑓 𝑐(8𝜃−7)+𝑐2(7𝜃−5)
) ,

(38)

where

𝑁4 = 2(𝜃 − 1)(𝐴 + (𝜃 − 1)(𝑎𝑙 + 𝑐𝐺0 + 2𝑐𝑟 − 𝑧)),

𝑁3 = 𝑐(𝐴(13𝜃 − 12) + (𝜃 − 1)(−2𝑎𝑓 (𝜃 − 2) + 𝜃(15𝑎𝑙 + 13(𝑐𝐺0 − 𝑧) + 28𝑐𝑟)

− 2(7𝑎𝑙 + 5(𝑐𝐺0 − 𝑧) + 11𝑐𝑟))),

𝑁2 = 𝑐2(5𝐴(6𝜃 − 5) + 𝜃(𝜃(−10𝑎𝑓 + 41𝑎𝑙 + 31(𝑐𝐺0 − 𝑧) + 73𝑐𝑟) + 28𝑎𝑓 − 76𝑎𝑙
− 48(𝑐𝐺0 − 𝑧) − 115𝑐𝑟) − 17𝑎𝑓 + 35𝑎𝑙 + 18(𝑐𝐺0 − 𝑧) + 44𝑐𝑟),

𝑁1 = 𝑐3(𝐴(30𝜃 − 22) + 𝜃(𝜃(−17𝑎𝑓 + 49𝑎𝑙 + 32(𝑐𝐺0 − 𝑧) + 84𝑐𝑟) + 43𝑎𝑓 − 86𝑎𝑙
− 43(𝑐𝐺0 − 𝑧) − 115𝑐𝑟) − 23𝑎𝑓 + 37𝑎𝑙 + 14(𝑐𝐺0 − 𝑧) + 38𝑐𝑟),

𝑁0 = 𝑐4(𝐴(11𝜃 − 7) − 2𝑎𝑓 (𝜃(5𝜃 − 11) + 5) + 2𝑎𝑙(𝜃 − 1)(11𝜃 − 7)

+ 2(𝜃(6𝜃 − 7) + 2)(𝑐(𝐺0 + 3𝑟) − 𝑧)).

(21) is (38), which is particularized at 𝜃 = 1∕2.
Finally, the optimal strategy for the follower’s extraction in the

second period, 𝑔𝐹𝐵
2𝑓 is obtained by replacing 𝑔1𝑓 and 𝑔2𝑙 with the expres-

sions in (37) and (38), respectively, into the follower’s second-period
best-reaction function in (34) as follows:

𝑔𝐹𝐵
2𝑓

=
𝑃4𝑏4𝑓 + 𝑃3𝑏3𝑓 + 𝑃2𝑏2𝑓 + 𝑃1𝑏𝑓 + 𝑃0

(

2𝑏2𝑓 (𝜃−1)+𝑏𝑓 𝑐(6𝜃−5)+𝑐2(5𝜃−3)
)(

2𝑏2𝑓 (𝜃−1)+𝑏𝑓 𝑐(8𝜃−7)+𝑐2(7𝜃−5)
) ,

(39)

here

3=2(𝜃 − 1)((𝜃 − 1)(2𝑎𝑓 − 𝑎𝑙 + 𝑐𝐺0 + 2𝑐𝑟 − 𝑧) − 𝐴),

𝑃2=𝑐(𝐴(8−9𝜃)+(𝜃−1)(𝜃(18𝑎𝑓 −11𝑎𝑙+7(𝑐𝐺0−𝑧)+16𝑐𝑟)

−2(8𝑎𝑓 −5𝑎𝑙+3(𝑐𝐺0−𝑧)+7𝑐𝑟))),

1=𝑐2(𝐴(10−13𝜃)+(𝜃−1)(𝜃(28𝑎𝑓 −20𝑎𝑙+8(𝑐𝐺0−𝑧)+21𝑐𝑟)

−2(11𝑎𝑓 −8𝑎𝑙+3(𝑐𝐺0−𝑧)+8𝑐𝑟))),

0=𝑐3(3𝜃 − 2)((𝜃 − 1)(5𝑎𝑓 − 4𝑎𝑙 + 𝑐𝐺0 + 3𝑐𝑟 − 𝑧) − 2𝐴).

(20) is obtained replacing 𝜃 = 1∕2 in (39).
The optimal profits of the leader and the follower are obtained

y replacing the optimal extraction strategies in the agents’ profit
unctions.

.2. Concavity conditions

In the second period, the follower’s objective function in (16) is
trictly concave with respect to the decision variable 𝑔 , because
13

2𝑓
𝜕2𝛱2𝑓
𝜕𝑔22𝑓

= −𝑏𝑓 − 2𝑐 < 0. The follower’s best-response is given by (34),
provided it is positive. Since we ask for positive solutions (in extractions
and aquifer levels), 𝐺2 = 𝐺0 − 𝑔1𝑓 − 𝑔2𝑙 − 𝑔2𝑓 + 2𝑟 > 0, that is,
𝐺0−𝑔1𝑓 −𝑔2𝑙 +2𝑟 > 𝑔2𝑓 . As 𝑔2𝑓 > 0 and 𝑎𝑓 > 𝑧 (see positivity Condition
1.A in Appendix D.1), we determine that (34) is positive.

In the second period, the concavity of the leader’s objective function
in (17) for the decision variable 𝑔2𝑙 requires 𝜕2𝛱2𝑙

𝜕𝑔22𝑙
= 𝑐(2𝑏𝑓 (𝜃−1)+𝑐(3𝜃−2))

𝑏𝑓+2𝑐
<

0. Therefore, this concavity condition reduces to 2𝑏𝑓 (𝜃−1)+𝑐(3𝜃−2) < 0.
he leader’s best response is (36), provided that this expression is
ositive. The denominator of (36) is negative, then (36) is positive if
he numerator 𝐴(𝑏𝑓 + 𝑐) + 𝑎𝑓 𝑐 + 𝑎𝑙(𝜃 − 1)(𝑏𝑓 + 2𝑐) + (𝑏𝑓 (𝜃 − 1) + 𝑐(2𝜃 −
))(𝑐(𝐺0 − 𝑔1𝑓 + 2𝑟) − 𝑧) is negative.

In the first period, the follower’s objective function in (18) is strictly
oncave with respect to the decision variable 𝑔1𝑓 , iff 𝑐2(𝜃−1)2(𝑏𝑓 +𝑐)2−
𝑏𝑓 + 2𝑐)2(2𝑏𝑓 (𝜃 − 1) + 𝑐(3𝜃 − 2))2 < 0.

It can be easily checked that the two conditions ensuring the concav-
ty of the leader’s and follower’s objective functions are always satisfied
or the particular case 𝜃 = 1∕2.

ppendix D. Open-loop vs. Feedback stackelberg equilibria

.1. Positivity conditions

We next determine the conditions ensuring the positivity of agents’
ptimal strategies and aquifer states over the two periods for open-loop
nd feedback equilibria. We characterize these conditions under the
ssumptions that 𝜃 = 1∕2 and 𝑎𝑙 > 𝑎𝑓 > 𝑧 are satisfied.

The sufficient conditions for the positivity of the players’ optimal
trategies and aquifer states over the two periods are as follows:
Condition 1: A: 𝑎𝑙 > 𝑎𝑓 > 𝑧, B: 𝐺0𝑐−2𝐴 > 0, C: 3𝑎𝑙−3𝑎𝑓 −4𝐴 > 0, D:

0𝑐+3𝑐𝑟+4𝐴−4𝑎𝑙+2𝑎𝑓 +2𝑧 > 0, E: 𝐺0𝑐+3𝑐𝑟−14𝐴 > 0, F: 5𝐺0𝑐+14𝑐𝑟+
8𝐴−16𝑎𝑙+3𝑎𝑓 +13𝑧 > 0 and G: 9𝐺0𝑐+23𝑐𝑟+28𝐴−21𝑎𝑙−2𝑎𝑓 +23𝑧 > 0.

In a first step, we demonstrate that Conditions 1.A, 1.B, 1.C, 1.D,
nd 1.E ensure that the agents’ optimal strategies are positive over the
wo periods and for the two types of equilibria. Notably, if 𝐴 = 0, which
epresents the extreme case where the regulator is not concerned about
he aquifer stock at the end of the second period, conditions 1.A to 1.E
educe to Condition 1.A and 𝐺0𝑐 + 3𝑐𝑟 − 4𝑎𝑙 + 5𝑎𝑓 − 𝑧 > 0.

• From (11), and 𝐺0𝑐−2𝐴 > 0 (Condition 1.B) implies 𝑔𝑂𝐿
1𝑓 > 0 (see

𝑔𝑂𝐿
1𝑓 given in Box I).

• From (12),

𝑔𝑂𝐿
2𝑓 =

(𝐺0𝑐 + 2𝑐𝑟 + 2𝐴 − 𝑎𝑙 + 2𝑎𝑓 − 𝑧)𝑏𝑓 + 𝑐(𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 3𝑎𝑙 + 4𝑎𝑓 − 𝑧)
(𝑏𝑓 + 3𝑐)(2𝑏𝑓 + 𝑐)

,

and

min(𝐺0𝑐+2𝑐𝑟+2𝐴−𝑎𝑙+2𝑎𝑓−𝑧, 𝐺0𝑐+3𝑐𝑟+4𝐴−3𝑎𝑙+4𝑎𝑓−𝑧) > 0, (40)

implies 𝑔𝑂𝐿
2𝑓 > 0.

Because the following inequalities apply:

4(𝐺0𝑐 + 2𝑐𝑟 + 2𝐴 − 𝑎𝑙 + 2𝑎𝑓 − 𝑧) − (𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 4𝑎𝑙 + 2𝑎𝑓 + 2𝑧) > 0,

𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 3𝑎𝑙 + 4𝑎𝑓 − 𝑧 − (𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 4𝑎𝑙 + 2𝑎𝑓 + 2𝑧) > 0,

from (40), we obtain 𝐺0𝑐+3𝑐𝑟+4𝐴−4𝑎𝑙+2𝑎𝑓 +2𝑧 > 0 (Condition
1.D), which implies 𝑔𝑂𝐿

2𝑓 > 0.
• From (13),

𝑔𝑂𝐿
2𝑙 =

(𝐺0𝑐+2𝑐𝑟−2𝐴+𝑎𝑙−𝑧)𝑏2𝑓 +𝑐(𝐺0𝑐+3𝑐𝑟−6𝐴+4𝑎𝑙−3𝑎𝑓 −𝑧)𝑏𝑓 +(3𝑎𝑙−3𝑎𝑓 −4𝐴)𝑐2

𝑐(𝑏𝑓 + 2𝑐)(2𝑏𝑓 + 𝑐)
;

therefore, condition

min(𝐺0𝑐 + 2𝑐𝑟 − 2𝐴,𝐺0𝑐 + 3𝑐𝑟 − 6𝐴) > 0 (41)
𝑂𝐿
and condition 3𝑎𝑙 − 3𝑎𝑓 − 4𝐴 > 0 (Condition 1.C) imply 𝑔2𝑙 > 0.



Economic Modelling 132 (2024) 106652J. de Frutos Cachorro et al.
𝑔𝑂𝐿
1𝑓 =

2(𝐺0𝑐+𝑐𝑟+𝑎𝑓 −𝑧)𝑏2𝑓 +𝑐(6(𝐺0𝑐−𝑧)+5(𝑐𝑟+𝑎𝑓 )−2𝐴+𝑎𝑙)𝑏𝑓 +𝑐2(2(𝐺0𝑐+𝑧)−4𝐴+3𝑎𝑙−𝑎𝑓 )

(𝑏𝑓 + 2𝑐)(𝑏𝑓 + 3𝑐)(2𝑏𝑓 + 𝑐)
,

Box I.
a

Because the two following inequalities apply:

𝐺0𝑐 + 2𝑐𝑟 − 2𝐴 − (𝐺0𝑐 − 2𝐴) > 0,

𝐺0𝑐 + 3𝑐𝑟 − 6𝐴 − (𝐺0𝑐 + 3𝑐𝑟 − 14𝐴) > 0,

we have that 𝐺0𝑐−2𝐴 > 0 (Condition 1.B) and 𝐺0𝑐+3𝑐𝑟−14𝐴 > 0
(Condition 1.E) imply (41).

• From (19),

𝑔𝐹𝐵
1𝑓 = 1

(2𝑏2𝑓 +4𝑏𝑓 𝑐+𝑐
2)(2𝑏2𝑓 +6𝑏𝑓 𝑐+3𝑐

2)

×
{

4(𝐺0𝑐+𝑐𝑟+𝑎𝑓 −𝑧)𝑏3𝑓
+ 𝑐(11(𝐺0𝑐−𝑧)+10𝑐𝑟−2𝐴+𝑎𝑙+10𝑎𝑓 )𝑏2𝑓
+𝑐2(7(𝐺0𝑐−𝑧)+5𝑐𝑟−4𝐴+3𝑎𝑙+4𝑎𝑓 )𝑏𝑓

+𝑐3(𝐺0𝑐−2𝐴+2𝑎𝑙−𝑎𝑓 −𝑧)
}

,

and

min(7𝐺0𝑐 + 5𝑐𝑟 − 4𝐴,𝐺0𝑐 − 2𝐴) > 0

implies 𝑔𝐹𝐵
1𝑓 > 0.

Because 7𝐺0𝑐 + 5𝑐𝑟 − 4𝐴 − 2(𝐺0𝑐 − 2𝐴) > 0, then 𝐺0𝑐 − 2𝐴 > 0
(Condition 1.A) implies 𝑔𝐹𝐵

1𝑓 > 0.
• From (20),

𝑔𝐹𝐵
2𝑓 = 1

(2𝑏2𝑓 +4𝑏𝑓 𝑐+𝑐2)(2𝑏
2
𝑓 +6𝑏𝑓 𝑐+3𝑐2)

{

2(𝐺0𝑐+2𝑐𝑟+2𝐴−𝑎𝑙+2𝑎𝑓 −𝑧)𝑏3𝑓

+ 𝑐(5(𝐺0𝑐−𝑧)+10𝑐𝑟+14𝐴−9𝑎𝑙+14𝑎𝑓 )𝑏2𝑓
+𝑐2(4(𝐺0𝑐−𝑧)+11𝑐𝑟+14𝐴−12𝑎𝑙+16𝑎𝑓 )𝑏𝑓

+𝑐3(𝐺0𝑐+3𝑐𝑟+4𝐴−4𝑎𝑙+5𝑎𝑓 −𝑧)
}

,

then 𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 4𝑎𝑙 + 2𝑎𝑓 + 2𝑧 > 0 implies 𝑔𝐹𝐵
2𝑓 > 0 because

the following inequalities apply:

5𝐺0𝑐 + 10𝑐𝑟 + 14𝐴 − 9𝑎𝑙 + 14𝑎𝑓 − 5𝑧 > 3(𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 4𝑎𝑙 + 2𝑎𝑓 + 2𝑧),

4𝐺0𝑐 + 11𝑐𝑟 + 14𝐴 − 12𝑎𝑙 + 16𝑎𝑓 − 4𝑧 > 3(𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 4𝑎𝑙 + 2𝑎𝑓 + 2𝑧),

2𝐺0𝑐 + 4𝑐𝑟 + 4𝐴 − 2𝑎𝑙 + 4𝑎𝑓 − 2𝑧 > (𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 4𝑎𝑙 + 2𝑎𝑓 + 2𝑧).

• From (21),

𝑔𝐹𝐵
2𝑙 = 1

𝑐(2𝑏2𝑓 +4𝑏𝑓 𝑐+𝑐2)(2𝑏
2
𝑓 +6𝑏𝑓 𝑐+3𝑐2)

{

2(𝐺0𝑐+2𝑐𝑟−2𝐴+𝑎𝑙−𝑧)𝑏4𝑓

+ 𝑐(7(𝐺0𝑐−𝑧)+16𝑐𝑟−22𝐴+13𝑎𝑙−6𝑎𝑓 )𝑏3𝑓
+𝑐2(7(𝐺0𝑐−𝑧)+19𝑐𝑟−40𝐴+29𝑎𝑙−22𝑎𝑓 )𝑏2𝑓

+𝑐3(2(𝐺0𝑐−𝑧)+6𝑐𝑟−28𝐴+25𝑎𝑙−23𝑎𝑓 )𝑏𝑓 +6𝑐4(𝑎𝑙−𝑎𝑓 −𝐴)
}

,

and

min(2𝐺0𝑐+4𝑐𝑟−4𝐴, 7𝐺0𝑐+19𝑐𝑟−40𝐴, 2𝐺0𝑐+6𝑐𝑟−28𝐴,−𝐴+𝑎𝑙−𝑎𝑓 ) > 0

(42)

implies 𝑔𝐹𝐵
2𝑙 > 0.

Because the following inequalities apply:

2𝐺0𝑐 + 4𝑐𝑟 − 4𝐴 − 2(𝐺0𝑐 − 2𝐴) > 0,

7𝐺0𝑐 + 19𝑐𝑟 − 40𝐴 − 6(𝐺0𝑐 + 3𝑐𝑟 − 14𝐴) > 0,
14

−𝐴 + 𝑎𝑙 − 𝑎𝑓 − 1∕4(3𝑎𝑙 − 3𝑎𝑓 − 4𝐴) > 0,
from (42), we obtain 𝐺0𝑐 − 2𝐴 > 0 (Condition 1.B), 𝐺0𝑐 + 3𝑐𝑟 −
14𝐴 > 0 (Condition 1.E), and 3𝑎𝑙 − 3𝑎𝑓 − 4𝐴 > 0 (Condition 1.C),
which imply 𝑔𝐹𝐵

2𝑙 > 0.

In a second step, we determine the sufficient conditions that guar-
antee that the aquifer stocks are positive over the two periods. We first
obtain the sufficient conditions ensuring a positive aquifer stock at the
end of the second period.

• From (15),

𝐺𝑂𝐿
2 = 1

𝑐(2𝑏𝑓 + 𝑐)(𝑏𝑓 + 3𝑐)

{

(𝐺0𝑐+2𝑐𝑟+2𝐴−𝑎𝑙+𝑧)𝑏2𝑓 +𝑐(2𝐺0𝑐

+5𝑐𝑟+6𝐴−4𝑎𝑙−𝑎𝑓 +5𝑧)𝑏𝑓
+𝑐2(𝐺0𝑐+3𝑐𝑟+4𝐴−3𝑎𝑙+𝑎𝑓 +2𝑧)

}

.

Because

𝐺0𝑐+2𝑐𝑟+2𝐴−𝑎𝑙+𝑧 > 1
3
(2𝐺0𝑐+5𝑐𝑟+6𝐴−4𝑎𝑙−𝑎𝑓 +5𝑧),

fulfilling the following two conditions:

2𝐺0𝑐 + 5𝑐𝑟 + 6𝐴 − 4𝑎𝑙 − 𝑎𝑓 + 5𝑧 > 0, (43)

𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 3𝑎𝑙 + 𝑎𝑓 + 2𝑧 > 0, (44)

guarantees 𝐺𝑂𝐿
2 > 0.

• From (23),

𝐺𝐹𝐵
2 = 1

𝑐(2𝑏2𝑓 +4𝑏𝑓 𝑐+𝑐
2)(2𝑏2𝑓 +6𝑏𝑓 𝑐+3𝑐

2)

×
{

2(𝐺0𝑐+2𝑐𝑟+2𝐴−𝑎𝑙+𝑧)𝑏4𝑓
+𝑐(7𝐺0𝑐+16𝑐𝑟+18𝐴−11𝑎𝑙−2𝑎𝑓 +13𝑧)𝑏3𝑓
+𝑐2(9𝐺0𝑐+23𝑐𝑟+28𝐴−21𝑎𝑙−2𝑎𝑓 +23𝑧)𝑏2𝑓
+𝑐3(5𝐺0𝑐+14𝑐𝑟+18𝐴−16𝑎𝑙+3𝑎𝑓 +13𝑧)𝑏𝑓

+𝑐4(𝐺0𝑐+3𝑐𝑟+4𝐴−4𝑎𝑙+2𝑎𝑓 +2𝑧)
}

.

Because the following two inequalities apply:

(𝐺0𝑐 + 2𝑐𝑟 + 2𝐴 − 𝑎𝑙 + 𝑧) − 1
3
(2𝐺0𝑐 + 5𝑐𝑟 + 6𝐴 − 4𝑎𝑙 − 𝑎𝑓 + 5𝑧) > 0,

7𝐺0𝑐 + 16𝑐𝑟 + 18𝐴 − 11𝑎𝑙 − 2𝑎𝑓 + 13𝑧 > 5𝐺0𝑐 + 14𝑐𝑟 + 18𝐴 − 16𝑎𝑙
+3𝑎𝑓 + 13𝑧,

then condition (43) and the following three conditions:

5𝐺0𝑐 + 14𝑐𝑟 + 18𝐴 − 16𝑎𝑙 + 3𝑎𝑓 + 13𝑧 > 0 (Condition 1.F), (45)

9𝐺0𝑐 + 23𝑐𝑟 + 28𝐴 − 21𝑎𝑙 − 2𝑎𝑓 + 23𝑧 > 0 (Condition 1.G), (46)

𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 4𝑎𝑙 + 2𝑎𝑓 + 2𝑧 > 0 (Condition 1.D) (47)

imply 𝐺𝐹𝐵
2 > 0.

Because 𝐺0𝑐+3𝑐𝑟+4𝐴−3𝑎𝑙+𝑎𝑓 +2𝑧 > 𝐺0𝑐+3𝑐𝑟+4𝐴−4𝑎𝑙+2𝑎𝑓 +2𝑧,
considering (44), we can conclude that Conditions 1.D, 1.F, 1.G,
and (43) ensure that 𝐺𝑂𝐿

2 and 𝐺𝐹𝐵
2 are positive.

We next determine the sufficient conditions ensuring a positive
quifer stock at the end of the first period.

• From ,

𝐺𝑂𝐿
1 = 1
(2𝑏𝑓 + 𝑐)(𝑏𝑓 + 2𝑐)(𝑏𝑓 + 3𝑐)
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)

=

w

p

e

D

𝑔

w

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

>

w
i
i

=

×
{

2(𝐺0+𝑟)𝑏3𝑓 +(9(𝐺0𝑐+𝑐𝑟)−2𝑎𝑓 +2𝑧)𝑏2𝑓
+𝑐(11𝐺0𝑐+12𝑐𝑟+2𝐴−𝑎𝑙−5𝑎𝑓 +6𝑧)𝑏𝑓 +𝑐2(4𝐺0𝑐+6𝑐𝑟

+4𝐴−3𝑎𝑙+𝑎𝑓 +2𝑧)
}

.

Because

9𝐺0𝑐 + 9𝑐𝑟 − 2𝑎𝑓 + 2𝑧 − (4𝐺0𝑐 + 6𝑐𝑟 + 4𝐴 − 3𝑎𝑙 + 𝑎𝑓 + 2𝑧)

= 5𝐺0𝑐 + 3𝑐𝑟 − 4𝐴 + 3𝑎𝑙 − 3𝑎𝑓 > 5𝐺0𝑐 + 3𝑐𝑟 − 4𝐴 > 0,

where the last inequality stems from Condition 1.B, we obtain the
following two conditions:

4𝐺0𝑐 + 6𝑐𝑟 + 4𝐴 − 3𝑎𝑙 + 𝑎𝑓 + 2𝑧 > 0, (48)

11𝐺0𝑐 + 12𝑐𝑟 + 2𝐴 − 𝑎𝑙 − 5𝑎𝑓 + 6𝑧 > 0, (49)

which, combined with Condition 1.B, imply that 𝐺𝑂𝐿
1 > 0.

• From (22),

𝐺𝐹𝐵
1 = 1

(2𝑏2𝑓 +4𝑏𝑓 𝑐+𝑐
2)(2𝑏2𝑓 +6𝑏𝑓 𝑐+3𝑐

2)

{

4(𝐺0+𝑟)𝑏4𝑓

+4(4𝐺0𝑐+4𝑐𝑟−𝑎𝑓 +𝑧)𝑏3𝑓
+𝑐(21𝐺0𝑐+22𝑐𝑟+2𝐴−𝑎𝑙−10𝑎𝑓 +11𝑧)𝑏2𝑓 +𝑐

2(11𝐺0𝑐

+13𝑐𝑟+4𝐴−3𝑎𝑙−4𝑎𝑓 +7𝑧)𝑏𝑓
+𝑐3(2𝐺0𝑐+3𝑐𝑟+2𝐴−2𝑎𝑙+𝑎𝑓 +𝑧)

}

.

Because

4𝐺0𝑐 + 4𝑐𝑟 − 𝑎𝑓 + 𝑧 − 1
2
(4𝐺0𝑐 + 6𝑐𝑟 + 4𝐴 − 3𝑎𝑙 + 𝑎𝑓 + 2𝑧)

= 2𝑐𝐺0 + 𝑐𝑟 − 3
2
𝑎𝑓 + 3

2
𝑎𝑙 − 2𝐴 > 2𝑐𝐺0 + 𝑐𝑟 − 2𝐴 > 0, and (50)

2𝐺0𝑐 + 3𝑐𝑟 + 2𝐴 − 2𝑎𝑙 + 𝑎𝑓 + 𝑧 − (𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 4𝑎𝑙 + 2𝑎𝑓 + 2𝑧)

= 𝐺0𝑐 − 2𝐴 + 2𝑎𝑙 − 𝑎𝑓 − 𝑧 > 0, (51)

where the last inequality in (50) and the inequality in (51)
stem from Conditions 1.A and 1.B, we obtain the following two
conditions:

21𝐺0𝑐 + 22𝑐𝑟 + 2𝐴 − 𝑎𝑙 − 10𝑎𝑓 + 11𝑧 > 0, (52)

11𝐺0𝑐 + 13𝑐𝑟 + 4𝐴 − 3𝑎𝑙 − 4𝑎𝑓 + 7𝑧 > 0, (53)

which, combined with Conditions 1.A, 1.B, and 1.D, imply that
𝐺𝐹𝐵
1 > 0.

Considering (43), (49), and (52), and because

2(11𝐺0𝑐 + 12𝑐𝑟 + 2𝐴 − 𝑎𝑙 − 5𝑎𝑓 + 6𝑧) − (21𝐺0𝑐 + 22𝑐𝑟

+2𝐴 − 𝑎𝑙 − 10𝑎𝑓 + 11𝑧)

= 𝐺0𝑐 + 2𝑐𝑟 + 2𝐴 − 𝑎𝑙 + 𝑧 > 1
3
(2𝐺0𝑐 + 5𝑐𝑟 + 6𝐴 − 4𝑎𝑙 − 𝑎𝑓 + 5𝑧) > 0,

we can conclude that Conditions 1.A, 1.B, 1.D, (52), and (43)
ensure the fulfillment of condition (49).
Considering conditions (43), (48), and (53), we obtain the follow-
ing:

(11𝐺0𝑐 + 13𝑐𝑟 + 4𝐴 − 3𝑎𝑙 − 4𝑎𝑓 + 7𝑧) − 2(2𝐺0𝑐 + 5𝑐𝑟 + 6𝐴 − 4𝑎𝑙 − 𝑎𝑓 + 5𝑧

= 7𝐺0𝑐 + 3𝑐𝑟 − 8𝐴 + 5𝑎𝑙 − 2𝑎𝑓 − 3𝑧 > 0,

(4𝐺0𝑐 + 6𝑐𝑟 + 4𝐴 − 3𝑎𝑙 + 𝑎𝑓 + 2𝑧) − (2𝐺0𝑐 + 5𝑐𝑟 + 6𝐴 − 4𝑎𝑙 − 𝑎𝑓 + 5𝑧)

= 2𝐺0𝑐 + 𝑐𝑟 − 2𝐴 + 𝑎𝑙 + 2𝑎𝑓 − 3𝑧 > 0,

where the inequalities stem from Conditions 1.A and 1.B; there-
fore, condition (43) implies conditions (48) and (53).
Furthermore, under Conditions 1.A and 1.B, the following in-
equality applies:

23(21𝐺0𝑐+22𝑐𝑟+2𝐴−𝑎𝑙−10𝑎𝑓 +11𝑧)

−19(9𝐺0𝑐+23𝑐𝑟+28𝐴−21𝑎𝑙−2𝑎𝑓 +23𝑧)

= 312𝐺0𝑐 + 69𝑐𝑟 − 486𝐴 + 376𝑎𝑙 − 192𝑎𝑓 − 184𝑧 > 0,

then Condition 1.G (46) implies condition (52).
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Because under Conditions 1.A and 1.B,

46(2𝐺0𝑐 + 5𝑐𝑟 + 6𝐴 − 4𝑎𝑙 − 𝑎𝑓 + 5𝑧) − 10(9𝐺0𝑐 + 23𝑐𝑟

+28𝐴 − 21𝑎𝑙 − 2𝑎𝑓 + 23𝑧)
2𝐺0𝑐 − 4𝐴 + 26𝑎𝑙 − 26𝑎𝑓 > 0,

e determine that Condition 1.G (46) implies condition (43).
In summary, Conditions 1.A to 1.G ensure that the aquifer stock is

ositive at the end of the two periods.
In this section, all proofs were performed under Condition 1 to

nsure the comparison between the different equilibria.

.2. Proof of Proposition 1

𝐹𝐵
1𝑓 − 𝑔𝑂𝐿

1𝑓

=
𝐴5𝑏5𝑓 + 𝐴4𝑏4𝑓 + 𝐴3𝑏3𝑓 + 𝐴2𝑏2𝑓 + 𝐴1𝑏𝑓 + 𝐴0

(2𝑏𝑓 + 𝑐)(𝑏𝑓 + 2𝑐)(𝑏𝑓 + 3𝑐)
(

2𝑏2𝑓 + 4𝑏𝑓 𝑐 + 𝑐2
)(

2𝑏2𝑓 + 6𝑏𝑓 𝑐 + 3𝑐2
) ,

(54)

here

5 = 2𝑐(𝐺0𝑐 + 2𝑐𝑟 + 2𝐴 − 𝑎𝑙 + 2𝑎𝑓 − 𝑧),

4 = 𝑐2(11𝐺0𝑐 + 24𝑐𝑟 + 26𝐴 − 15𝑎𝑙 + 26𝑎𝑓 − 11𝑧),

3 = 𝑐3(22𝐺0𝑐 + 53𝑐𝑟 + 62𝐴 − 38𝑎𝑙 + 60𝑎𝑓 − 22𝑧),

2 = 𝑐4(18𝐺0𝑐 + 49𝑐𝑟 + 62𝐴 − 35𝑎𝑙 + 53𝑎𝑓 − 18𝑧),

1 = 5𝑐5(𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 𝑎𝑙 + 2𝑎𝑓 − 𝑧),

0 = 3𝑐6(𝑎𝑙 − 𝑎𝑓 ).

We next demonstrate that under Condition 1, all the coefficients
𝑖, 𝑖 = 0, 1,… , 5 are positive; hence, 𝑔𝐹𝐵

1𝑓 − 𝑔𝑂𝐿
1𝑓 > 0.

𝐴5 is positive because the following inequalities apply:

𝐺0𝑐+2𝑐𝑟+2𝐴−𝑎𝑙+2𝑎𝑓 −𝑧 > 𝐺0𝑐+2𝑐𝑟+2𝐴−𝑎𝑙+𝑎𝑓 > 𝐺0𝑐+2𝑐𝑟+2𝐴−𝑎𝑙+𝑧
1
3
(2𝐺0𝑐 + 5𝑐𝑟 + 6𝐴 − 4𝑎𝑙 − 𝑎𝑓 + 5𝑧) > 0. (55)

The first two inequalities apply because 𝑎𝑓 > 𝑧 (Condition 1.A), the
third one applies because 𝑎𝑙 > 𝑎𝑓 > 𝑧 (Condition 1.A), and the
last one applies because we already demonstrated that Condition 1.G
(46) implies condition (43) (2𝐺0𝑐 + 5𝑐𝑟 + 6𝐴 − 4𝑎𝑙 − 𝑎𝑓 + 5𝑧 > 0) in
Appendix D.1.

𝐴4 is positive because the following inequality applies:

11𝐺0𝑐 + 24𝑐𝑟 + 26𝐴 − 15𝑎𝑙 + 26𝑎𝑓 − 11𝑧 − 4(𝐺0𝑐 + 3𝑐𝑟 + 4𝐴

−4𝑎𝑙 + 2𝑎𝑓 + 2𝑧)
= 7𝐺0𝑐 + 12𝑐𝑟 + 10𝐴 + 𝑎𝑙 + 18𝑎𝑓 − 19𝑧 > 0,

here the mathematical expression in Condition 1.D is used in the term
n round brackets in the first line and the last inequality is implied by
nequalities 𝑎𝑙 > 𝑎𝑓 > 𝑧 (Condition 1.A).

𝐴3 is positive because the following inequality applies:

22𝐺0𝑐 + 53𝑐𝑟 + 62𝐴 − 38𝑎𝑙 + 60𝑎𝑓 − 22𝑧

−10(𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 4𝑎𝑙 + 2𝑎𝑓 + 2𝑧)

= 12𝐺0𝑐 + 23𝑐𝑟 + 22𝐴 + 2𝑎𝑙 + 40𝑎𝑓 − 42𝑧 > 0, (56)

where, once again, the mathematical expression in Condition 1.D is
used in the term in round brackets in the first line and the last
inequality is implied by inequalities 𝑎𝑙 > 𝑎𝑓 > 𝑧 (Condition 1.A).

𝐴2 is positive because the following inequality applies:

18𝐺0𝑐+49𝑐𝑟+62𝐴−35𝑎𝑙+53𝑎𝑓 −18𝑧−10(𝐺0𝑐+3𝑐𝑟+4𝐴−4𝑎𝑙+2𝑎𝑓 +2𝑧)

8𝐺0𝑐 + 19𝑐𝑟 + 22𝐴 + 5𝑎𝑙 + 33𝑎𝑓 − 38𝑧 > 0,

where, for a third time, the mathematical expression in Condition 1.D
is used in the term in round brackets in the first line and the last
inequality is implied by inequalities 𝑎 > 𝑎 > 𝑧 (Condition 1.A).
𝑙 𝑓



Economic Modelling 132 (2024) 106652J. de Frutos Cachorro et al.

w

𝐵

w

𝐶

𝐶

w

𝐷

𝐷

𝐷

𝐴1 is positive because the following inequality applies:

𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 − 𝑎𝑙 + 2𝑎𝑓 − 𝑧 > 𝐺0𝑐 + 2𝑐𝑟 + 2𝐴 − 𝑎𝑙 + 2𝑎𝑓 − 𝑧 > 0,

where last inequality stems from (55).
Therefore, we can conclude that the difference 𝑔𝐹𝐵

1𝑓 − 𝑔𝑂𝐿
1𝑓 in (54) is

positive.

𝑔𝑂𝐿
2𝑓 − 𝑔𝐹𝐵

2𝑓 =
𝐵3𝑏3𝑓 + 𝐵2𝑏2𝑓 + 𝐵1𝑏𝑓 + 𝐵0

(2𝑏𝑓 + 𝑐)(𝑏𝑓 + 3𝑐)
(

2𝑏2𝑓 + 4𝑏𝑓 𝑐 + 𝑐2
)(

2𝑏2𝑓 + 6𝑏𝑓 𝑐 + 3𝑐2
) ,

(57)

here

3 = 𝑐2(3𝐺0𝑐 + 6𝑐𝑟 + 6𝐴 + 𝑎𝑙 + 2𝑎𝑓 − 3𝑧),

𝐵2 = 𝑐3(5𝐺0𝑐 + 13𝑐𝑟 + 16𝐴 + 5𝑎𝑙 − 5𝑧),

𝐵1 = 𝑐4(2𝐺0𝑐 + 6𝑐𝑟 + 8𝐴 + 7𝑎𝑙 − 5𝑎𝑓 − 2𝑧),

𝐵0 = 3𝑐5(𝑎𝑙 − 𝑎𝑓 ).

Under condition 1.A (𝑎𝑙 > 𝑎𝑓 > 𝑧), coefficients 𝐵𝑖, 𝑖 = 0, 1,… , 3 are
positive; hence, 𝑔𝑂𝐿

2𝑓 − 𝑔𝐹𝐵
2𝑓 > 0.

𝑔𝑂𝐿
2𝑙 −𝑔𝐹𝐵

2𝑙 = −𝑐
𝐶4𝑏4𝑓 + 𝐶3𝑏3𝑓 + 𝐶2𝑏2𝑓 + 𝐶1𝑏𝑓 + 𝐶0

(2𝑏𝑓 + 𝑐)(𝑏𝑓 + 2𝑐)
(

2𝑏2𝑓 + 4𝑏𝑓 𝑐 + 𝑐2
)(

2𝑏2𝑓 + 6𝑏𝑓 𝑐 + 3𝑐2
) ,

(58)

here

4 = 𝐺0𝑐 + 2𝑐𝑟 + 2𝐴 + 3𝑎𝑙 − 2𝑎𝑓 − 𝑧,

3 = 𝑐(3𝐺0𝑐 + 7𝑐𝑟 + 8𝐴 + 15𝑎𝑙 − 12𝑎𝑓 − 3𝑧),

𝐶2 = 𝑐2(3𝐺0𝑐 + 8𝑐𝑟 + 10𝐴 + 24𝑎𝑙 − 21𝑎𝑓 − 3𝑧),

𝐶1 = 𝑐3(𝐺0𝑐 + 3𝑐𝑟 + 4𝐴 + 14𝑎𝑙 − 13𝑎𝑓 − 𝑧),

𝐶0 = 3𝑐4(𝑎𝑙 − 𝑎𝑓 ).

Under condition 1.A (𝑎𝑙 > 𝑎𝑓 > 𝑧), coefficients 𝐶𝑖, 𝑖 = 0, 1,… , 4 are
positive; hence, 𝑔𝑂𝐿

2𝑙 − 𝑔𝐹𝐵
2𝑙 < 0.

D.3. Proof of Proposition 2

The difference of total extractions under the open-loop and feedback
scenarios is as follows:

Total𝑂𝐿 − Total𝐹𝐵

= −
𝑐(𝑏𝑓 + 𝑐)(𝐷3𝑏3𝑓 +𝐷2𝑏2𝑓 +𝐷1𝑏𝑓 +𝐷0)

(2𝑏𝑓 + 𝑐)(𝑏𝑓 + 3𝑐)
(

2𝑏2𝑓 + 4𝑏𝑓 𝑐 + 𝑐2
)(

2𝑏2𝑓 + 6𝑏𝑓 𝑐 + 3𝑐2
) , (59)

here

3 = 6𝐴 + 2𝑎𝑓 + 𝑎𝑙 + 3𝑐𝐺0 + 6𝑐𝑟 − 3𝑧 > 0,

2 = 𝑐(16𝐴 + 5𝑎𝑙 + 5𝑐𝐺0 + 13𝑐𝑟 − 5𝑧) > 0,

1 = 𝑐2(8𝐴 − 5𝑎𝑓 + 7𝑎𝑙 + 2𝑐𝐺0 + 6𝑐𝑟 − 2𝑧) > 0, and

𝐷0 = 3𝑐3(𝑎𝑙 − 𝑎𝑓 ) > 0.

The signs of the expressions above are from Condition 1.A; there-
fore, from (59), the sign of the difference Total𝑂𝐿−Total𝐹𝐵 is negative.

Appendix E. Numerical results

E.1. Sensitivity analysis with respect to parameters 𝑏𝑓 and 𝐴

See Tables 5 and 6.
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E.2. Sensitivity analysis with respect to parameter 𝑎𝑙

We use the parameter values from Table 1 with 𝑏𝑓 = 0.1 and
𝐴 = 0.07 for the following numerical simulation, presenting a summary
of results for different 𝑎𝑙 and 𝜃.

See Tables 7 and 8.

Appendix F. Further analysis with respect to 𝜷, the discount factor

We conduct numerical simulation in this section using the parame-
ter values from Table 1 with 𝜃 = 0.5, 𝑏𝑓 = 0.1 and 𝐴 = 0.07, presenting
a summary of results for different values of 𝛽.

See Tables 9 and 10.

Appendix G. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.econmod.2024.106652.
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