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Abstract: Shortly after the beginning of the SARS-CoV-2 pandemic, many countries implemented
sewage sentinel systems to monitor the circulation of the virus in the population. A fundamental part
of these surveillance programs is the variant tracking through sequencing approaches to monitor
and identify new variants or mutations that may be of importance. Two of the main sequencing
platforms are Illumina and Oxford Nanopore Technologies. Here, we compare the performance
of MiSeq (Illumina) and MinION (Oxford Nanopore Technologies), as well as two different data
processing pipelines, to determine the effect they may have on the results. MiSeq showed higher
sequencing coverage, lower error rate, and better capacity to detect and accurately estimate variant
abundances than MinION R9.4.1 flow cell data. The use of different variant callers (LoFreq and
iVar) and approaches to calculate the variant proportions had a remarkable impact on the results
generated from wastewater samples. Freyja, coupled with iVar, may be more sensitive and accurate
than LoFreq, especially with MinION data, but it comes at the cost of having a higher error rate.
The analysis of MinION R10.4.1 flow cell data using Freyja combined with iVar narrows the gap
with MiSeq performance in terms of read quality, accuracy, sensitivity, and number of detected
mutations. Although MiSeq should still be considered as the standard method for SARS-CoV-2
variant tracking, MinION’s versatility and rapid turnaround time may represent a clear advantage
during the ongoing pandemic.

Keywords: SARS-CoV-2; Twist RNA; NGS; MiSeq; MinION; Freyja; iVar; LoFreq

1. Introduction

Since the early beginning of the pandemic caused by SARS-CoV-2, efforts have been
made to monitor both the circulation and evolution of the virus at the community level.
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Wastewater-based epidemiology (WBE) has turned out to be a cost-effective early warn-
ing tool to monitor the spread of the virus and the upsurge of new variants and their
circulation [1]. For this purpose, next-generation sequencing (NGS) information becomes
essential, and many countries have implemented wastewater surveillance systems that have
become informative tools to support public health decision-making processes regarding
the SARS-CoV-2 pandemic [2,3].

Despite sewage being a very complex matrix containing mixtures of variants, NGS
may provide reliable qualitative and relative quantitative data. Qualitative data give infor-
mation of which variants are present in a given sample based on the signature mutations
defining each variant, whereas quantitative data show the proportions of these variants.
Nevertheless, some studies warn about the reliability of using sequencing results to quan-
tify the abundance of variants in wastewater due to its lower sensitivity in comparison with
real-time PCR-based assays [4]. In the context of a pandemic where results are required to
take action, fast sequencing techniques as NGS are of critical importance.

Nanopore and synthesis-based sequencing techniques are the most commonly used
NGS methods. Nanopores are the basis of Oxford Nanopore Technologies (ONT) sequenc-
ing platforms whereas synthesis-based methods are the basis of both Illumina and PacBio
sequencing platforms. The Nanopore platform allows real-time sequencing of both short
and long reads as well as detection of modified bases (i.e., methylation) in both DNA and
RNA [5]. The Illumina sequencing platform can only sequence short reads but provides a
very high accuracy. The PacBio sequencing platform, even though not as widely used as
Nanopore and Illumina for SARS-CoV-2 variant monitoring, allows long-read sequencing
and modified base detection with a similar accuracy as Nanopore [6].

In this work, the main objective was to compare MiSeq (Illumina) with MinION
(ONT) NGS approaches to evaluate the pros and cons of each method. With this aim, five
synthetic RNAs (Twist bioscience, San Francisco, CA, USA) corresponding to SARS-CoV-2
variants of concern (VOC) Alpha, Beta, Gamma, Delta, and Omicron BA.1 were mixed at
different proportions. These mixtures, as well as a sample containing only a synthetic RNA
for the Wuhan variant, were sequenced with both approaches with the aim to compare
their performance in terms of (i) per position error rate (PPER), (ii) output of reads per
position (i.e., read depth), (iii) S gene coverage, (iv) detected mutations, and (iv) accuracy
of the estimation of the proportion of each VOC. Two variant callers, LoFreq [7] and iVar
(embedded in Freyja) [8,9], were also compared. On the one hand, LoFreq was designed to
detect variants at very low frequencies and to be able to distinguish them from sequencing
errors. It has been successfully tested in quasi-species analysis [7,10], making it a suitable
tool to identify SARS-CoV-2 variants. On the other hand, a recently published bioinformatic
tool, Freyja, has been created to determine the abundance of SARS-CoV-2 lineages in
mixed samples, specially focusing on wastewater samples [9]. For variant calling, Freyja
relies on iVar, which was built for viral amplicon-based sequencing [8]. Additionally, six
SARS-CoV-2 naturally contaminated wastewater samples were sequenced to evaluate the
performance of these NGS/pipelines in real case scenarios.

2. Results
2.1. Per Position Error Rate (PPER) Calculation

The quality of the generated reads is a critical issue when making decisions based
on sequencing data. By sequencing a Twist synthetic RNA corresponding to the original
Wuhan SARS-CoV-2 strain, a comparison of the error rate could be carried out. PPER
was defined as the total number of detected substitutions per nucleotide as compared to
the expected sequence. Although the occurrence of mutations during the RNA synthesis
reaction used to prepare Twist synthetic controls could not be completely ruled out, we
considered that any unexpected mutation found in the Wuhan Twist RNA control would
be a potential sequencing artifact. In our approach, we considered not only the errors that
may occur in the sequencing reactions and the basecalling step but also those that may
happen during the aligning and variant calling steps [11,12].
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Basecalling quality is generally measured by Phred score. ONT Q-scores may differ
from Phred scores although not to a great extent [13]. Tools like Nanoplot [14,15] report
Phred scores for ONT data. Prior to the calculation of the PPER, the basecalling quality
was assessed for the Wuhan Twist. The mean Phred score values were 36.1 (99.98% basecall
accuracy), 13.2 (~95.21% basecall accuracy), 14.4 (~96.37% basecall accuracy), and 22.9
(~99.49% basecall accuracy) for MiSeq, MinION R9.4.1 flow cells, MinION R10.4.1 flow
cells singleplex data, and MinION R10.4.1 flow cell duplex data, respectively.

In R10.4.1 duplex data, an important number of substitutions corresponding to the
five VOCs were detected in the Wuhan Twist RNA, suggesting errors in the read-pairing
process probably due to the high similarity of the amplicons sequenced. For the PPER
estimation on the duplex data, we performed two different analyses: (i) including all
detected sequencing artifacts and (ii) discarding those mutations that corresponded to
VOCs. PPER was evaluated using the output of LoFreq and iVar variant callers. With
both variant callers, MinION generated a higher PPER than MiSeq except for duplex data
analyzed with LoFreq after removing the detected VOC mutations (Table 1).

With iVar, the differences between the two sequencing platforms were clearly larger,
with MinION’s R9.4.1 flow cell having 25 times higher PPER than MiSeq (0.236% vs.
0.009%). R10.4.1 flow cell singleplex data reduced the difference with MiSeq, having only
5 times higher PPER than the Illumina platform (0.050% vs. 0.009%). While PPER was
generally lower for MiSeq than MinION, data regarding the total number of sequencing
artifacts and the frequency range of these errors greatly varied for each sequencing plat-
form/variant caller combination. Of note, MinION consistently reported a higher frequency
range of sequencing artifacts, which could be as high as 71.0% in R9.4.1 flow cell and 48.6%
and 33.76% in R10.4.1 singleplex and duplex data, respectively, while sequencing artifacts
reported by MiSeq only reached frequencies up to 5.3%. These results indicate a lower
sequencing accuracy for MinION as compared to MiSeq, although R10.4.1 singleplex data
significantly reduced the number and frequency of sequencing artifacts with both LoFreq
and iVar.

In an attempt to reduce the high number of sequencing artifacts detected by iVar in
MinION data, a 1% mutation frequency cut-off was included. In the R9.4.1 flow cell, even
though the number of sequencing artifacts was still high, we were able to discard 95 of
these errors (i.e., a reduction of 28%) whereas R10.4.1 flow cell showed a greater reduction
of 53% in singleplex data and over 80% in duplex data. In both MinION’s types of flow cell,
the PPER showed a lower decrease than in MiSeq since mutations with frequencies <1%
had a very low sequencing depth. In the case of MiSeq data, there was an 84% reduction
in the number of sequencing artifacts as well as a three times lower PPER because most
of the detected mutations were in frequencies <1%. The cut-off was applied to both Twist
mixtures and wastewater samples (see below).

Of note, while iVar reported a higher number of sequencing artifacts in MinION R9.4.1
flow cell than in R10.4.1 singleplex data and MiSeq, an opposite behavior was observed
when using LoFreq. LoFreq returned 172, 12, and 10 mutations for MiSeq, MinION R9.4.1,
and MinION R10.4.1 singleplex data, respectively, while iVar returned 12, 242, and 36,
respectively. Both LoFreq and iVar (without the 1% filter) reported a higher number of
sequencing artifacts in R10.4.1 duplex data when compared to other MinION approaches
(R9.4.1 and R10.4.1 singleplex data).
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Table 1. Accuracy of MiSeq and MinION platforms with LoFreq and iVar using Wuhan SARS-CoV-2 RNA Control.

MiSeq
MinION

R9.4.1 R10.4.1 Singleplex Data R10.4.1 Duplex Data R10.4.1 Duplex Data without VOC
Mutations

LoFreq iVar iVar 1%
Filter LoFreq iVar iVar 1%

Filter LoFreq iVar iVar 1%
Filter LoFreq iVar iVar 1%

Filter LoFreq iVar iVar 1%
Filter

S gene coverage 1 100% 100% 100% 93% 93% 93% 93% 93% 93% 87% 87% 87% 87% 87% 87%

Total number of reads 2 4.90 × 108 4.90 × 108 4.90 × 108 2.79 × 108 2.79 × 108 2.79 × 108 2.25 × 108 2.25 × 108 2.25 × 108 5.48 × 106 5.48 × 106 5.48 × 106 5.48 × 106 5.48 × 106 5.48 × 106

Number of sequencing
artifacts 3 172 77 12 12 337 242 10 76 36 31 651 95 2 612 58

Sequencing artifacts
frequency range 4 0.07–3.5% 0.13–5.3% 1–5.3% 5.9–71.0% 0.02–70.5% 1.1–70.1% 1.6–48.4% 0.03–48.6% 1.2–48.5% 2.17–33.76% 0.21–33.57% 1.00–33.50% 33.63–33.76% 0.21–33.57% 1.00–33.50%

Total sequencing
artifacts depth 5 1.37 × 105 4.59 × 104 1.57 × 104 1.17 × 105 6.58 × 105 5.65 × 105 8.13 × 104 1.13 × 105 1.10 × 105 7.21 × 103 1.28 × 104 7.24 × 103 9.96 × 102 7.83 × 103 2.92 × 103

Per position error rate
(PPER) 6 0.028% 0.009% 0.003% 0.042% 0.236% 0.202% 0.036% 0.050% 0.049% 0.132% 0.233% 0.132% 0.018% 0.143% 0.053%

1 Percentage of the S gene with a per position depth ≥ 100. 2 Sum of all the aligned reads. 3 Total number of reported sequencing artifacts passing the filters. 4 Minimum and maximum
frequencies of the sequencing artifacts. 5 Sum of the reads corresponding to the sequencing artifacts. 6 Percentage value obtained by dividing the number of reads of the sequencing
artifacts by the total number of reads.
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2.2. Coverage and Depth Comparison

An amplicon-based sub-ARTIC V3 approach targeting only the spike gene was used to
amplify 10 different mixtures of Twist synthetic RNA controls corresponding to five different
VOCs (Alpha, Beta, Gamma, Delta, and Omicron BA.1), as well as six naturally contaminated
wastewater samples, in addition to the synthetic RNA corresponding to SARS-CoV-2 Wuhan.
From mixes 1 to 6 (see Section 4.1), synthetic RNA controls corresponding to Omicron BA.1
and Delta variants were mixed at different proportions to emulate what happened with these
two variants in a real scenario during the 6th wave in Spain, when the Delta variant was
displaced by Omicron BA.1 [16]. From mixes 7 to 10, the five different VOCs were mixed at
different proportions to cover multiple possible scenarios.

A total of 14 amplicons (A71 to A84) were obtained for each sample and subsequently
sequenced with both MiSeq and MinION platforms (R9.4.1 and R10.4.1 flow cells). The
covered percentage of the S gene (coverage) and the number of reads per amplicon (depth)
were calculated and compared. The average total number of reads obtained for Twist RNA
mixtures were of 5.58 × 108 ± 8.61 × 104 for MiSeq, 2.35 × 108 ± 4.81 × 104 for MinION
R9.4.1 flow cell, 2.50× 108 ± 3.71× 104 for MinION R10.4.1 flow cell singleplex data, and of
6.18 × 106 ± 1.05 × 103 for MinION R10.4.1 flow cell duplex data. For wastewater samples,
the average total numbers of reads were 3.29 × 108 ± 6.83 × 104, 1.21 × 108 ± 2.55 × 104,
6.01 × 107 ± 1.39 × 104, and 1.14 × 106 ± 2.91 × 102, respectively.

For the Twist RNA mixtures, MiSeq outputted an average total S gene coverage of 98%
(95–100%), MinION R9.4.1 flow cell of 96% (92–100%), MinION R10.4.1 flow cell singleplex
of 97% (93–100%), and MinION R10.4.1 flow cell duplex of 91% (55–95%). In the case
of wastewater samples, MiSeq data covered an average of 100% of the S gene, MinION
R9.4.1 data 89% (51–100%), MinION R10.4.1 singleplex data 77% (46–94%), and MinION
R10.4.1 duplex data 56% (34–87%). Only those positions with a number of reads ≥100 were
considered for the calculations.

Using the coverage data obtained from the sequencing of the 10 mixtures and the
Wuhan Twist synthetic RNA, the mean depth per amplicon was calculated (Figure 1A).
Both platforms showed the same trend throughout the spike gene, but MiSeq consistently
outputted more reads per amplicon than both MinION flow cells. The lower read depth
of the amplicon A82 seen with both sequencing methodologies, which may be due to the
overlapping of this amplicon with two Twist fragments.

The same analysis was carried out for the six wastewater samples (Figure 1B). As seen
with the Twist mixtures, more reads per amplicon were outputted by the Illumina platform.
The almost complete absence of read depth of the amplicon A73 in these samples may be
due to the use of ARTIC V3 which was not still optimized for the Omicron variant.

In both Twist RNA mixtures and wastewater samples, the R10.4.1 duplex data showed
the lowest number of reads per amplicon.

2.3. Comparing the Accuracy of VOC Abundance Estimation

MiSeq and MinION platforms were tested to compare their ability to estimate the
abundance of different VOCs present in mixed samples (synthetic RNA mixtures and
naturally contaminated samples). The data obtained were analyzed with LoFreq and Freyja
and compared to the expected values.

Relative VOC abundance estimations measured by the eight different approaches
(MiSeq with LoFreq, MinION R9.4.1 with LoFreq, MinION R10.4.1 with LoFreq, MinION
R10.4.1 duplex with LoFreq, MiSeq with Freyja, MinION R9.4.1 with Freyja, MinION
R10.4.1 with Freyja, and MinION R10.4.1 duplex with Freyja) provided data similar to
the expected values (Figure 2A), showing a good accuracy independently of the variant
caller used.
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Figure 1. Sequencing depth observed for each amplicon using MiSeq (orange), MinION R9.4.1 flow
cell (blue), MinION R10.4.1 flow cell simplex reads (green), and MinION R10.4.1 flow cell duplex
reads (purple), for Twist RNA mixtures (A) and wastewater samples (B). Data represent the average
number of reads per amplicon and error bars indicate standard error deviation.

Significant positive correlations, determined by the Spearman rank correlation coef-
ficient, between observed and expected results were ascertained for all tested pipelines
(Table 2). Of note, with MinION R9.4.1 data, Freyja showed enhanced sensitivity over
LoFreq, enabling the detection of all low-frequency variants present at 5%. MinION R10.4.1
flow cell detected all variants present in the mixtures except for duplex data analyzed with
LoFreq that missed 5% of Delta VOCs in mix 10. Freyja (iVar) showed a worse correlation
than LoFreq with R10.4.1 duplex data due to the detection of non-present VOCs.
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Figure 2. Relative abundance estimations of specific VOCs detected in (A) 10 different mixtures
of Twist synthetic RNA controls and (B) SARS-CoV-2-positive samples collected from 6 different
wastewater treatment plants (WWTPs).

Mean deviations between observed and expected percentages were calculated (Table 2).
Freyja performed better with MiSeq and MinION R9.4.1 flow cell data and equally to LoFreq
with MinION R10.4.1 singleplex and duplex data. Highly biased deviations were obtained
for the Beta variant in mixtures 7 to 10 with both sequencing techniques. Consequently,
this variant was not considered in the calculations.

In naturally contaminated samples, the percentage of Delta and Omicron BA.1 VOCs
was determined by RT-qPCR and compared with the NGS proportion determination. Both
sequencing methods were able to successfully detect Delta and BA.1 VOCs present in the
samples, even though MinION was not always sensitive enough to detect low-prevalence
variants (Figure 2B). In most samples, NGS revealed the presence of only Omicron BA.1 and
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Delta VOCs, however, in samples 2, 3, and 6 a few signature mutations of Omicron BA.2
were also detected. Consequently, in these samples the common mutations between BA.1
and BA.2 were not included in the abundance estimation. A higher degree of deviation from
RT-qPCR values was observed compared to the artificial Twist RNA mixtures, however,
significant positive correlations were also observed (Table 2).

Despite the good Spearman rank correlation coefficients of the MinION R10.4.1 duplex
data, the five VOCs used in this study were found in all analyzed samples likely due to
erroneous read pairing in the duplex basecalling function.

Table 2. Comparison between observed and expected percentages of the VOCs for Twist mixtures
and wastewater samples.

MiSeq
MinION

R9.4.1 R10.4.1 Singleplex R10.4.1 Duplex

LoFreq Freyja LoFreq Freyja LoFreq Freyja LoFreq Freyja

Twist
mixtures

Spearman rank
correlation 0.962 0.978 0.938 0.978 0.960 0.969 0.912 0.812

p-value p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05

Mean deviation 6.6 ± 5.9% 5.8 ± 5.2% 7.1 ± 7.1% 5.6 ± 4.7% 6.7 ± 5.4% 6.8 ± 5.6% 10.0 ± 9.0% 10.0 ± 9.0%

Wastewater
samples

Spearman rank
correlation 0.747 0.739 0.765 0.813 0.752 0.818 0.834 0.790

p-value p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05

Mean deviation 20.3 ± 13% 21.3 ± 16% 21.3 ± 14% 17.9 ± 16% 20.2 ± 15% 16.9 ± 16% 23.0 ± 19% 24.0 ± 19%

2.4. Detected Mutations

An important factor to consider when determining the presence and abundance of
a certain variant is the number of detected signature mutations that define this variant.
For instance, the recommendation published by the EU in 2021 indicates that at least
three genetic markers per variant should be reported for variant identification [17], and
Twist RNAs of Alpha, Beta, Gamma, Delta, and Omicron BA.1 VOCs have 4, 3, 7, 4,
and 26 signature mutations (SNV), respectively (Figure S1). In the case of the Twist RNA
mixtures (Figure S1A), both sequencing platforms gave a similar number of detected
mutations when Freyja was used to analyze sequencing data. From 21–29 out of 30
signature mutations were detected in mixes 1–6, which contained only two VOCs, and
from 32–36 out of 40 signature mutations were detected in mixes 7–10, which contained
five different VOCs. However, with LoFreq fewer signature mutations were detected
with MinION R9.4.1 flow cell as compared to MinION R10.4.1 flow cell and MiSeq: only
8–26 out of 30 signature mutations were detected in mixes 1–6 and 11–30 mutations out of
40 expected in mixes 7–10. A similar trend was observed in wastewater samples (Figure
S1B), where MinION R9.4.1 flow cell data analyzed with LoFreq consistently detected fewer
mutations than Freyja, whereas LoFreq with the R10.4.1 flow cell data was more in line
with MiSeq results. Despite the intrinsic variability of these types of samples, MiSeq tended
to output more signature mutations than MinION, adding robustness to the results.

MinION R10.4.1 duplex data cannot be directly compared with the other approaches
as read-pairing errors are likely to occur, which are a confounding factor when counting
the number of detected mutations.

Independently of the sequencing platform, variant caller, and sequencing depth,
mutations S371L, S373P, S375F, and K417N of Omicron BA.1 were systematically detected
in lower abundances, thus being the first ones to be lost when the concentration of the
Omicron BA.1 variant decreased. MiSeq LoFreq was able to detect these mutations in more
samples than the other approaches, but with reporting frequencies as low as 0.13% (K417N
in mix 4) and, consequently, affecting the variant abundance value.

In Figure S1A,B, those mutations corresponding to VOCs that were not present in the
sample are also shown. In wastewater samples from late 2021–beginning 2022, the number
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of non-present VOCs (Alpha, Beta, and Gamma) that were detected was higher than in
Twist RNA mixtures probably due to the lower amount of viral genetic material present in
the samples compared to that in the Twist RNA mixtures. This makes the samples more
prone to cross-contamination and index hopping (MiSeq) or barcode bleeding (MinION).

3. Discussion

NGS technologies are of utmost importance when searching for new variants or muta-
tions that may have an impact on population health. The Illumina platform is generally
considered as the gold standard [18–20], although ONT is becoming more popular due to
its lower cost, turnaround time, and portability [21–23], and PacBio also offers SARS-CoV-
2-directed resources [24]. Here, we present a comparison between these two platforms,
specifically MiSeq (Illumina) and MinION (ONT). Mixtures of known proportions of dif-
ferent Twist synthetic RNAs corresponding to five VOCs were sequenced along with six
wastewater samples to assess the differences in terms of error rate, coverage, sequencing
depth, estimation accuracy, and sensitivity. Additionally, all these parameters were com-
pared and evaluated using two different bioinformatic pipelines, LoFreq and Freyja, with
the aim to determine the effect that different data processing may have on the results.

It is widely believed that MinION does not achieve the MiSeq basecall quality [25,26].
The mean Phred score of Twist RNA mixtures and wastewater samples was 36.0 (99.97%
basecall accuracy), 13.0 (~94.99% basecall accuracy), 14.4 (~96.37% basecall accuracy),
and 22.9 (~99.49% basecall accuracy) for MiSeq, MinION R9.4.1, and MinION R10.4.1
singleplex and duplex data, respectively. Despite the possible pairing issues that happened
with the R10.4.1 duplex read data, there is a remarkable increase in read quality reaching
values closer to MiSeq. In our study, we estimated the final PPER of each sequencing
platform, i.e., the number of detected errors after variant calling, by sequencing a Twist
RNA corresponding to the original SARS-CoV-2 sequence. Our results show that MiSeq has
a lower PPER than MinION, independently of the variant caller used, that is in line with
previous findings [26]. The largest difference between the two sequencing platforms was
found when using iVar with the 1% frequency filter, where MiSeq and MinION R9.4.1 flow
cells had a PPER of 0.003% and 0.202%, respectively. Nevertheless, there was a remarkable
improvement in MinION’s PPER when using the new R10.4.1 flow cell, having a PPER of
0.036% with LoFreq and of 0.049% with iVar with the 1% cut-off. Contrarily, R10.4.1 duplex
data increased the PPER likely due to both read-pairing errors caused by the highly similar
amplicons produced when amplifying the five different Twist synthetic RNAs used in the
study and the lower sequencing depth of the duplex data.

Two key points to explain the differences found in the PPER between LoFreq and iVar
are the number of sequencing artifacts and the frequency of these errors, i.e., the number
of reads containing the error. With LoFreq, a high number of sequencing artifacts were
reported from MiSeq data, whereas only a few were found in MinION data. With iVar, the
opposite behavior was observed particularly with MinION R9.4.1 flow cell and R10.4.1
duplex data. Regarding the frequency of the sequencing artifacts, in MiSeq these were found
in low frequencies (up to 5.3%) whereas frequency values went up to 71.0%, 48.6%, and
33.8% in MinION R9.4.1, R10.4.1 singleplex, and R10.4.1 duplex data, respectively. LoFreq
was designed under the premise that it is difficult to differentiate between sequencing errors
and actual mutations that are present at a very low frequency (<0.05%). To discriminate
between sequencing errors and low-frequency mutations, LoFreq estimates the run-specific
sequencing error rates based on mapping, base, and alignment qualities [7]. Consequently,
on the one hand, MiSeq high read quality enabled LoFreq to report a high number of
sequencing artifacts which were mostly found at very low frequencies (<1%), suggesting
that some are likely to be Twist synthesis or PCR-induced errors. On the other hand, due
to the lower read quality of MinION, LoFreq could only report a few sequencing artifacts
which were found at higher frequencies (>5.9% and >1.6% in MinION R9.4.1 and R10.4.1
flow cells, respectively).
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Contrarily, iVar (as part of Freyja) does not consider the run-specific sequencing error
rate [8]. Our data showed that adding a frequency filter of 1% may help to reduce the
background noise, hence, in both sequencing platforms only mutations with frequencies
≥1% are reported. The application of the filter confirmed that in MiSeq most of the
detected sequencing artifacts are present at very low frequencies (<1%) whereas in MinION,
except for the R10.4.1 duplex data, the frequencies are higher. As expected, MinION
R10.4.1 singleplex data fall between MiSeq and R9.4.1 flow cell data, showing a remarkable
reduction of the sequencing artifacts when applying the 1% frequency filter, albeit not as
high as MiSeq. The differential behavior of these variant callers may explain why, when
analyzing MinION data from both Twist mixtures and wastewater samples, iVar outputted
more signature mutations than LoFreq, and why with MinION R9.4.1 flow cell data and
LoFreq, some variants present at frequencies <5% were lost.

The covered percentage of the gene of interest with enough reads (in our case,
>100 reads) is also a parameter of importance when analyzing sequencing data. It has
been previously reported that MiSeq provides a better coverage than MinION as well as
higher mutation detection [18]. Our results for both Twist RNA mixtures and wastewater
samples are in line with these findings. Particularly, when using LoFreq, MiSeq was able to
detect more signature mutations than MinION, which, summed to the higher coverage,
add robustness to MiSeq results.

With MiSeq data and MinION R10.4.1 flow cell singleplex data, all variants present in
the Twist RNA mixtures could be detected even when present at a very low proportion
(5%), regardless of the variant caller used. However, with MiniON R9.4.1 flow cell data
and LoFreq variant caller, 5% of Alpha, Gamma, and Omicron BA.1 VOCs in mixtures 7,
9, and 10, respectively, could not be detected. MinION R10.4.1 duplex data showed good
estimations even though the detection of mutations corresponding to VOCs that were not
present in mixtures 1–6 hampers the comparisons with the other approaches. Although not
significantly different, correlations between observed and expected VOC frequencies and
average deviation values were better when using Freyja than LoFreq for both sequencing
methods. The use of the Freyja algorithm has been widely implemented in SARS-CoV-2
wastewater-monitoring studies using Illumina sequencing platforms [9,27,28], but not on
ONT sequencing data. To our knowledge, Freyja has only been used with GridION on
clinical specimens [29].

In actual wastewater samples, significant positive correlations between measured
VOC frequencies and values estimated by duplex RT-qPCR assays were observed with both
platforms. MiSeq data performed similarly with both LoFreq and Freyja but showed the
weakest correlations (ρ = 0.75 and ρ = 0.74, respectively) despite outputting more signature
mutations than MinION. In contrast, MinION data with both types of flow cells, R9.4.1
and R10.4.1, even though missing some variants present at low frequencies, showed higher
correlations with RT-qPCR when Freyja was employed to analyze the sequencing data
(ρ = 0.81 and ρ = 0.82, respectively). It is worth noting that using RT-qPCR abundances may
not be as accurate as known Twist RNA concentrations, since many factors (e.g., inhibition)
may affect the RT-qPCR results.

While MiSeq typically outperforms MinION based on the studied parameters, it rep-
resents a more expensive platform, requiring a fixed space, and both library preparation
and run time are generally longer. For instance, the cost of reagents (RT and library prepa-
ration) and flow cells required to analyze a single sample in our laboratory, a university-
based Spanish research laboratory, was approximately 30% higher for MiSeq as compared
to MinION. MinION technology offers an affordable, versatile, portable, and real-time
sequencing alternative.

MinION can be of special interest when using wastewater samples as an early warning
tool to detect the emergence of new potential variants where sequencing turnaround time
is crucial. However, it comes at the cost of losing accuracy and sensitivity when compared
to MiSeq [18,30]. It is worth mentioning that the improvement of both flow cell pores
and reagent chemistry (R10.4.1 flow cells and kit V14), as well as the improvements in
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basecalling procedures (duplex reads), narrows the gap with the Illumina platform. Some
read-pairing issues seem to happen when generating duplex read data probably due to
highly similar amplicons produced when using the ARTIC panel to detect SARS-CoV-2
variants. Duplex data errors may lead to the detection of non-present variants in the
samples, suggesting that this approach should be taken with caution when analyzing
wastewater samples where a mixture of variants is likely to be present.

It has also been demonstrated that data processing by either LoFreq or Freyja plays a
key role in results interpretation, affecting the PPER as well as the accuracy and sensitivity
in both sequencing platforms.

4. Materials and Methods
4.1. Standard RNA Control Mixtures

Solutions of commercially available SARS-CoV-2 synthetic RNA controls (Twist Bio-
sciences, San Francisco, CA, USA) corresponding to Alpha (Control 14, EPI_ISL_710528),
Beta (Control 16, EPI_ISL_678597), Gamma (Control 17, EPI_ISL_792683), Delta (Control
23, EPI_ISL_1544014), and Omicron BA.1 (Control 48, EPI_ISL_6841980) were prepared
in nuclease-free water, each containing 104 genome copies (gc)/µL. Then, these working
solutions were mixed at different proportions as shown in Table 3. Additionally, a solution
containing Twist RNA control corresponding to the original Wuhan SARS-CoV-2 sequence
(Control 2, MN908947.3) was also prepared at the same concentration. cDNA was syn-
thesized using random hexamers, after a thermal 5 min shock at 65 ◦C, using SuperScript
III enzyme (Thermo Fisher Scientific, Waltham, MA, USA), in the presence of RNaseOUT
(Thermo Fisher Scientific, Waltham, MA, USA).

Table 3. Proportion of synthetic RNA controls included in each 10 RNA mixtures.

Sample ID Omicron BA.1 Delta Alpha Beta Gamma

Mix 1 95% 5% - - -
Mix 2 85% 15% - - -
Mix 3 60% 40% - - -
Mix 4 5% 95% - - -
Mix 5 15% 85% - - -
Mix 6 40% 60% - - -
Mix 7 30% 35% 5% 10% 20%
Mix 8 20% 30% 35% 5% 10%
Mix 9 10% 20% 30% 35% 5%
Mix 10 5% 10% 20% 30% 35%

Subsequently, a sub-ARTIC V3 protocol was followed to amplify the spike gene.
Briefly, 2 sets of 14 primers corresponding to amplicons 71 to 84 covering the entire S gene
were separated into 2 pools (odd and even). Then, 5 µL of the previously obtained cDNA
was added to the odd and even pools and a 40-cycle PCR amplification was carried out
using the Q5® High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA, USA).

4.2. Wastewater Samples

Wastewater samples collected from 6 WWTPs located in Spain between 20 December
2021 and 3 January 2022, were chosen for the evaluation of the sequencing methods. With
the aim to avoid biases regarding sampling procedures, three 24h composite samples and
three grab samples were used. Twenty-four-hour composite samples were collected within
the framework of the Catalan Surveillance Network of SARS-CoV-2 in Sewage [31–33].
Grab samples were collected within the framework of the VATar COVID-19 Spanish
wastewater surveillance project [34,35]. Samples were transported refrigerated (0–4 ◦C) in a
portable icebox, concentrated upon arrival, and analyzed the next day. Viral particles were
concentrated from 200 mL of wastewater following an aluminum hydroxide adsorption–
precipitation method [36] and RNA extraction was performed using the Maxwell RSC
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PureFood GMO and Authentication Kit (Promega Corporation, Madison, WI, USA), follow-
ing the manufacturer’s instructions. The six samples were then confirmed to be positive for
SARS-CoV-2 employing both the N1 (CDC) [37] and IP4 (Institut Pasteur) [38] targets.

4.3. Library Preparation

Prior to the beginning of the library preparation, PCR products of both standard
RNA control mixtures and wastewater samples were purified. The RNA controls were
purified with magnetic Kapa Pure Beads (Roche, Basel, Switzerland) and the wastewater
samples with the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) following the
manufacturers’ instructions.

Illumina libraries were prepared using the KAPA HyperPrep Kit (Roche, Basel, Switzer-
land). Briefly, purified DNA of each sample was (i) quantified using a Qubit® dsDNA HS
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA), (ii) normalized to 1.5 ng/µL
with Tris-HCl 10 mM, (iii) end-repaired and A-tailed, (iv) the adaptors were ligated using
the Illumina Kapa Single-Indexed Adapter Kit (Set A + B) and purified with Kapa Pure
Beads, (v) libraries were amplified by an 8-cycle PCR, purified with Kapa Pure Beads, and
quantified with Qubit. Finally, all libraries were pooled and normalized to 4 nM with
Tris-HCl 10 mM. MiSeq® Reagent Kit 600v3 cartridges were used to sequence the prepared
libraries on the MiSeq® platform (Illumina, San Diego, CA, USA) for 58 h.

MinION libraries to load in the R9.4.1 flow cell were prepared following the Nanopore
Classic PCR tiling of SARS-CoV-2 virus protocol [39] with minor changes. Briefly, purified
DNA of each sample was (i) quantified using a Qubit® dsDNA HS Assay Kit, (ii) normalized
to at least 4 ng/µL with Tris-HCl 10 mM, (iii) end-repaired and A-tailed, (iv) the barcodes
were ligated using the EXP-NBD104 and EXP-NBD114 kits, (v) the barcoded samples
were pooled and purified with the AMPure XP magnetic beads (Beckman Coulter, Brea,
CA, USA), and (vi) the adapters were ligated before the final clean-up with AMPure XP
magnetic beads. The obtained library was loaded in a R9.4.1 flow cell (FLO-MIN106D) and
sequenced for 72 h using a MinION Mk1C (ONT, Oxford, UK).

At the time of writing, ONT released the new R10.4.1 flow cells and V14 kit chemistry.
As stated by ONT, the new R10.4.1 flow cells, in combination with the V14 reagents, enable
higher read accuracy (Q20+). Moreover, thanks to a duplex read system in which the
complementary strand is read immediately after the template strand and a consensus
basecall is performed, qualities ~Q30 or above are claimed to be achieved. We used R9.4.1
and R10.4.1 flow cells and reagents to determine the advantages of these new products
when compared to their predecessors and MiSeq.

To prepare the libraries to load into the R10.4.1 flow cell, the ligation sequencing
amplicons—Native Barcoding Kit 24 V14 (SQK-NBD114.24) protocol [40] was followed.
This protocol was chosen because at the time of writing the Nanopore Classic PCR tiling of
SARS-CoV-2 virus protocol used for the R9.4.1 was not yet adapted to the new R10.4.1 flow
cells and kit V14 chemistry. However, the steps are very similar to the ones described for
R9.4.1 flow cells. The main changes are a clean-up step with beads between the end-repair
and the barcode ligation, the use of EDTA instead of heat incubation to stop the barcode
ligation, and the addition of BSA to the library prior to flow cell loading. The obtained
library was then loaded in an R10.4.1 flow cell (FLO-MIN114). R10.4.1 flow cells have two
modes of sequencing, the accurate mode that works at 260 bases per second (bps) and the
default mode, at 400 bps. The accurate mode reduces the data yield but favors the quality
of the obtained reads, and the default mode prioritizes the data yield at the cost of losing
accuracy. The accurate mode was selected for the present study.

Despite the possibility of cleaning and reloading the MinION flow cells, these processes
were not carried out in order to compare the performance of MinION with a single library
load as was carried out with MiSeq. Had the flow cells been reloaded with additional
library material, a higher output would have been expected.
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4.4. MiSeq Run Settings and Data Processing

Default settings were used to perform the sequencing run.Paired-end FASTQ files were
generated from the Illumina MiSeq for each of the synthetic RNA mixtures and sewage
samples. The bioinformatic analysis included the next steps: (i) MiSeq R1 and R2 paired
ends were used to reconstruct each amplicon using the FLASH v1.2.11 program [41], setting
a minimum of 20 overlapping bases and a maximum of 10% mismatches [42], (ii) Phred
score was checked using FastQC v0.11.9 and no reads <Q20 were found, (iii) primers were
trimmed and low-quality bases (<Q15) were removed from the ends of the sequences using
Cutadapt v.3.5 [43], (iv) clean reads were aligned against the region corresponding to the S
gene (21563–25384) of the reference genome NC_045512.2 [44] using minimap2 v.2.23 [45].
The resulting BAM file was used for variant calling with both LoFreq v2.1.5 and iVar v1.3.1
(embedded within Freyja v1.3.6) [7,8]. In order to equally process MiSeq and MinION
data, single-nucleotide insertions, which are most likely to be sequencing artifacts (mainly
present in MinION data), were filtered out and frequencies were adjusted using the BAM
alignment positions.

4.5. MinION Run Settings and Data Processing

A run length of 72 h with active channel selection activated, a pore scan frequency of
1.5 h, and a minimum read length of 20 bp were set for both R9.4.1 and R10.4.1 flow cells.
Real-time basecalling and de-multiplexing were disabled.

For R9.4.1 flow cell data, raw FAST5 files were basecalled and de-multiplexed after the
run using Guppy v.6.0.6 into FASTQ files. The basecalling was carried out with the super-
accurate (SUP) mode and with a minimum Q-score of 8. The de-multiplexing step was car-
ried out with the options “require_barcodes_both_ends” and “detect_mid_strand_barcodes”.

For R10.4.1 flow cell data, raw FAST5 files were first basecalled with Guppy selecting
the specific SUP mode for 260 bps and a minimum Q-score of 8. Using Duplex Tools
v0.3.1 [46], the “sequencing_summary.txt” file generated in the basecalling step was pro-
cessed first by “pairs_from_summary” to identify duplex pair candidates, followed by
“filter_pairs” to filter the selected read candidates. After these steps, two files were gener-
ated, “pair_ids_filtered.txt” and “pair_ids.txt” which were copied into the folder containing
the FAST5 files. Finally, using Guppy, the duplex basecalling was performed over the
raw FAST5 files using the 260 bps SUP mode and options “duplex_pairing_mode” and
“duplex_pairing_file”.

The resulting FASTQ files were quality checked using Nanoplot v1.40.2 [14] and a
mean quality of Q13 was obtained for Twist mixtures and wastewater samples when using
the R9.4.1 flow cell. With the R10.4.1 flow cell, a mean quality of Q14.4 was obtained for
singleplex data and of 22.9 for duplex data. After QC, reads underwent the same steps
described for MiSeq, from step (iii) onwards.

4.6. Variant Callers

LoFreq v2.1.5 and iVar v1.3.1 (Freyja v1.3.6) were used to determine the impact of
using different variant callers on abundance calculation approaches in the obtained results.

LoFreq was run with “call-parallel” and “no-default-filter” options. Despite using
the “no-default-filter” option, alignment qualities, multiple testing correction, and p-value
threshold filtering on variant quality were still active. This parameter was used with the
aim to increase the sensitivity of the variant calling in MinION data.

iVar was run with the “freyja variants” command so default values were used and
a variant call format (VCF) file was generated. To calculate the different variant relative
abundances, the “freyja demix” command was used and a TSV file was generated with the
corresponding variant percentages [9]. Freyja was adapted to work only with the spike
gene instead of the whole genome.
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4.7. Per Position Error Rate (PPER) Calculation

The calculation of the PPER was carried out through the following formula:

PPER = (Nº of reads of the sequencing errors)/(Total S gene reads) (1)

If there are different sequencing errors in the same read, they both add to the PPER value.

4.8. VOC Abundance Estimation

Two different approaches were used to calculate the abundance of the present VOCs.
When using LoFreq, VOC abundances were calculated as the mean percentage of the
signature mutations corresponding to each VOC, including the following criteria: (i) only
mutations with a number of reads ≥ 100 were included; (ii) positions with coverage
≥100 where a mutation was expected but not detected were not considered; and (iii) only
single-nucleotide variants (SNVs) were used for the calculations. In contrast, when using
Freyja (v1.3.6), the relative abundance of the detected variants was automatically calculated
and collected in the summarized.tsv file. Of note, as Freyja is based on the UShER [47]
phylogenetic tree, deletions are not considered to assign variants.

4.9. Relative Quantification of Delta and Omicron BA.1

Two duplex RT-qPCR assays were developed to determine the proportion of Delta-
and Omicron BA.1-specific signature mutations: S:Del157/158 (22029_22034DelAGTTCA)
and S:Ins214 (22121InsGAGCCAGAA), respectively, as previously performed for other
specific mutations [35]. RT-qPCR assays were performed using 400 nM of each primer
and 200 nM of each of the two probes targeting genomes with and without the specific
signature mutation (Table 4).

Table 4. Primers and probes used for Omicron BA.1 and Delta duplex RT-qPCR assays.

Mutation Name Sequence (5′–3′) 1 Length
(nt)

Amplicon
(pb)

S:Del157/158 For-S21994 TTACCACAAAAACAACAAAAGTTGG 25 83–89
Rev-S22057 GCTGAGAGACATATTCAAAAGTGCAA 26
Probe-Delta FAM/TGGAAA+G+T+GGAGTTTATT+C+TAGTG/IABkFQ 24

Probe-NoDelta HEX/AGT+GAGTTCA+G+AGTTTATT+CTA+GTG/IABkFQ 25

S:Ins214 For-S22102 AGGAAAACAGGGTAATTTCAAAAATC 26 140–149
Rev-S22220 CCAATGGTTCTAAAGCCGAAAA 22
Probe-BA.1 FAM/TGCGTGAGC/ZEN/CAGAAGATCTCCCTCA/IABkFQ 30

Probe-NoBA.1 HEX/CGCCTATTA/ZEN/ATTTAGTGCGTGATCTCCCTCA/IABkFQ 30
1 +A, +G, +C, +T indicate locked nucleic acids (LNAs).

RT-qPCR mastermixes were prepared using the PrimeScript One-Step RT-PCR Kit
(Takara Bio, San Jose, CA, USA), and the temperature program was 10 min at 50 ◦C, 3 min
at 95 ◦C, and 45 cycles of 3 s at 95 ◦C and 30 s at 60 ◦C. Twist synthetic SARS-CoV-2 RNA
controls (Control 2, Control 23, and Control 48) were used to prepare standard curves for
genome quantification. The limit of detection (LOD) and limit of quantification (LOQ)
were determined for each specific target by running a series of dilutions of the target with
4-10 replicates per dilution. Parameters of all standard curves and estimated LOD and
LOQ for the four targets are summarized in Table S1. Percentages of SARS-CoV-2 genomes
containing each specific signature mutation were calculated as previously described [35].

5. Conclusions

In summary, our study aiming at comparing the performance of MiSeq and MinION
sequencing platforms coupled to different bioinformatic pipelines reinforces the idea that
Nanopore technology coupled with improved bioinformatic pipelines based on Freyja
could serve as a fast tool to generate systematic information on known SARS-CoV-2 variant
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tracking. However, the Illumina technology should still be considered as the gold standard
for the identification and tracking of novel mutations and to confirm the circulation of
minority variants.

Nevertheless, the recent improvements made by ONT, despite the need for polishing,
offer promising perspectives.
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