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A B S T R A C T

In most economic applications of cooperative games, externalities prevail: the worth of a coalition depends on
how the other players are organized. We show that there is a unique natural way of extending the prenucleolus
to games with coalitional externalities. This is in contrast to the Shapley value and the core for which many
different extensions have been proposed.
1. Introduction

There is an abundance of economic situations where the worth of
a coalition depends on how the other players are organized. In such
situations a game with externalities associates with each coalition and
each possible partition of the other players a worth of that (embedded)
coalition. The literature on coalitional games with externalities is still
relatively limited compared to the solid foundations of the theory of
coalitional games without externalities.

For classic coalitional games, the most applied set-valued solution
concept is the core and the three most applied single-valued solution
concepts are the Shapley value, the prenucleolus and the nucleolus.
For both the core and the Shapley value many different extensions
were proposed to games with externalities. For instance, for the core
the recursive approach by Kóczy (2007) and the expectation forma-
tion approach by Bloch and van den Nouweland (2014) and for the
Shapley value the average approach by Macho-Stadler et al. (2007), the
marginality approach by de Clippel and Serrano (2008), the utilization
of reduction and consistency by Dutta et al. (2010), and the Harsanyi
(1959) dividends by Macho-Stadler et al. (2010) and Huettner and
Casajus (2019). All these contributions provide families of extensions.1
To date, an extension of the (pre)nucleolus is missing in the literature.2

✩ First version: September 2017 (CIREQ Cahier 08-2017). We are grateful to two anonymous reviewers and the associate editor for useful comments and
suggestions. The first author acknowledges financial support from the research grants PID2020-113110GB-100/AEI/10.13039/501100011033 (Ministerio de Ciencia
e Innovación, Spain) and 2021SGR00306 (Generalitat de Catalunya). The second author acknowledges financial support from the SSHRC (Canada) under Insight
Grant 435-2023-0129.
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E-mail addresses: mikel.alvarez@ub.edu (M. Álvarez-Mozos), lars.ehlers@umontreal.ca (L. Ehlers).

1 Recently, Alonso-Meijide et al. (2019) provide a characterization of a class of Shapley values covering all the above families of extensions of the Shapley
value.

2 Kóczy (2018) provides a survey of the literature on partition function form games.

We provide a natural extension of the prenucleolus from coali-
tional games without externalities to games with externalities: for each
embedded coalition consisting of the coalition and partition of the
other players, we measure the excess of this embedded coalition as
the difference between the worth of the embedded coalition minus
what the coalition gets in the allocation (which equals the sum of
the allotments of the players in the coalition). For each allocation,
then we rearrange the excesses of all embedded coalitions in non-
increasing order. The prenucleolus is then simply the set of efficient
allocations which lexicographically minimize the rearranged excesses
of all embedded coalitions. We show that (i) the prenucleolus is unique
and (ii) the prenucleolus of a game with externalities coincides with
prenucleolus of the following associated game without externalities: for
each coalition we take the maximal worth among all possible organi-
zations of the other players. Indeed, Fact (ii) is our key contribution.
In the spirit of de Clippel and Serrano (2008), we obtain a unique
‘‘externality free’’ extension of the prenucleolus.

We also present an axiomatic foundation of the new solution con-
cept. Indeed, we can adapt the properties used by Sobolev (1975) in the
well known characterization of the prenucleolus, namely anonymity,
covariance and the reduced game property, to games with externalities
quite naturally. The reduced game property shapes a consistency prin-
ciple and is of paramount importance in our result. Such a principle
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states that in the event that some agents leave the game with the
proposed payoffs and the remaining agents renegotiate the sharing in
a reduced game, the payoffs do not change. We consider two natural
ways to extend the Davis and Maschler (1965) reduced game to our
framework. The first and more naive is a classic coalitional game
without externalities that enables us to characterize the prenucleolus.
The second inherits the externalities of the underlying game and yields
a weaker property.

An additional important feature of the prenucleolus for games with
externalities is the fact that, when the optimistic core (Shenoy, 1979) is
non-empty it is in the core of the game with respect to any expectation
formation rule (Bloch and van den Nouweland, 2014). Indeed, many
different core notions have been introduced for games with externali-
ties and our solution concept is a point in all of them when the smallest
core is non-empty. This is in contrast with the proposed extensions of
the Shapley value outlined above, which can prescribe payoff vectors
that some coalitions may block based on their expected outside options.

We also introduce a family of extensions of the nucleolus from
coalitional games without externalities to games with externalities.
Contrary to the Shapley value and the prenucleolus, the core and
the nucleolus might be empty. More precisely, for coalitional games
without externalities the core and the nucleolus are empty when the
set of individually rational and efficient allocations is empty. For
coalitional games with externalities, individual rationality depends on
the possible partition of the other players. We introduce a general
individual rationality constraint for such situations and define and
characterize the nucleolus using our main result for the prenucleolus.

We proceed as follows. In Section 2 we extend the prenucleolus
from classic games to games with externalities and present our main
result, its equivalence with the prenucleolus of an associated game
without externalities. We also provide some intermediate results like
the characterization by means of balanced collections. In Section 3
we present an axiomatic characterization of the prenucleolus in the
spirit of Sobolev (1975). Section 4 contains a family of extensions of
the nucleolus. Section 5 discusses other interesting properties of the
prenucleolus.

2. The prenucleolus

Let  stand for the nonempty set of potential players. Let 𝑁 ⊂ 
be a finite nonempty set of players. The set of partitions of 𝑁 is denoted
by (𝑁).3 An embedded coalition of 𝑁 is a pair (𝑆, 𝑃 ) where 𝑆 ⊆ 𝑁 and
𝑃 ∈ (𝑁 ⧵𝑆). We denote by 𝑁 the set of all embedded coalitions of
𝑁 . Note that

𝑃 ∈ (𝑁) ⇔ (𝑆, 𝑃∖{𝑆}) ∈ 𝑁 for all 𝑆 ∈ 𝑃 .

A coalitional game with externalities (or for short, game) is a pair (𝑁, 𝑣)
consisting of a finite set of players 𝑁 ⊂  and a partition function
𝑣∶ 𝑁 → R, satisfying 𝑣(∅, 𝑃 ) = 0, for every 𝑃 ∈ (𝑁). The set
of all games is denoted by . Given (𝑁, 𝑣) ∈ , we say that (𝑁, 𝑣) is
a coalitional game without externalities if for all (𝑆, 𝑃 ), (𝑆,𝑄) ∈ 𝑁 ,
𝑣(𝑆, 𝑃 ) = 𝑣(𝑆,𝑄). In this case we may simply write 𝑣(𝑆). The set of all
coalitional games without externalities is denoted by .

Our purpose is to introduce a point-valued solution concept for
coalitional games with externalities. Given a game (𝑁, 𝑣) ∈ , an
allocation for (𝑁, 𝑣) is a vector 𝑥 = (𝑥𝑖)𝑖∈𝑁 ∈ R𝑁 . We denote by
𝑋(𝑁, 𝑣) the set of all efficient allocations (or preimputations) for (𝑁, 𝑣),
i.e., 𝑋(𝑁, 𝑣) =

{

𝑥 ∈ R𝑁 ∶ 𝑥(𝑁) = 𝑣(𝑁, ∅)
}

.4 Given a game (𝑁, 𝑣) ∈ ,
an embedded coalition (𝑆, 𝑃 ) ∈ 𝑁 , and an efficient allocation 𝑥 ∈
𝑋(𝑁, 𝑣), the excess of (𝑆, 𝑃 ) at 𝑥 is defined by

𝑒(𝑆, 𝑃 , 𝑥, 𝑣) = 𝑣(𝑆, 𝑃 ) − 𝑥(𝑆).

3 By convenience, let ∅ be the only partition in (∅).
4 For every 𝑥 ∈ R𝑁 and 𝑆 ⊆ 𝑁 , 𝑥(𝑆) = ∑

𝑥 .
11

𝑖∈𝑆 𝑖
It measures the dissatisfaction of coalition 𝑆 at 𝑥 when the complemen-
tary coalition is organized according to 𝑃 .

Given 𝑚 ∈ N, let R𝑚
≥ denote the set of all vectors 𝑥 ∈ R𝑚 such

hat 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑚, i.e. the coordinates of 𝑥 are arranged in non-
ncreasing order. Let ≾ denote the lexicographical ordering on R𝑚

≥: for
very 𝑥, 𝑦 ∈ R𝑚

≥, 𝑥 ≾ 𝑦 means that either 𝑥 = 𝑦 or there is 1 ≤ 𝑡 ≤ 𝑚,
uch that 𝑥𝑖 = 𝑦𝑖 for every 1 ≤ 𝑖 < 𝑡 and 𝑥𝑡 < 𝑦𝑡. We write 𝑥 ≺ 𝑦 if 𝑥 ≾ 𝑦

and 𝑦 ̸≾ 𝑥.
Define 𝑐(𝑛) = |

|

|

𝑁 |

|

|

where 𝑛 = |𝑁|. For a given (𝑁, 𝑣) ∈  and 𝑥 ∈
(𝑁, 𝑣), we are going to build a vector with all the excesses arranged

n non-increasing order. Formally, the vector of ordered excesses is
efined as follows5:

(𝑥, 𝑣) ∈ R𝑐(𝑛)
≥ , where

{

𝜃𝑖(𝑥, 𝑣) ∶ 1 ≤ 𝑖 ≤ 𝑐(𝑛)
}

=
{

𝑒(𝑆, 𝑃 , 𝑥, 𝑣) ∶ (𝑆;𝑃 ) ∈ 𝑁}

(and 𝜃1(𝑥, 𝑣) ≥ 𝜃2(𝑥, 𝑣) ≥ ⋯ ≥ 𝜃𝑐(𝑛)(𝑥, 𝑣)).

efinition 1. The prenucleolus of a game with externalities is the set
f efficient allocations which lexicographically minimize the ordered
ector of excesses:

(𝑁, 𝑣) = {𝑥 ∈ 𝑋(𝑁, 𝑣) ∶ 𝜃(𝑥, 𝑣) ≾ 𝜃(𝑦, 𝑣) for all 𝑦 ∈ 𝑋(𝑁, 𝑣)} .

The first step is to show that the prenucleolus is a well defined
olution. Let  ⊆ . Formally, a (single-valued) solution on  is a
apping 𝑓 that assigns an allocation 𝑓 (𝑁, 𝑣) ∈ R𝑁 to every game

𝑁, 𝑣) ∈ .
The second step will relate the prenucleolus of games with external-

ties to the classic prenucleolus (Schmeidler, 1969) of a particular game
ithout externalities. The latter is a well known solution on  that we
enote by 𝜂∗ and can be defined for every (𝑁, 𝑣) ∈  by 𝜂∗(𝑁, 𝑣) =

𝜂(𝑁, 𝑣) (where we use the first step, or simply 𝜂∗ is the restriction of 𝜂 to
). This result is one of our key insights: the prenucleolus of a partition
function form game is uniquely defined and given by the prenucleolus
of its associated ‘‘externality-free’’ max-game where for any coalition 𝑆
its worth is equal to the maximum of the worths 𝑣(𝑆, 𝑃 ) where 𝑃 is any
possible organization of the other players. Formally, for any (𝑁, 𝑣) ∈ ,
let (𝑁, 𝑣max) ∈  be defined for all 𝑆 ⊆ 𝑁 by,

𝑣max(𝑆) = max {𝑣(𝑆, 𝑃 ) ∶ 𝑃 ∈ (𝑁 ⧵ 𝑆)} .

The following is our main result.

heorem 1.

(i) The prenucleolus is a (single-valued) solution on .
(ii) For all (𝑁, 𝑣) ∈ , we have 𝜂(𝑁, 𝑣) = 𝜂∗(𝑁, 𝑣max).

roof. (i): It follows from Corollary 4.6 of Justman (1977), be-
cause 𝑋(𝑁, 𝑣) is a convex subset of R𝑁 and for every (𝑆, 𝑃 ) ∈ 𝑁 ,
(𝑆, 𝑃 , 𝑥, 𝑣) is a linear function on 𝑋(𝑁, 𝑣).6

(ii): In order to show (ii), we recall Kohlberg’s (1971) characteriza-
tion of the prenucleolus of a characteristic function game.7

5 Here identical numbers appear multiple times, i.e. we could have
2, 2, 2, 1, 1, 0,…}.

6 For completeness, we include here Justman’s result. Let 𝑋 be a convex
subset of a linear space and 𝑈 = {𝑢𝑖}𝑚𝑖=1 a set of convex real valued functions
on 𝑋. For each 𝑥 ∈ 𝑋, let 𝜃(𝑥) be the vector in R𝑚 whose coordinates are
{𝑢𝑖(𝑥)}𝑚𝑖=1 arranged in non-increasing order. Define 𝑁(𝑋,𝑈 ) = {𝑥 ∈ 𝑋 ∶ 𝜃(𝑥) ⪯
𝜃(𝑦),∀𝑦 ∈ 𝑋}. Then 𝑁(𝑋,𝑈 ) is convex and 𝑢𝑖(𝑥) = 𝑢𝑖(𝑦) for every 𝑥, 𝑦 ∈ 𝑁(𝑋,𝑈 )
and 1 ≤ 𝑖 ≤ 𝑚.

7 Note that Kohlberg’s characterization deals with the nucleolus on the set
of characteristic function games with non-empty imputation set. The result we
present here is actually Theorem 5.2.6 of Peleg and Sudhölter (2007).
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Definition 2. Let (𝑁, 𝑣) ∈ . For every 𝑥 ∈ R𝑁 with 𝑥(𝑁) = 𝑣(𝑁)
and 𝛼 ∈ R, define

(𝛼, 𝑥, 𝑣) = {𝑆 ⊆ 𝑁 ∶ 𝑣(𝑆) − 𝑥(𝑆) ≥ 𝛼} .

A vector 𝑥 ∈ R𝑁 with 𝑥(𝑁) = 𝑣(𝑁) is said to have Property I with
respect to (𝑁, 𝑣) if the following condition is satisfied for every 𝛼 ∈ R
where (𝛼, 𝑥, 𝑣) ≠ ∅: If 𝑦 ∈ R𝑁 is such that 𝑦(𝑁) = 0 and 𝑦(𝑆) ≥ 0 for
every 𝑆 ∈ (𝛼, 𝑥, 𝑣), then 𝑦(𝑆) = 0 for every 𝑆 ∈ (𝛼, 𝑥, 𝑣).

Theorem 2. (Kohlberg, 1971) Let (𝑁, 𝑣) ∈  and 𝑥 ∈ R𝑁 with 𝑥(𝑁) =
𝑣(𝑁). Then 𝑥 = 𝜂∗(𝑁, 𝑣) if and only if 𝑥 has Property I with respect to
(𝑁, 𝑣).

Let (𝑁, 𝑣) ∈ , for every 𝑥 ∈ 𝑋(𝑁, 𝑣) and 𝛼 ∈ R, define (𝛼, 𝑥, 𝑣) =
 (𝛼, 𝑥, 𝑣max). Take 𝑥 = 𝜂(𝑁, 𝑣), let 𝛼 ∈ R be such that (𝛼, 𝑥, 𝑣) ≠ ∅ and
𝑦 ∈ R𝑁 such that 𝑦(𝑁) = 0 and 𝑦(𝑆) ≥ 0 for every 𝑆 ∈ (𝛼, 𝑥, 𝑣). We
denote by (𝛼, 𝑥, 𝑣) the set of embedded coalitions whose excesses at 𝑥
are no less than 𝛼, i.e., (𝛼, 𝑥, 𝑣) = {(𝑆, 𝑃 ) ∈ 𝑁 ∶ 𝑒(𝑆, 𝑃 , 𝑥, 𝑣) ≥ 𝛼}.
Note that (𝛼, 𝑥, 𝑣) contains the embedded coalitions whose excesses
at 𝑥 are the first coordinates of 𝜃(𝑥, 𝑣). Define 𝑧𝜖 = 𝑥 + 𝜖𝑦, where
𝜖 > 0. Note that 𝑧𝜖 ∈ 𝑋(𝑁, 𝑣). We choose 𝜖∗ > 0 such that for every
(𝑆, 𝑃 ) ∈ (𝛼, 𝑥, 𝑣) and every (𝑇 ,𝑄) ∉ (𝛼, 𝑥, 𝑣),

𝑒(𝑆, 𝑃 , 𝑧𝜖∗ , 𝑣) > 𝑒(𝑇 ,𝑄, 𝑧𝜖∗ , 𝑣). (1)

In other words, we choose 𝜖∗ > 0 in such a way that the excesses of the
embedded coalitions in (𝛼, 𝑥, 𝑣) are in the first positions of 𝜃(𝑧𝜖∗ , 𝑣).
Next, for every (𝑆, 𝑃 ) ∈ (𝛼, 𝑥, 𝑣),

𝑒(𝑆, 𝑃 , 𝑧𝜖∗ , 𝑣) ≤ 𝑒(𝑆, 𝑃 , 𝑥, 𝑣), (2)

because 𝑦(𝑆) ≥ 0 for every 𝑆 ∈ (𝛼, 𝑥, 𝑣) and (𝑆, 𝑃 ) ∈ (𝛼, 𝑥, 𝑣) implies
𝑆 ∈ (𝛼, 𝑥, 𝑣).

Finally, suppose that there is 𝑆 ∈ (𝛼, 𝑥, 𝑣) such that 𝑦(𝑆) > 0. Then,
by (1) and (2), 𝜃(𝑧𝜖∗ , 𝑣) ≺ 𝜃(𝑥, 𝑣) which contradicts our assumption. We
have shown that 𝑦(𝑆) = 0 for every 𝑆 ∈ (𝛼, 𝑥, 𝑣), i.e., 𝑥 has Property
I with respect to (𝑁, 𝑣max). Then, by Theorem 2, 𝑥 = 𝜂∗(𝑁, 𝑣max) as
desired. □

Remark 1. One may be dissatisfied with the fact to minimize the vector
of excesses of all embedded coalitions. In other words, one could be
dissatisfied with the fact that the excess of the same coalition may
vary with the coalitions formed in its complement. After all, these
different ‘‘complaints’’ are not compatible. However, a similar criticism
applies to the prenucleolus of coalitional games without externalities:
why should one take into account the excess of all coalitions while
clearly any given player can belong to only one of these? Therefore,
the prenucleolus could be chosen by a third party who has no idea
what coalition structure may arise and at the same time desires to keep
dissatisfaction at its lowest in a worst-case scenario analysis. It is with
that interpretation in mind that our definition is the natural extension
of the prenucleolus from coalitional games without externalities to
coalitional games with externalities.

Remark 2. Two interesting instances in which the max-game is
specially simple are situations where externalities are all negative or
positive. A game has negative externalities if for every (𝑆, 𝑃 ) ∈ 𝑁

and every 𝑇 ,𝑄 ∈ 𝑃 , 𝑣(𝑆, 𝑃 ) ≥ 𝑣(𝑆, (𝑃 ⧵ {𝑇 ,𝑄}) ∪ {𝑇 ∪𝑄}). A game has
positive externalities if for every (𝑆, 𝑃 ) ∈ 𝑁 and every 𝑇 ,𝑄 ∈ 𝑃 ,
𝑣(𝑆, 𝑃 ) ≤ 𝑣(𝑆, (𝑃 ⧵ {𝑇 ,𝑄}) ∪ {𝑇 ∪ 𝑄}). Then, for games with negative
externalities 𝑣max(𝑆) = 𝑣(𝑆, {{𝑖} ∶ 𝑖 ∈ 𝑁 ⧵ 𝑆}) and for games with
positive externalities 𝑣max(𝑆) = 𝑣(𝑆, {𝑁 ⧵ 𝑆}) (where 𝑆 ⊆ 𝑁).

Remark 3. Implicitly, we assume that the grand coalition is the most
efficient organization of players. Convex games as defined by Hafalir
(2007) and superadditive games introduced in Alonso-Meijide et al.
(2022) are two classes of games where this happens. In case the grand
12

coalition is not the most efficient organization of the set of players, c
the set of preimputations 𝑋(𝑁, 𝑣) should be replaced by {𝑥 ∈ R𝑁 ∶
𝑥(𝑆) = 𝑣(𝑆, 𝑃 ⧵ {𝑆}),∀𝑆 ∈ 𝑃 }, where 𝑃 ∈ (𝑁) is such that for every
𝑄 ∈ (𝑁), ∑𝑆∈𝑃 𝑣(𝑆, 𝑃 ⧵ {𝑆}) ≥

∑

𝑆∈𝑄 𝑣(𝑆,𝑄 ⧵ {𝑆}).8 This leads to the
prenucleolus of the max-game with the coalition structure 𝑃 as defined
by Aumann and Dreze (1974).

Remark 4. Our approach can be used to generalize the prekernel,
a superset of the prenucleolus, to games with externalities by just
considering the excesses to all embedded coalitions. Then, the maximal
surplus of an agent over another leads trivially to the max-game.

3. Foundation

The purpose of this section is to present an axiomatic foundation
of the solution introduced above. The first property we would like to
impose on a solution is the classic anonymity.

Anonymity: A solution 𝑓 is anonymous if for every (𝑁, 𝑣) ∈  and every
injection 𝜋 ∶𝑁 →  ,

𝑓 (𝜋(𝑁), 𝜋𝑣) = 𝜋 (𝑓 (𝑁, 𝑣)) ,

where (𝜋(𝑁), 𝜋𝑣) ∈  is defined for every (𝑆, 𝑃 ) ∈ 𝑁 , by 𝑣(𝑆, 𝑃 ) =
𝜋𝑣(𝜋(𝑆), 𝜋(𝑃 )) with 𝜋(𝑃 ) = {𝜋(𝑇 ) ∶ 𝑇 ∈ 𝑃 }.

In words, anonymity states that relabeling of players should not
affect the solution.

The next property is a natural generalization of a classic property.

Covariance: A solution 𝑓 is covariant if for every (𝑁, 𝑣) ∈ , 𝛼 > 0, and
𝛽 ∈ R𝑁 ,

𝑓 (𝑁, 𝛼𝑣 ⊕ 𝛽) = 𝛼𝑓 (𝑁, 𝑣) + 𝛽,

where (𝑁, 𝛼𝑣 ⊕ 𝛽) ∈  is defined for every (𝑆, 𝑃 ) ∈ 𝑁 , by (𝛼𝑣 ⊕
𝛽)(𝑆, 𝑃 ) = 𝛼𝑣(𝑆, 𝑃 ) + 𝛽(𝑆).

Note that covariance entails linearity of an arbitrary game with an
inessential game.9

Next, we present the most important property of the characteri-
zation result which states that a solution should not be affected if
a coalition renegotiates the sharing in a particular subgame. Given
(𝑁, 𝑣) ∈ , ∅ ≠ 𝑆 ⊆ 𝑁 , and 𝑥 ∈ R𝑁 . The reduced game with respect
to 𝑆 and 𝑥 is denoted by

(

𝑆, 𝑣𝑆,𝑥
)

∈  and is defined for every 𝑇 ⊆ 𝑆
by

𝑣𝑆,𝑥(𝑇 )

=

⎧

⎪

⎨

⎪

⎩

0 if 𝑇 = ∅,
𝑣(𝑁, ∅) − 𝑥(𝑁 ⧵ 𝑆) if 𝑇 = 𝑆,
max

{

𝑣(𝑅,𝑄) − 𝑥(𝑅 ⧵ 𝑇 ) ∶ (𝑅,𝑄) ∈ 𝑁 and 𝑅 ∩ 𝑆 = 𝑇
}

otherwise.

The reduced game 𝑣𝑆,𝑥 is a coalitional game without externalities
and in Section 5 we discuss a reduced game inheriting externalities.
The idea behind the above reduced game is that if agents in 𝑁 ⧵𝑆 leave
the game with the payoff proposed by 𝑥, the remaining agents interact
in a new coalitional game without externalities. In the latter game,
the worth of the grand coalition, 𝑆, is determined by the remainder
𝑣(𝑁, ∅) − 𝑥(𝑁 ⧵ 𝑆) and every other coalition 𝑇 ≠ ∅ assesses its worth
by taking the maximum over all possible embedded coalitions obtained
when some agents in 𝑁⧵𝑆 may join coalition 𝑇 . Note that this coincides
with the Davis and Maschler (1965) reduced game with the exception
that instead the worth of a bare coalition, say 𝑅, we consider the worth
of every embedded coalition of the type (𝑅,𝑄).

Reduced Game Property: A solution 𝑓 satisfies the reduced game
property if for all (𝑁, 𝑣) ∈ , all ∅ ≠ 𝑆 ⊆ 𝑁 , and all 𝑖 ∈ 𝑆 (where

8 If 𝑃 is not unique, we could use a tie-breaking rule.
9 An inessential game is built from any vector 𝛽 ∈ R𝑁 , by assigning to each

oalition 𝑆 ⊆ 𝑁 the worth 𝛽(𝑆).
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𝑥 = 𝑓 (𝑁, 𝑣)), we have

𝑥𝑖 = 𝑓𝑖
(

𝑆, 𝑣𝑆,𝑥
)

.

If a solution meets the reduced game property, then the payoffs
remain unaffected when agents in a coalition renegotiate in the reduced
game.

Theorem 3. Let  be infinite. The prenucleolus 𝜂 is the only solution on
satisfying anonymity, covariance, and the reduced game property.

Before we continue, it is helpful to recall the characterization of
∗ by Sobolev (1975). In order to present it, we can consider variants
f the three properties we have introduced above that only apply to
ames without externalities. That is, let anonymity∗, covariance∗, and
he reduced game property∗ be the restrictions of anonymity, covariance,
nd the reduced game property to solutions on , respectively.10

heorem 4. (Sobolev, 1975) Let  be infinite. The prenucleolus 𝜂∗ is the
nly solution on  satisfying anonymity∗, covariance∗, and the reduced
ame property∗.

We are now in the position to show our characterization result.

roof of Theorem 3. Existence: Using (ii) in Theorems 1 and 4 we get
he existence from the following observations. Let (𝑁, 𝑣) ∈ . First, for
very injection 𝜋 ∶𝑁 →  , 𝜋(𝑣max) = (𝜋𝑣)max. Second, for every 𝛼 > 0
nd 𝛽 ∈ R𝑁 , (𝛼𝑣⊕𝛽)max = 𝛼𝑣max+𝛽. Third, if 𝑥 = 𝜂(𝑁, 𝑣) and ∅ ≠ 𝑆 ⊆ 𝑁 ,

then
(

𝑣𝑆,𝑥
)max = (𝑣max)𝑆,𝑥.

Uniqueness: Let (𝑁, 𝑣) ∈  and 𝑓 be a solution on  satisfying the
hree properties. If 𝑥 = 𝑓 (𝑁, 𝑣), then from the definition of the reduced

game it follows that for every (𝑆, 𝑃 ) ∈ 𝑁 , 𝑣𝑁,𝑥(𝑆, 𝑃 ) = 𝑣max(𝑆). Then,
by the reduced game property

𝑓 (𝑁, 𝑣) = 𝑓 (𝑁, 𝑣𝑁,𝑥) = 𝑓 (𝑁, 𝑣max).

Finally, using Theorem 4 and the fact that (𝑁, 𝑣max) ∈ ,

𝑓 (𝑁, 𝑣max) = 𝜂∗(𝑁, 𝑣max) = 𝜂(𝑁, 𝑣),

where the last equality follows from (ii) in Theorem 1. □

4. The nucleolus

Given (𝑁, 𝑣) ∈ , an allocation 𝑥 ∈ R𝑁 is individually rational
if for all 𝑖 ∈ 𝑁 , 𝑥𝑖 ≥ 𝑣({𝑖}). An individually rational and efficient
allocation of a game without externalities is called an imputation.
It is well known that the prenucleolus of coalitional games without
externalities may not prescribe an individually rational allocation in
games with non-empty imputation set. The nucleolus can be seen as the
natural solution to this issue. It is the allocation which lexigographically
minimizes the ordered vector of excesses on the set of imputations.
However, this leads to a solution which is well defined only for games
with non-empty imputation set.

When considering coalitional games with externalities, the worth of
{𝑖} might depend on which coalitions the other agents will form. Below
we consider a general formulation. An individual rationality constraint is
a solution 𝑐 on  such that for all (𝑁, 𝑣) ∈ ,

𝑐𝑖(𝑁, 𝑣) ∈
[

min
𝑃∈(𝑁⧵{𝑖})

𝑣({𝑖}, 𝑃 ), max
𝑃∈(𝑁⧵{𝑖})

𝑣({𝑖}, 𝑃 )
]

for all 𝑖 ∈ 𝑁.

This just requires that the individual rationality constraint shall be for
every player between its pessimistic and optimistic worth. Now given
an individual rationality constraint 𝑐, we define the set of 𝑐-imputations
by 𝑋𝑐 (𝑁, 𝑣) = {𝑥 ∈ 𝑋(𝑁, 𝑣) ∶ 𝑥𝑖 ≥ 𝑐𝑖(𝑁, 𝑣) for all 𝑖 ∈ 𝑁}.

10 Orshan (1993) shows that in Theorem 3 anonymity may be replaced by
qual treatment. For coalitional games with externalities there exist different
otions of equal treatment and we have decided to keep anonymity as in
obolev (1975).
13
Definition 3. Given an individual rationality constraint 𝑐 and (𝑁, 𝑣) ∈
 such that 𝑋𝑐 (𝑁, 𝑣) ≠ ∅, the 𝑐-nucleolus of a game with externalities is
defined by

𝜂𝑐 (𝑁, 𝑣) =
{

𝑥 ∈ 𝑋𝑐 (𝑁, 𝑣) ∶ 𝜃(𝑥, 𝑣) ≾ 𝜃(𝑦, 𝑣) for all 𝑦 ∈ 𝑋𝑐 (𝑁, 𝑣)
}

.

The 𝑐-nucleolus coincides with the nucleolus on the set of coali-
tional games without externalities with a non-empty set of imputations.
Whenever the 𝑐-nucleolus is defined it is single-valued and for any
game, it lexicographically minimizes the ordered vector of excesses on
the set of 𝑐-imputations for the associated max-game.

Proposition 1. Let 𝑐 be an individual rationality constraint. Then for all
(𝑁, 𝑣) ∈  such that 𝑋𝑐 (𝑁, 𝑣) ≠ ∅ we have

(i) 𝜂𝑐 (𝑁, 𝑣) is single-valued; and
(ii) 𝜂𝑐 (𝑁, 𝑣) =

{

𝑥 ∈ 𝑋𝑐 (𝑁, 𝑣) ∶ 𝜃(𝑥, 𝑣max) ≾ 𝜃(𝑦, 𝑣max) for all 𝑦 ∈
𝑋𝑐 (𝑁, 𝑣)

}

.

Proof. The proof follows the same lines as that of Theorem 1. For
(i), Justman’s Corollary 4.6 applies. To show (ii), one must replace
𝑋(𝑁, 𝑣) by 𝑋𝑐 (𝑁, 𝑣) and 𝜂(𝑁, 𝑣) by 𝜂𝑐 (𝑁, 𝑣) and use the characterization
of the nucleolus by Kohlberg (1971)11 instead of its adaptation for the
prenucleolus that we presented therein. □

Remark 5. For  with non-empty set of imputations, Snijders (1995)
provides an axiomatization of the nucleolus via a reduced game prop-
erty saving the chosen imputation (restricted to a coalition) as im-
putation of the reduced game; see also Potters (1991) for related
issues.

Remark 6. Obviously, for two individual rationality constraints 𝑐 and
𝑐′ such that 𝑐 ≥ 𝑐′, we always have 𝑋𝑐 (𝑁, 𝑣) ⊆ 𝑋𝑐′ (𝑁, 𝑣) and both
the 𝑐-nucleolus is well-defined for every game where the 𝑐′-nucleolus
is defined and 𝜂𝑐′ (𝑁, 𝑣) ≾ 𝜂𝑐 (𝑁, 𝑣) whenever the 𝑐-nucleolus is defined.
Thus, the pessimistic nucleolus whereby 𝑐𝑖(𝑁, 𝑣) = min𝑃∈(𝑁⧵{𝑖}) 𝑣({𝑖},
) is the 𝑐-nucleolus both (i) defined on the largest set of games and

ii) lexicographically dominating all other 𝑐-nucleoli.

. Discussion

In this section we discuss another interesting property of the prenu-
leolus and its relation to different notions of the core introduced in
he literature.

It could be reasonable to define a reduced game which inherits
xternalities from the original game. Formally, given (𝑁, 𝑣) ∈ , ∅ ≠
⊆ 𝑁 , and 𝑥 ∈ R𝑁 . The reduced game with externalities with respect to
and 𝑥 is denoted by

(

𝑆, 𝑣𝑆,𝑥
)

∈  and is defined for every (𝑇 , 𝑃 ) ∈
𝑆 by12

𝑆,𝑥(𝑇 , 𝑃 )

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑇 = ∅,

𝑣(𝑁, ∅) − 𝑥(𝑁 ⧵ 𝑆) if 𝑇 = 𝑆,

max
{

𝑣(𝑅,𝑄) − 𝑥(𝑅 ⧵ 𝑇 ) ∶ (𝑅,𝑄) ∈ 𝑁 , 𝑅 ∩ 𝑆 = 𝑇 ,𝑄 ∩ 𝑆 = 𝑃
}

otherwise.

he idea behind the above reduced game is that when 𝑁 ⧵ 𝑆 leave
he game with the payoff proposed by 𝑥, the remaining agents interact
n a new coalitional game with externalities. In the latter game, the

11 For completeness, we include here Kohlberg’s result. Let (𝑁, 𝑣) ∈ , such
hat 𝑣(𝑁) ≥

∑

𝑖∈𝑁 𝑣({𝑖}). A vector 𝑥 ∈ R𝑁 with 𝑥(𝑁) = 𝑣(𝑁) and 𝑥𝑖 ≥ 𝑣({𝑖}) for
every 𝑖 ∈ 𝑁 is the nucleolus of (𝑁, 𝑣) if and only if the following condition is
satisfied for every 𝛼 ∈ R where (𝛼, 𝑥, 𝑣) ≠ ∅: If 𝑦 ∈ R𝑁 is such that 𝑦(𝑁) = 0
and 𝑦(𝑆) ≥ 0 for every 𝑆 ∈ (𝛼, 𝑥, 𝑣) ∪ {{𝑖} ∶ 𝑥𝑖 = 𝑣({𝑖})}, then 𝑦(𝑆) = 0 for
very 𝑆 ∈ (𝛼, 𝑥, 𝑣).
12 𝑁
Given (𝑅,𝑄) ∈  , let 𝑄 ∩ 𝑆 = {𝑈 ∩ 𝑆 ∶ 𝑈 ∈ 𝑄}.
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worth of the grand coaltion, (𝑆, ∅), is determined by the remainder
𝑣(𝑁, ∅)−𝑥(𝑁⧵𝑆). Otherwise, in the event that coalition structure 𝑃∪{𝑇 }
emerges, coalition 𝑇 assesses its worth by taking the maximum over all
possible ways in which some agents in 𝑁⧵𝑆 may join 𝑇 and some others

ay form new coalitions or join any of the coalitions in 𝑃 , assuming
hat agents that join coalition 𝑇 are paid according to 𝑥. The above
educed game yields another version of the well known reduced game
roperty.

eak Reduced Game Property: A solution 𝑓 satisfies the weak reduced
ame property if for all (𝑁, 𝑣) ∈ , all ∅ ≠ 𝑆 ⊆ 𝑁 , and all 𝑖 ∈ 𝑆 (where
= 𝑓 (𝑁, 𝑣)), we have

𝑖 = 𝑓𝑖
(

𝑆, 𝑣𝑆,𝑥
)

.

It is easy to see how the above property also generalizes the re-
uced game property, introduced for point-valued solutions by Sobolev
1975). Indeed, the two versions of the reduced game property pro-
osed here coincide for coalitional games without externalities. The
ifference between the two properties is the fact that the former is
ot affected by the externalities of the original game because it takes
he maximum over all possible partitions while the latter takes the
aximum only among those partitions that are consistent with the

oalitional organization of the players in the reduced game. We next
resent our findings related to this property. First, we see that 𝜂 has
his property.

roposition 2. The prenucleolus satisfies the weak reduced game prop-
rty.

roof. Let (𝑁, 𝑣) ∈ , 𝑥 = 𝜂(𝑁, 𝑣), and ∅ ≠ 𝑆 ⊆ 𝑁 . Using the definition
f both reduced games, we can write for every 𝑇 ⊆ 𝑆,
(

𝑣𝑆,𝑥
)max (𝑇 ) = 𝑣𝑆,𝑥(𝑇 ). (3)

hen, by (ii) in Theorem 1, for every 𝑖 ∈ 𝑆

𝑖
(

𝑆, 𝑣𝑆,𝑥
)

= 𝜂𝑖
(

𝑆,
(

𝑣𝑆,𝑥
)max) = 𝜂𝑖

(

𝑆, 𝑣𝑆,𝑥
)

= 𝑥𝑖,

here the second equality holds by (3) and the third is because the
renucleolus satisfies the reduced game property (Theorem 3). □

Second, as it is the case for games without externalities, covariance
nd the weak reduced game property imply efficiency.

roposition 3. Let 𝑓 be a solution satisfying covariance and the weak
educed game property. Then, for every (𝑁, 𝑣) ∈ , 𝑓 (𝑁, 𝑣) ∈ 𝑋(𝑁, 𝑣).

We omit the proof as it is a straightforward adaptation of the
riginal one by Sobolev (1975).

Third, when  contains at most three potential players, anonymity,
ovariance, and the weak reduced game property characterize the
renucleolus.

roposition 4. Let | | ≤ 3. The prenucleolus, 𝜂, is the only solution on
satisfying anonymity, covariance, and the weak reduced game property

roof. The existence has already been proved. For the uniqueness, note
hat if |𝑁| ≤ 2 then, (𝑁, 𝑣) ∈ . Since for games without externalities,
he reduced game with externalities (as well as the reduced game)
oincides with the Davis and Maschler reduced game we have the
niqueness by Theorem 4. Then, let 𝑁 = {1, 2, 3} and 𝑓 be a solution
n  satisfying the three properties with 𝑓 (𝑁, 𝑣) ≠ 𝜂(𝑁, 𝑣) for some
𝑁, 𝑣) ∈ .

Taking 𝛽 = −𝜂(𝑁, 𝑣), by covariance of 𝑓 and 𝜂 we have 𝑓 (𝑁, 𝑣⊕𝛽) =
(𝑁, 𝑣) + 𝛽 and 𝜂(𝑁, 𝑣 ⊕ 𝛽) = 0. Since 𝑓 (𝑁, 𝑣) ≠ 𝜂(𝑁, 𝑣), we have

𝑓 (𝑁, 𝑣) + 𝛽 ≠ 0. Thus, without loss of generality, we can assume that
𝜂(𝑁, 𝑣) = 0 and 𝑓 (𝑁, 𝑣) ≠ 0. Let 𝑥 = 𝑓 (𝑁, 𝑣). Then by efficiency,

∗ max
14

0 = 𝑣(𝑁, ∅) = 𝑥(𝑁). Note that 0 = 𝜂 (𝑁, 𝑣 ). e
We can also assume that 𝑥𝑖 ≠ 0 for all 𝑖 ∈ 𝑁 . Otherwise, if 𝑥𝑖 = 0
for some 𝑖 ∈ 𝑁 , by definition

(

𝑁∖{𝑖}, 𝑣𝑁∖{𝑖},𝑥) =
(

𝑁∖{𝑖}, 𝑣𝑁∖{𝑖},0). But
these are two person games and we know that 𝑓

(

𝑁∖{𝑖}, 𝑣𝑁∖{𝑖},𝑥) =
𝜂
(

𝑁∖{𝑖}, 𝑣𝑁∖{𝑖},𝑥). Then, since 𝑓 and 𝜂 satisfy the weak reduced game
property, we get 𝑥 = 0.

Without loss of generality, let 𝑥1 ≥ 𝑥2 ≥ 𝑥3. Define

 = {𝑆 ∶ 𝑥(𝑆) > 0}.

Since 𝜃(𝑥, 𝑣) is non-increasingly ordered

𝜃1(𝑥, 𝑣) = 𝑣max (𝑆𝑥
1
)

− 𝑥
(

𝑆𝑥
1
)

,

for some 𝑆𝑥
1 . If 𝑆𝑥

1 ∈ , then

𝜃1(𝑥, 𝑣) = 𝑣max (𝑆𝑥
1
)

− 𝑥
(

𝑆𝑥
1
)

< 𝑣max (𝑆𝑥
1
)

≤ 𝜃1(0, 𝑣),

which is a contradiction to 0 = 𝜂∗(𝑁, 𝑣max). Hence, 𝑆𝑥
1 ∉ . Moreover,

we can assume that 𝑥
(

𝑆𝑥
1
)

≠ 0, otherwise we continue the reasoning
with the coalition with next highest excess at 𝑥. That is, 𝑥

(

𝑆𝑥
1
)

< 0.
wo cases may arise.

ase 1: 𝑥1 ≥ 𝑥2 > 0 > 𝑥3.
Then,  = {{1}, {2}, {1, 2}} and 3 ∈ 𝑆𝑥

1 . Take 𝑖 ∉ 𝑆𝑥
1 and 𝑤 = 𝑣{𝑖,3},𝑥.

y the weak reduced game property

{𝑖,3} = 𝑓 ({𝑖, 3}, 𝑤) = 𝜂({𝑖, 3}, 𝑤),

here the second equality holds because two-person games are with-
ut externalities. Now, since the prenucleolus satisfies the standard
roperty for two-person games we have

1(𝑥, 𝑣) = 𝑤(3)−𝑥3 = 𝑤(𝑖)−𝑥𝑖 = max
{

𝑣max(𝑆) − 𝑥(𝑆) ∶ 𝑖 ∈ 𝑆 and 3 ∉ 𝑆
}

,

here the first and third equalities hold by definition of the reduced
ame with externalities. Note that the maximum on the right hand side
ill be attained by some coalition in , say 𝑇 . Therefore

1(𝑥, 𝑣) < 𝑣max(𝑇 ),

hich contradicts the fact that 𝜃(0, 𝑣) ≾ 𝜃(𝑥, 𝑣) (definition of the
renucleolus).

ase 2: 𝑥1 > 0 > 𝑥2 ≥ 𝑥3.
Then,  = {{1}, {1, 2}, {1, 3}} and 1 ∉ 𝑆𝑥

1 . Take 𝑖 ∈ 𝑆𝑥
1 and 𝑤 =

{1,𝑖},𝑥. As before,

{1,𝑖} = 𝑓 ({1, 𝑖}, 𝑤) = 𝜂({1, 𝑖}, 𝑤).

sing again the standard property for two-person games of the prenu-
leolus,

1(𝑥, 𝑣) = 𝑤(𝑖)−𝑥𝑖 = 𝑤(1)−𝑥1 = max
{

𝑣max(𝑆) − 𝑥(𝑆) ∶ 1 ∈ 𝑆 and 𝑖 ∉ 𝑆
}

.

nce again, the maximum on the right hand side will be attained by
ome coalition in  which means that

1(𝑥, 𝑣) < 𝑣max(𝑇 ),

or some 𝑇 . A contradiction to 𝜃(0, 𝑣) ≾ 𝜃(𝑥, 𝑣). □

emark 7. When  is finite, Sudhölter (1993) has shown for coali-
ional games without externalities that Theorem 3 holds if and only
f | | ≤ 3. Thus, Proposition 4 is a generalization of this result to
oalitional games with externalities. For 3 < | | < +∞, one can use
he construction of Peleg and Sudhölter (2007, Remark 6.3.3, Exercises
.3.2 and 6.3.3) to show that Proposition 4 does not hold: for instance,
or  = {1,… , 6}, let ( , 𝑤) be the weighted majority (coalitional)
ame (without externalities) where 𝑞 = (3, 3, 1, 1, 1, 1) and for all 𝑆 ⊆  ,
(𝑆) = 1 if 𝑞(𝑆) ≥ 5 and otherwise 𝑤(𝑆) = 0. Then 𝜂( , 𝑤) =
3
10 ,

3
10 ,

1
10 ,

1
10 ,

1
10 ,

1
10

)

. Let 𝑥 =
(

1
2 ,

1
2 , 0, 0, 0, 0

)

. Then 𝑥 ≠ 𝜂( , 𝑤) and
for all 𝑆 ⊊  , 𝜂

(

𝑆,𝑤𝑆,𝑥) = (𝑥𝑖)𝑖∈𝑆 . Now define the solution 𝑓 on
 as follows: (i) 𝑓 ( , 𝑤) = 𝑥 and (ii) for all (𝑁, 𝑣) ∈ , if there
xist an injection 𝜋 ∶  →  , 𝛼 > 0 and 𝛽 ∈ R such that
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𝑣max = 𝜋(𝛼𝑤 + 𝛽), then 𝑓 (𝑁, 𝑣) = 𝜋(𝛼𝑥 + 𝛽), and otherwise 𝑓 (𝑁, 𝑣) =
𝜂(𝑁, 𝑣). Then 𝑓 satisfies all the properties in Proposition 4. It is an open
question whether Proposition 4 is true when the set of potential players
is infinite.

Another well-known property of the prenucleolus of coalitional
games without externalities is that it always lies in the core whenever
the latter is non-empty. It is interesting to analyze the behavior of the
prenucleolus as introduced here with respect to different notions of the
core proposed in the literature. A way to pin down a particular core
in the presence of externalities is to anticipate the coalitional reaction
of the deviating players. This is precisely the approach of Bloch and
van den Nouweland (2014) where a large class of core notions are
studied in a common framework. Formally, an expectation formation rule
is a mapping, 𝑓 , that associates to every 𝑆 ⊆ 𝑁 a partition of 𝑁 ⧵ 𝑆,
i.e., for every 𝑆 ⊆ 𝑁 , 𝑔(𝑆, 𝑣) ∈ (𝑁 ⧵ 𝑆).13 Then, the core of (𝑁, 𝑣) ∈ 
with respect to the expectation formation rule 𝑔 is defined by

𝐶𝑔(𝑁, 𝑣) = {𝑥 ∈ 𝑋(𝑁, 𝑣) ∶ 𝑥(𝑆) ≥ 𝑣 (𝑆, 𝑔(𝑆, 𝑣)) ∀𝑆 ⊆ 𝑁} .

The optimistic rule, 𝑔𝑜, originally proposed by Shenoy (1979) selects
for every coalition, the most favorable partition, i.e., for every (𝑁, 𝑣) ∈
 and 𝑆 ⊆ 𝑁 , 𝑔𝑜(𝑆, 𝑣) ∈ arg max𝑃∈(𝑁⧵𝑆) 𝑣(𝑆, 𝑃 ). The core with respect
to the optimistic rule is called the optimistic core.

Proposition 5. If the optimistic core is non-empty, then the prenucleolus
belongs to the core of the game with respect to any expectation formation
rule.

Proof. Let (𝑁, 𝑣) ∈ . Note that, for every 𝑆 ⊆ 𝑁 , 𝑣(𝑆, 𝑔𝑜(𝑆, 𝑣)) =
𝑣max(𝑆). That is, the optimistic core is the core of the coalitional
game without externalities (𝑁, 𝑣max). Then, by (ii) in Theorem 1 and
the well-known fact that the prenuclolus of a coalitional game with-
out externalities lies in the core whenever non-empty, we have that
𝜂(𝑁, 𝑣) ∈ 𝐶𝑔𝑜 (𝑁, 𝑣). Finally, since the optimistic core is contained in
every other core (Bloch and van den Nouweland, 2014) we get the
desired result. □

A natural follow up question is whether the prenucleolus is in the
core of any expectation formation rule whenever non-empty. We show
by a counter-example that the answer is negative.

Example 1. Let 𝑁 = {1, 2, 3} and (𝑁, 𝑣) ∈  be defined by14

𝑣(1; 2, 3) = 0 𝑣(1; 23) = 1 𝑣(12; 3) = 2

𝑣(2; 1, 3) = 0 𝑣(2; 13) = 1 𝑣(13; 2) = 1 𝑣(𝑁 ; ∅) = 2

𝑣(3; 1, 2) = 2 𝑣(3; 12) = 0 𝑣(23; 1) = 1

and let also the expectation formation rule be such that, 𝑔(1, 𝑣) = 23,
𝑔(2, 𝑣) = 13, and 𝑔(3, 𝑣) = 12. That is, according to 𝑔 each coalition
expect the rest of agents to form a one coalition partition. Then it is
easy to see that

𝐶𝑔(𝑁, 𝑣) = {(1, 1, 0)}.

However, using (ii) in Theorem 1 we can easily compute the prenucle-
olus

𝜂(𝑁, 𝑣) =
( 3
4
, 3
4
, 1
2

)

.

Still, one could wonder whether there is a necessary and suffi-
ient condition on the expectation formation rule that guarantees the
renucleolus to be a core allocation (with respect to the expectation

13 Implicitly, we are assuming that the grand coalition is the most efficient
rrangement of a set of players.
14 For the sake of clarity we omit brackets and only use commas between
oalitions.
15
formation rule) whenever non-empty. This is another open question for
future research.
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