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Abstract: MoxC-based catalysts supported on γ-Al2O3, SiO2 and TiO2 were prepared, characterized
and studied in the reverse water gas shift (RWGS) at 548–673 K and atmospheric pressure, using
CO2:H2 = 1:1 and CO2:H2 = 1:3 mol/mol reactant mixtures. The support used determined the
crystalline MoxC phases obtained and the behavior of the supported nanostructured MoxC catalysts
in the RWGS. All catalysts were active in the RWGS reaction under the experimental conditions
used; CO productivity per mol of Mo was always higher than that of unsupported Mo2C prepared
using a similar method in the absence of support. The CO selectivity at 673 K was above 94% for
all the supported catalysts, and near 99% for the SiO2-supported. The MoxC/SiO2 catalyst, which
contains a mixture of hexagonal Mo2C and cubic MoC phases, exhibited the best performance for
CO production.

Keywords: CO2 catalytic reduction; syngas; RWGS; supported molybdenum carbide; MoxC-based
catalysts

1. Introduction

In addition to capture and storage of CO2, nowadays there is a clear interest in its use
as an out-stream chemical feedstock in order to actively contribute to the reduction of CO2
emissions; CO2 can be considered a cheap carbon C1 source for upgrading rather than a
waste with consequences in global warming [1–4]. However, the direct transformation of
CO2 to useful products is difficult. The high chemical stability of CO2 difficult its catalytic
transformation, the developing of new materials capable of efficiently bind and activate
this molecule is nowadays an active research area. An interesting CO2 utilization approach
is its reduction to CO, employing H2 as a reducing agent via the reverse water gas shift
(RWGS) reaction [5–8]:

CO2 + H2 → CO + H2O (1)

The reduction of CO2 to CO with renewable H2 can be regarded as a simple and easy
path for CO2 recycling, which would allow its reuse at a large scale. After the RWGS
step and H2O separation, a CO2/CO/H2 out-stream mixture can be produced. This out-
stream can be used as syngas input for other well-established chemical processes, such as
Fischer-Tropsch (FT) or methanol synthesis [9–15].

The RWGS reaction can be carried out using noble metal-based catalysts [5,10,16]. Due
to the similar properties of transition metal carbides (TMCs) and Pt-based catalysts, the
formers have been proposed as catalysts for different processes in which Pt-based catalysts
are active [17,18]. One of these processes is the CO2 reduction to CO, which has been
analyzed over different TMCs using theoretical and experimental approaches [19–25].
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The preparation of TMCs is usually carried out using carburization methods. These
methods apply high temperature and/or pressure conditions in the presence of a reducing
atmosphere, usually mixtures of H2 and carbon-containing gases (CO, CH4, C2H4) [25–28].
Due to the increased interest in TMC-based catalysts, in recent years, greener preparation
methods have been explored [21,22,29–31]. In an earlier investigation, we studied the
preparation of bulk MoxC catalysts using different molybdenum and carbon precursors
and following sol-gel based routes; the bulk MoxC catalysts generated, contained different
crystalline phases, which influenced their catalytic behavior in the RWGS reaction [31].

The deposition onto a support of the appropriate TMC active phase can be an inter-
esting approach to improve the catalytic behavior of bulk TMCs materials, which usually
show low surface area values. Supported MoxC phases have been used as catalysts in dif-
ferent processes such as CH4 dry reforming [32], hydrazine decomposition [33], thiophene
hydrodesulfurization [34], propene and tetralin hydrogenation [35] and Fischer-Tropsch
synthesis [36]. However, supported MoxC catalysts have not been much studied in the
RWGS reaction [37–39]. Porosoff et al. have reported the promoter effect of K in Al2O3- sup-
ported Mo2C-based catalysts containing MoO2 and/or metallic Mo, which were prepared
by carburization with CH4/H2 at 873 K [38]. Sub-nanosized molybdenum carbide clusters
highly dispersed onto N-doped carbon/Al2O3, prepared by carbonization of MoO3 with
glucose, were more performant in the RWGS than bulk β-Mo2C [39]. Recently, the prepara-
tion of SiO2- and SBA-15-supported Mo2C-based catalysts (20% wt Mo), using different
routes of Mo incorporation to the support and a final carburization process with CH4/H2,
has been studied [40]. The preparation method and the support influenced the composition
of MoxCy crystalline phases developed and therefore the catalytic performance of the mate-
rial in the RWGS [40]. The preparation of MoxC-based catalysts supported onto γ-Al2O3,
SiO2 and MFI-type zeolites by incipient wetness impregnation of ammonium molybdate
and carburization with CH4/H2, have led to catalysts with different Mo-containing species
such as Mo2C, MoO3 and Mo0; the phases developed and the catalytic performance in the
RWGS of the materials depended also on the support characteristics [41].

Here, MoxC phases were generated onto γ-Al2O3, SiO2 and TiO2 by a thermal treat-
ment of the solid obtained from the interaction between a MoCl5/urea solution and the
corresponding oxide. The crystalline MoxC phases obtained depended on the support used
in the preparation and determined the catalytic behavior of materials in the RWGS.

2. Experimental
2.1. Preparation of Catalysts

Commercial γ-Al2O3 (Alfa Aesar, Haverhill, MA, US, 226 m2 g−1), SiO2 (Degussa, Frank-
furt, Germany, 200 m2 g−1) and TiO2 (Tecnan, Navarra, Spain, 117 m2 g−1, anatase/rutile,
78/22% wt) were employed as supports. Urea (Alfa Aesar, Haverhill, MA, US, 99%), which
was used as carbon source, was added to a solution of MoCl5 (Alfa Aesar, Haverhill, MA,
US, 99.6%) in ethanol with a urea/MoCl5 = 7 molar ratio [21,29,31]. The viscous solution
was contacted with the respective powdered support. The resulting solid was dried at
333 K, and then treated under Ar flow up to 1073 K for 3 h. The samples were cooled down
to room temperature under Ar and then exposed to air without passivation. MoxC/Al2O3,
MoxC/TiO2 and MoxC/SiO2 catalysts with about 26% wt of Mo were prepared by using the
proper amount of molybdenum and carbon precursors. A reference catalyst (unsupported),
containing only bulk hexagonal Mo2C was prepared following a similar method but in the
absence of support [21]. For characterization purposes, the commercial supports were also
separately treated up to 1073 K (3 h) under Ar.

2.2. Characterization of Catalysts

The Mo content of samples was determined by inductively coupled plasma mass
spectrometry using a Perkin Elmer Optima 3200RL apparatus (Santa Clara, CA, US). The
N2 adsorption-desorption isotherms were recorded at 77 K using a Micromeritics Tristar
II 3020 equipment. Prior to the measurements, the samples were outgassed at 523 K for
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5 h. The specific surface area (SBET) was calculated by multi-point BET analysis of N2
adsorption isotherms. The X-ray powder diffraction (XRD) analysis was performed using
a PANalytical X’Pert PRO MPD Alpha1 powder diffractometer (Malvern, UK) equipped
with a CuKα1 radiation. The XRD profiles were collected in the 2θ range of 4◦–100◦ with a
step size of 0.017◦ and counting 50 s at each step. Transmission electron microscopy (TEM-
HRTEM) images and energy dispersive X-ray analysis (EDX) were collected employing a
JEOL J2010F microscope (Tokyo, Japan) operated at an accelerating voltage to 200 kV. The
Raman spectra of the samples were collected using a Jobin-Yvon LabRam HR 800, fitted
to an optical Olympus BXFM microscope (Kyoto, Japan) with a 532 nm laser and a CCD
detector. X-ray photoelectron spectroscopy (XPS) analysis was performed using a Perkin
Elmer PHI-5500 Multitechnique System (Physical Electronics, Chanhassen, MN, US) with
an Al X-ray source (hυ = 1486.6 eV and 350 W). Samples were kept in an ultra-high vacuum
chamber during data acquisition (5·10−9–2·10−8 Torr). Before XPS measurements, the C 1s
BE of adventitious carbon was determined in the same equipment and conditions using
Au as reference. The BE values were referred to the mentioned C 1s BE at 284.8 eV.

2.3. RWGS Catalytic Tests

The RWGS reaction tests were carried out in a Microactivity-Reference unit (PID
Eng&Tech) using a tubular fixed-bed reactor under atmospheric pressure. Approximately,
150 mg of catalyst were diluted with inactive SiC up to 1 mL of catalytic bed. The RWGS
was studied at 0.1 MPa, between 548 K and 673 K, by following the temperature sequence:
598 K (3 h)→573 K (3 h)→548 K (10 h)→598 K (3 h)→623 K (3 h)→648 K (3 h)→673 K
(3 h)→648 K (5 h). The first part of the catalytic test: 598 K (3 h)→573 K (3 h)→548 K
(10 h) was carried out in order to condition the catalyst under RWGS. The gas hourly space
velocity (GHSV) was 3000 h−1. The effluent was analysed on-line with a gas chromatograph
Varian 450-GC equipped with a methanizer and TCD and FID detectors. CO2 conversion
and product distribution at each temperature were determined by the average of at least
three measures.

3. Results and Discussion

As stated above, Al2O3-, SiO2- and TiO2-supported MoxC catalysts with about 26%
wt Mo were prepared, characterized and tested in the RWGS reaction. Table 1 shows the
Mo content and the SBET of fresh catalysts. For comparison, SBET values of the supports
treated at 1073 K under Ar, which are the conditions used in the preparation of catalysts,
are also included. In all cases, the SBET of the supports after the thermal treatment at 1073 K
was lower than that of the corresponding commercial pristine material; the diminution was
about 10% for Al2O3 and SiO2, meanwhile for TiO2 the SBET decreased from 117 m2g−1

to 13 m2g−1. For TiO2, a phase change occurred during the thermal treatment; the rutile
weight percentage increased from 22% (pristine material) until 95% after the treatment
at 1073 K, as determined from XRD analysis [42]. On the other hand, except for the
MoxC/TiO2, the SBET of supported catalysts was lower than that of the corresponding
support treated at 1073 K; the formation of MoxC could prevent in some extension the
surface area decrease of the TiO2 support, which could be related with a different extent of
the rutile formation from anatase.

Table 1. Mo content, determined by chemical analysis and surface area (SBET) of fresh and post-
reaction catalysts.

Catalyst Mo (%wt)
SBET (m2 g−1)

Fresh a Post-Reaction b Post-Reaction c

MoxC/Al2O3 25.1 119 (204) 93 97
MoxC/SiO2 25.5 129 (181) 115 107
MoxC/TiO2 27.5 39 (13) 32 25

a between brackets SBET of supports treated at 1073 K; b CO2/H2/N2 = 1/3/1 reactant mixture; c CO2/H2/N2 =
1/1/3 reactant mixture.
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The supported catalysts were analyzed by XRD, and the corresponding XRD patterns
are shown in Figures 1–3; XRD patterns of the respective supports treated at 1073 K
under Ar are also displayed for comparison. From the XRD pattern of MoxC/Al2O3
(Figure 1), characteristic diffraction peaks of γ-Al2O3 are observed, and the main presence
of hexagonal Mo2C (JCPDS 00-035-0787) can be deduced; a crystallite size of 28 nm was
calculated. The XRD analysis of MoxC/SiO2 (Figure 2) indicates the presence of hexagonal
Mo2C; however, the observation of diffraction peaks with maxima at 2θ = 36.9◦ and
2θ = 42.1◦ are attributed to the presence of cubic MoC (JCPDS 03-065-0280). From the
intensity of diffraction peaks of both phases and that in reference files, a semiquantitative
analysis was performed [43]; the presence of 65% cubic MoC and 35% hexagonal Mo2C is
determined in the MoxC/SiO2 catalyst. Figure 3 shows the corresponding XRD profile of
TiO2-supported catalyst. Characteristic diffraction peaks of both anatase and rutile TiO2
phases are clearly observed. The rutile weight percentage with respect to TiO2 phases
calculated from XRD pattern is 51% [42]. As commented above, the formation of MoxC
could prevent the anatase transformation, having the MoxC/TiO2 catalyst a higher amount
of anatase and a higher surface area than the support treated at 1073 K (Table 1). From the
XRD pattern of MoxC/TiO2, the main presence of cubic MoC with poor crystallinity can be
proposed, even if the presence of hexagonal Mo2C could not be ruled out (Figure 3).

The catalysts were also characterized by Raman spectroscopy, TEM-HRTEM, STEM-
EDX and XPS. Raman spectroscopy was used in order to determine the presence of molybde-
num oxide species and/or carbonaceous residues (Figure S1). The very low intensity bands
in the zone 815–990 cm−1 points to the presence of residual MoO3 [44–46], which could be
formed by surface oxidation when the samples were exposed to air. For MoxC/TiO2, Ra-
man bands at 260, 429 and 610 cm−1, assigned to rutile, and at 150 cm−1 assigned to anatase,
are clearly visible [47–49]. In all cases, the intensity of the bands in the 1200–1700 cm−1

region characteristic of carbonaceous species (D and G bands), is negligible (Figure S1).
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1073 K.
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Figure 3. XRD patterns of MoxC/TiO2 catalyst and the TiO2 support after thermal treatment at 1073 K.

TEM-HRTEM and STEM-EDX analysis of MoxC/Al2O3, MoxC/SiO2 and MoxC/TiO2
are shown in Figures 4–6, respectively. For MoxC/Al2O3 (Figure 4), the presence of
hexagonal Mo2C with a mean particle size of 21 nm was determined in agreement with XRD
results. TEM-HRTEM analysis of MoxC/SiO2 (Figure 5) allowed to confirm the presence
of hexagonal Mo2C and cubic MoC particles with bimodal distribution and mean particle
sizes of 18 nm and 5 nm, respectively (Figure 5A–C). For MoxC/TiO2 (Figure 6), only the
presence of the cubic MoC phase with a mean particle size of 4 nm could be determined. The
supported MoxC materials studied in this work follow the recently predicted general trend
of size-dependent phase diagrams for bulk Mo and W carbides: fcc phases are generally
found at small particle size and hcp phases are prevalent at large particle size [50].

In all cases, STEM-EDX results (see Figures 4C, 5D, and 6C) indicate a homogeneous
distribution of Mo on the corresponding support. Figures 4D, 5E and 6D, show the
corresponding EDX spectra; N- and Cl-containing species were not detected.
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As stated above, the catalysts were also analyzed by XPS. Al 2p, Si 2p and Ti 2p3/2
BE at 74.8, 104,0 and 459,3 eV, characteristic of Al2O3, SiO2, and TiO2, were found for
MoxC/Al2O3, MoxC/SiO2 and MoxC/TiO2, respectively (Figure S2). Figure 7 shows the
C 1s and Mo 3d XP spectra. The C 1s core level spectra (Figure 7A) show a maximum
at 284.8 eV associated to the adventitious carbon, the component at 283.7–283.8 eV is
associated to surface molybdenum carbide species [21,31,51–54]. Components extended
above 284.8 eV are related to different oxygen containing species [52–56]. The Mo 3d spectra
are complex (Figure 7B); however, they can be deconvoluted into four doublets (Mo 3d5/2
and Mo 3d3/2). According to literature, the Mo 3d5/2/Mo 3d3/2 intensity ratio was fixed to
be 1.5, and the Mo 3d5/2-Mo 3d3/2 BE splitting was set at 3.1 eV [57–59]. The 3d5/2 peaks
at the lowest BE region, 228.5–228.7 eV, are attributed to Mo2+ and Mo3+ in Mo2C and/or
oxycarbide species [19,21,31,51]. The Mo 3d5/2 components at 229.4–229.5, 231.3–232.6 and
233.2 eV, can be assigned to Mo4+, Mo5+ and Mo6+ surface species, respectively [19,58–61],
which could be related to the presence of MoC, oxycarbide and/or oxide species. Table 2
shows the contribution of Mo2+/Mo3+ and Mo4+ species to the total surface Mon+ species;
the MoxC/SiO2 catalyst having both Mo2C and MoC shows the highest values.

Table 2. Apparent Ea determined for MoxC/support catalysts and surface characteristics determined
from XPS.

Catalyst Ea (kJ·mol−1) (Mo2+,3+/Total Mon+)XPS (Mo2+,3+,4+/Total Mon+)XPS

MoxC/Al2O3 77.7 ± 1.7 0.277 0.347
MoxC/SiO2 64.9 ± 3.2 0.431 0.690
MoxC/TiO2 77.9 ± 4.1 0.098 0.316

Reaction conditions: CO2/H2/N2 = 1/1/3, GHSV = 3000 h−1, P = 0.1 MPa and T = 598–648 K.
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Figure 7. XP spectra of MoxC/support catalysts: (A) C 1s level; (B) Mo 3d level.

All catalysts were tested in the RWGS using CO2:H2 = 1/3 and CO2/H2 = 1/1 ratios.
Catalytic data of unsupported Mo2C, prepared using a similar method to that used in this
work but in the absence of support, are also included for comparison [21]. As stated in the
experimental section, the first part of the catalytic test: 598 K (3 h)→573 K (3 h)→548 K
(10 h) was carried out in order to condition the catalyst under RWGS. Next, when the
temperature was increased to 598 K, the CO2 conversion was in all cases higher than that
obtained at 598 K in the conditioning step (Figure 8A and Figure 10A). This behavior could
be related with the removal of initially adsorbed surface species. After this first step and
regardless the catalyst and the conditions, CO2 conversion increases with the rising of
reaction temperature from 598 K to 673 K (Figure 8A and Figure 10A).
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Figures 8 and 9 show the RWGS behavior of catalysts when CO2:H2 = 1/3 is used.
MoxC/SiO2 presented the highest value of CO2 conversion (27.5%) at 673 K (Figure 8A);
the corresponding equilibrium CO2 conversion for RWGS at the experimental conditions
used is about 37% (at 673 K). MoxC/Al2O3 showed a catalytic activity close to that of
the unsupported Mo2C catalyst. Meanwhile, MoxC/TiO2 showed lower values of CO2
conversion than those of unsupported Mo2C [21]. These results contrast with those usually
reported for supported metallic catalysts [62,63]. The activity of SiO2- and Al2O3-supported
metals in the RWGS is usually lower than that found when reducible supports such as TiO2
or CeO2 are used, which can generate oxygen vacancies that strengths the CO2 adsorption
and then the activity in the RWGS [63]. In this work, besides the difference in the surface-
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area of catalysts, the composition and characteristics of generated MoxC nanoparticles
change as a function of the support.
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Figure 9. CO production per mol of Mo as a function of reaction temperature in RWGS over
MoxC/support and unsupported reference Mo2C catalysts. Reaction conditions: mcat = 150 mg,
CO2/H2/N2 = 1/3/1, GHSV = 3000 h−1, P = 0.1 MPa.

A key process in the RWGS is the cleavage of C-O bond with CO + O formation. In
this context molybdenum oxycarbide has been proposed as an intermediate in the RWGS
over Mo2C that likely enhances the RWGS rate [25]. We have demonstrated that over a
polycrystalline α-Mo2C catalyst, prepared with the method used in the present work, the
enhanced CO2 dissociation toward CO + O results from specific surface facets [21]. Next,
the easy release of CO and the continuous O removal by H2 to form H2O, results in high
RWGS activity. The existence of both, hcp Mo2C and fcc MoC phases in the SiO2-supported
catalyst, could result in interphases regions with appropriate characteristics to enhance
RWGS on MoxC/SiO2 catalyst. In this context, for different MoxC bulk catalysts, the lowest
activation energy in the RWGS was found for a catalyst containing several Mo2C and MoC
phases [31].

All the supported catalysts showed high CO selectivity values. When CO2:H2 = 1/3 was
used, CO selectivity were always higher than 92% (Figure 8B). The highest CO selectivity
was observed for the MoxC/SiO2 catalyst, achieving at 673 K, 98.5%. Only MoxC/Al2O3
showed CO selectivity values slightly lower than that of unsupported Mo2C (Figure 8B).
CH4 was the main byproduct and only very small amounts of ethylene were formed.

For a proper comparison of the catalysts, the values of CO production were calculated
per mol of Mo in the samples; results are shown in Figure 9. All the supported catalysts
showed a higher CO production per mol of Mo compared to the unsupported Mo2C
catalyst [21]. At the end of the catalytic test, MoxC/SiO2 and MoxC/Al2O3 showed a
higher CO production at 648 K than before reaction at 673 K (Figure 9). This could be
related with the removal of remaining oxygen surface species during the reaction at 673 K.
The highest CO production in the whole range of reaction temperature tested was obtained
for MoxC/SiO2; it reached about 17.0 mol CO/mol Mo·h at 673 K.

Catalysts were also tested in the RWGS using a stoichiometric ratio of the reactant
mixture, CO2/H2/ = 1/1. Figure 10 shows the variation of CO2 conversion and CO
selectivity values. As expected, the CO2 conversion (Figure 10A) was lower and the CO
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selectivity (Figure 10B) higher when a mixture CO2/H2 = 1/1 was used than when the
reactant mixture was CO2/H2 = 1/3. Using the CO2/H2 = 1/1 reactant mixture, the highest
CO2 conversion (Figure 10A) and the highest CO production per mol of Mo (Figure 11),
in the whole range of reaction temperature tested, were also found over the MoxC/SiO2
catalyst. In this case, at the end of the catalytic test, only for MoxC/SiO2 a slightly higher
CO production at 648 K than before reaction at 673 K was observed (Figure 11).
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Figure 11. CO production per mol Mo as a function of reaction temperature in RWGS over
MoxC/support and unsupported reference Mo2C catalysts. Reaction conditions: mcat = 150 mg,
CO2/H2/N2 = 1/1/3, GHSV = 3000 h−1, P = 0.1 MPa.

It is noteworthy, that after the overall RWGS study carried out, all supported catalysts,
showed quite constant values of CO2 conversion and CO selectivity during the last step at
648 K (5 h), under both CO2/H2/ = 1/3 and CO2/H2/ = 1/1 conditions.

The apparent activation energies (Ea) for CO production over supported catalysts
were calculated according to the Arrhenius plots in the temperature range of 598–648 K;
values between 65–78 kJ/mol were obtained (Table 2). These values are in the range of that
recently reported for an alumina supported Mo2C cluster-based catalyst (76.4 kJ/mol) [39].
MoxC/SiO2 showed the lowest Ea for CO production. As stated above, the best perfor-
mance of MoxC/SiO2 could be related with the coexistence in this catalyst of different MoxC
phases, hexagonal Mo2C and cubic MoC, as has been recently suggested for unsupported
MoxC catalysts [31]. Moreover, MoxC/SiO2 showed the highest contribution of Mo2+/Mo3+

and Mo4+ species to the total surface Mon+ species. For MoxC-based catalysts, an easy
reduction under reaction conditions of molybdenum species has been related with their
performance in RWGS [41].

Post-reaction catalysts were characterized by BET and XRD. Only a slight decrease in
the BET surface area was found after the RWGS reaction (Table 1). The XRD patterns of
fresh (Figures 1–3) and post-reaction catalysts after the test with CO2/H2 = 1/3 (Figure S3)
were similar. Meanwhile, the presence of MoO2 was detected by XRD in post-reaction
MoxC/SiO2 and MoxC/TiO2 when the reactant mixture was CO2/H2 = 1/1 (Figure S4); the
oxidation could be prevented under a richer hydrogen atmosphere (CO2/H2 = 1/3) due
to an easier removal of the O surface species formed from the CO2 activation over these
materials under CO2/H2 = 1/3 conditions [21,31].

4. Conclusions

Using urea and MoCl5 as carbon and molybdenum sources, different MoxC phases
were successfully supported over Al2O3, SiO2 and TiO2. The support determined the devel-
oped MoxC phases on the materials and their catalytic behavior in the RWGS. Hexagonal
Mo2C nanoparticles on MoxC/Al2O3 and cubic MoC nanoparticles on MoxC/TiO2 were
found. Over MoxC/SiO2 both hexagonal Mo2C and cubic MoC nanoparticles were present.
In all cases, supported hexagonal Mo2C nanoparticles were larger than cubic MoC ones.
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All catalysts showed a stable catalytic behavior and exhibited higher CO production
per mol of Mo than the unsupported hexagonal Mo2C similarly prepared, under the
reaction conditions used (CO2/H2 = 1/3 and CO2/H2 = 1/1; T = 548–673 K).

MoxC/SiO2 exhibited the highest surface ratio of Mo species with low oxidation
states (Mo2+,3+,4+) and the best performance in the RWGS reaction. Over MoxC/SiO2,
CO2 conversion of 27.5% and CO selectivity of 98.5% were achieved at 673 K under
CO2/H2 = 1/3; for CO production, an apparent activation energy of 64.9 ± 3.2 kJ mol−1

was determined at 598–648 K under CO2/H2 = 1/1. The catalytic behavior is proposed to
be governed by the supported MoxC phase. The simultaneous presence of hexagonal Mo2C
and cubic MoC nanoparticles in MoxC/SiO2 plays a main role on the catalytic behavior of
this catalyst.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12183165/s1, Figure S1. Raman spectra of fresh MoxC/support
catalysts; Figure S2. XP spectra of MoxC/support catalysts. (A) Al 2p level registered for MoxC/Al2O3,
(B) Si 2p level registered for MoxC/SiO2, (C) Ti 2p level registered for MoxC/TiO2; Figure S3. XRD
patterns of MoxC/support catalysts after RWGS reaction (CO2/H2 = 1/3); reaction conditions:
mcat = 150 mg, GHSV = 3000 h−1, P = 0.1 MPa.; Figure S4. XRD patterns of MoxC/support cata-
lysts after RWGS reaction (CO2/H2 = 1/1); reaction conditions: mcat = 150 mg, GHSV = 3000 h−1,
P = 0.1 MPa.
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