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� Group 5 transition metal carbides as catalysts in the methanol steam reforming.

� Methanol steam reforming over VC, NbC and TaC polycrystalline catalysts.

� H2þCH4 mixtures are obtained under MSR over VC catalyst.

� HCHO is obtained under MSR over NbC and TaC catalysts.
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Transition metal carbides of group 5 (G5TMC¼VC, NbC and TaC) with similar crystallite

sizes were prepared by a sol-gel route. The catalysts were characterized and studied in the

methanol steam reforming (MSR) reaction in the temperature range of 573e723 K at at-

mospheric pressure and using a stoichiometric CH3OH/H2O ¼ 1/1 mole ratio mixture.

Under the MSR reaction conditions used, the route of methanol transformation depends on

the G5TMC used as catalyst. The catalytic behaviour of VC differs from that of NbC and

TaC, which in turn show a similar behaviour. Over VC, methanol is mainly converted to a

mixture of H2þCH4, whereas over NbC and TaC the major product obtained is HCHO,

formed from the dehydrogenation of methanol.
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Introduction

Nowadays, unlike oil or natural gas, H2 transport still presents

important drawbacks for its large use as clean energy carrier

[1]. In this context, liquid carriers are considered one of the

potential routes to facilitate the convenient transport of H2 [2].

In particular, liquid alcohols are considered interesting H2

storage chemical systems and useful H2 carriers. Methanol is

the simplest alcohol and possesses several advantages for H2

transport and delivery: it has a high hydrogen to carbon ratio,

it can be produced from captured CO2, and it has been re-

ported as the cheapest option among different liquid organic

hydrogen carriers [3].

These aspects make methanol an attractive route for both

the chemical recycling of CO2, including that biomass-derived,

and the renewable H2 storage and transport. Steam

reforming-based processes of renewable methanol could be

an alternative to the use of methane, to bring, where needed,

not only H2, but also other gaseous C-containing products of

potential interest in the actual energy context. For instance,

among others, syngas (CO þ H2) for further applications, or

(H2þCH4) mixtures for its direct injection into the natural gas

network distribution.

Despite methanol steam reforming (MSR) is an endo-

thermic reaction (eq. (1)), the required temperature can be

significantly lower than that necessary for the steam

reforming of CH4, if appropriate catalysts are used. In addi-

tion, the absence of CeC bonds can facilitate its reforming at

lower temperature when compared to other higher alcohols.

CH3OHþH2O/CO2 þ 3H2 DH0
298 ¼ 49:7 kJ mol�1 (eq. 1)

Thus, the development of different catalytic systems

effective for theMSR process could enlarge the knowledge and

possibilities of this route in the basis of the above indicated

interests.

Transition metal carbides (TMC) have gained much atten-

tionsinceLevyandBoudart reported that theyhave “platinum-

like behaviour” as catalysts for certain reactions [4]. Following

this idea, we have studied different TMCs as catalysts for the

CO2 reduction through the reverse water gas shift reaction as

well as co-catalysts of photoactive materials [5e10].

To our knowledge, polycrystalline (hcp-Mo2C), metal-

modified molybdenum carbide and supported Mo2C cata-

lysts have been reported so far in the MSR reaction [11e15].

Considering this background, in this work we present for the

first time, the study of the catalytic behaviour of poly-

crystalline TMC of group 5 (G5TMC¼VC, NbC, and TaC) under

stoichiometric MSR reaction conditions.
Experimental

Catalyst preparation

G5TMC catalysts (VC, NbC and TaC) with a similar crystallite

size were prepared on the basis of a sol-gel method reported

for the preparation of VxC using 4,5-dicyanoimidazole as

carbon precursor [6]. For this, specific conditions of pre-

cursors’ ratio (VO(isopropoxide)2, NbCl5 or TaCl5/4,5-
dicyanoimidazole) and treatment temperature were used.

For VC, 4.04 g of VO(isopropoxide)3 (Alfa Aesar, 96%) were

dissolved into 15 mL of ethanol (HPLC grade, 99.9%, Scharlau).

Next, 1.95 g of 4,5-dicyanoimidazole (Manchester Organics,

96%) were added to the alcoholic solution with continuous

stirring until forming a viscous solution [6]. A similar pro-

cedurewas used for the preparation of NbC and TaC, but using

the corresponding chlorides. 2.60 g of NbCl5 (Alfa Aesar, 99%)

and 2.32 g of 4,5-dicyanoimidazole were used in the case of

NbC; 1.86 g of TaCl5 (Alfa Aesar, 99.8%) and 1.89 g of 4,5-

dicyanoimidazole were used for the TaC preparation; due to

the poor solubility of TaCl5 in ethanol, methanol (HPLC grade,

99.98%, Scharlau) was used for preparing the initial solution of

TaCl5. In all cases, the preparation was performed under Ar

flow to avoid hydrolysis of the metal precursors. Afterward,

the obtained viscous solutions were placed in a tubular

furnace for thermal treatment under Ar (5 h, 2.5 Kmin�1) up to

1373 K for VC and NbC, and up to 1423 K for TaC.

Catalyst characterization

Inductively-coupled plasma atomic emission spectrometry

(ICP-AES) was used to determine the chemical composition of

the catalysts. The ICP-AES measurements were carried out

using a Perkin Elmer Optima 3200RL apparatus. Nitrogen

adsorption-desorption isotherms were performed at 77 K,

using a Micromeritics Tristar II 3020 instrument. Before the

measurements, catalysts were degassed at 525 K for 5 h under

N2. The surface area (SBET) was determined from the B.E.T.

model and the pore size distribution was determined by

applying the BHJ method. The catalysts were analysed by X-

ray diffraction (XRD) with a PANalytical X'Pert PRO MPD

Alpha1 powder diffractometer, using a Cu Ka radiation source

(l ¼ 1.5406 �A). The crystallite size was calculated using the

Debye-Scherrer equation. X-ray photoelectron spectroscopy

(XPS) analysis was carried out in a Perkin Elmer PHI-5500

Multitechnique System, Physical Electronics. All spectra

were collected using an Al X-ray source (hy ¼ 1486.6 eV and

350 W). Before XPS measurements, the C 1s BE of adventitious

carbon at 284.8 eV was determined in the same equipment

and conditions using Au as reference. Transmission electron

microscopy and high resolution (TEM-HRTEM) images were

collected employing a JEOL J2010 F microscope operated up to

200 kV. H2-Temperature programmed reduction (H2-TPR) ex-

periments were performed in a Micromeritics Autochem II

2920 equipped with a thermal conductivity detector (TCD).

Samples (about 100 mg) were pretreated at 363 K under He for

1 h and then exposed to an H2/Ar (12% v/v) flow, later the

temperature was increased up to 1073 K at 10 Kmin�1. Raman

spectroscopy analysis was performed in a Jobin-Yvon LabRam

HR 800 instrument, with an optical Olympus BXFM micro-

scope, with a 532 nm laser and a CCD detector. The laser

power was restricted to 1.25 mW to avoid major laser-heating

effects during spectra acquisition. Thermal gravimetric anal-

ysis (TGA/DSC) were carried out using a SenSysevo (Setaram)

equipment coupled to a mass spectrometer (Pfeiffer Vacuum

Omnistar). About 30 mg of the samples were placed in an

alumina cell and heated under O2/Ar (10% v/v) (10 mL/min)

from room temperature to 1023 K (10 K min�1). CO2 was

continuously monitored in the effluent.

https://doi.org/10.1016/j.ijhydene.2023.06.017
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Catalytic tests

The MSR reactions were performed in a Microactivity Refer-

ence (MA0571) unit (PID Eng&Tech) equipped with a GILSON

307 5SC HPLC pump. The stoichiometric reactant mixture,

CH3OH/H2O ¼ 1 (mol/mol), was injected at constant flow and

atmospheric pressure, pre-heated at 473 K and mixed with

N2 (>99.999%), which was added to reach a gas hourly space

velocity (GHSV) of 2500 h�1. The gaseous mixture CH3OH/

H2O/N2 ¼ 1/1/1.2 (molar ratio), was flowed through the

catalyst at atmospheric pressure. In all cases, 300 mg of

catalyst diluted with SiC, were placed in a tubular reactor,

being the catalytic bed of 1 mL. Catalytic tests were carried

out at 573, 623, 673 and 723 K, increasing the temperature

from 573 K to 723 K. The first analysis at a given temperature

was performed after 30 min of stabilization, and the tem-

perature was kept for 1.5 h. The catalytic results at every

temperature were determined by the average of at least three

measurements. In order to evaluate the stability of the cat-

alysts, all of them were kept at the highest reaction tem-

perature (723 K) for 20 h.

Separate experiments varying the contact time were car-

ried out with two representative catalysts (VC and NbC), by

increasing N2 flow, using CH3OH/H2O/N2¼ 1/1/5.5 and CH3OH/

H2O/N2 ¼ 1/1/8 mixtures, resulting GHSV of 6000 and 8000 h�1,

respectively. For these experiments, fresh VC or NbC were

studied first at 6000 h�1 (T ¼ 598 and 623 K) and then at 8000

h�1 (T ¼ 598 and 623 K), using an experimental procedure

similar to that described above.

A liquid-gas separator fitted with a level sensor, working at

277 K, allowed the condensation of vapours. The total gaseous
Fig. 1 e XRD patterns of G5TMC catalysts.

Table 1 e Crystallite size, SBET area, pore diameter and G/D are

Catalyst Crystallite size (nm) SBET (m2 g�1)

Fresh Use

VC 11 271 <10
NbC 9 290 110

TaC 9 220 <10
flow was measured at the outlet of the system, and analysed

online employing a Varian 4900micro-GC equippedwith three

channels with thermal conductivity detectors and M5A (Ar

carrier), PPQ (He carrier), and 5CB (He carrier) columns.

The CH3OH conversion (XCH3OH) was calculated as

XCH3OHð%Þ¼
P

ai:ðƞiÞoutlet�
ƞCH3OH

�
inlet

$100

The selectivity to C-containing compounds (Si) is obtained

as:

Sið%Þ¼ ai:ðƞiÞoutletP
ai:ðƞiÞoutlet

$100

Where ai is the number of carbon atoms per molecule of the i

product (CH4, CO, CO2, HCHO, C2H4, and C2H6). ƞi is the

number of moles of the i product (CH4, CO, CO2, HCHO, C2H4,

and C2H6). ƞCH3OH
is the number of moles of methanol in the

reactants.
Results and discussion

Fig. 1 shows the XRD pattern of G5TMC catalysts. For NbC and

TaC, the presence of carbide cubic phases is clearly deter-

mined (JCPDS 38e1364 and 35e0801, respectively). For VC, the

presence of V8C7 (JCPDS 35e0786) can be deduced; however,

the simultaneous presence of stoichiometric cubic VC (JCPDS

01-073-0476) cannot be ruled out (Fig. 1) [6].

In all cases, small crystallite sizes in the 9e11 nm range are

determined from XRD analysis (Table 1). XRD peaks corre-

sponding to crystalline oxides were not found in any case.

The Raman spectra of samples are shown in Fig. 2. No

bands in the range 100e1000 cm�1 attributed to metal oxides

(VOx, NbOx and TaOx) can be observed. The bands around 1350

and 1600 cm�1 are due to residual carbon in the samples from

the preparation step. G and D components and the corre-

sponding G/D area ratios determined after a proper analysis

[16] are shown in Table 1.

All catalysts are mesoporous materials with B.E.T. areas in

the 220e290 m2 g�1 range (Table 1).

HRTEM confirmed the presence of cubic VC and/or V8C7,

NbC, and TaC (Figs. 3e5). The mean particle size determined

by TEM was 11.6, 10.0 and 9.5 nm for VC, NbC, and TaC sam-

ples, respectively. These values agree very well with the

crystallite sizes determined from XRD analysis (Table 1). For

NbC and TaC, a small number of particles with larger sizes,

35e50 and 18e26 nm, respectively, can be observed (see his-

tograms in Figs. 4 and 5).

Fig. 6 shows the H2-TPR profiles of G5TMC samples; the H2-

consumptions were very small (0.06e0.45 mmol H2/gcat). The
a ratio (Raman) of fresh and used G5TMC catalysts.

Pore size (nm) G/D

d Fresh Used Fresh Used

7 35 0.22 0.29

2 3 0.19 0.24

2 40 0.12 0.16

https://doi.org/10.1016/j.ijhydene.2023.06.017
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Fig. 2 e Raman spectra of fresh and used G5TMC catalysts in MSR (573e723 K, and 20 h at 723 K). Reaction conditions:

CH3OH/H2O/N2 ¼ 1/1/1.2, P ¼ 0.1 MPa, GHSV ¼ 2500 h¡1.
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consumption at about 498 K in VC sample can be related with

the reduction of oxy-carbide species; the reduction of amor-

phous V2O5 takes place at ~852 K and that of crystalline V2O5

at higher temperatures [6,17,18]. For NbC and TaC samples,

the very small H2-consumption at about 630 K (Fig. 6), could be

associated with niobium and tantalum oxy-carbide reduction.

Nb2O5 and Ta2O5 reductions cannot be observed in this range

of temperature because they take place at higher tempera-

tures (>1173 K) [19e21]. Oxy-carbide species were likely

formed when G5TMC were exposed to air after the prepara-

tion [5,6,8].

The G5TMC catalysts were also analysed by XPS. The C 1s

spectra of samples are shown in Fig. 7. In all cases, a C 1s

component centred at 283.0e283.2 eV assigned to carbide

phase (VC, NbC, and TaC) is found [6,22,23]. The component at

284.8 eV is referred to CeC bond corresponding to residual and
adventitious carbon, and those at higher BE are assigned to

species with CeH, CeO, C]O, and/or CeO]O bonds [24e27].

Fig. 8 shows the V 2p, Nb 3d, and Ta 4f spectra corresponding

to VC, NbC and TaC samples, respectively. In all cases, the

component at the lowest BE, V 2p3/2 at 513.6 eV, Nb 3d5/2 at

204.1 eV, and Ta 4f7/2 at 23.8 eV, is attributed to the corre-

sponding carbide species. The components at higher BEs, can

be assigned to the presence of different surface V- [6,28,29],

Nb- [22,30] and Ta- [23,31] oxy-carbide and oxide species.

The catalytic behaviour of G5TMC was studied under the

MSR reaction conditions stated above. Fig. 9 displays the

methanol conversion values as a function of temperature. As

expected, in all cases, the MeOH conversion increased with

the temperature increase up to 723 K. Fig. 9 also shows the

product distribution for all G5TMC. In all cases, H2, CH4, CO,

CO2, HCHO, C2H4, and C2H6 were detected. However, over the

https://doi.org/10.1016/j.ijhydene.2023.06.017
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Fig. 3 e TEM, HRTEM (inset) images and particle size distribution of VC. d-spacing of 0.208 nm can be assigned to VC<100>
or V8C7<200> planes.

Fig. 4 e TEM, HRTEM (inset) images and particle size distribution of NbC.
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different G5TMC, the catalytic transformation of methanol

showed significant differences.

Over VC, in the overall temperature range, CH4 andH2were

the main products. At 573 K, similar production of CH4 and H2

was obtained (about 40% molar concentration each one). At

this temperature, themolar concentration of CO and CO2, was

about 10% each one. At the highest temperature (723 K), an

increase in the production of CH4 and a decrease on that of H2

could be noted, being the molar concentrations 57% and 23%,
respectively. Over VC, the results indicate that under the re-

actions conditions used, the steam reforming process does

not proceed in a large extension.

The CH4 formation might be associated with the methanol

decomposition, which could result in CH4 and an adsorbed O

on the surface (eq. (2)) [11,32e37], the latter could form surface

oxy-carbide species. The oxy-carbide species subsequently

could react with H2 to recover the corresponding metal car-

bide producing H2O.

https://doi.org/10.1016/j.ijhydene.2023.06.017
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Fig. 5 e TEM, HRTEM images and particle size distribution of TaC.

Fig. 6 e H2-TPR profiles of G5TMC catalysts.
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CH3OHðadÞ /CH4ðgÞ þ OðadÞ (eq. 2)

Studies of methanol decomposition over VC single crystals

have shown that VC could break CeO instead of CeH bonds of

methoxy intermediate species, leading to CH4 production at

~500 K; this is possibly associated with the presence of defect

sites (C vacancies) [38,39]. In fact, high selectivity to CH4 is

observed when methanol decomposition is carried out over

carbide-modified metallic single crystals C/V (110) [38]. The

presence of C vacancies has been also proposed as active

centres for methanol activation on Mo2C systems [14]. A

similar process could take place over the VC catalyst under the

MSR conditions used in this work. It is necessary to recall that

the VC catalyst studied in this work contains defective V8C7
phases. However, depending on the temperature range

considered, methanation reactions cannot be ruled out for

CH4 formation (eqs. (3) and (4)).

CO2ðgÞ þ4H2ðgÞ /CH4ðgÞ þ 2H2OðgÞ (eq. 3)

COðgÞ þ3H2ðgÞ /CH4ðgÞ þH2OðgÞ (eq. 4)

Moreover, at low temperatures it could be necessary to

take into account also the contribution of the WGS equilib-

rium (eq. (5)).

COðgÞ þH2OðgÞ $ CO2ðgÞ þ H2ðgÞ (eq. 5)

As a result, over the VC catalyst, mainly a H2þCH4 mixture

is produced with (H2þCH4)produced/CH3OHconverted (mol/mol)

ratios higher than 0.78.

On the other hand, over NbC and TaC catalysts, the

methanol transformation under the reaction conditions used,

results in the main production of HCHO; being CH4 and H2 the

other major products observed. At the lowest temperature,

573 K, mostly HCHO and H2 were found; the HCHO selectivity

referred to C-containing products obtained is about 95% for

both NbC and TaC. For both catalysts, the HCHO selectivity

decreases and that of CH4 increases with the increasing of

temperature. The CO and CO2 molar concentrations were al-

ways well below 10%. These results point that over NbC and

TaC catalysts, under the reactions conditions used, the

reforming reaction neither takes place in an appreciable

extension. The dehydrogenation of methanol to formalde-

hyde seems to be the main reaction pathway over NbC and

TaC catalysts (eq. (6)).

CH3OHðgÞ /HCHOðgÞ þH2ðgÞ (eq. 6)

On both samples, the scission of CeH in CH3O species

would be more favoured than CeO bond cleavage. The pres-

ence of CH3O groups has been observed on NbC single crystals

https://doi.org/10.1016/j.ijhydene.2023.06.017
https://doi.org/10.1016/j.ijhydene.2023.06.017


Fig. 7 e XPS profiles of C 1s level of VC, NbC and TaC samples.

Fig. 8 e XPS spectra of V 2p, Nb 3d and Ta 4f levels of VC, NbC and TaC samples, respectively.
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after methanol adsorption at 293 K [40], and over NbC(100)

only molecular CH3OH adsorption has been proposed to take

place [40].
The transformation of methanol through the route of

dehydrogenation could involve not only the production of

HCHO and H2 (eq. (6)), but also that of CO from HCHO

decomposition reaction (eq (7)).

https://doi.org/10.1016/j.ijhydene.2023.06.017
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Fig. 9 e Methanol conversion and product distribution (molar fraction) in the MSR reaction over G5TMCs as a function of

reaction temperature. Reaction conditions: 300 mg of catalyst, CH3OH/H2O/N2 ¼ 1/1/1.2, P ¼ 0.1 MPa and GHSV ¼ 2500 h¡1.
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HCHOðgÞ /COðgÞ þ H2ðgÞ (eq. 7)

The high HCHO/H2 molar ratio found in the overall tem-

perature range could be related with the consumption of part

of H2 formed in the reduction of surface oxy-carbide species

formed under reaction conditions. Moreover, at temperatures

higher than 623 K, a similar route to that proposed for VC

catalyst, involving CH3OH decomposition to CH4, could take

place also in some extension over NbC and TaC catalysts.

In order to gain insight into the different transformation

routes of methanol over G5TMC catalysts, as described in the

experimental section, in separate experiments the effect of

the contact time in the 598e623 K range was studied over VC

and NbC, which are representative catalysts of the two

different patterns of product distribution. Table 2 shows the

effect of GHSV variation on methanol conversion and product

distribution; the selectivity to C-containing compounds is

shown in Table S1. As expected, VC and NbC showed a

decrease in methanol conversion when the GHSV was
increased from 6000 to 8000 h�1; In all cases, CH4 and HCHO

were the major products for VC and NbC, respectively.

Despite the different MeOH conversion values, in all cases,

over VC, CH4 was produced with a selectivity among C-con-

taining products above 70% (Table S1). For VC, an increase of

CH4 selectivity is observed with the decrease of contact time,

pointing out CH4 as primary product. Over VC, the main re-

action pathway seems to be the direct CH4 formation from

CeO scission of CH3OH (eq. (2)).

For NbC, HCHO selectivity among C-containing products

was above 86% (Table S1); over this catalyst, the dehydroge-

nation of methanol could be proposed as the main reaction

pathway (eq. (6)). However, for NbC, when the temperature or

GHSV was increased, a slight diminution on HCHO selectivity

and a slight increase on CH4 selectivity were observed. This

indicates that, over NbC, CH4 formation through methanol

decomposition might also proceed in some extension. More-

over, for VC and NbC, the nCH4=ðnCO þnCO2 Þ molar ratio

decreased when the methanol conversion increased, by

varying the GHSV at the same temperature. This point out a

https://doi.org/10.1016/j.ijhydene.2023.06.017
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Table 2 e Effect of GHSV on methanol conversion and product distribution for VC and NbC catalysts under MSR. Reaction
conditions: 500 mg of catalyst and P ¼ 0.1 MPa.

Catalyst VC NbC

GHSV (h�1) 6000 8000 6000 8000

Temperature (K) 598 623 598 623 598 623 598 623

MeOH Conversion (%) 10.3 21.4 3.6 14.9 5.4 13.6 3.7 10.3

Product Distribution (%)

H2 25.3 19.8 22.9 18.7 8.1 5.9 5.9 6.2

CH4 55.6 59.0 61.7 62.4 5.6 8.1 8.2 10.0

CO2 7.3 6.4 4.0 5.1 1.0 0.6 0.4 0.5

CO 10.7 13.5 9.7 12.5 0.4 1.6 1.5 1.3

HCHO 0.4 0.2 0.8 0.2 84.7 83.3 83.6 81.4

C2H6 0.4 0.7 0.6 0.7 0.1 0.3 0.2 0.3

C2H4 0.3 0.4 0.3 0.4 0.1 0.2 0.2 0.3

Fig. 10 e Catalytic behaviour of G5TMC in MSR at 723 K along the time, determined after catalytic tests shown in Fig. 9.

Reaction conditions: 300 mg of catalyst, CH3OH/H2O/N2 ¼ 1/1/1.2, P ¼ 0.1 MPa, GHSV ¼ 2500 h¡1.
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low contribution, if it exists, of the methanation reactions

(eqs. (3) and (4)).

As stated in the experimental section, in the present work,

we carried out also a preliminary study regarding the stability

of the G5TMC systems under MSR conditions. For such pur-

poses, catalysts were kept at 723 K for 20 h at the final part of

the catalytic test. In all cases, a high deactivation was

observed. Fig. 10 shows the catalytic behaviour of the catalysts

during this period. Except for NbC, only slight variations in the

product distribution were observed, in this case a continuous

increase of H2 concentration along time was found.

Post-reaction catalysts were characterized by N2 adsorp-

tion/desorption isotherms, XRD, TGA/DSC analysis and

Raman spectroscopy. Despite the large deactivation observed

after 20 h at the highest reaction temperature, the crystallite

sizes of VC, NbC, and TaC of used catalysts determined from

XRD (Fig. S1) resulted equal to those of the corresponding

fresh catalysts and, no crystallinemetal oxides were observed

in any case. However, in all cases, the XRD patterns of the

used catalysts showed the presence of a wide peak at

2q ¼ 25.0� (Fig. S1) and a high decrease of SBET area was

observed (Table 1). This could be associated with the presence

of carbon deposits formed during the reaction and related

with the observed deactivation of catalysts.

Raman spectroscopy is a useful technique for the charac-

terization of the carbonaceous deposits formed in reformation

processes [41e44]. In all cases, Raman spectra of post-reaction

catalysts revealed intense bands at about 1350 and 1600 cm�1

(Fig. 2), indicating the formation of carbonaceous deposits

during the long term catalytic test (Fig. 10). After a proper

deconvolution of the spectra, the degree of graphitization of

the carbonaceous deposits can be estimated by the G/D area

ratio [16]. For the used catalysts, an increase in the G/D area

ratio is noted when compared to the corresponding values of

residual carbon in the fresh catalysts (Table 1). Finally, the

used VC was analysed by TGA. Although besides carbon

burning, oxidation processes of carbide species could take

place, the CO2 profile can be used in the characterization of

deposited carbon (Fig. S2). The formation of abundant carbon

deposits during MSR, which are burnt at higher temperature

than initial residual carbon in the sample can be noted.

The CH4 decomposition could lead to coke formation on

surface as observed on Mo2C in the MSR [11,13]. In this

context, after methanol adsorption, the decomposition of

methanol with carbon formation was also observed on

VC(110) single crystals [38]. Moreover, over VC(100) the

decomposition of surfacemethoxy species could form (-CHxO-

), a cyclic intermediate bonded to the surface through both C

and O, which has been proposed as precursor of carbonaceous

deposits [45]. On the other hand, oxidation and reduction

could be in competition under reaction conditions, as has

been demonstrated during the methane dry reforming over

G5TMC [46]. Despite surface oxidation could contribute to

deactivation, as it has been reported for Mo2C-based catalysts

in MSR [15,47], the fact that XRD patterns of used catalysts

(Fig. S1) did not show the presence of oxides, could indicate

that the deactivation observed could be mainly related with

the coke formation. At this respect, to avoid extensive
deactivation, different approaches, including the introduction

of CO2 in the reactant mixture, the change of the steam/C

ratio, and the use of CO2 in regeneration processes [48e51],

could help to further study G5TMC in the catalytic methanol

transformation.
Conclusions

The preparation method used in this work, led to G5TMC (VC,

NbC and TaC), with similar crystallite sizes (9e11 nm). G5TMC

were active catalysts for the transformation of methanol

under MSR stoichiometric reaction conditions (CH3OH/

H2O ¼ 1/1) in the temperature range of 573e723 K. The cata-

lytic behaviour depended on the G5TMC used. VC was active

for the selective decomposition of methanol to CH4, allowing

the production of methane-rich (H2þCH4) mixtures with (H2-

þCH4)produced/CH3OHconverted up to 0.8 mole ratios. NbC and

TaC catalysts exhibited a quite different catalytic behaviour

than VC. Over NbC and TaC, themethanol dehydrogenation to

formaldehyde is proposed to be the main reaction pathway

under the MSR conditions used. At 573 K, the selectivity of

HCHO referred to C-containing products is over 95%. All cat-

alysts suffered severe deactivation at the highest temperature

(723 K), which is probably related to the formation of carbon

deposits under the MSR conditions used. However, in all

cases, the crystallite size of the post-reaction G5TMC

remained similar to that of the corresponding fresh catalyst

and crystalline metal oxides were not detected after reaction.
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