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A B S T R A C T

While deep learning has displayed excellent performance in a broad spectrum of application areas, neural
networks still struggle to recognize what they have not seen, i.e., out-of-distribution (OOD) inputs. In the
medical field, building robust models that are able to detect OOD images is highly critical, as these rare images
could show diseases or anomalies that should be detected. In this study, we use wireless capsule endoscopy
(WCE) images to present a novel patch-based self-supervised approach comprising three stages. First, we train a
triplet network to learn vector representations of WCE image patches. Second, we cluster the patch embeddings
to group patches in terms of visual similarity. Third, we use the cluster assignments as pseudolabels to train
a patch classifier and use the Out-of-Distribution Detector for Neural Networks (ODIN) for OOD detection.
The system has been tested on the Kvasir-capsule, a publicly released WCE dataset. Empirical results show
an OOD detection improvement compared to baseline methods. Our method can detect unseen pathologies
and anomalies such as lymphangiectasia, foreign bodies and blood with 𝐴𝑈𝑅𝑂𝐶 > 0.6. This work presents an
effective solution for OOD detection models without needing labeled images.
1. Introduction

Wireless capsule endoscopy (WCE) is an endoscopy technique that is
an alternative to the standard procedure originally developed by Iddan
et al. [1]. This method presents a variety of advantages versus standard
endoscopy due to being far less invasive, not requiring sedation, and
risking fewer potential complications. WCE makes use of a small pill-
shaped capsule with a camera inside, rather than the traditional long,
thin, flexible tube with a camera at one of its ends. This capsule
can be easily swallowed, upon which the camera records hours of
intestinal video that a medical team can later view to diagnose any
gastrointestinal condition.

Nevertheless, WCE videos can contain thousands of images per
patient and must be screened by medical specialists. This is a time-
consuming and complex process. Its repetitive nature might lead to
missing pathologies or other important elements [2]. For this reason,
artificial intelligence offers a clear opportunity to support this task [3–
5].

The application of AI techniques has been thoroughly investigated
for the detection of abnormal or suspicious images in WCE. Several
works have been presented for the identification or segmentation of
pathological conditions such as bleeding [6–8], polyps or tumors [9–
14], angiectasia [15], ulcers [16–18], motility disorders [19], as well
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as methods for multipathology detection [20–26]. Deep learning cur-
rently represents the state-of-the-art for most of these problems and
has demonstrated promising results. Nevertheless, independent of the
performance on the task for which these models were designed, the
ability to detect unseen out-of-distribution (OOD) images is crucial,
as such OOD images may correspond to other severe conditions. For
example, a polyp is an abnormal growth of tissue that can evolve into
cancer, and therefore, its detection can be highly beneficial. However,
a system that accurately detects polyps but fails to identify advanced-
stage tumors would not be desirable. Therefore, the development of
reliable ODD detectors in addition to supervised detectors is necessary
for adoption in clinical practice.

The nature of capsule endoscopy images is wide and heterogeneous,
which challenges deep learning models to learn what is normal or in-
distribution. Furthermore, some images are considered abnormal due to
an anomaly in a small area of the image, despite the remaining image
being completely normal. In these cases, an OOD detector will most
likely classify those as in-distribution, as the anomaly cannot outweigh
the in-distribution features of the image. Therefore, one of the goals
of this work is to develop a detector that is able to identify small
anomalies (see Fig. 1).

In this study, we introduce a self-supervised method derived from
ODIN [28] based on patches. We first create a model able to generate
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Fig. 1. Random WCE sample images that illustrate the diversity of the dataset [27] and the complexity of out-of-distribution detection. First row: normal frames. Second row:
frames containing some pathology.
vector representations of fixed-size patches extracted from WCE images
as a self-supervised task. These embeddings encode visual features from
the patches and allow the creation of clusters of patches in terms of
visual similarity. Finally, we train a classifier using cluster assignments
as pseudolabels. Similar to its predecessor method ODIN, our OOD
detector is based on the confidence of this patch classifier.

The remainder of this paper is structured as follows. First, we
present an overview of the related work in the OOD field. Then, we
describe the details of our methodology, followed by the experimental
setup and results. Finally, we conclude the paper and provide directions
for future work.

2. Related work

The OOD image detection problem in deep learning has been stud-
ied for many years using a variety of approaches ranging from conven-
tional statistical techniques (such as density estimation) to generative
models (such as autoencoders or GANs). In this study, we distinguish
between supervised methods, which use some type of labeling in the
training set, and self-supervised methods, which learn the necessary
knowledge to perform the OOD problem without the need for specific
labeling in the training set. Our method falls in the second category.

Supervised methods

A widely used baseline method for this problem is the maximum
over softmax probabilities (MSP) [29]. This approach is based on a
classifier trained over in-distribution data and works on the assump-
tion that models make more confident predictions with in-distribution
inputs than with OOD data. It conceptually depends on the outputs of a
simple multiclass classifier and requires no further training. However,
its performance has proven to be inferior to many later approaches.
Thus, it is currently only used as a baseline method.

Since diverse and enormous datasets of images are available,
Hendrycks et al. [30] proposed leveraging these data to improve OOD
detectors against auxiliary datasets of outliers in a method called
Outlier Exposure (OE). In this method, the classifier is trained to predict
a uniform distribution over labels for outlier inputs, which enforces low
confidence over these inputs. Thulasidasan et al. [31] proposed using
an abstention class in the classification problem and assigning known
outliers to this class. Further work showed that leveraging the labels of
the known outliers instead of assigning all outliers to a single abstention
class can further enhance the performance of the OOD detector, despite
only representing a small subset of the type of outliers that we want to
detect [32].

Another effective improvement to MSP is ODIN [28]. While still
being a confidence-based approach, ODIN includes two fundamental
novel techniques: temperature scaling and input perturbation. These
techniques lead to better OOD detection, making it one of the best-
performing state-of-the-art methods for the OOD problem. Nonethe-
less, ODIN relies on OOD data to tune the temperature and pertur-
bation hyperparameters. In contrast, a generalized version of ODIN
2

(GODIN [33]) does not require tuning with OOD data and mitigates
this issue.

Other approaches focus on modeling the class-conditional distribu-
tion of pretrained CNN features with a Gaussian distribution and use
the Mahalanobis distance in the predicted class distribution to detect
OOD samples [34]. For example, DeepIF method [35] achieves better
detection performance by modeling the distribution of CNN features
with a nonparametric technique based on isolation forests.

Self-supervised methods

The concept of learning normality to then detect anomalies is
evident in methods based on deep-generative models including autoen-
coders (AEs), variational autoencoders (VAEs) and generative adver-
sarial networks (GANs). All of these methods learn features with high
representation quality that can be used for density estimation meth-
ods [36] or reconstruction error methods [37]. These approaches rely
on the assumption that reconstruction models trained on in-distribution
images produces higher-quality outcomes with in-distribution inputs
than with OOD inputs. Thus, images producing a high reconstruction
error can be classified as OOD.

Other self-supervised approaches have tried to replicate classifier-
based supervised methods without using labeled data, such as ensem-
ble leave-out classifiers proposed by Vyas et al. [38]. This technique
consists of randomly partitioning data in 𝐾 subsets and creating 𝐾
classifiers, each of which samples one of the 𝐾 subsets without replace-
ment as OOD data and samples the remaining subsets as in-distribution
training data.

3. Methodology

The general concept of the proposed method in this paper is to use
ODIN [28], which is considered one of the state-of-the-art approaches
in OOD detection, to detect abnormal areas of WCE images. To focus
on small regions of the image, we split the WCE images into fixed-
size patches, which we consider our training and testing examples.
Since ODIN is a classifier-based approach, labels are required to classify
samples. Toward this application, we use a self-supervised feature
extraction network to generate embeddings and then apply a clustering
algorithm that assigns each sample one label that is later used to train
the classifier. Importantly, our method does use any external labeling
of the images or patches.

The pipeline of the method comprises three stages, which are hence-
forth described in detail.

Triplet-loss embeddings

The first stage of our method seeks to learn a vector representa-
tion for patches extracted from WCE images. To learn these embed-
dings, we use a triplet loss (TL) network, which allows us to perform
self-supervised learning, as described in the next paragraph.

A TL architecture compares an anchor input with two other inputs: a
positive input, which shares a property with the anchor, and a negative
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Fig. 2. Triplet loss applied to three patches that are transformed into three vectors. Anchor: patch from a given image. Positive: a different patch of the same image. Negative: a
patch of a different image.
Fig. 3. Example of clusters produced; each column represents one cluster. Patches in the same cluster are more visually similar than patches in different clusters (𝐾 = 15, patch
size 96 × 96). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
input, which does not share this property. In our case, inputs are fixed-
size patches extracted from WCE images, and the shared property is that
both subsets are extracted from the same image, whereas the negative
patch is extracted from a different image, as illustrated in Fig. 2. TL
aims at ensuring that the anchor image, 𝑥𝑎, is closer to all other images
from the same class, 𝑥𝑝, than any image from a different class, 𝑥𝑛.

To achieve classification, the following loss function is used:

𝑇𝐿(𝑥𝑎, 𝑥𝑝, 𝑥𝑛) =
𝑁
∑

𝑖=1
max

(

‖𝑓 𝑎
𝑖 − 𝑓 𝑝

𝑖 ‖ − ‖𝑓 𝑎
𝑖 − 𝑓 𝑛

𝑖 ‖ + 𝛼, 0
)

(1)

where 𝑓𝑘 is the vector representation of 𝑥𝑘, 𝑁 is the batch size, ‖ ⋅ ‖
is a norm and 𝛼 is a margin parameter to enforce separation between
classes.

Given two patches from the same image, this network generates
embeddings that are closer together than two patches from different
images. Since two patches from the same image will tend to be more
visually similar than two from different images, these embeddings can
be useful to cluster patches based on visual features.

Cluster pseudolabeling

As outlined above, we must label patches to train a patch classifier.
Therefore, we use cluster predictions as pseudolabels to train our
OOD-detector classifier.

Given the triplet-loss embeddings produced in the previous stage,
we use the mini-batch 𝐾-means algorithm to create patch clusters based
on visual similarity. Images in the same cluster tend to share visual
features such as color, texture or shape. An example of such a clustering
is shown in Fig. 3.

This clustering partitions the patch dataset, which is then used to
train a 𝐾-class classifier.
3

Patch ODIN classifier

The third and final stage of our method is the patch-based ODIN,
which is based on a 𝐾-class classifier trained with the aforementioned
pseudolabels. This classifier also includes temperature scaling and input
perturbation, as defined in the original ODIN paper [28]. A given image
is partitioned into 𝑚 patches and fed to the ODIN model, which outputs
an anomaly score for each patch (see Fig. 4).

Formally, we let 𝑥 be an input patch, 𝑥̃ be the perturbed version
of this patch and 𝑧 = (𝑧1,… , 𝑧𝐾 ) be the output vector produced by
the temperature-scaled 𝐾-softmax layer. We define the anomaly score,
called the softmax score, in Eq. (2). Then, these scores are combined
using a summary function to obtain a measure of the abnormality of
the image as a whole. If this score surpasses a certain threshold, then
the image is labeled as OOD.

(𝑥̃; 𝑇 ) = 1 − max
𝑖=1,…,𝑘

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥̃; 𝑇 )𝑖 = 1 − max
𝑖=1,…,𝑘

𝑧𝑖 (2)

For each image 𝑥, we will extract 𝑚 patches 𝑥1,… , 𝑥𝑚. Given a
perturbation magnitude 𝜀, a temperature parameter 𝑇 and a threshold
𝛿, our OOD discriminator is defined as follows:

𝑂𝑂𝐷(𝑥; 𝑇 , 𝜀) =

{

1, 𝛹
(

(𝑥̃1; 𝑇 ),… ,(𝑥̃𝑚; 𝑇 )
)

≥ 𝛿
0, 𝛹

(

(𝑥̃1; 𝑇 ),… ,(𝑥̃𝑚; 𝑇 )
)

< 𝛿
(3)

where 𝛹 is a summary function applied to the softmax scores of the
patches.

Given the softmax scores of the patches of an image 𝑦 = (𝑦1,… , 𝑦𝑚),
we define three summary functions in Table 1.

Each of these three strategies may perform differently depending
on the nature of the anomalies to detect. For instance, max, which
only uses the patch with the highest anomaly score, might work bet-
ter for localized features but might also introduce more noise; wavg,
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Fig. 4. Illustration of the patch-splitting process.
Fig. 5. Softmax score distributions produced by patch ODIN (top5 summary) by pathology. Real distributions are used to fit Gaussian distributions, which are plotted above. The
second window shows a zoomed view. Distributions are normalized for the sake of comparison.
Fig. 6. ROC curve of patch ODIN (top 5) OOD detection by pathology. Mixed considers
all Kvasir pathological frames as one single class.

which accounts for all the patches but gives more importance to the
highest scores, might be better suited for global anomalies; top-k is an
intermediate approach that might work like max but with less noise.

4. Experimental setup

4.1. Dataset

We evaluate and compare our proposed method with Kvasir-Capsule
[27]. Kvasir-Capsule is a publicly released WCE dataset that contains
4

Table 1
Definition of the summary functions used in this paper.
max maximum-score patch 𝛹max(𝑦) = max𝑖=1,…,𝑚 𝑦𝑖
top-k average of top-𝑘 patches 𝛹top 𝑘(𝑦) =

1
𝑘

∑

𝑦𝑖∈𝑆𝑘

a 𝑦𝑖
wavg weighted average of all the patches 𝛹wavg(𝑦) =

1
𝑚

∑

𝑦𝑖∈𝑆𝑚

a 𝜆𝑖𝑦𝑖

aWhere 𝑆𝑛 is the subset of the first 𝑛 softmax scores, sorted in descending order.

117 videos of gastrointestinal footage from different patients, 74 of
which are unlabeled and 43 partially labeled. The labeled frames are
comprised of 14 different classes, 5 of which refer to nonpathological
categories: normal clean mucosa (NOR), ileocecal valve (IV), pylorus
(PYL), reduced mucosal view (RED) and ampulla of vater (AV); and 9
that refer to pathological or abnormal categories: angiectasia (ANG),
erythema (ERY), blood - fresh (BLO), blood - hematin (BLH),1 erosion
(ERO), foreign body (FB), ulcer (ULC), polyp (POL) and lymphangiec-
tasia (LYM). For our OOD problem, we considered the 9 pathological
categories as OOD, i.e., our detection target.

Different frames from the same video can be very similar. Thus,
data partitions must be done by videos instead of frames. We randomly
selected 64 out of the 74 unlabeled videos for the training of the
triplet network, the 𝐾-Means clustering and the patch classifier. The
10 remaining unseen videos are used as an intermediate validation set
to assess the quality of the resulting embeddings and clustering and
the accuracy of the classifier. The 43 labeled videos are then used only
for testing purposes, with normal classes considered in-distribution and
pathological frames of OOD. We extract fixed-size patches of 96 × 96
pixels from a video frame resolution of 336 × 336 using a step size of
60 pixels between patches, while ensuring that there is overlap between
patches and that all areas of the image are captured.

1 BLH class is not considered for evaluation purposes due to the small
number of frames available in this category, of which there are only 10.
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Table 2
AUROC scores of OOD detection by pathology of the proposed Patch ODIN method. Comparison between three different patch
sizes (PS).
Pathology #samples PS 64 × 64 PS 96 × 96 PS 128 × 128

max top-k wavg max top-k wavg max top-k wavg

ANG 866 0.576 0.629 0.636 0.572 0.628 0.635 0.592 0.591 0.595
BLO 446 0.646 0.708 0.701 0.613 0.677 0.678 0.644 0.616 0.601
ERO 507 0.579 0.593 0.598 0.562 0.582 0.587 0.538 0.557 0.564
ERY 159 0.412 0.398 0.407 0.322 0.301 0.300 0.457 0.468 0.479
FB 776 0.669 0.698 0.696 0.737 0.729 0.732 0.621 0.613 0.602
LYM 592 0.645 0.671 0.671 0.739 0.767 0.772 0.627 0.635 0.640
POL 55 0.531 0.417 0.435 0.776 0.848 0.845 0.580 0.600 0.600
ULC 854 0.615 0.618 0.626 0.725 0.795 0.804 0.534 0.521 0.518

Aggregated 4255 0.611 0.638 0.640 0.650 0.680 0.686 0.578 0.578 0.575
Table 3
AUROC scores of OOD detection by pathology, comparison between different methods. For each pathology,
the best score is marked in bold.
Pathology #samples Patch ODIN Patch VAE ODIN VAE SelectiveNet

96 × 96, top k 96 × 96, top k

ANG 866 0.628 0.367 0.483 0.573 0.515
BLO 446 0.677 0.705 0.541 0.791 0.576
ERO 507 0.582 0.622 0.570 0.540 0.472
ERY 159 0.301 0.231 0.560 0.324 0.326
FB 776 0.729 0.623 0.642 0.679 0.632
LYM 592 0.767 0.671 0.752 0.745 0.738
POL 55 0.848 0.350 0.667 0.622 0.652
ULC 854 0.795 0.706 0.543 0.680 0.669

Aggregated 4255 0.680 0.577 0.578 0.642 0.572
Fig. 7. Results by video. Each circle represents a video, and the size is proportional to the number of frames contained in that video.
4.2. Method stages

1. Triplet-loss embeddings The triplet-loss model uses the Effi-
cientNetB0 [39] architecture, followed by a global average pool-
ing layer. Finally, a 1280-unit dense layer outputs the feature
vectors.

2. K-Means clustering Due to the high volume of images, we used
the mini-batch version of the 𝐾-Means algorithm. The value
chosen for the number of clusters is 𝐾 = 20 due to seemingly
showing the most consistent clustering results.

3. Patch ODIN classifier We use a CNN classifier that comprises
the first three blocks of the ResNet50v2 [40] architecture (Im-
ageNet pretrained), followed by three fully connected layers
integrating dropout and batch normalization layers. The top
fully connected layer uses a temperature scaling with a fixed
5

temperature parameter value 𝑇 = 1000, as proposed in other
previous work [33]. Because the number of labeled videos for
each pathology is limited, cross-validating these parameters is
very risky.

4.3. Baseline methods

We use baseline self-supervised methods trained with the same data
to compare the performance of our approach with other previous work.
The implementation of supervised approaches would require using
additional data or labels and, more importantly, would make an unfair
comparison. The following methods are used as baselines:

ODIN [28]. To incorporate a nonpatch-based ODIN as a baseline
method, we trained a self-supervised model that uses temporal informa-
tion of the frames to generate pseudolabels and train an ODIN classifier
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on the full image. Importantly, this adapted version is self-supervised,
indicating that it has not been trained with ground-truth labels.

SelectiveNet [41]. The SelectiveNet architecture includes a rejec-
tion option for selective classification, which we use as the OOD score.
We use the same self-supervised methodology to generate pseudolabels
as described for ODIN.

VAE [37]. We use the same VAE architecture and train on the same
in-distribution data as our approach. Then, we use the VAE anomaly
score proposed in their work to determine if an image is an OOD.

Patch VAE. We use a patch-based method, but instead of ODIN, we
introduce the VAE from the baseline method (trained on patches) to
create an anomaly score for every patch. Then, for every image, the
scores of the patches are combined using a summary function to obtain
an anomaly score for the image. We use this model as an intermediate
between the VAE and our method.

4.4. Evaluation metrics

• Accuracy. Measures the fraction of examples correctly classified.
• True negative rate (TNR) or specificity. Refers to the pro-

portion of negative examples that were classified as negative:
𝑇𝑁∕(𝑇𝑁 + 𝐹𝑃 ).

• True positive rate (TPR) or sensitivity. Refers to the fraction of
positive examples that were classified as positive: 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁).

• AUROC. Area under the ROC curve. Refers to the sensitivity-
specificity tradeoff at various threshold settings. To determine
AUROC, we compute the anomaly score of normal and OOD
samples and measure sensitivity and specificity at TPR and FPR
at different threshold configurations.

• TPR at n% TNR, abbr. TPRn. Refers to the TPR when the TNR is
𝑛%. TPR95 and TPR90 are used.

• %PF. Refers to the percentage of pathological frames among all
the frames in a video.

• %DPF(n). Refers to the percentage of pathology among the 𝑛
frames with the highest outlier scores.

• Difference between %PF and %DPF (diff ). Given the high
variance in %PF across different videos in the dataset, we use this
to measure how well the model detects OOD frames for different
pathological prevalence.

𝑑𝑖𝑓𝑓 = %PF − %DPF

In addition to these quantitative metrics, we also evaluate the
ystem qualitatively by inspecting the results produced on a subset of
mages. We consider this a very important evaluation to understand
he predictions obtained by each model, which allows us to understand
hich images the model considers abnormal and which others are

lassified confidently.

. Results

In our first experiment, we seek to analyze anomaly score distribu-
ions produced by the patch ODIN2 for each class. Toward this goal, we
xtract the softmax score of each image and fit a Gaussian distribution
o each set of scores. Fig. 5 shows these normalized distributions,
.e., with balanced classes to better compare the degree of overlap of
hese distributions. We note that, as a result of the plain nature of
RY images in this dataset, this class produces even lower anomaly
cores than the normal class. The normal class (NOR) produces the
owest anomaly scores and thus allows us to separate classes using these
cores. However, the degree of separation varies for each pathology:
ome classes, such as ERO and BLO, have a large overlap with NOR,
hile others, such as LYM or ULC, have a significant separation.

2 For the patch ODIN, we fix the following parameters: 𝑘 = 20, 𝜀 = 5 ⋅ 10−4,
and 𝑇 = 1000.
6

We compare each pathology versus the normal class to evaluate the
potential of our OOD discriminator. The results for a patch size of 96
are shown using ROC curves in Fig. 6.

To further investigate the effect of the patch size, we repeated the
experiments using additional patch sizes of 64 and 128. The results
are presented in Table 2, which shows that the patch size of 96
yields the best results. Therefore, we adopt this size for the subsequent
experiments.

The AUROC score by pathology and comparison with baseline
methods are summarized in Table 3. The results show that, considering
all pathological frames as one abnormal class, our method slightly
improves performance over the baseline methods. Considering each
pathology individually, we observe different results. Patch ODIN per-
forms especially well with LYM and ULC and slightly outperforms the
baseline methods with FB and ERO. However, our method does not
improve BLO detection, which the VAE model does especially well.
This is attributed to blood being the most global anomaly, such that
splitting the data into patches does not contribute to better detection.
Furthermore, we observed that the best summary strategy depends on
pathology. Some of the pathologies are global, while others appear very
localized; overall, top5 and wavg seem to yield the best results.

In general, we observe that VAEs tend to assign higher anomaly
scores to images that appear more complex in terms of texture, colors
and shapes. For instance, we find that nonpathological bubble images
are usually assigned high scores, while pathological plain images are
not detected. This mainly occurs because complex features, despite
being common in the training set, are harder to reconstruct for an
autoencoder. Thus, reconstruction error is higher for complex images,
which plays a large role in anomaly score.

The availability of images for certain pathologies is extremely lim-
ited (different images may be consecutive frames of the video that
contain the same anomaly), which can lead to inaccurate results. For
this reason, further qualitative and quantitative analysis is necessary to
confirm the performance of the system.

Notably, to compute AUROC scores, we use normal and OOD frames
extracted from different videos. In real-world situations, given a WCE
video from a single patient, it is desirable to flag the most abnormal
frames to detect any potential condition. To better measure the perfor-
mance of the model in such a situation, we test our method in each
video separately and measure how well the model detects pathological
frames among the ‘most abnormal’ frames. For this test, we use the
diff metric described in the previous section, with 𝑛 = 100. This
metric compares the percentage of pathological frames among the 100
frames with the highest outlier score (%DPF(100)) with respect to the
percentage of pathological frames in the video (%PF).

The results of the video analysis are shown in Fig. 7. We observe
that frames containing LYM, FB and BLO produce high anomaly scores
and thus are detected among the most outlier frames. For remaining
diseases, the average diff is close to 0, indicating that the model detects
pathological frames (among the most abnormal) at the same rate as
they are present throughout the video. Because labeled videos contain-
ing ULC are >90% pathological, diff may not be the best performance
indicator for this class. Additionally, these results may not match with
the AUROC scores as previously presented because this metric measures
each video independently and focuses on the most abnormal tail end.

We also conducted a qualitative analysis using the outputs of the
model on a subset of images. To do this, for each selected image, we
examined the score of each patch, analyzed which patches produced the
highest scores, and plotted the results in the form of a heatmap over
the original image. This process is illustrated in Fig. 8, where the model
performs well, and in Fig. 9, where the model fails to correctly identify
anomalies. We examined both successful and unsuccessful examples to
determine those types of anomalies our model is able to identify and
those which it cannot. A general conclusion is that the model tends
to detect more visually prominent anomalies more accurately, as was

expected.
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Fig. 8. Left: sample WCE images that contain LYM, FB and BLO, from top to bottom. Center: patches extracted from each image sorted in terms of softmax score. Right: Heatmaps
produced using softmax scores; red areas represent high anomaly scores. In these examples, the model correctly identifies anomalies, and thus, patches containing anomalies
produce high scores. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Left: sample WCE images that contain BLO, ANG and no pathologies (NOR), from top to bottom. Center: patches extracted from each image sorted in terms of softmax
score. Right: Heatmaps produced using softmax scores; red areas represent high anomaly scores. In these examples, the model is not able to correctly identify anomalies. In the
first two cases, all the patches are assigned low scores, and thus, any abnormal area is detected. In the third case, the model incorrectly assigns a high score to a normal patch.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
6. Conclusions

This study presents a method to improve OOD detection in WCE im-
ages with respect to other self-supervised approaches, such as VAEs or
ODIN without patches. Both quantitative and qualitative results show
that the system successfully detects pathologies including lymphang-
iectasia, foreign bodies and blood showing. Moreover, the patch-based
nature of our methodology allows us to measure the abnormality of
every region of the image.

While our method tends to effectively detect the most visually
prominent anomalies, it is less sensitive to subtler anomalies such as
erosion, angiectasia or erythema. These pathologies are visually quite
similar to in-distribution WCE images. Therefore, detecting these types
of anomalies using a model that has not been previously exposed to
them is a great challenge. Moreover, the limited availability of data in
medical fields reinforces the need for larger and more diverse datasets.
Toward this goal, our future work may consider incorporating online
learning techniques, where the model could dynamically adapt as a
medical team flags unseen images to the system.

Overall, we intend that our method can provide an effective solution
for OOD detection models without the need for labeled images. While
this work has focused on WCE images, our methodology can also be
applied to OOD detection in other computer vision applications.
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