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A B S T R A C T

Wireless Capsule Endoscopy is a medical procedure that uses a small, wireless camera to capture images of
the inside of the digestive tract. The identification of the entrance and exit of the small bowel and of the
large intestine is one of the first tasks that need to be accomplished to read a video. This paper addresses the
design of a clinical decision support tool to detect these anatomical landmarks. We have developed a system
based on deep learning that combines images, timestamps, and motion data to achieve state-of-the-art results.
Our method does not only classify the images as being inside or outside the studied organs, but it is also able
to identify the entrance and exit frames. The experiments performed with three different datasets (one public
and two private) show that our system is able to approximate the landmarks while achieving high accuracy on
the classification problem (inside/outside of the organ). When comparing the entrance and exit of the studied
organs, the distance between predicted and real landmarks is reduced from 1.5 to 10 times with respect to
previous state-of-the-art methods.
1. Introduction

Wireless Capsule Endoscopy (WCE) (Iddan et al., 2000) is a medical
procedure designed to visualize the entire digestive tract through a
swallowed vitamin-size capsule, which is propelled by peristalsis via
the esophagus, stomach, small intestine, and large intestine (also re-
ferred to as colon). WCE offers several benefits to patients, clinicians,
and the healthcare system in comparison with traditional endoscopic
procedures. It does not require sedation, is less likely to cause dis-
comfort, and presents fewer potential complications. It also minimizes
the needed medical resources compared to the standard screening
technique (Darrow, 2014).

Currently, in several countries, small bowel WCE is used as the first
indication for obscure gastrointestinal (GI) bleeding, Crohn’s disease,
and to a lesser extent, screening in polyposis syndromes, celiac disease,
or other small bowel pathologies (Trasolini and Byrne, 2021). Mean-
while, colon WCE is increasingly recognized as a reliable option for
polyp detection, investigation of inflammatory bowel diseases or com-
pletion of an incomplete colonoscopy (Yung et al., 2016; Koulaouzidis
et al., 2021).

Unfortunately, the adoption of this technique is below the initial
expectation, mainly because WCE: (1) does not admit any surgical
intervention; (2) does not provide the exact location of the pathology
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or organs; and (3) generates recordings with thousands of frames that
must be reviewed by experts, entailing a complex and time-consuming
task. Even an experienced reader may require at least an hour to
analyze the data of a single patient (Maieron et al., 2004; Dokoutsidou
et al., 2011; Rondonotti et al., 2020).

Artificial Intelligence (AI) methods are being employed in several
solutions to overcome WCE limitations and accelerate the reviewing
process for readers. While most studies have been centered on detecting
images with abnormalities, such as polyps, tumors, bleeding, or ulcers,
few of them are focused on localizing the findings or the anatomical
landmarks.

In the clinical field, the localization of anatomical landmarks and
abnormalities represents a problem of particular interest as it is essen-
tial to guide gastroenterologists during the screening and to take clin-
ical decisions (Iakovidis and Koulaouzidis, 2015). Indeed, the localiza-
tion of these landmarks is one of the first tasks carried out by the read-
ers and is required to perform a complete exploration (Koulaouzidis
et al., 2021).

In this paper, we propose a deep learning method for automatically
localizing relevant anatomical landmarks to be used in the clinical
routine with different capsule endoscopy devices. The aim of this
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895-6111/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.compmedimag.2023.102243
Received 14 September 2022; Received in revised form 25 February 2023; Accepte
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

d 5 May 2023

https://www.elsevier.com/locate/compmedimag
http://www.elsevier.com/locate/compmedimag
mailto:laizpablo@ub.edu
https://doi.org/10.1016/j.compmedimag.2023.102243
https://doi.org/10.1016/j.compmedimag.2023.102243
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compmedimag.2023.102243&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computerized Medical Imaging and Graphics 108 (2023) 102243P. Laiz et al.
Fig. 1. Illustration of random frames from two GI tracts. The first sample is recorded with the Olympus EC-S10, whereas the second one is obtained with Medtronic PillCam
COLON2. The corresponding landmarks of the small bowel (first sample) and the large intestine (second sample) are bordered by a green dashed line.
work is to reduce the average time required to complete the clinical
routine which typically takes approximately 25 minutes by a specialist
reader (Iakovidis and Koulaouzidis, 2015). To reach this purpose, the
method focuses on detecting the end of the pylorus and the ileocecal
valve, which delimit the small bowel. For the large intestine, the points
of interest are the first cecal and last rectal images. Moreover, the last
rectal image ensures the proper identification of the farthest point of
capsule progression. These landmarks are illustrated in Fig. 1 bordered
by a green dashed line. Each one of them can be visualized in multiple
depending on the orientation of the capsule. Though, in some cases,
they can be hidden by GI content, which increases the complexity of
the task.

First, our system aims to identify all the images between the land-
marks using video frames, and additionally, timestamps and motion
information that have not been employed in previous studies. Subse-
quently, the model recognizes the first and last image belonging to
the studied organ. The obtained results show that, by providing extra
knowledge to the network, the performance of the system increases
compared to the state-of-the-art methods and may reduce the average
time to complete the clinical routine.

The paper is organized as follows: initially, an overview of the re-
lated work in the field is given. Then, our method is presented in detail
explaining the key steps, followed by the experimental setup, where
the three used databases and metrics are introduced. After that, the
results of the experiments are extensively exposed in a quantitative and
qualitative manner to prove the performance of the method. Finally, the
conclusions and future work are discussed.

2. Related work

The related work can be divided into two main categories: ad hoc
techniques and deep learning models. First, the traditional statistical
methods and machine learning techniques are reviewed. Then, deep
learning methods focused on organ classification are summarized.

Berens et al. (2005) were the first to propose a solution for the de-
tection of anatomical landmarks. They employed hue saturation chro-
maticity histograms to distinguish the stomach, intestine, and colon
tissues. Lee et al. (2007) made use of intestinal contractions to locate
the boundaries of the organs or unusual events such as intestinal
juices, bleeding, and rare capsule movements. Mackiewicz et al. (2008)
described the use of color image analysis to discriminate between
the esophagus, stomach, small intestine, and colon. Haji-Maghsoudi
et al. (2012) proposed an algorithm to classify the same organs using
static and non-static features. Li et al. (2015) reported a method that
draws a dissimilarity curve implementing the color feature to locate the
boundaries between the stomach, small intestine, and large intestine.
In these methods, the system performance is assessed as the frame
distance (error) between the point in the video where the boundary
was manually annotated by a clinician and the one selected by the
algorithm.

The latest methods to discriminate between organs are based on
deep learning techniques. Zou et al. (2015) proposed a network called
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DCNN-WCE-CS to classify the digestive organs from WCE images by rec-
ognizing high-level semantic features. The network was built with three
convolutional layers and a dense layer to classify. Chen et al. (2017)
presented two different systems, O-CNN and TO-CNN. The former con-
sisted of a standard Convolutional Neural Network (CNN), ‘‘AlexNet’’,
whereas the latter additionally integrated temporal information em-
ploying Hidden Markov models. Adewole et al. (2020) compared four
state-of-the-art Deep Neural Networks (DNN) to detect the anatomical
parts within the GI tract. Zhao et al. (2021) designed a three stages
method to detect the boundaries of the small bowel. The method
explores long-range temporal dependency with a transformer mod-
ule, which captures the temporal inter-frame dependencies in short
sequences. To locate the starting and ending of the organ, a search
algorithm is applied. Finally, Son et al. (2022) proposed a system
based on a DNN with temporal filtering (a combination of median
and Savitzky–Golay filters) on the predicted probabilities. To detect
the boundaries, the method considers the minimum and maximum
frame index predicted as small bowel. Although in terms of classifi-
cation, deep learning methods outperform the obtained results with
the extraction of handcrafted features, only Zhao et al. (2021) and Son
et al. (2022) apply thresholding techniques to identify the boundaries
of the small bowel. To the best of our knowledge, all the studies were
performed using private datasets and with only one type of capsule.

3. Method

Our method aims to localize the anatomical landmarks from WCE
videos. An overview of the employed strategy is illustrated in Fig. 2.
To achieve the primary purpose, the main steps are: (1) Develop a
deep learning model to predict the probability of each image to belong
to the area of interest, the small bowel or the large intestine; (2)
Smooth and mitigate any noisy behavior of the probabilities with extra
information (temporal and motion data); (3) Predict the boundaries
using a rectangular pulse function by a minimization problem.

3.1. Step 1: Probability prediction

Let 𝑥𝑖 ∈ 𝑋 be an image, where 𝑥𝑖 is the 𝑖th-frame of a WCE video
𝑋, and 𝑓 (⋅), a DNN architecture. The low representation of the image
𝑥𝑖 is defined as 𝑥′𝑖 = 𝑓 (𝑥𝑖) ∈ R2048. The vector 𝑥′𝑖 is extended by
adding a new feature containing the temporal information of the frame,
𝑧𝑖 = 𝑥′𝑖 ∥ 𝑡𝑖 ∈ R2049, 𝑡𝑖 ∈ [0, 1].

The added time-related feature, 𝑡𝑖, is based on the image timestamp
and exists for each 𝑖. Each image is mapped to a value between zero
and one according to:

𝑡𝑖 =
timestamp𝑖

video length (1)

where 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 represents the time (in seconds) of the 𝑖th-frame in
the video. This equation normalizes all the video lengths and provides
the temporal position with respect to the entire video.

The WCE advances through the GI tract recording all organs in a
continuous manner. It is worth remarking that although the camera
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Fig. 2. Overview of the proposed system. The input of the network consists of a sequence of images and their temporal information. The main architecture is a DNN concatenated
with the temporal and CMT blocks. The output of the model is a smooth signal with low noise.
might go back and forth, it remains in the same organ. This allows the
model to create a relationship between time and organs. The temporal
feature added by our system allows the model to discard erroneous
predictions in different sections of the video.

Then, using a linear classifier 𝑔(⋅) and the extended vector 𝑧𝑖, the
probability 𝑝𝑖 of each frame is inferred:

𝑝𝑖 = 𝑔(𝑧𝑖) = 𝑔(𝑥′𝑖 ∥ 𝑡𝑖) = 𝑔(𝑓 (𝑥𝑖) ∥ 𝑡𝑖) (2)

3.2. Step 2: Smoothing the probabilities

Fig. 1 contains some examples of frames where the mucosa of the
digestive tract is hidden by noisy content (Chen et al., 2017) like
bile, bubbles, residues, and liquids. In those frames, the network may
yield senseless probabilities. To mitigate this undesirable behavior, it
is important not only to properly analyze a still image but the entire
sequence. Furthermore, if the context analysis is complemented with
the movements of the capsule within the intestine and the temporal
information, the developed model can further decrease this erratic
behavior.

Given all the frames from a video, the capsule movement signal
𝑠𝑚(⋅) is obtained by estimating the distance between frames. To cal-
culate them, the time-based self-supervised network, 𝑓𝑠𝑠(⋅), proposed
by Pascual et al. (2022) is employed to obtain the embedding for each
image 𝑥𝑖, 𝑒𝑖 = 𝑓𝑠𝑠(𝑥𝑖). The network generates similar representations
for images that are close in time, i.e., consecutive frames from the
same sequence have similar embeddings. For images from different
sequences, the network yields distant image representations. Then, the
Euclidean pairwise distance is computed between the embeddings to
obtain the matrix 𝑀 . The values of 𝑀 are an approximation of the
motion between two frames. Small values of the matrix are caused by
small movements of the capsule, while high values mean the opposite.

The visualization of this matrix shows contraction patterns of the
GI tract and can suggest where the camera might be located. Because
of the length of the video, the complete matrix is difficult to visualize.
Therefore, it is simplified as a figure containing the 𝑖th-frame, centered
in the middle of each row and their 500 nearest temporal neighbors,
all of them represented as pixels. The color of each one is the distance
between the frame and the central one. The darkest points correspond
to small distances, implying that the capsule hardly moves. While,
the lighter pixels point out larger distances, which entails a drastic
movement of the capsule. Fig. 3 contains three samples of the capsule
movement codified as an image. Each one is shown in four parts: the
beginning of the video, the first landmark, a random segment of the
organ, and the second landmark. The frames containing the landmarks
annotated by the experts are represented with black dashed lines.

The sequential analysis is performed in the context-motion-temporal
(CMT) block, which smooths the probabilities of those frames with
senseless values by combining neighborhood probabilities, motion, and
time information. The use of the CMT block is a paradigm shift which
works with probabilities and information from the whole video encoded
in three signals:
3

Fig. 3. Movement visualization of the capsule in different dataset videos: (a) Kvasir-
Capsule dataset, (b) VH dataset and, (c) Capri dataset. Each row corresponds to the
beginning of the video, the first landmark, a random part of the organ, and the second
landmark. Inside each patch, the 𝑥-axis represents the relationship of the central frame
to the other frames, and the 𝑦-axis contains the frames in chronological order. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

• Probability signal, 𝑠𝑝(⋅), is obtained by concatenating the proba-
bilities inferred in each frame of a video:

𝑠𝑝(𝑖) = 𝑔(𝑓 (𝑥𝑖) ∥ 𝑡𝑖), ∀𝑖 ∣ 𝑥𝑖 ∈ 𝑋 (3)

• Motion signal, 𝑠𝑚(⋅), is obtained by using the normalized 𝑖th-row
of the matrix M.

• Temporal signal, 𝑠𝑡(⋅), is obtained by concatenating the time
information of each frame of a video:

𝑠𝑡(𝑖) = 𝑡𝑖, ∀𝑡𝑖 (4)

These signals are concatenated vertically to generate a matrix of size
3 × 𝑣𝑖𝑑𝑒𝑜 𝑙𝑒𝑛𝑔𝑡ℎ. To calculate the output signal, 𝑠(⋅), a small network
called CMT𝑤(⋅) is used. It is composed of two layers of bidirectional
LSTM cells and one dense layer over 𝑤 consecutive frames. This is
formalized as:

𝑠 = CMT𝑤(𝑠𝑝 ∥ 𝑠𝑚 ∥ 𝑠𝑡) (5)

The window size hyper-parameter, 𝑤, is a natural odd number that
must be determined to achieve optimal results. The overview of this
block can be seen in Fig. 4.
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Fig. 4. Overview of the proposed CMT block with 𝑤 = 5. The input of the block is
the different signals extracted from processing a WCE video: the probability signal 𝑠𝑝,
the motion signal 𝑚 and the temporal signal 𝑠𝑡. The output signal 𝑠 is obtained after
combining the given information.

Fig. 5. Overview of the minimization problem, given the output signal of the video
and the rectangular pulse function required to solve Eq. (8). Gray lines correspond to
the anatomical landmark annotated by the expert.

3.3. Step 3: Boundaries prediction

Finally, a simple but efficient technique is employed to identify the
landmarks of the WCE video using the inferred probabilities of each
image belonging to an organ. A minimization problem, 𝜑(⋅), is solved
over the output signal to identify the boundaries of the organ, as it is
shown in Fig. 5. Let 𝑉 (𝑡) be the rectangular pulse function:

𝑉 (𝑡) = 𝑢(𝑡 − 𝑎) − 𝑢(𝑡 − 𝑏) (6)

where 𝑢(𝑡) is the unit step function defined as:

𝑢(𝑡) =
{

0 if 𝑡 < 0
1 if 𝑡 ≥ 0

(7)

and 𝑎 and 𝑏 are the limits where the function 𝑉 (𝑡) has value one. To
identify the first and last frame of the organ, the distance between the
output signal 𝑠(𝑖) and the rectangular pulse 𝑉 (𝑡) is minimized by finding
the best 𝑎 and 𝑏 values:

minimize
𝑎,𝑏

𝑎−1
∑

𝑖=0
𝑠(𝑖) +

𝑏−1
∑

𝑖=𝑎
1 − 𝑠(𝑖) +

𝑛
∑

𝑖=𝑏
𝑠(𝑖)

s.t. 𝑎 < 𝑏

(8)

The optimization of the network weights is carried out using the
binary cross-entropy loss to minimize Eqs. (2) and (5). In both cases, the
real binary labels inside/outside the organ have been used to compute
the cross-entropy during training.

4. Experimental setup

4.1. Datasets

The proposed system is evaluated with one public dataset (Kvasir-
Capsule) and two private ones (VH and Capri).
4

Table 1
Overview of the records in the three datasets used in this paper. The column #Inside
refers to those frames that are between the landmarks specified in each dataset.
Respectively, column #Outside refers to the number of frames that do not belong to
the area of interest.

Dataset Partitions #Patients #Inside #Outside Total

Kvasir-Capsule
Fold 0 12 400K 160K 560K
Fold 1 12 384K 97K 481K

Total 24 784K 257K 1M

VH
Fold 0 24 602K 246K 848K
Fold 1 24 592K 249K 841K

Total 48 1.2M 495K 1.6M

Capri
Fold 0 34 347K 148K 495K
Fold 1 34 393K 97K 490K

Total 68 740K 245K 985K

4.1.1. Kvasir-capsule dataset
This public dataset was collected from 117 examinations at a Nor-

wegian Hospital employing the Olympus Endocapsule 10 System (EC-
S10) (Smedsrud et al., 2021). In our case, we only used the set of
24 videos that contains anatomical landmarks of the small bowel,
specifically the pylorus and the ileocecal valve. The number of frames
per video is 44𝐾 on average. Small bowel images represent 75.14%
of the dataset. However, this dataset does not contain the temporal
information of the videos.

4.1.2. VH dataset
The second dataset was obtained from 48 healthy volunteers. Physi-

cians from Vall d’Hebron hospital in Barcelona recorded all the videos
using Medtronic PillCam SB3 and labeled the limits of the small bowel.
The average number of frames per video is 35𝐾 with a mean video
duration of 04:36:06. The frames between the pylorus and the ileocecal
valve represent the 70.68% of this dataset.

4.1.3. Capri dataset
The last used database is composed of 68 colon studies from dif-

ferent patients. All these WCE videos were recorded with Medtronic
PillCam COLON2 on behalf of the NHS Highland Raigmore Hospital
in Inverness. Images from both cameras, frontal and rear, from the
PillCam COLON2 are used in the experiments. The mean duration of
the videos is 08:19:51 with an average of 14𝐾 frames. The colon images
represent the 74.63% of the dataset.

4.2. Evaluation criteria

Models are evaluated with a two-fold stratified cross-validation
strategy, following the instructions established by Smedsrud et al.
(2021). It is worth remarking that the stratified partitions are not based
on individual frames but on individual patients. Hence, images from
the same patients do not belong to different sets. Table 1 contains the
details about each fold for each one of the used datasets.

As in previous (Zou et al., 2015; Chen et al., 2017; Adewole et al.,
2020; Zhao et al., 2021; Son et al., 2022), the performance of the
method in the classification task is measured with the following met-
rics: the Area Under the ROC Curve (AUC), Accuracy (ACC), Mean
Accuracy (MACC), Specificity (SPEC), and Sensitivity (SENS).

The AUC and MACC are the most appropriate metrics for evalu-
ating the performance of a binary classification model on imbalanced
datasets. The AUC measures the model’s ability to distinguish between
images that belong to the target organ and those that do not, while
the MACC and ACC measure the number of images that are correctly
predicted. It is important to note that relying solely on SENS and SPEC
rates for comparison can be problematic, as these can vary depending
on the chosen cut-off thresholds.
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Table 2
Window size hyper-parameters tested during training. The metrics used to identify which is the best value are the AUC and the total median error obtained in a two-fold
cross-validation.

Window size Datasets

Kvasir-Capsule VH Capri

AUC Median error AUC Median error AUC Median error

Entrance Exit Total Entrance Exit Total Entrance Exit Total

11 95.66 58.25 982.00 1040.25 98.09 46.50 266.75 313.25 99.61 4.00 1.50 5.50
51 95.47 𝟓𝟓.𝟕𝟓 693.25 749.00 98.66 𝟑𝟏.𝟐𝟓 276.75 308.00 99.79 𝟐.𝟕𝟓 1.50 4.25
75 95.53 82.75 954.25 1037.00 98.59 35.75 260.00 295.75 99.74 3.00 1.50 4.50
101 94.60 75.75 1540.50 1616.25 98.55 37.25 259.00 296.25 99.76 3.50 1.75 5.25
151 95.41 111.75 1082.75 1194.50 98.54 41.50 𝟐𝟏𝟎.𝟕𝟓 𝟐𝟓𝟐.𝟐𝟓 99.78 6.25 1.50 7.75
201 𝟗𝟔.𝟎𝟎 76.50 𝟒𝟖𝟕.𝟐𝟓 𝟓𝟔𝟑.𝟕𝟓 𝟗𝟖.𝟔𝟖 53.75 260.00 313.75 𝟗𝟗.𝟕𝟗 𝟐.𝟕𝟓 𝟏.𝟎𝟎 𝟑.𝟕𝟓
251 93.71 92.75 758.00 850.75 98.43 43.50 218.00 261.50 99.62 3.50 2.25 5.75
301 95.63 76.00 777.00 853.00 98.41 42.50 218.00 260.50 99.70 𝟐.𝟕𝟓 𝟏.𝟎𝟎 𝟑.𝟕𝟓
Similar to Mackiewicz et al. (2008), Li et al. (2015), Zhao et al.
2021) and Son et al. (2022), the performance of localizing the anatom-
cal landmarks is assessed as the frame distance (error) between the
mage where the boundaries of the organ were manually annotated by
he experts and those predicted by the system. Mean absolute error
MAE) and median absolute error are used to quantify the performance.
ince the capsule frame rate is variable, both errors (MAE and median)
re also presented as the difference in time (except in the Kvasir-Capsule
ataset, where frame time information is not available).

It is important to note that the metrics are computed per video to
void any bias caused by the video lengths.

.3. Implementation details

TensorFlow 2.4 was used to implement the models, which were
xecuted on a machine with an NVIDIA GeForce RTX 2080 TI and
UDA 11.0. The training process is composed of two separate stages.
irstly, the DNN with the temporal block is trained. Then, the weights
f the DNN are frozen and the CMT block is optimized.

ResNet-50 (He et al., 2016) initialized with ImageNet weights has
een used as a backbone architecture for the first stage DNN. The
ptimization of the network was carried out with Stochastic Gradient
escent and a batch size of 256. In all the experiments, the networks
ere trained for 10𝐾 iterations. For all the datasets, the learning rate

was set to 0.1 and it was decreased by a factor of 0.1 every 2𝐾
iterations.

All the images were resized to 128 × 128 pixels. In the case of the
private datasets, a uniform circle mask was applied over each frame to
eliminate the artifacts present at the borders of the images, ensuring
that no specific noise or patterns could identify either a dataset or a
particular video.

Data augmentation techniques were applied during the training
phase to improve the robustness of the method. Specifically, rotations
of 0, 90, 180, and 270 degrees, horizontal and vertical flips, and changes
in the brightness of the images were used.

The CMT network from the second stage is composed of two bidi-
rectional LSTM layers with 200 and 100 units, respectively. Finally, the
dense layer has two neurons as output. The network was optimized with
RMSprop as it is recommended by Zaman et al. (2021). The learning
rate was fixed to 0.001 during 4𝐾 iterations. The batch size was set to
512. To find the optimal hyper-parameter window size, w, a search grid
was done, and the chosen value was = 201 for the Kvasir-Capsule and
Capri datasets and w = 151 for the VH dataset.

Since the presented datasets are statistically different, the hyper-
parameter window size, 𝑤, must be chosen carefully for each case. The
reported metrics in Table 2 are the AUC score of the model in the image
classification task and the median error in the entrance, exit, and sum of
both in the landmark identification task. A window size of 201 achieves
the best results with the AUC metric for all the datasets. At the entrance
of the organ, the smallest error is obtained with 𝑤 = 51, whereas the
5

lowest error in the exit is achieved with 𝑤 = 151 in VH dataset and
Table 3
Overview of the ablation settings and the name used.

Method Ablation settings

ResNet Temp. Block Context

Prob. Motion Time

ResNet ✓

ResNet + C ✓ ✓

ResNet + CM ✓ ✓ ✓

ResNet + CT ✓ ✓ ✓

ResNet + CMT ✓ ✓ ✓ ✓

ResNet + Time ✓ ✓

ResNet + Time + C ✓ ✓ ✓

ResNet + Time + CM ✓ ✓ ✓ ✓

ResNet + Time + CT ✓ ✓ ✓ ✓

Proposed Method ✓ ✓ ✓ ✓ ✓

𝑤 = 201 in Kvasir-Capsule and Capri datasets. The same values of 𝑤
are the ones that obtain the lowest error in the sum of the entrance
and exit of the organs. Therefore, the hyper-parameter 𝑤 chosen for
Kvasir-Capsule and Capri datasets is 𝑤 = 201 because the AUC and total
median error coincide. In the case of the VH dataset, the chosen value
is 𝑤 = 151 since the difference between the AUC values for 𝑤 = 151
and 𝑤 = 201 is negligible.

5. Results

The results section is divided into two sets of experiments. The
first one presents the performance of the classification task for each
one of the datasets. The second is focused on identifying the exact
frames where the capsule enters and exits the studied organ. Finally,
qualitative results are shown to complement the quantitative results of
the proposed system compared to methods published so far.

In all the experiments, Kvasir-Capsule, VH, and Capri datasets are
evaluated using our proposed method, which consists of a DNN con-
catenated with the temporal and CMT blocks. To analyze the influence
of each component, an ablation study is performed by building sev-
eral additional models. Finally, our method is compared with the
state-of-the-art works in each task.

For the ablation study, ResNet is the simplest method and is consid-
ered the baseline for the comparisons. The influence of the temporal
block is evaluated with the ResNet + Time model, which combines
the image representation obtained by ResNet with the timestamp of
the image. The probability signals generated with the outputs of each
model are used to study the contribution of the context block. Let
us note that ResNet + Time + CMT is the proposed method. Table 3
contains a summary of the ablation settings of each method.

5.1. Image classification

The first experiment evaluates the performance of the proposed
method in the image classification problem. Specifically, on Kvasir-
Capsule and VH datasets, all the compared models aim to identify the
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Table 4
Comparison of the ablation study in the image classification problem for each dataset. Displayed results are the mean obtained after evaluating a two-fold cross-validation.

Dataset Methods AUC (%) ACC (%) MACC (%) SPEC (%) SENS (%)

Kvasir-Capsule

ResNet 91.48 ± 4.96 87.13 ± 7.00 82.10 ± 7.78 71.75 ± 15.43 92.45 ± 7.22
ResNet + C 93.53 ± 5.51 87.24 ± 13.04 82.78 ± 10.18 73.05 ± 16.82 92.50 ± 11.90
ResNet + CM 92.70 ± 6.22 88.47 ± 11.18 83.95 ± 9.71 74.41 ± 16.75 93.49 ± 10.66
ResNet + CT 94.40 ± 6.22 87.65 ± 11.59 83.72 ± 11.06 75.45 ± 18.98 91.98 ± 11.32
ResNet + CMT 95.47 ± 5.39 90.07 ± 7.25 85.18 ± 8.86 75.23 ± 17.76 95.12 ± 6.54
ResNet + Time 92.40 ± 5.06 87.88 ± 6.04 81.16 ± 7.66 67.92 ± 15.42 94.40 ± 5.27
ResNet + Time + C 94.91 ± 4.29 89.53 ± 6.73 𝟖𝟕.𝟔𝟗 ± 𝟕.𝟑𝟏 𝟖𝟐.𝟏𝟏 ± 𝟏𝟓.𝟓𝟕 93.27 ± 6.96
ResNet + Time + CM 94.67 ± 5.24 89.87 ± 6.54 87.39 ± 7.48 80.83 ± 15.88 93.95 ± 6.30
ResNet + Time + CT 𝟗𝟔.𝟑𝟔 ± 𝟑.𝟗𝟖 90.80 ± 5.80 87.62 ± 7.77 80.21 ± 16.73 95.03 ± 4.92

Proposed Method 96.00 ± 4.57 𝟗𝟏.𝟑𝟔 ± 𝟓.𝟕𝟓 87.47 ± 7.49 78.91 ± 16.28 𝟗𝟔.𝟎𝟑 ± 𝟒.𝟐𝟗

VH

ResNet 94.42 ± 6.70 84.60 ± 9.59 86.26 ± 8.36 88.26 ± 13.96 84.25 ± 10.27
ResNet + C 96.28 ± 6.93 93.44 ± 6.27 91.89 ± 8.01 87.31 ± 15.88 96.47 ± 3.97
ResNet + CM 97.70 ± 4.05 93.78 ± 5.94 91.97 ± 7.86 87.15 ± 15.69 96.79 ± 3.93
ResNet + CT 97.81 ± 3.69 92.59 ± 6.93 91.12 ± 8.37 86.10 ± 17.00 96.15 ± 4.68
ResNet + CMT 97.98 ± 3.31 93.49 ± 6.52 92.02 ± 8.06 87.55 ± 15.86 96.49 ± 4.19
ResNet + Time 95.97 ± 6.28 88.64 ± 8.16 89.24 ± 7.57 𝟖𝟗.𝟗𝟒 ± 𝟏𝟐.𝟔𝟒 88.56 ± 9.00
ResNet + Time + C 97.17 ± 6.35 94.63 ± 5.84 𝟗𝟐.𝟓𝟖 ± 𝟖.𝟎𝟔 88.00 ± 16.06 97.16 ± 3.85
ResNet + Time + CM 98.13 ± 3.49 94.55 ± 5.84 92.41 ± 8.07 87.56 ± 15.96 97.26 ± 3.81
ResNet + Time + CT 98.20 ± 3.79 𝟗𝟒.𝟔𝟗 ± 𝟓.𝟕𝟗 92.55 ± 7.94 87.25 ± 15.89 𝟗𝟕.𝟖𝟒 ± 𝟑.𝟐𝟖

Proposed Method 𝟗𝟖.𝟓𝟒 ± 𝟐.𝟑𝟔 94.58 ± 5.17 92.26 ± 7.74 87.25 ± 15.78 97.27 ± 3.42

Capri

ResNet 99.09 ± 1.41 95.71 ± 3.67 92.36 ± 4.62 85.70 ± 9.06 99.00 ± 3.16
ResNet + C 99.83 ± 0.81 98.63 ± 3.40 98.51 ± 3.30 98.50 ± 3.63 98.52 ± 5.59
ResNet + CM 99.82 ± 0.74 98.70 ± 3.21 98.37 ± 3.56 97.83 ± 5.01 98.90 ± 4.94
ResNet + CT 99.79 ± 0.92 98.54 ± 3.51 98.51 ± 3.13 98.54 ± 3.03 98.47 ± 5.69
ResNet + CMT 99.86 ± 0.54 98.73 ± 3.18 98.42 ± 3.54 98.01 ± 4.90 98.84 ± 5.07
ResNet + Time 99.66 ± 0.76 97.18 ± 3.50 96.51 ± 3.37 93.82 ± 6.46 99.20 ± 2.28
ResNet + Time + C 99.88 ± 0.54 98.97 ± 2.22 98.79 ± 2.36 98.08 ± 4.19 99.51 ± 2.28
ResNet + Time + CM 99.59 ± 1.52 98.91 ± 2.55 98.76 ± 2.51 97.92 ± 4.66 𝟗𝟗.𝟔𝟎 ± 𝟐.𝟏𝟏
ResNet + Time + CT 𝟗𝟗.𝟗𝟎 ± 𝟎.𝟒𝟕 99.02 ± 2.01 98.90 ± 2.16 98.43 ± 3.49 99.36 ± 2.81

Proposed Method 99.79 ± 0.82 𝟗𝟗.𝟎𝟕 ± 𝟐.𝟏𝟐 𝟗𝟖.𝟗𝟔 ± 𝟐.𝟐𝟏 𝟗𝟖.𝟓𝟖 ± 𝟑.𝟒𝟖 99.35 ± 2.97
Table 5
Comparison of the different methods of the state-of-the-art with our model in the image classification problem for each dataset. Displayed results are the mean obtained after
evaluating a two-fold cross-validation.

Dataset Methods AUC (%) ACC (%) MACC (%) SPEC (%) SENS (%)

Kvasir-Capsule

ResNet 91.48 ± 4.96 87.13 ± 7.00 82.10 ± 7.78 71.75 ± 15.43 92.45 ± 7.22

Zou et al. (2015) 75.37 ± 9.42 69.51 ± 11.67 69.11 ± 8.68 70.19 ± 16.35 68.03 ± 14.60
Chen et al. (2017) 83.65 ± 10.37 82.38 ± 9.20 76.90 ± 10.28 67.95 ± 16.18 85.84 ± 10.96
Zhao et al. (2021) 94.05 ± 4.50 89.46 ± 7.72 85.09 ± 7.87 76.29 ± 14.40 93.89 ± 7.46
Son et al. (2022) 95.75 ± 4.85 90.96 ± 6.56 81.03 ± 12.55 64.42 ± 26.40 𝟗𝟕.𝟔𝟒 ± 𝟒.𝟒𝟎

Proposed Method 𝟗𝟔.𝟎𝟎 ± 𝟒.𝟓𝟕 𝟗𝟏.𝟑𝟔 ± 𝟓.𝟕𝟓 𝟖𝟕.𝟒𝟕 ± 𝟕.𝟒𝟗 𝟕𝟖.𝟗𝟏 ± 𝟏𝟔.𝟐𝟖 96.03 ± 4.29

VH

ResNet 94.42 ± 6.70 84.60 ± 9.59 86.26 ± 8.36 88.26 ± 13.96 84.25 ± 10.27

Zou et al. (2015) 90.05 ± 9.91 84.56 ± 11.00 74.78 ± 12.22 56.87 ± 24.96 92.68 ± 9.98
Chen et al. (2017) 95.86 ± 5.46 90.29 ± 8.12 87.69 ± 8.28 82.53 ± 15.62 92.84 ± 10.02
Zhao et al. (2021) 97.81 ± 4.24 93.56 ± 7.12 91.95 ± 8.04 87.54 ± 14.89 96.37 ± 5.07
Son et al. (2022) 96.46 ± 6.65 89.27 ± 9.35 90.46 ± 8.73 𝟗𝟏.𝟎𝟓 ± 𝟏𝟒.𝟓𝟗 89.88 ± 9.21

Proposed Method 𝟗𝟖.𝟓𝟒 ± 𝟐.𝟑𝟔 𝟗𝟒.𝟓𝟖 ± 𝟓.𝟏𝟕 𝟗𝟐.𝟐𝟔 ± 𝟕.𝟕𝟒 87.25 ± 15.78 𝟗𝟕.𝟐𝟕 ± 𝟑.𝟒𝟐

Capri

ResNet 99.09 ± 1.41 95.71 ± 3.67 92.36 ± 4.62 85.70 ± 9.06 99.00 ± 3.16

Zou et al. (2015) 86.06 ± 7.93 80.64 ± 12.24 65.93 ± 6.29 33.50 ± 12.51 98.35 ± 2.02
Chen et al. (2017) 95.28 ± 4.37 88.42 ± 7.84 88.69 ± 6.49 88.31 ± 10.25 89.07 ± 9.62
Zhao et al. (2021) 99.85 ± 0.47 98.59 ± 2.23 98.17 ± 2.94 97.76 ± 3.74 98.58 ± 4.14
Son et al. (2022) 𝟗𝟗.𝟗𝟑 ± 𝟎.𝟐𝟏 97.94 ± 2.74 96.06 ± 4.30 92.57 ± 8.22 𝟗𝟗.𝟓𝟕 ± 𝟐.𝟓𝟖

Proposed Method 99.79 ± 0.82 𝟗𝟗.𝟎𝟕 ± 𝟐.𝟏𝟐 𝟗𝟖.𝟗𝟔 ± 𝟐.𝟐𝟏 𝟗𝟖.𝟓𝟖 ± 𝟑.𝟒𝟖 99.35 ± 2.97
t
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small bowel frames, whereas, on the Capri dataset, they aim to classify
he large intestine images.

The obtained results in the ablation study are presented in Table 4.
n all the datasets, the temporal block enhances the performance of
he methods with respect to the baseline ResNet. Similarly, it can be
een that the obtained results by the models with the context block are
igher than the baselines (ResNet and ResNet + Time). In general, when
ime or motion is added to the context block, the models achieve better
esults. This means that the combination of visual, temporal, and con-
extual information produces a powerful discriminative model. It can
lso be observed that the higher performance obtained in our model is
n AUC value of 99.79% on the Capri dataset. On Kvasir-Capsule and VH,
6

he obtained scores are 96.00% and 98.54%, respectively. Several reasons
can justify the difference in performance among datasets, being the
main differences between them: (1) the organ of study (colon on Capri
s. small bowel on Kvasir-Capsule and VH); (2) capsule device (Olympus

EC-S10, Medtronic PillCam SB3, and Medtronic PillCam Colon2); and
(3) amount of intestinal content. Therefore, capsule characteristics
like optic, illumination, and resolution are not equivalent neither the
intestinal mucosa and content. In addition, the statistics from each
dataset are different as reported in Table 1. Despite all the mentioned
differences, the results are coherent among the various datasets.

As previously stated, Kvasir-Capsule dataset lacks temporal informa-
tion. To address this limitation, the frame index has been used as a
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Table 6
Comparison of the ablation study in the anatomical landmarks identification task for each dataset. MAE and median error are represented as the difference in frames and time
(hh:mm:ss).

Dataset Methods Entrance Exit

MAE Median MAE Median

Frame Time Frame Time Frame Time Frame Time

Kvasir-Capsule

ResNet 668.34 ± 1091.84 – 111.75 ± 28.25 – 1875.96 ± 2747.54 – 1124.00 ± 493.00 –
ResNet + C 1505.83 ± 3316.56 – 207.50 ± 153.00 – 2147.42 ± 2967.07 – 908.50 ± 757.50 –
ResNet + CM 1504.54 ± 3272.05 – 217.25 ± 131.75 – 1877.62 ± 2736.03 – 928.00 ± 684.50 –
ResNet + CT 1677.79 ± 3509.05 – 139.00 ± 51.50 – 1902.29 ± 2683.68 – 1220.50 ± 391.50 –
ResNet + CMT 830.08 ± 1341.51 – 127.50 ± 31.00 – 1770.79 ± 2771.27 – 743.75 ± 580.25 –
ResNet + Time 785.88 ± 1182.88 – 93.00 ± 15.50 – 2002.38 ± 2959.43 – 1077.00 ± 539.00 –
ResNet + Time + C 535.50 ± 1089.54 – 𝟐𝟔.𝟕𝟓 ± 𝟐.𝟐𝟓 – 1710.71 ± 2769.83 – 559.00 ± 169.00 –
ResNet + Time + CM 606.08 ± 1104.42 – 61.25 ± 9.25 – 1727.67 ± 2767.06 – 651.50 ± 383.00 –
ResNet + Time + CT 556.38 ± 951.79 – 116.00 ± 43.00 – 1730.50 ± 2756.90 – 663.25 ± 83.25 –

Proposed Method 𝟒𝟔𝟓.𝟖𝟖 ± 𝟗𝟏𝟖.𝟏𝟑 – 76.50 ± 46.50 – 𝟏𝟔𝟕𝟗.𝟔𝟕 ± 𝟐𝟕𝟕𝟓.𝟕𝟐 – 𝟒𝟖𝟕.𝟐𝟓 ± 𝟏𝟔𝟑.𝟕𝟓 –

VH

ResNet 667.70 ± 1070.13 00 ∶ 04 ∶ 00 220.75 ± 191.75 00 ∶ 01 ∶ 45 2710.98 ± 4505.58 00 ∶ 22 ∶ 02 1235.75 ± 1126.75 00 ∶ 12 ∶ 20
ResNet + C 559.98 ± 1007.92 00 ∶ 03 ∶ 11 78.50 ± 17.00 00 ∶ 00 ∶ 34 1290.33 ± 2117.18 00 ∶ 14 ∶ 52 198.50 ± 82.00 00 ∶ 04 ∶ 02
ResNet + CM 512.38 ± 870.20 00 ∶ 02 ∶ 59 91.75 ± 48.75 00 ∶ 00 ∶ 39 1028.02 ± 1704.22 00 ∶ 12 ∶ 14 199.50 ± 85.50 00 ∶ 03 ∶ 24
ResNet + CT 557.83 ± 1181.40 00 ∶ 03 ∶ 10 78.25 ± 16.75 00 ∶ 00 ∶ 32 1279.73 ± 1774.48 00 ∶ 14 ∶ 55 369.75 ± 3.75 00 ∶ 05 ∶ 53
ResNet + CMT 500.90 ± 1166.62 00 ∶ 02 ∶ 45 50.50 ± 17.0 00 ∶ 00 ∶ 25 1077.35 ± 1605.62 00 ∶ 12 ∶ 05 259.50 ± 109.00 00 ∶ 05 ∶ 40
ResNet + Time 731.71 ± 1451.30 00 ∶ 03 ∶ 57 103.50 ± 59.50 00 ∶ 01 ∶ 14 2050.94 ± 4142.68 00 ∶ 17 ∶ 01 397.00 ± 350.00 00 ∶ 06 ∶ 26
ResNet + Time + C 502.62 ± 877.55 00 ∶ 02 ∶ 47 59.50 ± 4.00 00 ∶ 00 ∶ 25 911.23 ± 1619.69 00 ∶ 11 ∶ 38 167.25 ± 106.25 00 ∶ 03 ∶ 03
ResNet + Time + CM 𝟒𝟏𝟕.𝟕𝟗 ± 𝟖𝟏𝟒.𝟔𝟕 𝟎𝟎 ∶ 𝟎𝟐 ∶ 𝟏𝟖 44.00 ± 7.00 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟏𝟎 1110.48 ± 1992.44 00 ∶ 13 ∶ 02 𝟏𝟔𝟔.𝟓𝟎 ± 𝟏𝟎𝟑.𝟎𝟎 𝟎𝟎 ∶ 𝟎𝟑 ∶ 𝟎𝟎
ResNet + Time + CT 443.46 ± 1092.63 00 ∶ 02 ∶ 31 50.25 ± 8.25 00 ∶ 00 ∶ 23 1051.17 ± 1933.66 00 ∶ 11 ∶ 37 225.25 ± 170.25 00 ∶ 03 ∶ 29

Proposed Method 443.69 ± 1064.05 00 ∶ 02 ∶ 38 𝟒𝟏.𝟓𝟎 ± 𝟏𝟏.𝟎𝟎 00 ∶ 00 ∶ 15 𝟖𝟑𝟕.𝟕𝟕 ± 𝟏𝟒𝟖𝟓.𝟕𝟗 𝟎𝟎 ∶ 𝟎𝟗 ∶ 𝟒𝟔 210.75 ± 164.75 00 ∶ 03 ∶ 14

Capri

ResNet 53.70 ± 110.44 00 ∶ 01 ∶ 19 14.50 ± 4.00 00 ∶ 00 ∶ 06 13.80 ± 48.35 00 ∶ 02 ∶ 19 1.00 ± 0.00 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏
ResNet + C 28.94 ± 85.33 00 ∶ 00 ∶ 59 4.50 ± 0.50 00 ∶ 00 ∶ 02 41.76 ± 215.63 00 ∶ 04 ∶ 44 3.00 ± 0.00 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏
ResNet + CM 32.43 ± 97.72 00 ∶ 01 ∶ 00 2.75 ± 0.25 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏 38.58 ± 210.08 00 ∶ 03 ∶ 01 1.75 ± 0.25 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏
ResNet + CT 32.62 ± 91.01 00 ∶ 01 ∶ 02 5.00 ± 1.00 00 ∶ 00 ∶ 02 48.45 ± 240.70 00 ∶ 07 ∶ 08 2.00 ± 0.50 00 ∶ 00 ∶ 02
ResNet + CMT 32.35 ± 100.58 00 ∶ 01 ∶ 01 2.50 ± 0.50 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏 37.71 ± 209.38 00 ∶ 03 ∶ 06 2.00 ± 0.00 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏
ResNet + Time 38.40 ± 86.46 00 ∶ 01 ∶ 11 5.00 ± 2.00 00 ∶ 00 ∶ 02 19.80 ± 114.86 00 ∶ 05 ∶ 37 𝟏.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏
ResNet + Time + C 29.57 ± 81.18 00 ∶ 00 ∶ 51 4.50 ± 1.50 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏 8.89 ± 38.02 00 ∶ 02 ∶ 13 𝟏.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏
ResNet + Time + CM 𝟐𝟑.𝟓𝟖 ± 𝟔𝟗.𝟐𝟕 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟒𝟏 3.50 ± 0.50 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏 8.26 ± 38.02 00 ∶ 02 ∶ 04 𝟏.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏
ResNet + Time + CT 30.40 ± 79.19 00 ∶ 00 ∶ 58 5.25 ± 3.25 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏 8.88 ± 38.15 00 ∶ 02 ∶ 09 𝟏.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏

Proposed Method 29.40 ± 83.94 00 ∶ 00 ∶ 55 𝟐.𝟕𝟓 ± 𝟎.𝟐𝟓 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏 𝟕.𝟗𝟏 ± 𝟑𝟕.𝟖𝟐 𝟎𝟎 ∶ 𝟎𝟏 ∶ 𝟒𝟕 𝟏.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏
Table 7
Comparison of the different methods of the state-of-the-art with our model in the anatomical landmarks identification task for each dataset. MAE and median error are represented
as the difference in frames and time (hh:mm:ss).

Dataset Methods Entrance Exit

MAE Median MAE Median

Frame Time Frame Time Frame Time Frame Time

Kvasir-Capsule
Zhao et al. (2021) 2644.16 ± 4637.65 – 1251.00 ± 115.25 – 4603.58 ± 1545.95 – 1669.00 ± 185.26 –
Son et al. (2022) 2711.00 ± 3435.83 – 1786.00 ± 231.93 – 2409.00 ± 3106.30 – 1506.75 ± 1161.42 –

Proposed Method 𝟒𝟔𝟓.𝟖𝟖 ± 𝟗𝟏𝟖.𝟏𝟑 – 𝟕𝟔.𝟓𝟎 ± 𝟒𝟔.𝟓𝟎 – 𝟏𝟔𝟕𝟗.𝟔𝟕 ± 𝟐𝟕𝟕𝟓.𝟕𝟐 – 𝟒𝟖𝟕.𝟐𝟓 ± 𝟏𝟔𝟑.𝟕𝟓 –

VH
Zhao et al. (2021) 1304.23 ± 1394.26 00 ∶ 08 ∶ 20 915.25 ± 22.98 00 ∶ 04 ∶ 34 3308.58 ± 583.28 00 ∶ 31 ∶ 44 1765.25 ± 461.03 00 ∶ 16 ∶ 59
Son et al. (2022) 1390.47 ± 3487.30 00 ∶ 07 ∶ 12 304.75 ± 220.97 00 ∶ 02 ∶ 14 1552.00 ± 520.78 00 ∶ 16 ∶ 47 627.75 ± 1469.01 00 ∶ 08 ∶ 09

Proposed Method 𝟒𝟒𝟑.𝟔𝟗 ± 𝟏𝟎𝟔𝟒.𝟎𝟓 𝟎𝟎 ∶ 𝟎𝟐 ∶ 𝟑𝟖 𝟒𝟏.𝟓𝟎 ± 𝟏𝟏.𝟎𝟎 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟏𝟓 𝟖𝟑𝟕.𝟕𝟕 ± 𝟏𝟒𝟖𝟓.𝟕𝟗 𝟎𝟎 ∶ 𝟎𝟗 ∶ 𝟒𝟔 𝟐𝟏𝟎.𝟕𝟓 ± 𝟏𝟔𝟒.𝟕𝟓 𝟎𝟎 ∶ 𝟎𝟑 ∶ 𝟏𝟒

Capri
Zhao et al. (2021) 214.24 ± 437.6 00 ∶ 07 ∶ 28 85.0 ± 23.33 00 ∶ 01 ∶ 11 524.94 ± 1258.34 00 ∶ 35 ∶ 23 23.5 ± 2.12 00 ∶ 01 ∶ 02
Son et al. (2022) 56.39 ± 161.94 00 ∶ 04 ∶ 00 14.50 ± 0.70 00 ∶ 00 ∶ 08 32.25 ± 111.27 00 ∶ 07 ∶ 29 7.50 ± 0.70 00 ∶ 00 ∶ 43

Proposed Method 𝟐𝟗.𝟒𝟎 ± 𝟖𝟑.𝟗𝟒 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟓𝟓 𝟐.𝟕𝟓 ± 𝟎.𝟐𝟓 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏 𝟕.𝟗𝟏 ± 𝟑𝟕.𝟖𝟐 𝟎𝟎 ∶ 𝟎𝟏 ∶ 𝟒𝟕 𝟏.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎𝟎 ∶ 𝟎𝟎 ∶ 𝟎𝟏
substitute for temporal information. Despite this adjustment, similar
effects on the system’s performance have been observed in this dataset.
This can be attributed to the fact that the order of the frames is a
reliable proxy for timestamps.

The proposed method is compared with the following state-of-the-
art methods: Zou et al. (2015), Chen et al. (2017), Zhao et al. (2021),
and Son et al. (2022). All these methods have been implemented,
trained, and evaluated using the same datasets and evaluation method-
ology. The results reported in Table 5 show that the proposed method
outperforms all others in all datasets.

5.2. Anatomical landmarks identification

In the second experiment, the difference between the predicted
7

landmarks and the annotations provided by the experts is analyzed. On
Kvasir-Capsule and VH datasets, the pylorus and the ileocecal valve,
which delimit the small bowel, are identified. On the other hand, on
Capri dataset, the boundaries of the colon, first cecal and last rectal
images are used.

The results from the ablation study come from minimizing the rect-
angular pulse function over the output signal of each setting. Table 6
contains the MAE and median error of each one in frames and time. The
reported results show that the use of the temporal and context block
reduces the error of the baseline ResNet. Particularly, in the small bowel
datasets, Kvasir-Capsule and VH, there is a large difference between
MAE and median error. This suggests that there are several outliers.
Despite them, the proposed method achieves promising results in all
the cases.

The proposed method is compared with Zhao et al. (2021) and Son

et al. (2022), as shown in Table 7. For this experiment, the proposed
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Fig. 6. Visual representation of the system outputs of three WCE videos from: (a) Kvasir-Capsule (b) VH and (c) Capri datasets. Each subfigure contains the output signals and
the identification of the anatomical landmarks for the evaluated methods. Yellow points represent frames from the organ of interest (small bowel or large intestine), whereas the
blues ones are outside these areas. The second task is displayed over the outputs signals as dashed lines. The predicted landmarks are ticked in purple, while the ground truth
is in green. Below the output signals are displayed a uniform sampling of frames around the landmarks, achieving sequences of 11 items. The frame identification (id) and the
probability of belonging to the organ of interest are shown above each image. The frames of the labeled and predicted landmarks are surrounded by a green and purple box,
respectively. Finally, several misclassified frames are shown, which are localized in the output signal of the Proposed Method as crosses in red for false positives and dark green
for false negatives samples. The figure is best viewed on the computer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Table 8
Comparison of the different strategies for identifying the anatomical landmarks. The proposed strategy is
applied to state-of-art methods. The displayed results are the median error obtained after evaluating a
two-fold cross-validation.

Method Dataset

Kvasir-Capsule VH Capri

Entrance Exit Entrance Exit Entrance Exit

Zhao et al. (2021) 1251.00 1669.00 915.25 1765.25 85.00 23.50
Zhao et al. (2021) + Step 3 93.00 702.50 65.00 478.00 3.50 1.00

Son et al. (2022) 1786.00 1506.00 304.75 627.75 14.50 7.50
Son et al. (2022) + Step 3 686.25 1683.25 214.50 1236.00 35.50 6.00

Proposed Method 𝟕𝟔.𝟓𝟎 𝟒𝟖𝟕.𝟐𝟓 𝟒𝟏.𝟓𝟎 𝟐𝟏𝟎.𝟕𝟓 𝟐.𝟕𝟓 𝟏.𝟎𝟎
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methods by Zou et al. (2015) and Chen et al. (2017) have not been
considered since they do not identify the boundaries of the organs.
The results in Table 7 show that the proposed method outperformed
all methods in all the cases.

It can be observed in Tables 6 and 7 that in both small bowel
datasets, that the identification of the entrance of the organ is more ac-
curate than the exit. On the other hand, for the colon dataset (Capri) the
identification of last rectal image is more accurate than the entrance.

Finally, the impact of the landmarks identification strategy is ana-
lyzed. To evaluate it, the third step of our model has been applied to
the outputs of the models from Zhao et al. (2021) and Son et al. (2022).
Table 8 summarizes the results obtained, which indicate that by solving
the minimization problem the errors decrease. These findings suggest
that the proposed strategy of locating anatomical landmarks is more
effective than those currently published.

The results from both tasks, image classification (Table 5) and
anatomical landmark identification (Table 7) show a strong correlation.
In other words, the better the classifier, the more accurate the limit
identification of the organs.

5.3. Qualitative results

This section aims to gain additional information about the perfor-
mance of the proposed method and to visualize the types of errors in
a qualitative manner (Fig. 6). These results are presented using one
test video per dataset (Kvasir-Capsule dataset in Fig. 6(a), VH dataset in
Fig. 6(b) and Capri dataset in Fig. 6(c)). The selected ones have metrics
near the median values reported in Table 6, thus avoiding outliers
and championship cases. The output signals represent the classification
task, where the probability for each image to belong to the studied
organ is plotted. Yellow dots are the frames corresponding to the organs
(small bowel or large intestine), whereas the blue ones are considered
out of this range. The visualization allows assessing the performance
of our method by removing certain blocks and understanding the
contribution of each component to the overall system. For that purpose,
each figure shows four of the methods previously introduced: ResNet,
ResNet + Time, ResNet + CMT and Proposed Method.

For the Kvasir-Capsule dataset (Fig. 6(a)), the ResNet + Time method
infers worse probabilities than the ResNet model. When the temporal
information is combined with the contextual block in our method, the
obtained output signal is smoother and more similar to the ground
truth. However, there are still some misclassified sequences outside
the small intestine. In the case of the videos from the other datasets
(Fig. 6(b) and Fig. 6(c)) the application of the contextual information
further evidence the improved performance of the proposed method
even more.

Moreover, each subfigure contains a set of false positive and false
negatives samples determined by our method. The small bowel videos
show several misclassified examples, where the mucosa is completely
hidden, thus preventing the system from making a correct prediction.

The identification of the anatomical landmarks is a complex task
since only one correct frame in the video has to be determined as the
entrance or exit of the organ. In Fig. 6, the green dashed lines over
the output signals indicate the frame labeled by the experts while the
purple ones correspond to the system predictions. The rectangular pulse
function fits the output signal and correctly identifies the landmarks,
but it fails when the prediction of belonging to the organ is wrong. In
the identified last pylorus image, it can be observed that despite the
distance between the predicted and the real landmarks, the frames are
visually similar (Figs. 6(a) and 6(b)). But when the mucosa is hidden
by the noise content of the GI tract, as happens in the exit sequences
in Figs. 6(a) and 6(b), the error is higher. Therefore, the complexity of
the problem increases. However, in Capri dataset (Fig. 6(c)), the exit of
the large intestine is easier to identify due to the drastic change in the
visual features caused by the evacuation of the capsule from the body
9

or because the video stopped. a
6. Discussion and conclusion

In this paper, an effective deep learning system for WCE is proposed.
The method is designed to, first, infer the probability for every image
to belong to the area of interest, taking advantage of temporal, neigh-
boring, and motion information. Secondly, the landmarks are predicted
by solving a minimization problem. Experimental results have been
reported over three datasets, one public and two private. In all of them,
the proposed method improves the results of the baseline system.

The results obtained in the two datasets of the small bowel, Kvasir-
apsule and VH, show a high performance in the classification problem.
oreover, our method in the VH dataset displays even better results,

ncreasing at least three points in each metric. Several reasons can
ustify the difference in performance achieved on each dataset such as
ataset size, amount of intestinal content, or device used to collect the
ideo.

After performing all the experiments and analyzing the results, we
elieve that our method is a good candidate for the automatic classifi-
ation of organs regardless of the device used. Although our method of
andmark identification does not achieve the best performance for all
he datasets, it exhibits promising results.

One limitation of the proposed system is that it has been designed
o deal with only one organ, given the lack of multi-organ labels
n the used datasets. However, this limitation could be addressed by
ncorporating anatomical landmarks for multiple organs and adapting
he CMT block accordingly. Additionally, the results strongly depend
n the organ, the used WCE device, and the dataset size. To overcome
his issue, future research could focus on exploring a general method
or multiple devices and organs.

Furthermore, future work could also investigate the detection of
ultiple organs and their anatomical landmarks. Additionally, it may

e possible to localize distinct landmarks within a single organ, such
s the flexures of the large intestine.
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